diff --git a/.nojekyll b/.nojekyll index e69de29..f173110 100644 --- a/.nojekyll +++ b/.nojekyll @@ -0,0 +1 @@ +This file makes sure that Github Pages doesn't process mdBook's output. diff --git a/404.html b/404.html new file mode 100644 index 0000000..cfa564c --- /dev/null +++ b/404.html @@ -0,0 +1,213 @@ + + + + + + Page not found - tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+

Document not found (404)

+

This URL is invalid, sorry. Please use the navigation bar or search to continue.

+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + +
+ + diff --git a/FontAwesome/css/font-awesome.css b/FontAwesome/css/font-awesome.css new file mode 100644 index 0000000..540440c --- /dev/null +++ b/FontAwesome/css/font-awesome.css @@ -0,0 +1,4 @@ +/*! + * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome + * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) + */@font-face{font-family:'FontAwesome';src:url('../fonts/fontawesome-webfont.eot?v=4.7.0');src:url('../fonts/fontawesome-webfont.eot?#iefix&v=4.7.0') format('embedded-opentype'),url('../fonts/fontawesome-webfont.woff2?v=4.7.0') format('woff2'),url('../fonts/fontawesome-webfont.woff?v=4.7.0') format('woff'),url('../fonts/fontawesome-webfont.ttf?v=4.7.0') format('truetype'),url('../fonts/fontawesome-webfont.svg?v=4.7.0#fontawesomeregular') format('svg');font-weight:normal;font-style:normal}.fa{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571429em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14285714em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14285714em;width:2.14285714em;top:.14285714em;text-align:center}.fa-li.fa-lg{left:-1.85714286em}.fa-border{padding:.2em .25em .15em;border:solid .08em #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa.fa-pull-left{margin-right:.3em}.fa.fa-pull-right{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left{margin-right:.3em}.fa.pull-right{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s infinite linear;animation:fa-spin 2s infinite linear}.fa-pulse{-webkit-animation:fa-spin 1s infinite steps(8);animation:fa-spin 1s infinite steps(8)}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}100%{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scale(-1, 1);-ms-transform:scale(-1, 1);transform:scale(-1, 1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scale(1, -1);-ms-transform:scale(1, -1);transform:scale(1, -1)}:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270,:root .fa-flip-horizontal,:root .fa-flip-vertical{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:"\f000"}.fa-music:before{content:"\f001"}.fa-search:before{content:"\f002"}.fa-envelope-o:before{content:"\f003"}.fa-heart:before{content:"\f004"}.fa-star:before{content:"\f005"}.fa-star-o:before{content:"\f006"}.fa-user:before{content:"\f007"}.fa-film:before{content:"\f008"}.fa-th-large:before{content:"\f009"}.fa-th:before{content:"\f00a"}.fa-th-list:before{content:"\f00b"}.fa-check:before{content:"\f00c"}.fa-remove:before,.fa-close:before,.fa-times:before{content:"\f00d"}.fa-search-plus:before{content:"\f00e"}.fa-search-minus:before{content:"\f010"}.fa-power-off:before{content:"\f011"}.fa-signal:before{content:"\f012"}.fa-gear:before,.fa-cog:before{content:"\f013"}.fa-trash-o:before{content:"\f014"}.fa-home:before{content:"\f015"}.fa-file-o:before{content:"\f016"}.fa-clock-o:before{content:"\f017"}.fa-road:before{content:"\f018"}.fa-download:before{content:"\f019"}.fa-arrow-circle-o-down:before{content:"\f01a"}.fa-arrow-circle-o-up:before{content:"\f01b"}.fa-inbox:before{content:"\f01c"}.fa-play-circle-o:before{content:"\f01d"}.fa-rotate-right:before,.fa-repeat:before{content:"\f01e"}.fa-refresh:before{content:"\f021"}.fa-list-alt:before{content:"\f022"}.fa-lock:before{content:"\f023"}.fa-flag:before{content:"\f024"}.fa-headphones:before{content:"\f025"}.fa-volume-off:before{content:"\f026"}.fa-volume-down:before{content:"\f027"}.fa-volume-up:before{content:"\f028"}.fa-qrcode:before{content:"\f029"}.fa-barcode:before{content:"\f02a"}.fa-tag:before{content:"\f02b"}.fa-tags:before{content:"\f02c"}.fa-book:before{content:"\f02d"}.fa-bookmark:before{content:"\f02e"}.fa-print:before{content:"\f02f"}.fa-camera:before{content:"\f030"}.fa-font:before{content:"\f031"}.fa-bold:before{content:"\f032"}.fa-italic:before{content:"\f033"}.fa-text-height:before{content:"\f034"}.fa-text-width:before{content:"\f035"}.fa-align-left:before{content:"\f036"}.fa-align-center:before{content:"\f037"}.fa-align-right:before{content:"\f038"}.fa-align-justify:before{content:"\f039"}.fa-list:before{content:"\f03a"}.fa-dedent:before,.fa-outdent:before{content:"\f03b"}.fa-indent:before{content:"\f03c"}.fa-video-camera:before{content:"\f03d"}.fa-photo:before,.fa-image:before,.fa-picture-o:before{content:"\f03e"}.fa-pencil:before{content:"\f040"}.fa-map-marker:before{content:"\f041"}.fa-adjust:before{content:"\f042"}.fa-tint:before{content:"\f043"}.fa-edit:before,.fa-pencil-square-o:before{content:"\f044"}.fa-share-square-o:before{content:"\f045"}.fa-check-square-o:before{content:"\f046"}.fa-arrows:before{content:"\f047"}.fa-step-backward:before{content:"\f048"}.fa-fast-backward:before{content:"\f049"}.fa-backward:before{content:"\f04a"}.fa-play:before{content:"\f04b"}.fa-pause:before{content:"\f04c"}.fa-stop:before{content:"\f04d"}.fa-forward:before{content:"\f04e"}.fa-fast-forward:before{content:"\f050"}.fa-step-forward:before{content:"\f051"}.fa-eject:before{content:"\f052"}.fa-chevron-left:before{content:"\f053"}.fa-chevron-right:before{content:"\f054"}.fa-plus-circle:before{content:"\f055"}.fa-minus-circle:before{content:"\f056"}.fa-times-circle:before{content:"\f057"}.fa-check-circle:before{content:"\f058"}.fa-question-circle:before{content:"\f059"}.fa-info-circle:before{content:"\f05a"}.fa-crosshairs:before{content:"\f05b"}.fa-times-circle-o:before{content:"\f05c"}.fa-check-circle-o:before{content:"\f05d"}.fa-ban:before{content:"\f05e"}.fa-arrow-left:before{content:"\f060"}.fa-arrow-right:before{content:"\f061"}.fa-arrow-up:before{content:"\f062"}.fa-arrow-down:before{content:"\f063"}.fa-mail-forward:before,.fa-share:before{content:"\f064"}.fa-expand:before{content:"\f065"}.fa-compress:before{content:"\f066"}.fa-plus:before{content:"\f067"}.fa-minus:before{content:"\f068"}.fa-asterisk:before{content:"\f069"}.fa-exclamation-circle:before{content:"\f06a"}.fa-gift:before{content:"\f06b"}.fa-leaf:before{content:"\f06c"}.fa-fire:before{content:"\f06d"}.fa-eye:before{content:"\f06e"}.fa-eye-slash:before{content:"\f070"}.fa-warning:before,.fa-exclamation-triangle:before{content:"\f071"}.fa-plane:before{content:"\f072"}.fa-calendar:before{content:"\f073"}.fa-random:before{content:"\f074"}.fa-comment:before{content:"\f075"}.fa-magnet:before{content:"\f076"}.fa-chevron-up:before{content:"\f077"}.fa-chevron-down:before{content:"\f078"}.fa-retweet:before{content:"\f079"}.fa-shopping-cart:before{content:"\f07a"}.fa-folder:before{content:"\f07b"}.fa-folder-open:before{content:"\f07c"}.fa-arrows-v:before{content:"\f07d"}.fa-arrows-h:before{content:"\f07e"}.fa-bar-chart-o:before,.fa-bar-chart:before{content:"\f080"}.fa-twitter-square:before{content:"\f081"}.fa-facebook-square:before{content:"\f082"}.fa-camera-retro:before{content:"\f083"}.fa-key:before{content:"\f084"}.fa-gears:before,.fa-cogs:before{content:"\f085"}.fa-comments:before{content:"\f086"}.fa-thumbs-o-up:before{content:"\f087"}.fa-thumbs-o-down:before{content:"\f088"}.fa-star-half:before{content:"\f089"}.fa-heart-o:before{content:"\f08a"}.fa-sign-out:before{content:"\f08b"}.fa-linkedin-square:before{content:"\f08c"}.fa-thumb-tack:before{content:"\f08d"}.fa-external-link:before{content:"\f08e"}.fa-sign-in:before{content:"\f090"}.fa-trophy:before{content:"\f091"}.fa-github-square:before{content:"\f092"}.fa-upload:before{content:"\f093"}.fa-lemon-o:before{content:"\f094"}.fa-phone:before{content:"\f095"}.fa-square-o:before{content:"\f096"}.fa-bookmark-o:before{content:"\f097"}.fa-phone-square:before{content:"\f098"}.fa-twitter:before{content:"\f099"}.fa-facebook-f:before,.fa-facebook:before{content:"\f09a"}.fa-github:before{content:"\f09b"}.fa-unlock:before{content:"\f09c"}.fa-credit-card:before{content:"\f09d"}.fa-feed:before,.fa-rss:before{content:"\f09e"}.fa-hdd-o:before{content:"\f0a0"}.fa-bullhorn:before{content:"\f0a1"}.fa-bell:before{content:"\f0f3"}.fa-certificate:before{content:"\f0a3"}.fa-hand-o-right:before{content:"\f0a4"}.fa-hand-o-left:before{content:"\f0a5"}.fa-hand-o-up:before{content:"\f0a6"}.fa-hand-o-down:before{content:"\f0a7"}.fa-arrow-circle-left:before{content:"\f0a8"}.fa-arrow-circle-right:before{content:"\f0a9"}.fa-arrow-circle-up:before{content:"\f0aa"}.fa-arrow-circle-down:before{content:"\f0ab"}.fa-globe:before{content:"\f0ac"}.fa-wrench:before{content:"\f0ad"}.fa-tasks:before{content:"\f0ae"}.fa-filter:before{content:"\f0b0"}.fa-briefcase:before{content:"\f0b1"}.fa-arrows-alt:before{content:"\f0b2"}.fa-group:before,.fa-users:before{content:"\f0c0"}.fa-chain:before,.fa-link:before{content:"\f0c1"}.fa-cloud:before{content:"\f0c2"}.fa-flask:before{content:"\f0c3"}.fa-cut:before,.fa-scissors:before{content:"\f0c4"}.fa-copy:before,.fa-files-o:before{content:"\f0c5"}.fa-paperclip:before{content:"\f0c6"}.fa-save:before,.fa-floppy-o:before{content:"\f0c7"}.fa-square:before{content:"\f0c8"}.fa-navicon:before,.fa-reorder:before,.fa-bars:before{content:"\f0c9"}.fa-list-ul:before{content:"\f0ca"}.fa-list-ol:before{content:"\f0cb"}.fa-strikethrough:before{content:"\f0cc"}.fa-underline:before{content:"\f0cd"}.fa-table:before{content:"\f0ce"}.fa-magic:before{content:"\f0d0"}.fa-truck:before{content:"\f0d1"}.fa-pinterest:before{content:"\f0d2"}.fa-pinterest-square:before{content:"\f0d3"}.fa-google-plus-square:before{content:"\f0d4"}.fa-google-plus:before{content:"\f0d5"}.fa-money:before{content:"\f0d6"}.fa-caret-down:before{content:"\f0d7"}.fa-caret-up:before{content:"\f0d8"}.fa-caret-left:before{content:"\f0d9"}.fa-caret-right:before{content:"\f0da"}.fa-columns:before{content:"\f0db"}.fa-unsorted:before,.fa-sort:before{content:"\f0dc"}.fa-sort-down:before,.fa-sort-desc:before{content:"\f0dd"}.fa-sort-up:before,.fa-sort-asc:before{content:"\f0de"}.fa-envelope:before{content:"\f0e0"}.fa-linkedin:before{content:"\f0e1"}.fa-rotate-left:before,.fa-undo:before{content:"\f0e2"}.fa-legal:before,.fa-gavel:before{content:"\f0e3"}.fa-dashboard:before,.fa-tachometer:before{content:"\f0e4"}.fa-comment-o:before{content:"\f0e5"}.fa-comments-o:before{content:"\f0e6"}.fa-flash:before,.fa-bolt:before{content:"\f0e7"}.fa-sitemap:before{content:"\f0e8"}.fa-umbrella:before{content:"\f0e9"}.fa-paste:before,.fa-clipboard:before{content:"\f0ea"}.fa-lightbulb-o:before{content:"\f0eb"}.fa-exchange:before{content:"\f0ec"}.fa-cloud-download:before{content:"\f0ed"}.fa-cloud-upload:before{content:"\f0ee"}.fa-user-md:before{content:"\f0f0"}.fa-stethoscope:before{content:"\f0f1"}.fa-suitcase:before{content:"\f0f2"}.fa-bell-o:before{content:"\f0a2"}.fa-coffee:before{content:"\f0f4"}.fa-cutlery:before{content:"\f0f5"}.fa-file-text-o:before{content:"\f0f6"}.fa-building-o:before{content:"\f0f7"}.fa-hospital-o:before{content:"\f0f8"}.fa-ambulance:before{content:"\f0f9"}.fa-medkit:before{content:"\f0fa"}.fa-fighter-jet:before{content:"\f0fb"}.fa-beer:before{content:"\f0fc"}.fa-h-square:before{content:"\f0fd"}.fa-plus-square:before{content:"\f0fe"}.fa-angle-double-left:before{content:"\f100"}.fa-angle-double-right:before{content:"\f101"}.fa-angle-double-up:before{content:"\f102"}.fa-angle-double-down:before{content:"\f103"}.fa-angle-left:before{content:"\f104"}.fa-angle-right:before{content:"\f105"}.fa-angle-up:before{content:"\f106"}.fa-angle-down:before{content:"\f107"}.fa-desktop:before{content:"\f108"}.fa-laptop:before{content:"\f109"}.fa-tablet:before{content:"\f10a"}.fa-mobile-phone:before,.fa-mobile:before{content:"\f10b"}.fa-circle-o:before{content:"\f10c"}.fa-quote-left:before{content:"\f10d"}.fa-quote-right:before{content:"\f10e"}.fa-spinner:before{content:"\f110"}.fa-circle:before{content:"\f111"}.fa-mail-reply:before,.fa-reply:before{content:"\f112"}.fa-github-alt:before{content:"\f113"}.fa-folder-o:before{content:"\f114"}.fa-folder-open-o:before{content:"\f115"}.fa-smile-o:before{content:"\f118"}.fa-frown-o:before{content:"\f119"}.fa-meh-o:before{content:"\f11a"}.fa-gamepad:before{content:"\f11b"}.fa-keyboard-o:before{content:"\f11c"}.fa-flag-o:before{content:"\f11d"}.fa-flag-checkered:before{content:"\f11e"}.fa-terminal:before{content:"\f120"}.fa-code:before{content:"\f121"}.fa-mail-reply-all:before,.fa-reply-all:before{content:"\f122"}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:"\f123"}.fa-location-arrow:before{content:"\f124"}.fa-crop:before{content:"\f125"}.fa-code-fork:before{content:"\f126"}.fa-unlink:before,.fa-chain-broken:before{content:"\f127"}.fa-question:before{content:"\f128"}.fa-info:before{content:"\f129"}.fa-exclamation:before{content:"\f12a"}.fa-superscript:before{content:"\f12b"}.fa-subscript:before{content:"\f12c"}.fa-eraser:before{content:"\f12d"}.fa-puzzle-piece:before{content:"\f12e"}.fa-microphone:before{content:"\f130"}.fa-microphone-slash:before{content:"\f131"}.fa-shield:before{content:"\f132"}.fa-calendar-o:before{content:"\f133"}.fa-fire-extinguisher:before{content:"\f134"}.fa-rocket:before{content:"\f135"}.fa-maxcdn:before{content:"\f136"}.fa-chevron-circle-left:before{content:"\f137"}.fa-chevron-circle-right:before{content:"\f138"}.fa-chevron-circle-up:before{content:"\f139"}.fa-chevron-circle-down:before{content:"\f13a"}.fa-html5:before{content:"\f13b"}.fa-css3:before{content:"\f13c"}.fa-anchor:before{content:"\f13d"}.fa-unlock-alt:before{content:"\f13e"}.fa-bullseye:before{content:"\f140"}.fa-ellipsis-h:before{content:"\f141"}.fa-ellipsis-v:before{content:"\f142"}.fa-rss-square:before{content:"\f143"}.fa-play-circle:before{content:"\f144"}.fa-ticket:before{content:"\f145"}.fa-minus-square:before{content:"\f146"}.fa-minus-square-o:before{content:"\f147"}.fa-level-up:before{content:"\f148"}.fa-level-down:before{content:"\f149"}.fa-check-square:before{content:"\f14a"}.fa-pencil-square:before{content:"\f14b"}.fa-external-link-square:before{content:"\f14c"}.fa-share-square:before{content:"\f14d"}.fa-compass:before{content:"\f14e"}.fa-toggle-down:before,.fa-caret-square-o-down:before{content:"\f150"}.fa-toggle-up:before,.fa-caret-square-o-up:before{content:"\f151"}.fa-toggle-right:before,.fa-caret-square-o-right:before{content:"\f152"}.fa-euro:before,.fa-eur:before{content:"\f153"}.fa-gbp:before{content:"\f154"}.fa-dollar:before,.fa-usd:before{content:"\f155"}.fa-rupee:before,.fa-inr:before{content:"\f156"}.fa-cny:before,.fa-rmb:before,.fa-yen:before,.fa-jpy:before{content:"\f157"}.fa-ruble:before,.fa-rouble:before,.fa-rub:before{content:"\f158"}.fa-won:before,.fa-krw:before{content:"\f159"}.fa-bitcoin:before,.fa-btc:before{content:"\f15a"}.fa-file:before{content:"\f15b"}.fa-file-text:before{content:"\f15c"}.fa-sort-alpha-asc:before{content:"\f15d"}.fa-sort-alpha-desc:before{content:"\f15e"}.fa-sort-amount-asc:before{content:"\f160"}.fa-sort-amount-desc:before{content:"\f161"}.fa-sort-numeric-asc:before{content:"\f162"}.fa-sort-numeric-desc:before{content:"\f163"}.fa-thumbs-up:before{content:"\f164"}.fa-thumbs-down:before{content:"\f165"}.fa-youtube-square:before{content:"\f166"}.fa-youtube:before{content:"\f167"}.fa-xing:before{content:"\f168"}.fa-xing-square:before{content:"\f169"}.fa-youtube-play:before{content:"\f16a"}.fa-dropbox:before{content:"\f16b"}.fa-stack-overflow:before{content:"\f16c"}.fa-instagram:before{content:"\f16d"}.fa-flickr:before{content:"\f16e"}.fa-adn:before{content:"\f170"}.fa-bitbucket:before{content:"\f171"}.fa-bitbucket-square:before{content:"\f172"}.fa-tumblr:before{content:"\f173"}.fa-tumblr-square:before{content:"\f174"}.fa-long-arrow-down:before{content:"\f175"}.fa-long-arrow-up:before{content:"\f176"}.fa-long-arrow-left:before{content:"\f177"}.fa-long-arrow-right:before{content:"\f178"}.fa-apple:before{content:"\f179"}.fa-windows:before{content:"\f17a"}.fa-android:before{content:"\f17b"}.fa-linux:before{content:"\f17c"}.fa-dribbble:before{content:"\f17d"}.fa-skype:before{content:"\f17e"}.fa-foursquare:before{content:"\f180"}.fa-trello:before{content:"\f181"}.fa-female:before{content:"\f182"}.fa-male:before{content:"\f183"}.fa-gittip:before,.fa-gratipay:before{content:"\f184"}.fa-sun-o:before{content:"\f185"}.fa-moon-o:before{content:"\f186"}.fa-archive:before{content:"\f187"}.fa-bug:before{content:"\f188"}.fa-vk:before{content:"\f189"}.fa-weibo:before{content:"\f18a"}.fa-renren:before{content:"\f18b"}.fa-pagelines:before{content:"\f18c"}.fa-stack-exchange:before{content:"\f18d"}.fa-arrow-circle-o-right:before{content:"\f18e"}.fa-arrow-circle-o-left:before{content:"\f190"}.fa-toggle-left:before,.fa-caret-square-o-left:before{content:"\f191"}.fa-dot-circle-o:before{content:"\f192"}.fa-wheelchair:before{content:"\f193"}.fa-vimeo-square:before{content:"\f194"}.fa-turkish-lira:before,.fa-try:before{content:"\f195"}.fa-plus-square-o:before{content:"\f196"}.fa-space-shuttle:before{content:"\f197"}.fa-slack:before{content:"\f198"}.fa-envelope-square:before{content:"\f199"}.fa-wordpress:before{content:"\f19a"}.fa-openid:before{content:"\f19b"}.fa-institution:before,.fa-bank:before,.fa-university:before{content:"\f19c"}.fa-mortar-board:before,.fa-graduation-cap:before{content:"\f19d"}.fa-yahoo:before{content:"\f19e"}.fa-google:before{content:"\f1a0"}.fa-reddit:before{content:"\f1a1"}.fa-reddit-square:before{content:"\f1a2"}.fa-stumbleupon-circle:before{content:"\f1a3"}.fa-stumbleupon:before{content:"\f1a4"}.fa-delicious:before{content:"\f1a5"}.fa-digg:before{content:"\f1a6"}.fa-pied-piper-pp:before{content:"\f1a7"}.fa-pied-piper-alt:before{content:"\f1a8"}.fa-drupal:before{content:"\f1a9"}.fa-joomla:before{content:"\f1aa"}.fa-language:before{content:"\f1ab"}.fa-fax:before{content:"\f1ac"}.fa-building:before{content:"\f1ad"}.fa-child:before{content:"\f1ae"}.fa-paw:before{content:"\f1b0"}.fa-spoon:before{content:"\f1b1"}.fa-cube:before{content:"\f1b2"}.fa-cubes:before{content:"\f1b3"}.fa-behance:before{content:"\f1b4"}.fa-behance-square:before{content:"\f1b5"}.fa-steam:before{content:"\f1b6"}.fa-steam-square:before{content:"\f1b7"}.fa-recycle:before{content:"\f1b8"}.fa-automobile:before,.fa-car:before{content:"\f1b9"}.fa-cab:before,.fa-taxi:before{content:"\f1ba"}.fa-tree:before{content:"\f1bb"}.fa-spotify:before{content:"\f1bc"}.fa-deviantart:before{content:"\f1bd"}.fa-soundcloud:before{content:"\f1be"}.fa-database:before{content:"\f1c0"}.fa-file-pdf-o:before{content:"\f1c1"}.fa-file-word-o:before{content:"\f1c2"}.fa-file-excel-o:before{content:"\f1c3"}.fa-file-powerpoint-o:before{content:"\f1c4"}.fa-file-photo-o:before,.fa-file-picture-o:before,.fa-file-image-o:before{content:"\f1c5"}.fa-file-zip-o:before,.fa-file-archive-o:before{content:"\f1c6"}.fa-file-sound-o:before,.fa-file-audio-o:before{content:"\f1c7"}.fa-file-movie-o:before,.fa-file-video-o:before{content:"\f1c8"}.fa-file-code-o:before{content:"\f1c9"}.fa-vine:before{content:"\f1ca"}.fa-codepen:before{content:"\f1cb"}.fa-jsfiddle:before{content:"\f1cc"}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-saver:before,.fa-support:before,.fa-life-ring:before{content:"\f1cd"}.fa-circle-o-notch:before{content:"\f1ce"}.fa-ra:before,.fa-resistance:before,.fa-rebel:before{content:"\f1d0"}.fa-ge:before,.fa-empire:before{content:"\f1d1"}.fa-git-square:before{content:"\f1d2"}.fa-git:before{content:"\f1d3"}.fa-y-combinator-square:before,.fa-yc-square:before,.fa-hacker-news:before{content:"\f1d4"}.fa-tencent-weibo:before{content:"\f1d5"}.fa-qq:before{content:"\f1d6"}.fa-wechat:before,.fa-weixin:before{content:"\f1d7"}.fa-send:before,.fa-paper-plane:before{content:"\f1d8"}.fa-send-o:before,.fa-paper-plane-o:before{content:"\f1d9"}.fa-history:before{content:"\f1da"}.fa-circle-thin:before{content:"\f1db"}.fa-header:before{content:"\f1dc"}.fa-paragraph:before{content:"\f1dd"}.fa-sliders:before{content:"\f1de"}.fa-share-alt:before{content:"\f1e0"}.fa-share-alt-square:before{content:"\f1e1"}.fa-bomb:before{content:"\f1e2"}.fa-soccer-ball-o:before,.fa-futbol-o:before{content:"\f1e3"}.fa-tty:before{content:"\f1e4"}.fa-binoculars:before{content:"\f1e5"}.fa-plug:before{content:"\f1e6"}.fa-slideshare:before{content:"\f1e7"}.fa-twitch:before{content:"\f1e8"}.fa-yelp:before{content:"\f1e9"}.fa-newspaper-o:before{content:"\f1ea"}.fa-wifi:before{content:"\f1eb"}.fa-calculator:before{content:"\f1ec"}.fa-paypal:before{content:"\f1ed"}.fa-google-wallet:before{content:"\f1ee"}.fa-cc-visa:before{content:"\f1f0"}.fa-cc-mastercard:before{content:"\f1f1"}.fa-cc-discover:before{content:"\f1f2"}.fa-cc-amex:before{content:"\f1f3"}.fa-cc-paypal:before{content:"\f1f4"}.fa-cc-stripe:before{content:"\f1f5"}.fa-bell-slash:before{content:"\f1f6"}.fa-bell-slash-o:before{content:"\f1f7"}.fa-trash:before{content:"\f1f8"}.fa-copyright:before{content:"\f1f9"}.fa-at:before{content:"\f1fa"}.fa-eyedropper:before{content:"\f1fb"}.fa-paint-brush:before{content:"\f1fc"}.fa-birthday-cake:before{content:"\f1fd"}.fa-area-chart:before{content:"\f1fe"}.fa-pie-chart:before{content:"\f200"}.fa-line-chart:before{content:"\f201"}.fa-lastfm:before{content:"\f202"}.fa-lastfm-square:before{content:"\f203"}.fa-toggle-off:before{content:"\f204"}.fa-toggle-on:before{content:"\f205"}.fa-bicycle:before{content:"\f206"}.fa-bus:before{content:"\f207"}.fa-ioxhost:before{content:"\f208"}.fa-angellist:before{content:"\f209"}.fa-cc:before{content:"\f20a"}.fa-shekel:before,.fa-sheqel:before,.fa-ils:before{content:"\f20b"}.fa-meanpath:before{content:"\f20c"}.fa-buysellads:before{content:"\f20d"}.fa-connectdevelop:before{content:"\f20e"}.fa-dashcube:before{content:"\f210"}.fa-forumbee:before{content:"\f211"}.fa-leanpub:before{content:"\f212"}.fa-sellsy:before{content:"\f213"}.fa-shirtsinbulk:before{content:"\f214"}.fa-simplybuilt:before{content:"\f215"}.fa-skyatlas:before{content:"\f216"}.fa-cart-plus:before{content:"\f217"}.fa-cart-arrow-down:before{content:"\f218"}.fa-diamond:before{content:"\f219"}.fa-ship:before{content:"\f21a"}.fa-user-secret:before{content:"\f21b"}.fa-motorcycle:before{content:"\f21c"}.fa-street-view:before{content:"\f21d"}.fa-heartbeat:before{content:"\f21e"}.fa-venus:before{content:"\f221"}.fa-mars:before{content:"\f222"}.fa-mercury:before{content:"\f223"}.fa-intersex:before,.fa-transgender:before{content:"\f224"}.fa-transgender-alt:before{content:"\f225"}.fa-venus-double:before{content:"\f226"}.fa-mars-double:before{content:"\f227"}.fa-venus-mars:before{content:"\f228"}.fa-mars-stroke:before{content:"\f229"}.fa-mars-stroke-v:before{content:"\f22a"}.fa-mars-stroke-h:before{content:"\f22b"}.fa-neuter:before{content:"\f22c"}.fa-genderless:before{content:"\f22d"}.fa-facebook-official:before{content:"\f230"}.fa-pinterest-p:before{content:"\f231"}.fa-whatsapp:before{content:"\f232"}.fa-server:before{content:"\f233"}.fa-user-plus:before{content:"\f234"}.fa-user-times:before{content:"\f235"}.fa-hotel:before,.fa-bed:before{content:"\f236"}.fa-viacoin:before{content:"\f237"}.fa-train:before{content:"\f238"}.fa-subway:before{content:"\f239"}.fa-medium:before{content:"\f23a"}.fa-yc:before,.fa-y-combinator:before{content:"\f23b"}.fa-optin-monster:before{content:"\f23c"}.fa-opencart:before{content:"\f23d"}.fa-expeditedssl:before{content:"\f23e"}.fa-battery-4:before,.fa-battery:before,.fa-battery-full:before{content:"\f240"}.fa-battery-3:before,.fa-battery-three-quarters:before{content:"\f241"}.fa-battery-2:before,.fa-battery-half:before{content:"\f242"}.fa-battery-1:before,.fa-battery-quarter:before{content:"\f243"}.fa-battery-0:before,.fa-battery-empty:before{content:"\f244"}.fa-mouse-pointer:before{content:"\f245"}.fa-i-cursor:before{content:"\f246"}.fa-object-group:before{content:"\f247"}.fa-object-ungroup:before{content:"\f248"}.fa-sticky-note:before{content:"\f249"}.fa-sticky-note-o:before{content:"\f24a"}.fa-cc-jcb:before{content:"\f24b"}.fa-cc-diners-club:before{content:"\f24c"}.fa-clone:before{content:"\f24d"}.fa-balance-scale:before{content:"\f24e"}.fa-hourglass-o:before{content:"\f250"}.fa-hourglass-1:before,.fa-hourglass-start:before{content:"\f251"}.fa-hourglass-2:before,.fa-hourglass-half:before{content:"\f252"}.fa-hourglass-3:before,.fa-hourglass-end:before{content:"\f253"}.fa-hourglass:before{content:"\f254"}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:"\f255"}.fa-hand-stop-o:before,.fa-hand-paper-o:before{content:"\f256"}.fa-hand-scissors-o:before{content:"\f257"}.fa-hand-lizard-o:before{content:"\f258"}.fa-hand-spock-o:before{content:"\f259"}.fa-hand-pointer-o:before{content:"\f25a"}.fa-hand-peace-o:before{content:"\f25b"}.fa-trademark:before{content:"\f25c"}.fa-registered:before{content:"\f25d"}.fa-creative-commons:before{content:"\f25e"}.fa-gg:before{content:"\f260"}.fa-gg-circle:before{content:"\f261"}.fa-tripadvisor:before{content:"\f262"}.fa-odnoklassniki:before{content:"\f263"}.fa-odnoklassniki-square:before{content:"\f264"}.fa-get-pocket:before{content:"\f265"}.fa-wikipedia-w:before{content:"\f266"}.fa-safari:before{content:"\f267"}.fa-chrome:before{content:"\f268"}.fa-firefox:before{content:"\f269"}.fa-opera:before{content:"\f26a"}.fa-internet-explorer:before{content:"\f26b"}.fa-tv:before,.fa-television:before{content:"\f26c"}.fa-contao:before{content:"\f26d"}.fa-500px:before{content:"\f26e"}.fa-amazon:before{content:"\f270"}.fa-calendar-plus-o:before{content:"\f271"}.fa-calendar-minus-o:before{content:"\f272"}.fa-calendar-times-o:before{content:"\f273"}.fa-calendar-check-o:before{content:"\f274"}.fa-industry:before{content:"\f275"}.fa-map-pin:before{content:"\f276"}.fa-map-signs:before{content:"\f277"}.fa-map-o:before{content:"\f278"}.fa-map:before{content:"\f279"}.fa-commenting:before{content:"\f27a"}.fa-commenting-o:before{content:"\f27b"}.fa-houzz:before{content:"\f27c"}.fa-vimeo:before{content:"\f27d"}.fa-black-tie:before{content:"\f27e"}.fa-fonticons:before{content:"\f280"}.fa-reddit-alien:before{content:"\f281"}.fa-edge:before{content:"\f282"}.fa-credit-card-alt:before{content:"\f283"}.fa-codiepie:before{content:"\f284"}.fa-modx:before{content:"\f285"}.fa-fort-awesome:before{content:"\f286"}.fa-usb:before{content:"\f287"}.fa-product-hunt:before{content:"\f288"}.fa-mixcloud:before{content:"\f289"}.fa-scribd:before{content:"\f28a"}.fa-pause-circle:before{content:"\f28b"}.fa-pause-circle-o:before{content:"\f28c"}.fa-stop-circle:before{content:"\f28d"}.fa-stop-circle-o:before{content:"\f28e"}.fa-shopping-bag:before{content:"\f290"}.fa-shopping-basket:before{content:"\f291"}.fa-hashtag:before{content:"\f292"}.fa-bluetooth:before{content:"\f293"}.fa-bluetooth-b:before{content:"\f294"}.fa-percent:before{content:"\f295"}.fa-gitlab:before{content:"\f296"}.fa-wpbeginner:before{content:"\f297"}.fa-wpforms:before{content:"\f298"}.fa-envira:before{content:"\f299"}.fa-universal-access:before{content:"\f29a"}.fa-wheelchair-alt:before{content:"\f29b"}.fa-question-circle-o:before{content:"\f29c"}.fa-blind:before{content:"\f29d"}.fa-audio-description:before{content:"\f29e"}.fa-volume-control-phone:before{content:"\f2a0"}.fa-braille:before{content:"\f2a1"}.fa-assistive-listening-systems:before{content:"\f2a2"}.fa-asl-interpreting:before,.fa-american-sign-language-interpreting:before{content:"\f2a3"}.fa-deafness:before,.fa-hard-of-hearing:before,.fa-deaf:before{content:"\f2a4"}.fa-glide:before{content:"\f2a5"}.fa-glide-g:before{content:"\f2a6"}.fa-signing:before,.fa-sign-language:before{content:"\f2a7"}.fa-low-vision:before{content:"\f2a8"}.fa-viadeo:before{content:"\f2a9"}.fa-viadeo-square:before{content:"\f2aa"}.fa-snapchat:before{content:"\f2ab"}.fa-snapchat-ghost:before{content:"\f2ac"}.fa-snapchat-square:before{content:"\f2ad"}.fa-pied-piper:before{content:"\f2ae"}.fa-first-order:before{content:"\f2b0"}.fa-yoast:before{content:"\f2b1"}.fa-themeisle:before{content:"\f2b2"}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:"\f2b3"}.fa-fa:before,.fa-font-awesome:before{content:"\f2b4"}.fa-handshake-o:before{content:"\f2b5"}.fa-envelope-open:before{content:"\f2b6"}.fa-envelope-open-o:before{content:"\f2b7"}.fa-linode:before{content:"\f2b8"}.fa-address-book:before{content:"\f2b9"}.fa-address-book-o:before{content:"\f2ba"}.fa-vcard:before,.fa-address-card:before{content:"\f2bb"}.fa-vcard-o:before,.fa-address-card-o:before{content:"\f2bc"}.fa-user-circle:before{content:"\f2bd"}.fa-user-circle-o:before{content:"\f2be"}.fa-user-o:before{content:"\f2c0"}.fa-id-badge:before{content:"\f2c1"}.fa-drivers-license:before,.fa-id-card:before{content:"\f2c2"}.fa-drivers-license-o:before,.fa-id-card-o:before{content:"\f2c3"}.fa-quora:before{content:"\f2c4"}.fa-free-code-camp:before{content:"\f2c5"}.fa-telegram:before{content:"\f2c6"}.fa-thermometer-4:before,.fa-thermometer:before,.fa-thermometer-full:before{content:"\f2c7"}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:"\f2c8"}.fa-thermometer-2:before,.fa-thermometer-half:before{content:"\f2c9"}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:"\f2ca"}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:"\f2cb"}.fa-shower:before{content:"\f2cc"}.fa-bathtub:before,.fa-s15:before,.fa-bath:before{content:"\f2cd"}.fa-podcast:before{content:"\f2ce"}.fa-window-maximize:before{content:"\f2d0"}.fa-window-minimize:before{content:"\f2d1"}.fa-window-restore:before{content:"\f2d2"}.fa-times-rectangle:before,.fa-window-close:before{content:"\f2d3"}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:"\f2d4"}.fa-bandcamp:before{content:"\f2d5"}.fa-grav:before{content:"\f2d6"}.fa-etsy:before{content:"\f2d7"}.fa-imdb:before{content:"\f2d8"}.fa-ravelry:before{content:"\f2d9"}.fa-eercast:before{content:"\f2da"}.fa-microchip:before{content:"\f2db"}.fa-snowflake-o:before{content:"\f2dc"}.fa-superpowers:before{content:"\f2dd"}.fa-wpexplorer:before{content:"\f2de"}.fa-meetup:before{content:"\f2e0"}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0, 0, 0, 0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto} diff --git a/FontAwesome/fonts/FontAwesome.ttf b/FontAwesome/fonts/FontAwesome.ttf new file mode 100644 index 0000000..35acda2 Binary files /dev/null and b/FontAwesome/fonts/FontAwesome.ttf differ diff --git a/FontAwesome/fonts/fontawesome-webfont.eot b/FontAwesome/fonts/fontawesome-webfont.eot new file mode 100644 index 0000000..e9f60ca Binary files /dev/null and b/FontAwesome/fonts/fontawesome-webfont.eot differ diff --git a/FontAwesome/fonts/fontawesome-webfont.svg b/FontAwesome/fonts/fontawesome-webfont.svg new file mode 100644 index 0000000..855c845 --- /dev/null +++ b/FontAwesome/fonts/fontawesome-webfont.svg @@ -0,0 +1,2671 @@ + + + + +Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 + By ,,, +Copyright Dave Gandy 2016. All rights reserved. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/FontAwesome/fonts/fontawesome-webfont.ttf b/FontAwesome/fonts/fontawesome-webfont.ttf new file mode 100644 index 0000000..35acda2 Binary files /dev/null and b/FontAwesome/fonts/fontawesome-webfont.ttf differ diff --git a/FontAwesome/fonts/fontawesome-webfont.woff b/FontAwesome/fonts/fontawesome-webfont.woff new file mode 100644 index 0000000..400014a Binary files /dev/null and b/FontAwesome/fonts/fontawesome-webfont.woff differ diff --git a/FontAwesome/fonts/fontawesome-webfont.woff2 b/FontAwesome/fonts/fontawesome-webfont.woff2 new file mode 100644 index 0000000..4d13fc6 Binary files /dev/null and b/FontAwesome/fonts/fontawesome-webfont.woff2 differ diff --git a/ayu-highlight.css b/ayu-highlight.css new file mode 100644 index 0000000..32c9432 --- /dev/null +++ b/ayu-highlight.css @@ -0,0 +1,78 @@ +/* +Based off of the Ayu theme +Original by Dempfi (https://github.com/dempfi/ayu) +*/ + +.hljs { + display: block; + overflow-x: auto; + background: #191f26; + color: #e6e1cf; +} + +.hljs-comment, +.hljs-quote { + color: #5c6773; + font-style: italic; +} + +.hljs-variable, +.hljs-template-variable, +.hljs-attribute, +.hljs-attr, +.hljs-regexp, +.hljs-link, +.hljs-selector-id, +.hljs-selector-class { + color: #ff7733; +} + +.hljs-number, +.hljs-meta, +.hljs-builtin-name, +.hljs-literal, +.hljs-type, +.hljs-params { + color: #ffee99; +} + +.hljs-string, +.hljs-bullet { + color: #b8cc52; +} + +.hljs-title, +.hljs-built_in, +.hljs-section { + color: #ffb454; +} + +.hljs-keyword, +.hljs-selector-tag, +.hljs-symbol { + color: #ff7733; +} + +.hljs-name { + color: #36a3d9; +} + +.hljs-tag { + color: #00568d; +} + +.hljs-emphasis { + font-style: italic; +} + +.hljs-strong { + font-weight: bold; +} + +.hljs-addition { + color: #91b362; +} + +.hljs-deletion { + color: #d96c75; +} diff --git a/book.js b/book.js new file mode 100644 index 0000000..351e28c --- /dev/null +++ b/book.js @@ -0,0 +1,682 @@ +"use strict"; + +// Fix back button cache problem +window.onunload = function () { }; + +// Global variable, shared between modules +function playground_text(playground, hidden = true) { + let code_block = playground.querySelector("code"); + + if (window.ace && code_block.classList.contains("editable")) { + let editor = window.ace.edit(code_block); + return editor.getValue(); + } else if (hidden) { + return code_block.textContent; + } else { + return code_block.innerText; + } +} + +(function codeSnippets() { + function fetch_with_timeout(url, options, timeout = 6000) { + return Promise.race([ + fetch(url, options), + new Promise((_, reject) => setTimeout(() => reject(new Error('timeout')), timeout)) + ]); + } + + var playgrounds = Array.from(document.querySelectorAll(".playground")); + if (playgrounds.length > 0) { + fetch_with_timeout("https://play.rust-lang.org/meta/crates", { + headers: { + 'Content-Type': "application/json", + }, + method: 'POST', + mode: 'cors', + }) + .then(response => response.json()) + .then(response => { + // get list of crates available in the rust playground + let playground_crates = response.crates.map(item => item["id"]); + playgrounds.forEach(block => handle_crate_list_update(block, playground_crates)); + }); + } + + function handle_crate_list_update(playground_block, playground_crates) { + // update the play buttons after receiving the response + update_play_button(playground_block, playground_crates); + + // and install on change listener to dynamically update ACE editors + if (window.ace) { + let code_block = playground_block.querySelector("code"); + if (code_block.classList.contains("editable")) { + let editor = window.ace.edit(code_block); + editor.addEventListener("change", function (e) { + update_play_button(playground_block, playground_crates); + }); + // add Ctrl-Enter command to execute rust code + editor.commands.addCommand({ + name: "run", + bindKey: { + win: "Ctrl-Enter", + mac: "Ctrl-Enter" + }, + exec: _editor => run_rust_code(playground_block) + }); + } + } + } + + // updates the visibility of play button based on `no_run` class and + // used crates vs ones available on https://play.rust-lang.org + function update_play_button(pre_block, playground_crates) { + var play_button = pre_block.querySelector(".play-button"); + + // skip if code is `no_run` + if (pre_block.querySelector('code').classList.contains("no_run")) { + play_button.classList.add("hidden"); + return; + } + + // get list of `extern crate`'s from snippet + var txt = playground_text(pre_block); + var re = /extern\s+crate\s+([a-zA-Z_0-9]+)\s*;/g; + var snippet_crates = []; + var item; + while (item = re.exec(txt)) { + snippet_crates.push(item[1]); + } + + // check if all used crates are available on play.rust-lang.org + var all_available = snippet_crates.every(function (elem) { + return playground_crates.indexOf(elem) > -1; + }); + + if (all_available) { + play_button.classList.remove("hidden"); + } else { + play_button.classList.add("hidden"); + } + } + + function run_rust_code(code_block) { + var result_block = code_block.querySelector(".result"); + if (!result_block) { + result_block = document.createElement('code'); + result_block.className = 'result hljs language-bash'; + + code_block.append(result_block); + } + + let text = playground_text(code_block); + let classes = code_block.querySelector('code').classList; + let edition = "2015"; + if(classes.contains("edition2018")) { + edition = "2018"; + } else if(classes.contains("edition2021")) { + edition = "2021"; + } + var params = { + version: "stable", + optimize: "0", + code: text, + edition: edition + }; + + if (text.indexOf("#![feature") !== -1) { + params.version = "nightly"; + } + + result_block.innerText = "Running..."; + + fetch_with_timeout("https://play.rust-lang.org/evaluate.json", { + headers: { + 'Content-Type': "application/json", + }, + method: 'POST', + mode: 'cors', + body: JSON.stringify(params) + }) + .then(response => response.json()) + .then(response => { + if (response.result.trim() === '') { + result_block.innerText = "No output"; + result_block.classList.add("result-no-output"); + } else { + result_block.innerText = response.result; + result_block.classList.remove("result-no-output"); + } + }) + .catch(error => result_block.innerText = "Playground Communication: " + error.message); + } + + // Syntax highlighting Configuration + hljs.configure({ + tabReplace: ' ', // 4 spaces + languages: [], // Languages used for auto-detection + }); + + let code_nodes = Array + .from(document.querySelectorAll('code')) + // Don't highlight `inline code` blocks in headers. + .filter(function (node) {return !node.parentElement.classList.contains("header"); }); + + if (window.ace) { + // language-rust class needs to be removed for editable + // blocks or highlightjs will capture events + code_nodes + .filter(function (node) {return node.classList.contains("editable"); }) + .forEach(function (block) { block.classList.remove('language-rust'); }); + + code_nodes + .filter(function (node) {return !node.classList.contains("editable"); }) + .forEach(function (block) { hljs.highlightBlock(block); }); + } else { + code_nodes.forEach(function (block) { hljs.highlightBlock(block); }); + } + + // Adding the hljs class gives code blocks the color css + // even if highlighting doesn't apply + code_nodes.forEach(function (block) { block.classList.add('hljs'); }); + + Array.from(document.querySelectorAll("code.hljs")).forEach(function (block) { + + var lines = Array.from(block.querySelectorAll('.boring')); + // If no lines were hidden, return + if (!lines.length) { return; } + block.classList.add("hide-boring"); + + var buttons = document.createElement('div'); + buttons.className = 'buttons'; + buttons.innerHTML = ""; + + // add expand button + var pre_block = block.parentNode; + pre_block.insertBefore(buttons, pre_block.firstChild); + + pre_block.querySelector('.buttons').addEventListener('click', function (e) { + if (e.target.classList.contains('fa-eye')) { + e.target.classList.remove('fa-eye'); + e.target.classList.add('fa-eye-slash'); + e.target.title = 'Hide lines'; + e.target.setAttribute('aria-label', e.target.title); + + block.classList.remove('hide-boring'); + } else if (e.target.classList.contains('fa-eye-slash')) { + e.target.classList.remove('fa-eye-slash'); + e.target.classList.add('fa-eye'); + e.target.title = 'Show hidden lines'; + e.target.setAttribute('aria-label', e.target.title); + + block.classList.add('hide-boring'); + } + }); + }); + + if (window.playground_copyable) { + Array.from(document.querySelectorAll('pre code')).forEach(function (block) { + var pre_block = block.parentNode; + if (!pre_block.classList.contains('playground')) { + var buttons = pre_block.querySelector(".buttons"); + if (!buttons) { + buttons = document.createElement('div'); + buttons.className = 'buttons'; + pre_block.insertBefore(buttons, pre_block.firstChild); + } + + var clipButton = document.createElement('button'); + clipButton.className = 'fa fa-copy clip-button'; + clipButton.title = 'Copy to clipboard'; + clipButton.setAttribute('aria-label', clipButton.title); + clipButton.innerHTML = ''; + + buttons.insertBefore(clipButton, buttons.firstChild); + } + }); + } + + // Process playground code blocks + Array.from(document.querySelectorAll(".playground")).forEach(function (pre_block) { + // Add play button + var buttons = pre_block.querySelector(".buttons"); + if (!buttons) { + buttons = document.createElement('div'); + buttons.className = 'buttons'; + pre_block.insertBefore(buttons, pre_block.firstChild); + } + + var runCodeButton = document.createElement('button'); + runCodeButton.className = 'fa fa-play play-button'; + runCodeButton.hidden = true; + runCodeButton.title = 'Run this code'; + runCodeButton.setAttribute('aria-label', runCodeButton.title); + + buttons.insertBefore(runCodeButton, buttons.firstChild); + runCodeButton.addEventListener('click', function (e) { + run_rust_code(pre_block); + }); + + if (window.playground_copyable) { + var copyCodeClipboardButton = document.createElement('button'); + copyCodeClipboardButton.className = 'fa fa-copy clip-button'; + copyCodeClipboardButton.innerHTML = ''; + copyCodeClipboardButton.title = 'Copy to clipboard'; + copyCodeClipboardButton.setAttribute('aria-label', copyCodeClipboardButton.title); + + buttons.insertBefore(copyCodeClipboardButton, buttons.firstChild); + } + + let code_block = pre_block.querySelector("code"); + if (window.ace && code_block.classList.contains("editable")) { + var undoChangesButton = document.createElement('button'); + undoChangesButton.className = 'fa fa-history reset-button'; + undoChangesButton.title = 'Undo changes'; + undoChangesButton.setAttribute('aria-label', undoChangesButton.title); + + buttons.insertBefore(undoChangesButton, buttons.firstChild); + + undoChangesButton.addEventListener('click', function () { + let editor = window.ace.edit(code_block); + editor.setValue(editor.originalCode); + editor.clearSelection(); + }); + } + }); +})(); + +(function themes() { + var html = document.querySelector('html'); + var themeToggleButton = document.getElementById('theme-toggle'); + var themePopup = document.getElementById('theme-list'); + var themeColorMetaTag = document.querySelector('meta[name="theme-color"]'); + var stylesheets = { + ayuHighlight: document.querySelector("[href$='ayu-highlight.css']"), + tomorrowNight: document.querySelector("[href$='tomorrow-night.css']"), + highlight: document.querySelector("[href$='highlight.css']"), + }; + + function showThemes() { + themePopup.style.display = 'block'; + themeToggleButton.setAttribute('aria-expanded', true); + themePopup.querySelector("button#" + get_theme()).focus(); + } + + function updateThemeSelected() { + themePopup.querySelectorAll('.theme-selected').forEach(function (el) { + el.classList.remove('theme-selected'); + }); + themePopup.querySelector("button#" + get_theme()).classList.add('theme-selected'); + } + + function hideThemes() { + themePopup.style.display = 'none'; + themeToggleButton.setAttribute('aria-expanded', false); + themeToggleButton.focus(); + } + + function get_theme() { + var theme; + try { theme = localStorage.getItem('mdbook-theme'); } catch (e) { } + if (theme === null || theme === undefined) { + return default_theme; + } else { + return theme; + } + } + + function set_theme(theme, store = true) { + let ace_theme; + + if (theme == 'coal' || theme == 'navy') { + stylesheets.ayuHighlight.disabled = true; + stylesheets.tomorrowNight.disabled = false; + stylesheets.highlight.disabled = true; + + ace_theme = "ace/theme/tomorrow_night"; + } else if (theme == 'ayu') { + stylesheets.ayuHighlight.disabled = false; + stylesheets.tomorrowNight.disabled = true; + stylesheets.highlight.disabled = true; + ace_theme = "ace/theme/tomorrow_night"; + } else { + stylesheets.ayuHighlight.disabled = true; + stylesheets.tomorrowNight.disabled = true; + stylesheets.highlight.disabled = false; + ace_theme = "ace/theme/dawn"; + } + + setTimeout(function () { + themeColorMetaTag.content = getComputedStyle(document.documentElement).backgroundColor; + }, 1); + + if (window.ace && window.editors) { + window.editors.forEach(function (editor) { + editor.setTheme(ace_theme); + }); + } + + var previousTheme = get_theme(); + + if (store) { + try { localStorage.setItem('mdbook-theme', theme); } catch (e) { } + } + + html.classList.remove(previousTheme); + html.classList.add(theme); + updateThemeSelected(); + } + + // Set theme + var theme = get_theme(); + + set_theme(theme, false); + + themeToggleButton.addEventListener('click', function () { + if (themePopup.style.display === 'block') { + hideThemes(); + } else { + showThemes(); + } + }); + + themePopup.addEventListener('click', function (e) { + var theme; + if (e.target.className === "theme") { + theme = e.target.id; + } else if (e.target.parentElement.className === "theme") { + theme = e.target.parentElement.id; + } else { + return; + } + set_theme(theme); + }); + + themePopup.addEventListener('focusout', function(e) { + // e.relatedTarget is null in Safari and Firefox on macOS (see workaround below) + if (!!e.relatedTarget && !themeToggleButton.contains(e.relatedTarget) && !themePopup.contains(e.relatedTarget)) { + hideThemes(); + } + }); + + // Should not be needed, but it works around an issue on macOS & iOS: https://github.com/rust-lang/mdBook/issues/628 + document.addEventListener('click', function(e) { + if (themePopup.style.display === 'block' && !themeToggleButton.contains(e.target) && !themePopup.contains(e.target)) { + hideThemes(); + } + }); + + document.addEventListener('keydown', function (e) { + if (e.altKey || e.ctrlKey || e.metaKey || e.shiftKey) { return; } + if (!themePopup.contains(e.target)) { return; } + + switch (e.key) { + case 'Escape': + e.preventDefault(); + hideThemes(); + break; + case 'ArrowUp': + e.preventDefault(); + var li = document.activeElement.parentElement; + if (li && li.previousElementSibling) { + li.previousElementSibling.querySelector('button').focus(); + } + break; + case 'ArrowDown': + e.preventDefault(); + var li = document.activeElement.parentElement; + if (li && li.nextElementSibling) { + li.nextElementSibling.querySelector('button').focus(); + } + break; + case 'Home': + e.preventDefault(); + themePopup.querySelector('li:first-child button').focus(); + break; + case 'End': + e.preventDefault(); + themePopup.querySelector('li:last-child button').focus(); + break; + } + }); +})(); + +(function sidebar() { + var html = document.querySelector("html"); + var sidebar = document.getElementById("sidebar"); + var sidebarLinks = document.querySelectorAll('#sidebar a'); + var sidebarToggleButton = document.getElementById("sidebar-toggle"); + var sidebarResizeHandle = document.getElementById("sidebar-resize-handle"); + var firstContact = null; + + function showSidebar() { + html.classList.remove('sidebar-hidden') + html.classList.add('sidebar-visible'); + Array.from(sidebarLinks).forEach(function (link) { + link.setAttribute('tabIndex', 0); + }); + sidebarToggleButton.setAttribute('aria-expanded', true); + sidebar.setAttribute('aria-hidden', false); + try { localStorage.setItem('mdbook-sidebar', 'visible'); } catch (e) { } + } + + + var sidebarAnchorToggles = document.querySelectorAll('#sidebar a.toggle'); + + function toggleSection(ev) { + ev.currentTarget.parentElement.classList.toggle('expanded'); + } + + Array.from(sidebarAnchorToggles).forEach(function (el) { + el.addEventListener('click', toggleSection); + }); + + function hideSidebar() { + html.classList.remove('sidebar-visible') + html.classList.add('sidebar-hidden'); + Array.from(sidebarLinks).forEach(function (link) { + link.setAttribute('tabIndex', -1); + }); + sidebarToggleButton.setAttribute('aria-expanded', false); + sidebar.setAttribute('aria-hidden', true); + try { localStorage.setItem('mdbook-sidebar', 'hidden'); } catch (e) { } + } + + // Toggle sidebar + sidebarToggleButton.addEventListener('click', function sidebarToggle() { + if (html.classList.contains("sidebar-hidden")) { + var current_width = parseInt( + document.documentElement.style.getPropertyValue('--sidebar-width'), 10); + if (current_width < 150) { + document.documentElement.style.setProperty('--sidebar-width', '150px'); + } + showSidebar(); + } else if (html.classList.contains("sidebar-visible")) { + hideSidebar(); + } else { + if (getComputedStyle(sidebar)['transform'] === 'none') { + hideSidebar(); + } else { + showSidebar(); + } + } + }); + + sidebarResizeHandle.addEventListener('mousedown', initResize, false); + + function initResize(e) { + window.addEventListener('mousemove', resize, false); + window.addEventListener('mouseup', stopResize, false); + html.classList.add('sidebar-resizing'); + } + function resize(e) { + var pos = (e.clientX - sidebar.offsetLeft); + if (pos < 20) { + hideSidebar(); + } else { + if (html.classList.contains("sidebar-hidden")) { + showSidebar(); + } + pos = Math.min(pos, window.innerWidth - 100); + document.documentElement.style.setProperty('--sidebar-width', pos + 'px'); + } + } + //on mouseup remove windows functions mousemove & mouseup + function stopResize(e) { + html.classList.remove('sidebar-resizing'); + window.removeEventListener('mousemove', resize, false); + window.removeEventListener('mouseup', stopResize, false); + } + + document.addEventListener('touchstart', function (e) { + firstContact = { + x: e.touches[0].clientX, + time: Date.now() + }; + }, { passive: true }); + + document.addEventListener('touchmove', function (e) { + if (!firstContact) + return; + + var curX = e.touches[0].clientX; + var xDiff = curX - firstContact.x, + tDiff = Date.now() - firstContact.time; + + if (tDiff < 250 && Math.abs(xDiff) >= 150) { + if (xDiff >= 0 && firstContact.x < Math.min(document.body.clientWidth * 0.25, 300)) + showSidebar(); + else if (xDiff < 0 && curX < 300) + hideSidebar(); + + firstContact = null; + } + }, { passive: true }); +})(); + +(function chapterNavigation() { + document.addEventListener('keydown', function (e) { + if (e.altKey || e.ctrlKey || e.metaKey || e.shiftKey) { return; } + if (window.search && window.search.hasFocus()) { return; } + + switch (e.key) { + case 'ArrowRight': + e.preventDefault(); + var nextButton = document.querySelector('.nav-chapters.next'); + if (nextButton) { + window.location.href = nextButton.href; + } + break; + case 'ArrowLeft': + e.preventDefault(); + var previousButton = document.querySelector('.nav-chapters.previous'); + if (previousButton) { + window.location.href = previousButton.href; + } + break; + } + }); +})(); + +(function clipboard() { + var clipButtons = document.querySelectorAll('.clip-button'); + + function hideTooltip(elem) { + elem.firstChild.innerText = ""; + elem.className = 'fa fa-copy clip-button'; + } + + function showTooltip(elem, msg) { + elem.firstChild.innerText = msg; + elem.className = 'fa fa-copy tooltipped'; + } + + var clipboardSnippets = new ClipboardJS('.clip-button', { + text: function (trigger) { + hideTooltip(trigger); + let playground = trigger.closest("pre"); + return playground_text(playground, false); + } + }); + + Array.from(clipButtons).forEach(function (clipButton) { + clipButton.addEventListener('mouseout', function (e) { + hideTooltip(e.currentTarget); + }); + }); + + clipboardSnippets.on('success', function (e) { + e.clearSelection(); + showTooltip(e.trigger, "Copied!"); + }); + + clipboardSnippets.on('error', function (e) { + showTooltip(e.trigger, "Clipboard error!"); + }); +})(); + +(function scrollToTop () { + var menuTitle = document.querySelector('.menu-title'); + + menuTitle.addEventListener('click', function () { + document.scrollingElement.scrollTo({ top: 0, behavior: 'smooth' }); + }); +})(); + +(function controllMenu() { + var menu = document.getElementById('menu-bar'); + + (function controllPosition() { + var scrollTop = document.scrollingElement.scrollTop; + var prevScrollTop = scrollTop; + var minMenuY = -menu.clientHeight - 50; + // When the script loads, the page can be at any scroll (e.g. if you reforesh it). + menu.style.top = scrollTop + 'px'; + // Same as parseInt(menu.style.top.slice(0, -2), but faster + var topCache = menu.style.top.slice(0, -2); + menu.classList.remove('sticky'); + var stickyCache = false; // Same as menu.classList.contains('sticky'), but faster + document.addEventListener('scroll', function () { + scrollTop = Math.max(document.scrollingElement.scrollTop, 0); + // `null` means that it doesn't need to be updated + var nextSticky = null; + var nextTop = null; + var scrollDown = scrollTop > prevScrollTop; + var menuPosAbsoluteY = topCache - scrollTop; + if (scrollDown) { + nextSticky = false; + if (menuPosAbsoluteY > 0) { + nextTop = prevScrollTop; + } + } else { + if (menuPosAbsoluteY > 0) { + nextSticky = true; + } else if (menuPosAbsoluteY < minMenuY) { + nextTop = prevScrollTop + minMenuY; + } + } + if (nextSticky === true && stickyCache === false) { + menu.classList.add('sticky'); + stickyCache = true; + } else if (nextSticky === false && stickyCache === true) { + menu.classList.remove('sticky'); + stickyCache = false; + } + if (nextTop !== null) { + menu.style.top = nextTop + 'px'; + topCache = nextTop; + } + prevScrollTop = scrollTop; + }, { passive: true }); + })(); + (function controllBorder() { + function updateBorder() { + if (menu.offsetTop === 0) { + menu.classList.remove('bordered'); + } else { + menu.classList.add('bordered'); + } + } + updateBorder(); + document.addEventListener('scroll', updateBorder, { passive: true }); + })(); +})(); diff --git a/clipboard.min.js b/clipboard.min.js new file mode 100644 index 0000000..02c549e --- /dev/null +++ b/clipboard.min.js @@ -0,0 +1,7 @@ +/*! + * clipboard.js v2.0.4 + * https://zenorocha.github.io/clipboard.js + * + * Licensed MIT © Zeno Rocha + */ +!function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?define([],e):"object"==typeof exports?exports.ClipboardJS=e():t.ClipboardJS=e()}(this,function(){return function(n){var o={};function r(t){if(o[t])return o[t].exports;var e=o[t]={i:t,l:!1,exports:{}};return n[t].call(e.exports,e,e.exports,r),e.l=!0,e.exports}return r.m=n,r.c=o,r.d=function(t,e,n){r.o(t,e)||Object.defineProperty(t,e,{enumerable:!0,get:n})},r.r=function(t){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(t,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(t,"__esModule",{value:!0})},r.t=function(e,t){if(1&t&&(e=r(e)),8&t)return e;if(4&t&&"object"==typeof e&&e&&e.__esModule)return e;var n=Object.create(null);if(r.r(n),Object.defineProperty(n,"default",{enumerable:!0,value:e}),2&t&&"string"!=typeof e)for(var o in e)r.d(n,o,function(t){return e[t]}.bind(null,o));return n},r.n=function(t){var e=t&&t.__esModule?function(){return t.default}:function(){return t};return r.d(e,"a",e),e},r.o=function(t,e){return Object.prototype.hasOwnProperty.call(t,e)},r.p="",r(r.s=0)}([function(t,e,n){"use strict";var r="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(t){return typeof t}:function(t){return t&&"function"==typeof Symbol&&t.constructor===Symbol&&t!==Symbol.prototype?"symbol":typeof t},i=function(){function o(t,e){for(var n=0;n .hljs { + color: var(--links); +} + +/* + body-container is necessary because mobile browsers don't seem to like + overflow-x on the body tag when there is a tag. +*/ +#body-container { + /* + This is used when the sidebar pushes the body content off the side of + the screen on small screens. Without it, dragging on mobile Safari + will want to reposition the viewport in a weird way. + */ + overflow-x: clip; +} + +/* Menu Bar */ + +#menu-bar, +#menu-bar-hover-placeholder { + z-index: 101; + margin: auto calc(0px - var(--page-padding)); +} +#menu-bar { + position: relative; + display: flex; + flex-wrap: wrap; + background-color: var(--bg); + border-bottom-color: var(--bg); + border-bottom-width: 1px; + border-bottom-style: solid; +} +#menu-bar.sticky, +.js #menu-bar-hover-placeholder:hover + #menu-bar, +.js #menu-bar:hover, +.js.sidebar-visible #menu-bar { + position: -webkit-sticky; + position: sticky; + top: 0 !important; +} +#menu-bar-hover-placeholder { + position: sticky; + position: -webkit-sticky; + top: 0; + height: var(--menu-bar-height); +} +#menu-bar.bordered { + border-bottom-color: var(--table-border-color); +} +#menu-bar i, #menu-bar .icon-button { + position: relative; + padding: 0 8px; + z-index: 10; + line-height: var(--menu-bar-height); + cursor: pointer; + transition: color 0.5s; +} +@media only screen and (max-width: 420px) { + #menu-bar i, #menu-bar .icon-button { + padding: 0 5px; + } +} + +.icon-button { + border: none; + background: none; + padding: 0; + color: inherit; +} +.icon-button i { + margin: 0; +} + +.right-buttons { + margin: 0 15px; +} +.right-buttons a { + text-decoration: none; +} + +.left-buttons { + display: flex; + margin: 0 5px; +} +.no-js .left-buttons { + display: none; +} + +.menu-title { + display: inline-block; + font-weight: 200; + font-size: 2.4rem; + line-height: var(--menu-bar-height); + text-align: center; + margin: 0; + flex: 1; + white-space: nowrap; + overflow: hidden; + text-overflow: ellipsis; +} +.js .menu-title { + cursor: pointer; +} + +.menu-bar, +.menu-bar:visited, +.nav-chapters, +.nav-chapters:visited, +.mobile-nav-chapters, +.mobile-nav-chapters:visited, +.menu-bar .icon-button, +.menu-bar a i { + color: var(--icons); +} + +.menu-bar i:hover, +.menu-bar .icon-button:hover, +.nav-chapters:hover, +.mobile-nav-chapters i:hover { + color: var(--icons-hover); +} + +/* Nav Icons */ + +.nav-chapters { + font-size: 2.5em; + text-align: center; + text-decoration: none; + + position: fixed; + top: 0; + bottom: 0; + margin: 0; + max-width: 150px; + min-width: 90px; + + display: flex; + justify-content: center; + align-content: center; + flex-direction: column; + + transition: color 0.5s, background-color 0.5s; +} + +.nav-chapters:hover { + text-decoration: none; + background-color: var(--theme-hover); + transition: background-color 0.15s, color 0.15s; +} + +.nav-wrapper { + margin-top: 50px; + display: none; +} + +.mobile-nav-chapters { + font-size: 2.5em; + text-align: center; + text-decoration: none; + width: 90px; + border-radius: 5px; + background-color: var(--sidebar-bg); +} + +.previous { + float: left; +} + +.next { + float: right; + right: var(--page-padding); +} + +@media only screen and (max-width: 1080px) { + .nav-wide-wrapper { display: none; } + .nav-wrapper { display: block; } +} + +@media only screen and (max-width: 1380px) { + .sidebar-visible .nav-wide-wrapper { display: none; } + .sidebar-visible .nav-wrapper { display: block; } +} + +/* Inline code */ + +:not(pre) > .hljs { + display: inline; + padding: 0.1em 0.3em; + border-radius: 3px; +} + +:not(pre):not(a) > .hljs { + color: var(--inline-code-color); + overflow-x: initial; +} + +a:hover > .hljs { + text-decoration: underline; +} + +pre { + position: relative; +} +pre > .buttons { + position: absolute; + z-index: 100; + right: 0px; + top: 2px; + margin: 0px; + padding: 2px 0px; + + color: var(--sidebar-fg); + cursor: pointer; + visibility: hidden; + opacity: 0; + transition: visibility 0.1s linear, opacity 0.1s linear; +} +pre:hover > .buttons { + visibility: visible; + opacity: 1 +} +pre > .buttons :hover { + color: var(--sidebar-active); + border-color: var(--icons-hover); + background-color: var(--theme-hover); +} +pre > .buttons i { + margin-left: 8px; +} +pre > .buttons button { + cursor: inherit; + margin: 0px 5px; + padding: 3px 5px; + font-size: 14px; + + border-style: solid; + border-width: 1px; + border-radius: 4px; + border-color: var(--icons); + background-color: var(--theme-popup-bg); + transition: 100ms; + transition-property: color,border-color,background-color; + color: var(--icons); +} +@media (pointer: coarse) { + pre > .buttons button { + /* On mobile, make it easier to tap buttons. */ + padding: 0.3rem 1rem; + } +} +pre > code { + padding: 1rem; +} + +/* FIXME: ACE editors overlap their buttons because ACE does absolute + positioning within the code block which breaks padding. The only solution I + can think of is to move the padding to the outer pre tag (or insert a div + wrapper), but that would require fixing a whole bunch of CSS rules. +*/ +.hljs.ace_editor { + padding: 0rem 0rem; +} + +pre > .result { + margin-top: 10px; +} + +/* Search */ + +#searchresults a { + text-decoration: none; +} + +mark { + border-radius: 2px; + padding: 0 3px 1px 3px; + margin: 0 -3px -1px -3px; + background-color: var(--search-mark-bg); + transition: background-color 300ms linear; + cursor: pointer; +} + +mark.fade-out { + background-color: rgba(0,0,0,0) !important; + cursor: auto; +} + +.searchbar-outer { + margin-left: auto; + margin-right: auto; + max-width: var(--content-max-width); +} + +#searchbar { + width: 100%; + margin: 5px auto 0px auto; + padding: 10px 16px; + transition: box-shadow 300ms ease-in-out; + border: 1px solid var(--searchbar-border-color); + border-radius: 3px; + background-color: var(--searchbar-bg); + color: var(--searchbar-fg); +} +#searchbar:focus, +#searchbar.active { + box-shadow: 0 0 3px var(--searchbar-shadow-color); +} + +.searchresults-header { + font-weight: bold; + font-size: 1em; + padding: 18px 0 0 5px; + color: var(--searchresults-header-fg); +} + +.searchresults-outer { + margin-left: auto; + margin-right: auto; + max-width: var(--content-max-width); + border-bottom: 1px dashed var(--searchresults-border-color); +} + +ul#searchresults { + list-style: none; + padding-left: 20px; +} +ul#searchresults li { + margin: 10px 0px; + padding: 2px; + border-radius: 2px; +} +ul#searchresults li.focus { + background-color: var(--searchresults-li-bg); +} +ul#searchresults span.teaser { + display: block; + clear: both; + margin: 5px 0 0 20px; + font-size: 0.8em; +} +ul#searchresults span.teaser em { + font-weight: bold; + font-style: normal; +} + +/* Sidebar */ + +.sidebar { + position: fixed; + left: 0; + top: 0; + bottom: 0; + width: var(--sidebar-width); + font-size: 0.875em; + box-sizing: border-box; + -webkit-overflow-scrolling: touch; + overscroll-behavior-y: contain; + background-color: var(--sidebar-bg); + color: var(--sidebar-fg); +} +.sidebar-resizing { + -moz-user-select: none; + -webkit-user-select: none; + -ms-user-select: none; + user-select: none; +} +.js:not(.sidebar-resizing) .sidebar { + transition: transform 0.3s; /* Animation: slide away */ +} +.sidebar code { + line-height: 2em; +} +.sidebar .sidebar-scrollbox { + overflow-y: auto; + position: absolute; + top: 0; + bottom: 0; + left: 0; + right: 0; + padding: 10px 10px; +} +.sidebar .sidebar-resize-handle { + position: absolute; + cursor: col-resize; + width: 0; + right: 0; + top: 0; + bottom: 0; +} +.js .sidebar .sidebar-resize-handle { + cursor: col-resize; + width: 5px; +} +.sidebar-hidden .sidebar { + transform: translateX(calc(0px - var(--sidebar-width))); +} +.sidebar::-webkit-scrollbar { + background: var(--sidebar-bg); +} +.sidebar::-webkit-scrollbar-thumb { + background: var(--scrollbar); +} + +.sidebar-visible .page-wrapper { + transform: translateX(var(--sidebar-width)); +} +@media only screen and (min-width: 620px) { + .sidebar-visible .page-wrapper { + transform: none; + margin-left: var(--sidebar-width); + } +} + +.chapter { + list-style: none outside none; + padding-left: 0; + line-height: 2.2em; +} + +.chapter ol { + width: 100%; +} + +.chapter li { + display: flex; + color: var(--sidebar-non-existant); +} +.chapter li a { + display: block; + padding: 0; + text-decoration: none; + color: var(--sidebar-fg); +} + +.chapter li a:hover { + color: var(--sidebar-active); +} + +.chapter li a.active { + color: var(--sidebar-active); +} + +.chapter li > a.toggle { + cursor: pointer; + display: block; + margin-left: auto; + padding: 0 10px; + user-select: none; + opacity: 0.68; +} + +.chapter li > a.toggle div { + transition: transform 0.5s; +} + +/* collapse the section */ +.chapter li:not(.expanded) + li > ol { + display: none; +} + +.chapter li.chapter-item { + line-height: 1.5em; + margin-top: 0.6em; +} + +.chapter li.expanded > a.toggle div { + transform: rotate(90deg); +} + +.spacer { + width: 100%; + height: 3px; + margin: 5px 0px; +} +.chapter .spacer { + background-color: var(--sidebar-spacer); +} + +@media (-moz-touch-enabled: 1), (pointer: coarse) { + .chapter li a { padding: 5px 0; } + .spacer { margin: 10px 0; } +} + +.section { + list-style: none outside none; + padding-left: 20px; + line-height: 1.9em; +} + +/* Theme Menu Popup */ + +.theme-popup { + position: absolute; + left: 10px; + top: var(--menu-bar-height); + z-index: 1000; + border-radius: 4px; + font-size: 0.7em; + color: var(--fg); + background: var(--theme-popup-bg); + border: 1px solid var(--theme-popup-border); + margin: 0; + padding: 0; + list-style: none; + display: none; + /* Don't let the children's background extend past the rounded corners. */ + overflow: hidden; +} +.theme-popup .default { + color: var(--icons); +} +.theme-popup .theme { + width: 100%; + border: 0; + margin: 0; + padding: 2px 20px; + line-height: 25px; + white-space: nowrap; + text-align: left; + cursor: pointer; + color: inherit; + background: inherit; + font-size: inherit; +} +.theme-popup .theme:hover { + background-color: var(--theme-hover); +} + +.theme-selected::before { + display: inline-block; + content: "✓"; + margin-left: -14px; + width: 14px; +} diff --git a/css/general.css b/css/general.css new file mode 100644 index 0000000..344b53e --- /dev/null +++ b/css/general.css @@ -0,0 +1,203 @@ +/* Base styles and content styles */ + +@import 'variables.css'; + +:root { + /* Browser default font-size is 16px, this way 1 rem = 10px */ + font-size: 62.5%; +} + +html { + font-family: "Open Sans", sans-serif; + color: var(--fg); + background-color: var(--bg); + text-size-adjust: none; + -webkit-text-size-adjust: none; +} + +body { + margin: 0; + font-size: 1.6rem; + overflow-x: hidden; +} + +code { + font-family: var(--mono-font) !important; + font-size: var(--code-font-size); +} + +/* make long words/inline code not x overflow */ +main { + overflow-wrap: break-word; +} + +/* make wide tables scroll if they overflow */ +.table-wrapper { + overflow-x: auto; +} + +/* Don't change font size in headers. */ +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + font-size: unset; +} + +.left { float: left; } +.right { float: right; } +.boring { opacity: 0.6; } +.hide-boring .boring { display: none; } +.hidden { display: none !important; } + +h2, h3 { margin-top: 2.5em; } +h4, h5 { margin-top: 2em; } + +.header + .header h3, +.header + .header h4, +.header + .header h5 { + margin-top: 1em; +} + +h1:target::before, +h2:target::before, +h3:target::before, +h4:target::before, +h5:target::before, +h6:target::before { + display: inline-block; + content: "»"; + margin-left: -30px; + width: 30px; +} + +/* This is broken on Safari as of version 14, but is fixed + in Safari Technology Preview 117 which I think will be Safari 14.2. + https://bugs.webkit.org/show_bug.cgi?id=218076 +*/ +:target { + scroll-margin-top: calc(var(--menu-bar-height) + 0.5em); +} + +.page { + outline: 0; + padding: 0 var(--page-padding); + margin-top: calc(0px - var(--menu-bar-height)); /* Compensate for the #menu-bar-hover-placeholder */ +} +.page-wrapper { + box-sizing: border-box; +} +.js:not(.sidebar-resizing) .page-wrapper { + transition: margin-left 0.3s ease, transform 0.3s ease; /* Animation: slide away */ +} + +.content { + overflow-y: auto; + padding: 0 5px 50px 5px; +} +.content main { + margin-left: auto; + margin-right: auto; + max-width: var(--content-max-width); +} +.content p { line-height: 1.45em; } +.content ol { line-height: 1.45em; } +.content ul { line-height: 1.45em; } +.content a { text-decoration: none; } +.content a:hover { text-decoration: underline; } +.content img, .content video { max-width: 100%; } +.content .header:link, +.content .header:visited { + color: var(--fg); +} +.content .header:link, +.content .header:visited:hover { + text-decoration: none; +} + +table { + margin: 0 auto; + border-collapse: collapse; +} +table td { + padding: 3px 20px; + border: 1px var(--table-border-color) solid; +} +table thead { + background: var(--table-header-bg); +} +table thead td { + font-weight: 700; + border: none; +} +table thead th { + padding: 3px 20px; +} +table thead tr { + border: 1px var(--table-header-bg) solid; +} +/* Alternate background colors for rows */ +table tbody tr:nth-child(2n) { + background: var(--table-alternate-bg); +} + + +blockquote { + margin: 20px 0; + padding: 0 20px; + color: var(--fg); + background-color: var(--quote-bg); + border-top: .1em solid var(--quote-border); + border-bottom: .1em solid var(--quote-border); +} + +kbd { + background-color: var(--table-border-color); + border-radius: 4px; + border: solid 1px var(--theme-popup-border); + box-shadow: inset 0 -1px 0 var(--theme-hover); + display: inline-block; + font-size: var(--code-font-size); + font-family: var(--mono-font); + line-height: 10px; + padding: 4px 5px; + vertical-align: middle; +} + +:not(.footnote-definition) + .footnote-definition, +.footnote-definition + :not(.footnote-definition) { + margin-top: 2em; +} +.footnote-definition { + font-size: 0.9em; + margin: 0.5em 0; +} +.footnote-definition p { + display: inline; +} + +.tooltiptext { + position: absolute; + visibility: hidden; + color: #fff; + background-color: #333; + transform: translateX(-50%); /* Center by moving tooltip 50% of its width left */ + left: -8px; /* Half of the width of the icon */ + top: -35px; + font-size: 0.8em; + text-align: center; + border-radius: 6px; + padding: 5px 8px; + margin: 5px; + z-index: 1000; +} +.tooltipped .tooltiptext { + visibility: visible; +} + +.chapter li.part-title { + color: var(--sidebar-fg); + margin: 5px 0px; + font-weight: bold; +} + +.result-no-output { + font-style: italic; +} diff --git a/css/global.css b/css/global.css new file mode 100644 index 0000000..bfde080 --- /dev/null +++ b/css/global.css @@ -0,0 +1,3 @@ +:root { + --content-max-width: 1000px; +} diff --git a/css/katex.css b/css/katex.css new file mode 100644 index 0000000..0f7d149 --- /dev/null +++ b/css/katex.css @@ -0,0 +1,3 @@ +.katex { + font-size: 1em !important; +} diff --git a/css/print.css b/css/print.css new file mode 100644 index 0000000..5e690f7 --- /dev/null +++ b/css/print.css @@ -0,0 +1,54 @@ + +#sidebar, +#menu-bar, +.nav-chapters, +.mobile-nav-chapters { + display: none; +} + +#page-wrapper.page-wrapper { + transform: none; + margin-left: 0px; + overflow-y: initial; +} + +#content { + max-width: none; + margin: 0; + padding: 0; +} + +.page { + overflow-y: initial; +} + +code { + background-color: #666666; + border-radius: 5px; + + /* Force background to be printed in Chrome */ + -webkit-print-color-adjust: exact; +} + +pre > .buttons { + z-index: 2; +} + +a, a:visited, a:active, a:hover { + color: #4183c4; + text-decoration: none; +} + +h1, h2, h3, h4, h5, h6 { + page-break-inside: avoid; + page-break-after: avoid; +} + +pre, code { + page-break-inside: avoid; + white-space: pre-wrap; +} + +.fa { + display: none !important; +} diff --git a/css/variables.css b/css/variables.css new file mode 100644 index 0000000..21bf8e5 --- /dev/null +++ b/css/variables.css @@ -0,0 +1,255 @@ + +/* Globals */ + +:root { + --sidebar-width: 300px; + --page-padding: 15px; + --content-max-width: 750px; + --menu-bar-height: 50px; + --mono-font: "Source Code Pro", Consolas, "Ubuntu Mono", Menlo, "DejaVu Sans Mono", monospace, monospace; + --code-font-size: 0.875em /* please adjust the ace font size accordingly in editor.js */ +} + +/* Themes */ + +.ayu { + --bg: hsl(210, 25%, 8%); + --fg: #c5c5c5; + + --sidebar-bg: #14191f; + --sidebar-fg: #c8c9db; + --sidebar-non-existant: #5c6773; + --sidebar-active: #ffb454; + --sidebar-spacer: #2d334f; + + --scrollbar: var(--sidebar-fg); + + --icons: #737480; + --icons-hover: #b7b9cc; + + --links: #0096cf; + + --inline-code-color: #ffb454; + + --theme-popup-bg: #14191f; + --theme-popup-border: #5c6773; + --theme-hover: #191f26; + + --quote-bg: hsl(226, 15%, 17%); + --quote-border: hsl(226, 15%, 22%); + + --table-border-color: hsl(210, 25%, 13%); + --table-header-bg: hsl(210, 25%, 28%); + --table-alternate-bg: hsl(210, 25%, 11%); + + --searchbar-border-color: #848484; + --searchbar-bg: #424242; + --searchbar-fg: #fff; + --searchbar-shadow-color: #d4c89f; + --searchresults-header-fg: #666; + --searchresults-border-color: #888; + --searchresults-li-bg: #252932; + --search-mark-bg: #e3b171; +} + +.coal { + --bg: hsl(200, 7%, 8%); + --fg: #98a3ad; + + --sidebar-bg: #292c2f; + --sidebar-fg: #a1adb8; + --sidebar-non-existant: #505254; + --sidebar-active: #3473ad; + --sidebar-spacer: #393939; + + --scrollbar: var(--sidebar-fg); + + --icons: #43484d; + --icons-hover: #b3c0cc; + + --links: #2b79a2; + + --inline-code-color: #c5c8c6; + + --theme-popup-bg: #141617; + --theme-popup-border: #43484d; + --theme-hover: #1f2124; + + --quote-bg: hsl(234, 21%, 18%); + --quote-border: hsl(234, 21%, 23%); + + --table-border-color: hsl(200, 7%, 13%); + --table-header-bg: hsl(200, 7%, 28%); + --table-alternate-bg: hsl(200, 7%, 11%); + + --searchbar-border-color: #aaa; + --searchbar-bg: #b7b7b7; + --searchbar-fg: #000; + --searchbar-shadow-color: #aaa; + --searchresults-header-fg: #666; + --searchresults-border-color: #98a3ad; + --searchresults-li-bg: #2b2b2f; + --search-mark-bg: #355c7d; +} + +.light { + --bg: hsl(0, 0%, 100%); + --fg: hsl(0, 0%, 0%); + + --sidebar-bg: #fafafa; + --sidebar-fg: hsl(0, 0%, 0%); + --sidebar-non-existant: #aaaaaa; + --sidebar-active: #1f1fff; + --sidebar-spacer: #f4f4f4; + + --scrollbar: #8F8F8F; + + --icons: #747474; + --icons-hover: #000000; + + --links: #20609f; + + --inline-code-color: #301900; + + --theme-popup-bg: #fafafa; + --theme-popup-border: #cccccc; + --theme-hover: #e6e6e6; + + --quote-bg: hsl(197, 37%, 96%); + --quote-border: hsl(197, 37%, 91%); + + --table-border-color: hsl(0, 0%, 95%); + --table-header-bg: hsl(0, 0%, 80%); + --table-alternate-bg: hsl(0, 0%, 97%); + + --searchbar-border-color: #aaa; + --searchbar-bg: #fafafa; + --searchbar-fg: #000; + --searchbar-shadow-color: #aaa; + --searchresults-header-fg: #666; + --searchresults-border-color: #888; + --searchresults-li-bg: #e4f2fe; + --search-mark-bg: #a2cff5; +} + +.navy { + --bg: hsl(226, 23%, 11%); + --fg: #bcbdd0; + + --sidebar-bg: #282d3f; + --sidebar-fg: #c8c9db; + --sidebar-non-existant: #505274; + --sidebar-active: #2b79a2; + --sidebar-spacer: #2d334f; + + --scrollbar: var(--sidebar-fg); + + --icons: #737480; + --icons-hover: #b7b9cc; + + --links: #2b79a2; + + --inline-code-color: #c5c8c6; + + --theme-popup-bg: #161923; + --theme-popup-border: #737480; + --theme-hover: #282e40; + + --quote-bg: hsl(226, 15%, 17%); + --quote-border: hsl(226, 15%, 22%); + + --table-border-color: hsl(226, 23%, 16%); + --table-header-bg: hsl(226, 23%, 31%); + --table-alternate-bg: hsl(226, 23%, 14%); + + --searchbar-border-color: #aaa; + --searchbar-bg: #aeaec6; + --searchbar-fg: #000; + --searchbar-shadow-color: #aaa; + --searchresults-header-fg: #5f5f71; + --searchresults-border-color: #5c5c68; + --searchresults-li-bg: #242430; + --search-mark-bg: #a2cff5; +} + +.rust { + --bg: hsl(60, 9%, 87%); + --fg: #262625; + + --sidebar-bg: #3b2e2a; + --sidebar-fg: #c8c9db; + --sidebar-non-existant: #505254; + --sidebar-active: #e69f67; + --sidebar-spacer: #45373a; + + --scrollbar: var(--sidebar-fg); + + --icons: #737480; + --icons-hover: #262625; + + --links: #2b79a2; + + --inline-code-color: #6e6b5e; + + --theme-popup-bg: #e1e1db; + --theme-popup-border: #b38f6b; + --theme-hover: #99908a; + + --quote-bg: hsl(60, 5%, 75%); + --quote-border: hsl(60, 5%, 70%); + + --table-border-color: hsl(60, 9%, 82%); + --table-header-bg: #b3a497; + --table-alternate-bg: hsl(60, 9%, 84%); + + --searchbar-border-color: #aaa; + --searchbar-bg: #fafafa; + --searchbar-fg: #000; + --searchbar-shadow-color: #aaa; + --searchresults-header-fg: #666; + --searchresults-border-color: #888; + --searchresults-li-bg: #dec2a2; + --search-mark-bg: #e69f67; +} + +@media (prefers-color-scheme: dark) { + .light.no-js { + --bg: hsl(200, 7%, 8%); + --fg: #98a3ad; + + --sidebar-bg: #292c2f; + --sidebar-fg: #a1adb8; + --sidebar-non-existant: #505254; + --sidebar-active: #3473ad; + --sidebar-spacer: #393939; + + --scrollbar: var(--sidebar-fg); + + --icons: #43484d; + --icons-hover: #b3c0cc; + + --links: #2b79a2; + + --inline-code-color: #c5c8c6; + + --theme-popup-bg: #141617; + --theme-popup-border: #43484d; + --theme-hover: #1f2124; + + --quote-bg: hsl(234, 21%, 18%); + --quote-border: hsl(234, 21%, 23%); + + --table-border-color: hsl(200, 7%, 13%); + --table-header-bg: hsl(200, 7%, 28%); + --table-alternate-bg: hsl(200, 7%, 11%); + + --searchbar-border-color: #aaa; + --searchbar-bg: #b7b7b7; + --searchbar-fg: #000; + --searchbar-shadow-color: #aaa; + --searchresults-header-fg: #666; + --searchresults-border-color: #98a3ad; + --searchresults-li-bg: #2b2b2f; + --search-mark-bg: #355c7d; + } +} diff --git a/elasticlunr.min.js b/elasticlunr.min.js new file mode 100644 index 0000000..94b20dd --- /dev/null +++ b/elasticlunr.min.js @@ -0,0 +1,10 @@ +/** + * elasticlunr - http://weixsong.github.io + * Lightweight full-text search engine in Javascript for browser search and offline search. - 0.9.5 + * + * Copyright (C) 2017 Oliver Nightingale + * Copyright (C) 2017 Wei Song + * MIT Licensed + * @license + */ +!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();o + + + + diff --git a/fonts/OPEN-SANS-LICENSE.txt b/fonts/OPEN-SANS-LICENSE.txt new file mode 100644 index 0000000..d645695 --- /dev/null +++ b/fonts/OPEN-SANS-LICENSE.txt @@ -0,0 +1,202 @@ + + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/fonts/SOURCE-CODE-PRO-LICENSE.txt b/fonts/SOURCE-CODE-PRO-LICENSE.txt new file mode 100644 index 0000000..366206f --- /dev/null +++ b/fonts/SOURCE-CODE-PRO-LICENSE.txt @@ -0,0 +1,93 @@ +Copyright 2010, 2012 Adobe Systems Incorporated (http://www.adobe.com/), with Reserved Font Name 'Source'. All Rights Reserved. Source is a trademark of Adobe Systems Incorporated in the United States and/or other countries. + +This Font Software is licensed under the SIL Open Font License, Version 1.1. +This license is copied below, and is also available with a FAQ at: +http://scripts.sil.org/OFL + + +----------------------------------------------------------- +SIL OPEN FONT LICENSE Version 1.1 - 26 February 2007 +----------------------------------------------------------- + +PREAMBLE +The goals of the Open Font License (OFL) are to stimulate worldwide +development of collaborative font projects, to support the font creation +efforts of academic and linguistic communities, and to provide a free and +open framework in which fonts may be shared and improved in partnership +with others. + +The OFL allows the licensed fonts to be used, studied, modified and +redistributed freely as long as they are not sold by themselves. The +fonts, including any derivative works, can be bundled, embedded, +redistributed and/or sold with any software provided that any reserved +names are not used by derivative works. The fonts and derivatives, +however, cannot be released under any other type of license. The +requirement for fonts to remain under this license does not apply +to any document created using the fonts or their derivatives. + +DEFINITIONS +"Font Software" refers to the set of files released by the Copyright +Holder(s) under this license and clearly marked as such. This may +include source files, build scripts and documentation. + +"Reserved Font Name" refers to any names specified as such after the +copyright statement(s). + +"Original Version" refers to the collection of Font Software components as +distributed by the Copyright Holder(s). + +"Modified Version" refers to any derivative made by adding to, deleting, +or substituting -- in part or in whole -- any of the components of the +Original Version, by changing formats or by porting the Font Software to a +new environment. + +"Author" refers to any designer, engineer, programmer, technical +writer or other person who contributed to the Font Software. + +PERMISSION & CONDITIONS +Permission is hereby granted, free of charge, to any person obtaining +a copy of the Font Software, to use, study, copy, merge, embed, modify, +redistribute, and sell modified and unmodified copies of the Font +Software, subject to the following conditions: + +1) Neither the Font Software nor any of its individual components, +in Original or Modified Versions, may be sold by itself. + +2) Original or Modified Versions of the Font Software may be bundled, +redistributed and/or sold with any software, provided that each copy +contains the above copyright notice and this license. These can be +included either as stand-alone text files, human-readable headers or +in the appropriate machine-readable metadata fields within text or +binary files as long as those fields can be easily viewed by the user. + +3) No Modified Version of the Font Software may use the Reserved Font +Name(s) unless explicit written permission is granted by the corresponding +Copyright Holder. This restriction only applies to the primary font name as +presented to the users. + +4) The name(s) of the Copyright Holder(s) or the Author(s) of the Font +Software shall not be used to promote, endorse or advertise any +Modified Version, except to acknowledge the contribution(s) of the +Copyright Holder(s) and the Author(s) or with their explicit written +permission. + +5) The Font Software, modified or unmodified, in part or in whole, +must be distributed entirely under this license, and must not be +distributed under any other license. The requirement for fonts to +remain under this license does not apply to any document created +using the Font Software. + +TERMINATION +This license becomes null and void if any of the above conditions are +not met. + +DISCLAIMER +THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT +OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL THE +COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, +INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL +DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM +OTHER DEALINGS IN THE FONT SOFTWARE. diff --git a/fonts/fonts.css b/fonts/fonts.css new file mode 100644 index 0000000..858efa5 --- /dev/null +++ b/fonts/fonts.css @@ -0,0 +1,100 @@ +/* Open Sans is licensed under the Apache License, Version 2.0. See http://www.apache.org/licenses/LICENSE-2.0 */ +/* Source Code Pro is under the Open Font License. See https://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=OFL */ + +/* open-sans-300 - latin_vietnamese_latin-ext_greek-ext_greek_cyrillic-ext_cyrillic */ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-weight: 300; + src: local('Open Sans Light'), local('OpenSans-Light'), + url('open-sans-v17-all-charsets-300.woff2') format('woff2'); +} + +/* open-sans-300italic - latin_vietnamese_latin-ext_greek-ext_greek_cyrillic-ext_cyrillic */ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-weight: 300; + src: local('Open Sans Light Italic'), local('OpenSans-LightItalic'), + url('open-sans-v17-all-charsets-300italic.woff2') format('woff2'); +} + +/* open-sans-regular - latin_vietnamese_latin-ext_greek-ext_greek_cyrillic-ext_cyrillic */ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-weight: 400; + src: local('Open Sans Regular'), local('OpenSans-Regular'), + url('open-sans-v17-all-charsets-regular.woff2') format('woff2'); +} + +/* open-sans-italic - latin_vietnamese_latin-ext_greek-ext_greek_cyrillic-ext_cyrillic */ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-weight: 400; + src: local('Open Sans Italic'), local('OpenSans-Italic'), + url('open-sans-v17-all-charsets-italic.woff2') format('woff2'); +} + +/* open-sans-600 - latin_vietnamese_latin-ext_greek-ext_greek_cyrillic-ext_cyrillic */ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-weight: 600; + src: local('Open Sans SemiBold'), local('OpenSans-SemiBold'), + url('open-sans-v17-all-charsets-600.woff2') format('woff2'); +} + +/* open-sans-600italic - latin_vietnamese_latin-ext_greek-ext_greek_cyrillic-ext_cyrillic */ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-weight: 600; + src: local('Open Sans SemiBold Italic'), local('OpenSans-SemiBoldItalic'), + url('open-sans-v17-all-charsets-600italic.woff2') format('woff2'); +} + +/* open-sans-700 - latin_vietnamese_latin-ext_greek-ext_greek_cyrillic-ext_cyrillic */ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-weight: 700; + src: local('Open Sans Bold'), local('OpenSans-Bold'), + url('open-sans-v17-all-charsets-700.woff2') format('woff2'); +} + +/* open-sans-700italic - latin_vietnamese_latin-ext_greek-ext_greek_cyrillic-ext_cyrillic */ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-weight: 700; + src: local('Open Sans Bold Italic'), local('OpenSans-BoldItalic'), + url('open-sans-v17-all-charsets-700italic.woff2') format('woff2'); +} + +/* open-sans-800 - latin_vietnamese_latin-ext_greek-ext_greek_cyrillic-ext_cyrillic */ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-weight: 800; + src: local('Open Sans ExtraBold'), local('OpenSans-ExtraBold'), + url('open-sans-v17-all-charsets-800.woff2') format('woff2'); +} + +/* open-sans-800italic - latin_vietnamese_latin-ext_greek-ext_greek_cyrillic-ext_cyrillic */ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-weight: 800; + src: local('Open Sans ExtraBold Italic'), local('OpenSans-ExtraBoldItalic'), + url('open-sans-v17-all-charsets-800italic.woff2') format('woff2'); +} + +/* source-code-pro-500 - latin_vietnamese_latin-ext_greek_cyrillic-ext_cyrillic */ +@font-face { + font-family: 'Source Code Pro'; + font-style: normal; + font-weight: 500; + src: url('source-code-pro-v11-all-charsets-500.woff2') format('woff2'); +} diff --git a/fonts/open-sans-v17-all-charsets-300.woff2 b/fonts/open-sans-v17-all-charsets-300.woff2 new file mode 100644 index 0000000..9f51be3 Binary files /dev/null and b/fonts/open-sans-v17-all-charsets-300.woff2 differ diff --git a/fonts/open-sans-v17-all-charsets-300italic.woff2 b/fonts/open-sans-v17-all-charsets-300italic.woff2 new file mode 100644 index 0000000..2f54544 Binary files /dev/null and b/fonts/open-sans-v17-all-charsets-300italic.woff2 differ diff --git a/fonts/open-sans-v17-all-charsets-600.woff2 b/fonts/open-sans-v17-all-charsets-600.woff2 new file mode 100644 index 0000000..f503d55 Binary files /dev/null and b/fonts/open-sans-v17-all-charsets-600.woff2 differ diff --git a/fonts/open-sans-v17-all-charsets-600italic.woff2 b/fonts/open-sans-v17-all-charsets-600italic.woff2 new file mode 100644 index 0000000..c99aabe Binary files /dev/null and b/fonts/open-sans-v17-all-charsets-600italic.woff2 differ diff --git a/fonts/open-sans-v17-all-charsets-700.woff2 b/fonts/open-sans-v17-all-charsets-700.woff2 new file mode 100644 index 0000000..421a1ab Binary files /dev/null and b/fonts/open-sans-v17-all-charsets-700.woff2 differ diff --git a/fonts/open-sans-v17-all-charsets-700italic.woff2 b/fonts/open-sans-v17-all-charsets-700italic.woff2 new file mode 100644 index 0000000..12ce3d2 Binary files /dev/null and b/fonts/open-sans-v17-all-charsets-700italic.woff2 differ diff --git a/fonts/open-sans-v17-all-charsets-800.woff2 b/fonts/open-sans-v17-all-charsets-800.woff2 new file mode 100644 index 0000000..c94a223 Binary files /dev/null and b/fonts/open-sans-v17-all-charsets-800.woff2 differ diff --git a/fonts/open-sans-v17-all-charsets-800italic.woff2 b/fonts/open-sans-v17-all-charsets-800italic.woff2 new file mode 100644 index 0000000..eed7d3c Binary files /dev/null and b/fonts/open-sans-v17-all-charsets-800italic.woff2 differ diff --git a/fonts/open-sans-v17-all-charsets-italic.woff2 b/fonts/open-sans-v17-all-charsets-italic.woff2 new file mode 100644 index 0000000..398b68a Binary files /dev/null and b/fonts/open-sans-v17-all-charsets-italic.woff2 differ diff --git a/fonts/open-sans-v17-all-charsets-regular.woff2 b/fonts/open-sans-v17-all-charsets-regular.woff2 new file mode 100644 index 0000000..8383e94 Binary files /dev/null and b/fonts/open-sans-v17-all-charsets-regular.woff2 differ diff --git a/fonts/source-code-pro-v11-all-charsets-500.woff2 b/fonts/source-code-pro-v11-all-charsets-500.woff2 new file mode 100644 index 0000000..7222456 Binary files /dev/null and b/fonts/source-code-pro-v11-all-charsets-500.woff2 differ diff --git a/highlight.css b/highlight.css new file mode 100644 index 0000000..ba57b82 --- /dev/null +++ b/highlight.css @@ -0,0 +1,82 @@ +/* + * An increased contrast highlighting scheme loosely based on the + * "Base16 Atelier Dune Light" theme by Bram de Haan + * (http://atelierbram.github.io/syntax-highlighting/atelier-schemes/dune) + * Original Base16 color scheme by Chris Kempson + * (https://github.com/chriskempson/base16) + */ + +/* Comment */ +.hljs-comment, +.hljs-quote { + color: #575757; +} + +/* Red */ +.hljs-variable, +.hljs-template-variable, +.hljs-attribute, +.hljs-tag, +.hljs-name, +.hljs-regexp, +.hljs-link, +.hljs-name, +.hljs-selector-id, +.hljs-selector-class { + color: #d70025; +} + +/* Orange */ +.hljs-number, +.hljs-meta, +.hljs-built_in, +.hljs-builtin-name, +.hljs-literal, +.hljs-type, +.hljs-params { + color: #b21e00; +} + +/* Green */ +.hljs-string, +.hljs-symbol, +.hljs-bullet { + color: #008200; +} + +/* Blue */ +.hljs-title, +.hljs-section { + color: #0030f2; +} + +/* Purple */ +.hljs-keyword, +.hljs-selector-tag { + color: #9d00ec; +} + +.hljs { + display: block; + overflow-x: auto; + background: #f6f7f6; + color: #000; +} + +.hljs-emphasis { + font-style: italic; +} + +.hljs-strong { + font-weight: bold; +} + +.hljs-addition { + color: #22863a; + background-color: #f0fff4; +} + +.hljs-deletion { + color: #b31d28; + background-color: #ffeef0; +} diff --git a/highlight.js b/highlight.js new file mode 100644 index 0000000..180385b --- /dev/null +++ b/highlight.js @@ -0,0 +1,6 @@ +/* + Highlight.js 10.1.1 (93fd0d73) + License: BSD-3-Clause + Copyright (c) 2006-2020, Ivan Sagalaev +*/ +var hljs=function(){"use strict";function e(n){Object.freeze(n);var t="function"==typeof n;return Object.getOwnPropertyNames(n).forEach((function(r){!Object.hasOwnProperty.call(n,r)||null===n[r]||"object"!=typeof n[r]&&"function"!=typeof n[r]||t&&("caller"===r||"callee"===r||"arguments"===r)||Object.isFrozen(n[r])||e(n[r])})),n}class n{constructor(e){void 0===e.data&&(e.data={}),this.data=e.data}ignoreMatch(){this.ignore=!0}}function t(e){return e.replace(/&/g,"&").replace(//g,">").replace(/"/g,""").replace(/'/g,"'")}function r(e,...n){var t={};for(const n in e)t[n]=e[n];return n.forEach((function(e){for(const n in e)t[n]=e[n]})),t}function a(e){return e.nodeName.toLowerCase()}var i=Object.freeze({__proto__:null,escapeHTML:t,inherit:r,nodeStream:function(e){var n=[];return function e(t,r){for(var i=t.firstChild;i;i=i.nextSibling)3===i.nodeType?r+=i.nodeValue.length:1===i.nodeType&&(n.push({event:"start",offset:r,node:i}),r=e(i,r),a(i).match(/br|hr|img|input/)||n.push({event:"stop",offset:r,node:i}));return r}(e,0),n},mergeStreams:function(e,n,r){var i=0,s="",o=[];function l(){return e.length&&n.length?e[0].offset!==n[0].offset?e[0].offset"}function u(e){s+=""}function d(e){("start"===e.event?c:u)(e.node)}for(;e.length||n.length;){var g=l();if(s+=t(r.substring(i,g[0].offset)),i=g[0].offset,g===e){o.reverse().forEach(u);do{d(g.splice(0,1)[0]),g=l()}while(g===e&&g.length&&g[0].offset===i);o.reverse().forEach(c)}else"start"===g[0].event?o.push(g[0].node):o.pop(),d(g.splice(0,1)[0])}return s+t(r.substr(i))}});const s="",o=e=>!!e.kind;class l{constructor(e,n){this.buffer="",this.classPrefix=n.classPrefix,e.walk(this)}addText(e){this.buffer+=t(e)}openNode(e){if(!o(e))return;let n=e.kind;e.sublanguage||(n=`${this.classPrefix}${n}`),this.span(n)}closeNode(e){o(e)&&(this.buffer+=s)}value(){return this.buffer}span(e){this.buffer+=``}}class c{constructor(){this.rootNode={children:[]},this.stack=[this.rootNode]}get top(){return this.stack[this.stack.length-1]}get root(){return this.rootNode}add(e){this.top.children.push(e)}openNode(e){const n={kind:e,children:[]};this.add(n),this.stack.push(n)}closeNode(){if(this.stack.length>1)return this.stack.pop()}closeAllNodes(){for(;this.closeNode(););}toJSON(){return JSON.stringify(this.rootNode,null,4)}walk(e){return this.constructor._walk(e,this.rootNode)}static _walk(e,n){return"string"==typeof n?e.addText(n):n.children&&(e.openNode(n),n.children.forEach(n=>this._walk(e,n)),e.closeNode(n)),e}static _collapse(e){"string"!=typeof e&&e.children&&(e.children.every(e=>"string"==typeof e)?e.children=[e.children.join("")]:e.children.forEach(e=>{c._collapse(e)}))}}class u extends c{constructor(e){super(),this.options=e}addKeyword(e,n){""!==e&&(this.openNode(n),this.addText(e),this.closeNode())}addText(e){""!==e&&this.add(e)}addSublanguage(e,n){const t=e.root;t.kind=n,t.sublanguage=!0,this.add(t)}toHTML(){return new l(this,this.options).value()}finalize(){return!0}}function d(e){return e?"string"==typeof e?e:e.source:null}const g="(-?)(\\b0[xX][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",h={begin:"\\\\[\\s\\S]",relevance:0},f={className:"string",begin:"'",end:"'",illegal:"\\n",contains:[h]},p={className:"string",begin:'"',end:'"',illegal:"\\n",contains:[h]},b={begin:/\b(a|an|the|are|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|they|like|more)\b/},m=function(e,n,t={}){var a=r({className:"comment",begin:e,end:n,contains:[]},t);return a.contains.push(b),a.contains.push({className:"doctag",begin:"(?:TODO|FIXME|NOTE|BUG|OPTIMIZE|HACK|XXX):",relevance:0}),a},v=m("//","$"),x=m("/\\*","\\*/"),E=m("#","$");var _=Object.freeze({__proto__:null,IDENT_RE:"[a-zA-Z]\\w*",UNDERSCORE_IDENT_RE:"[a-zA-Z_]\\w*",NUMBER_RE:"\\b\\d+(\\.\\d+)?",C_NUMBER_RE:g,BINARY_NUMBER_RE:"\\b(0b[01]+)",RE_STARTERS_RE:"!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~",SHEBANG:(e={})=>{const n=/^#![ ]*\//;return e.binary&&(e.begin=function(...e){return e.map(e=>d(e)).join("")}(n,/.*\b/,e.binary,/\b.*/)),r({className:"meta",begin:n,end:/$/,relevance:0,"on:begin":(e,n)=>{0!==e.index&&n.ignoreMatch()}},e)},BACKSLASH_ESCAPE:h,APOS_STRING_MODE:f,QUOTE_STRING_MODE:p,PHRASAL_WORDS_MODE:b,COMMENT:m,C_LINE_COMMENT_MODE:v,C_BLOCK_COMMENT_MODE:x,HASH_COMMENT_MODE:E,NUMBER_MODE:{className:"number",begin:"\\b\\d+(\\.\\d+)?",relevance:0},C_NUMBER_MODE:{className:"number",begin:g,relevance:0},BINARY_NUMBER_MODE:{className:"number",begin:"\\b(0b[01]+)",relevance:0},CSS_NUMBER_MODE:{className:"number",begin:"\\b\\d+(\\.\\d+)?(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",relevance:0},REGEXP_MODE:{begin:/(?=\/[^/\n]*\/)/,contains:[{className:"regexp",begin:/\//,end:/\/[gimuy]*/,illegal:/\n/,contains:[h,{begin:/\[/,end:/\]/,relevance:0,contains:[h]}]}]},TITLE_MODE:{className:"title",begin:"[a-zA-Z]\\w*",relevance:0},UNDERSCORE_TITLE_MODE:{className:"title",begin:"[a-zA-Z_]\\w*",relevance:0},METHOD_GUARD:{begin:"\\.\\s*[a-zA-Z_]\\w*",relevance:0},END_SAME_AS_BEGIN:function(e){return Object.assign(e,{"on:begin":(e,n)=>{n.data._beginMatch=e[1]},"on:end":(e,n)=>{n.data._beginMatch!==e[1]&&n.ignoreMatch()}})}}),N="of and for in not or if then".split(" ");function w(e,n){return n?+n:function(e){return N.includes(e.toLowerCase())}(e)?0:1}const R=t,y=r,{nodeStream:k,mergeStreams:O}=i,M=Symbol("nomatch");return function(t){var a=[],i={},s={},o=[],l=!0,c=/(^(<[^>]+>|\t|)+|\n)/gm,g="Could not find the language '{}', did you forget to load/include a language module?";const h={disableAutodetect:!0,name:"Plain text",contains:[]};var f={noHighlightRe:/^(no-?highlight)$/i,languageDetectRe:/\blang(?:uage)?-([\w-]+)\b/i,classPrefix:"hljs-",tabReplace:null,useBR:!1,languages:null,__emitter:u};function p(e){return f.noHighlightRe.test(e)}function b(e,n,t,r){var a={code:n,language:e};S("before:highlight",a);var i=a.result?a.result:m(a.language,a.code,t,r);return i.code=a.code,S("after:highlight",i),i}function m(e,t,a,s){var o=t;function c(e,n){var t=E.case_insensitive?n[0].toLowerCase():n[0];return Object.prototype.hasOwnProperty.call(e.keywords,t)&&e.keywords[t]}function u(){null!=y.subLanguage?function(){if(""!==A){var e=null;if("string"==typeof y.subLanguage){if(!i[y.subLanguage])return void O.addText(A);e=m(y.subLanguage,A,!0,k[y.subLanguage]),k[y.subLanguage]=e.top}else e=v(A,y.subLanguage.length?y.subLanguage:null);y.relevance>0&&(I+=e.relevance),O.addSublanguage(e.emitter,e.language)}}():function(){if(!y.keywords)return void O.addText(A);let e=0;y.keywordPatternRe.lastIndex=0;let n=y.keywordPatternRe.exec(A),t="";for(;n;){t+=A.substring(e,n.index);const r=c(y,n);if(r){const[e,a]=r;O.addText(t),t="",I+=a,O.addKeyword(n[0],e)}else t+=n[0];e=y.keywordPatternRe.lastIndex,n=y.keywordPatternRe.exec(A)}t+=A.substr(e),O.addText(t)}(),A=""}function h(e){return e.className&&O.openNode(e.className),y=Object.create(e,{parent:{value:y}})}function p(e){return 0===y.matcher.regexIndex?(A+=e[0],1):(L=!0,0)}var b={};function x(t,r){var i=r&&r[0];if(A+=t,null==i)return u(),0;if("begin"===b.type&&"end"===r.type&&b.index===r.index&&""===i){if(A+=o.slice(r.index,r.index+1),!l){const n=Error("0 width match regex");throw n.languageName=e,n.badRule=b.rule,n}return 1}if(b=r,"begin"===r.type)return function(e){var t=e[0],r=e.rule;const a=new n(r),i=[r.__beforeBegin,r["on:begin"]];for(const n of i)if(n&&(n(e,a),a.ignore))return p(t);return r&&r.endSameAsBegin&&(r.endRe=RegExp(t.replace(/[-/\\^$*+?.()|[\]{}]/g,"\\$&"),"m")),r.skip?A+=t:(r.excludeBegin&&(A+=t),u(),r.returnBegin||r.excludeBegin||(A=t)),h(r),r.returnBegin?0:t.length}(r);if("illegal"===r.type&&!a){const e=Error('Illegal lexeme "'+i+'" for mode "'+(y.className||"")+'"');throw e.mode=y,e}if("end"===r.type){var s=function(e){var t=e[0],r=o.substr(e.index),a=function e(t,r,a){let i=function(e,n){var t=e&&e.exec(n);return t&&0===t.index}(t.endRe,a);if(i){if(t["on:end"]){const e=new n(t);t["on:end"](r,e),e.ignore&&(i=!1)}if(i){for(;t.endsParent&&t.parent;)t=t.parent;return t}}if(t.endsWithParent)return e(t.parent,r,a)}(y,e,r);if(!a)return M;var i=y;i.skip?A+=t:(i.returnEnd||i.excludeEnd||(A+=t),u(),i.excludeEnd&&(A=t));do{y.className&&O.closeNode(),y.skip||y.subLanguage||(I+=y.relevance),y=y.parent}while(y!==a.parent);return a.starts&&(a.endSameAsBegin&&(a.starts.endRe=a.endRe),h(a.starts)),i.returnEnd?0:t.length}(r);if(s!==M)return s}if("illegal"===r.type&&""===i)return 1;if(B>1e5&&B>3*r.index)throw Error("potential infinite loop, way more iterations than matches");return A+=i,i.length}var E=T(e);if(!E)throw console.error(g.replace("{}",e)),Error('Unknown language: "'+e+'"');var _=function(e){function n(n,t){return RegExp(d(n),"m"+(e.case_insensitive?"i":"")+(t?"g":""))}class t{constructor(){this.matchIndexes={},this.regexes=[],this.matchAt=1,this.position=0}addRule(e,n){n.position=this.position++,this.matchIndexes[this.matchAt]=n,this.regexes.push([n,e]),this.matchAt+=function(e){return RegExp(e.toString()+"|").exec("").length-1}(e)+1}compile(){0===this.regexes.length&&(this.exec=()=>null);const e=this.regexes.map(e=>e[1]);this.matcherRe=n(function(e,n="|"){for(var t=/\[(?:[^\\\]]|\\.)*\]|\(\??|\\([1-9][0-9]*)|\\./,r=0,a="",i=0;i0&&(a+=n),a+="(";o.length>0;){var l=t.exec(o);if(null==l){a+=o;break}a+=o.substring(0,l.index),o=o.substring(l.index+l[0].length),"\\"===l[0][0]&&l[1]?a+="\\"+(+l[1]+s):(a+=l[0],"("===l[0]&&r++)}a+=")"}return a}(e),!0),this.lastIndex=0}exec(e){this.matcherRe.lastIndex=this.lastIndex;const n=this.matcherRe.exec(e);if(!n)return null;const t=n.findIndex((e,n)=>n>0&&void 0!==e),r=this.matchIndexes[t];return n.splice(0,t),Object.assign(n,r)}}class a{constructor(){this.rules=[],this.multiRegexes=[],this.count=0,this.lastIndex=0,this.regexIndex=0}getMatcher(e){if(this.multiRegexes[e])return this.multiRegexes[e];const n=new t;return this.rules.slice(e).forEach(([e,t])=>n.addRule(e,t)),n.compile(),this.multiRegexes[e]=n,n}considerAll(){this.regexIndex=0}addRule(e,n){this.rules.push([e,n]),"begin"===n.type&&this.count++}exec(e){const n=this.getMatcher(this.regexIndex);n.lastIndex=this.lastIndex;const t=n.exec(e);return t&&(this.regexIndex+=t.position+1,this.regexIndex===this.count&&(this.regexIndex=0)),t}}function i(e,n){const t=e.input[e.index-1],r=e.input[e.index+e[0].length];"."!==t&&"."!==r||n.ignoreMatch()}if(e.contains&&e.contains.includes("self"))throw Error("ERR: contains `self` is not supported at the top-level of a language. See documentation.");return function t(s,o){const l=s;if(s.compiled)return l;s.compiled=!0,s.__beforeBegin=null,s.keywords=s.keywords||s.beginKeywords;let c=null;if("object"==typeof s.keywords&&(c=s.keywords.$pattern,delete s.keywords.$pattern),s.keywords&&(s.keywords=function(e,n){var t={};return"string"==typeof e?r("keyword",e):Object.keys(e).forEach((function(n){r(n,e[n])})),t;function r(e,r){n&&(r=r.toLowerCase()),r.split(" ").forEach((function(n){var r=n.split("|");t[r[0]]=[e,w(r[0],r[1])]}))}}(s.keywords,e.case_insensitive)),s.lexemes&&c)throw Error("ERR: Prefer `keywords.$pattern` to `mode.lexemes`, BOTH are not allowed. (see mode reference) ");return l.keywordPatternRe=n(s.lexemes||c||/\w+/,!0),o&&(s.beginKeywords&&(s.begin="\\b("+s.beginKeywords.split(" ").join("|")+")(?=\\b|\\s)",s.__beforeBegin=i),s.begin||(s.begin=/\B|\b/),l.beginRe=n(s.begin),s.endSameAsBegin&&(s.end=s.begin),s.end||s.endsWithParent||(s.end=/\B|\b/),s.end&&(l.endRe=n(s.end)),l.terminator_end=d(s.end)||"",s.endsWithParent&&o.terminator_end&&(l.terminator_end+=(s.end?"|":"")+o.terminator_end)),s.illegal&&(l.illegalRe=n(s.illegal)),void 0===s.relevance&&(s.relevance=1),s.contains||(s.contains=[]),s.contains=[].concat(...s.contains.map((function(e){return function(e){return e.variants&&!e.cached_variants&&(e.cached_variants=e.variants.map((function(n){return r(e,{variants:null},n)}))),e.cached_variants?e.cached_variants:function e(n){return!!n&&(n.endsWithParent||e(n.starts))}(e)?r(e,{starts:e.starts?r(e.starts):null}):Object.isFrozen(e)?r(e):e}("self"===e?s:e)}))),s.contains.forEach((function(e){t(e,l)})),s.starts&&t(s.starts,o),l.matcher=function(e){const n=new a;return e.contains.forEach(e=>n.addRule(e.begin,{rule:e,type:"begin"})),e.terminator_end&&n.addRule(e.terminator_end,{type:"end"}),e.illegal&&n.addRule(e.illegal,{type:"illegal"}),n}(l),l}(e)}(E),N="",y=s||_,k={},O=new f.__emitter(f);!function(){for(var e=[],n=y;n!==E;n=n.parent)n.className&&e.unshift(n.className);e.forEach(e=>O.openNode(e))}();var A="",I=0,S=0,B=0,L=!1;try{for(y.matcher.considerAll();;){B++,L?L=!1:(y.matcher.lastIndex=S,y.matcher.considerAll());const e=y.matcher.exec(o);if(!e)break;const n=x(o.substring(S,e.index),e);S=e.index+n}return x(o.substr(S)),O.closeAllNodes(),O.finalize(),N=O.toHTML(),{relevance:I,value:N,language:e,illegal:!1,emitter:O,top:y}}catch(n){if(n.message&&n.message.includes("Illegal"))return{illegal:!0,illegalBy:{msg:n.message,context:o.slice(S-100,S+100),mode:n.mode},sofar:N,relevance:0,value:R(o),emitter:O};if(l)return{illegal:!1,relevance:0,value:R(o),emitter:O,language:e,top:y,errorRaised:n};throw n}}function v(e,n){n=n||f.languages||Object.keys(i);var t=function(e){const n={relevance:0,emitter:new f.__emitter(f),value:R(e),illegal:!1,top:h};return n.emitter.addText(e),n}(e),r=t;return n.filter(T).filter(I).forEach((function(n){var a=m(n,e,!1);a.language=n,a.relevance>r.relevance&&(r=a),a.relevance>t.relevance&&(r=t,t=a)})),r.language&&(t.second_best=r),t}function x(e){return f.tabReplace||f.useBR?e.replace(c,e=>"\n"===e?f.useBR?"
":e:f.tabReplace?e.replace(/\t/g,f.tabReplace):e):e}function E(e){let n=null;const t=function(e){var n=e.className+" ";n+=e.parentNode?e.parentNode.className:"";const t=f.languageDetectRe.exec(n);if(t){var r=T(t[1]);return r||(console.warn(g.replace("{}",t[1])),console.warn("Falling back to no-highlight mode for this block.",e)),r?t[1]:"no-highlight"}return n.split(/\s+/).find(e=>p(e)||T(e))}(e);if(p(t))return;S("before:highlightBlock",{block:e,language:t}),f.useBR?(n=document.createElement("div")).innerHTML=e.innerHTML.replace(/\n/g,"").replace(//g,"\n"):n=e;const r=n.textContent,a=t?b(t,r,!0):v(r),i=k(n);if(i.length){const e=document.createElement("div");e.innerHTML=a.value,a.value=O(i,k(e),r)}a.value=x(a.value),S("after:highlightBlock",{block:e,result:a}),e.innerHTML=a.value,e.className=function(e,n,t){var r=n?s[n]:t,a=[e.trim()];return e.match(/\bhljs\b/)||a.push("hljs"),e.includes(r)||a.push(r),a.join(" ").trim()}(e.className,t,a.language),e.result={language:a.language,re:a.relevance,relavance:a.relevance},a.second_best&&(e.second_best={language:a.second_best.language,re:a.second_best.relevance,relavance:a.second_best.relevance})}const N=()=>{if(!N.called){N.called=!0;var e=document.querySelectorAll("pre code");a.forEach.call(e,E)}};function T(e){return e=(e||"").toLowerCase(),i[e]||i[s[e]]}function A(e,{languageName:n}){"string"==typeof e&&(e=[e]),e.forEach(e=>{s[e]=n})}function I(e){var n=T(e);return n&&!n.disableAutodetect}function S(e,n){var t=e;o.forEach((function(e){e[t]&&e[t](n)}))}Object.assign(t,{highlight:b,highlightAuto:v,fixMarkup:x,highlightBlock:E,configure:function(e){f=y(f,e)},initHighlighting:N,initHighlightingOnLoad:function(){window.addEventListener("DOMContentLoaded",N,!1)},registerLanguage:function(e,n){var r=null;try{r=n(t)}catch(n){if(console.error("Language definition for '{}' could not be registered.".replace("{}",e)),!l)throw n;console.error(n),r=h}r.name||(r.name=e),i[e]=r,r.rawDefinition=n.bind(null,t),r.aliases&&A(r.aliases,{languageName:e})},listLanguages:function(){return Object.keys(i)},getLanguage:T,registerAliases:A,requireLanguage:function(e){var n=T(e);if(n)return n;throw Error("The '{}' language is required, but not loaded.".replace("{}",e))},autoDetection:I,inherit:y,addPlugin:function(e){o.push(e)}}),t.debugMode=function(){l=!1},t.safeMode=function(){l=!0},t.versionString="10.1.1";for(const n in _)"object"==typeof _[n]&&e(_[n]);return Object.assign(t,_),t}({})}();"object"==typeof exports&&"undefined"!=typeof module&&(module.exports=hljs);hljs.registerLanguage("php",function(){"use strict";return function(e){var r={begin:"\\$+[a-zA-Z_-ÿ][a-zA-Z0-9_-ÿ]*"},t={className:"meta",variants:[{begin:/<\?php/,relevance:10},{begin:/<\?[=]?/},{begin:/\?>/}]},a={className:"string",contains:[e.BACKSLASH_ESCAPE,t],variants:[{begin:'b"',end:'"'},{begin:"b'",end:"'"},e.inherit(e.APOS_STRING_MODE,{illegal:null}),e.inherit(e.QUOTE_STRING_MODE,{illegal:null})]},n={variants:[e.BINARY_NUMBER_MODE,e.C_NUMBER_MODE]},i={keyword:"__CLASS__ __DIR__ __FILE__ __FUNCTION__ __LINE__ __METHOD__ __NAMESPACE__ __TRAIT__ die echo exit include include_once print require require_once array abstract and as binary bool boolean break callable case catch class clone const continue declare default do double else elseif empty enddeclare endfor endforeach endif endswitch endwhile eval extends final finally float for foreach from global goto if implements instanceof insteadof int integer interface isset iterable list new object or private protected public real return string switch throw trait try unset use var void while xor yield",literal:"false null true",built_in:"Error|0 AppendIterator ArgumentCountError ArithmeticError ArrayIterator ArrayObject AssertionError BadFunctionCallException BadMethodCallException CachingIterator CallbackFilterIterator CompileError Countable DirectoryIterator DivisionByZeroError DomainException EmptyIterator ErrorException Exception FilesystemIterator FilterIterator GlobIterator InfiniteIterator InvalidArgumentException IteratorIterator LengthException LimitIterator LogicException MultipleIterator NoRewindIterator OutOfBoundsException OutOfRangeException OuterIterator OverflowException ParentIterator ParseError RangeException RecursiveArrayIterator RecursiveCachingIterator RecursiveCallbackFilterIterator RecursiveDirectoryIterator RecursiveFilterIterator RecursiveIterator RecursiveIteratorIterator RecursiveRegexIterator RecursiveTreeIterator RegexIterator RuntimeException SeekableIterator SplDoublyLinkedList SplFileInfo SplFileObject SplFixedArray SplHeap SplMaxHeap SplMinHeap SplObjectStorage SplObserver SplObserver SplPriorityQueue SplQueue SplStack SplSubject SplSubject SplTempFileObject TypeError UnderflowException UnexpectedValueException ArrayAccess Closure Generator Iterator IteratorAggregate Serializable Throwable Traversable WeakReference Directory __PHP_Incomplete_Class parent php_user_filter self static stdClass"};return{aliases:["php","php3","php4","php5","php6","php7"],case_insensitive:!0,keywords:i,contains:[e.HASH_COMMENT_MODE,e.COMMENT("//","$",{contains:[t]}),e.COMMENT("/\\*","\\*/",{contains:[{className:"doctag",begin:"@[A-Za-z]+"}]}),e.COMMENT("__halt_compiler.+?;",!1,{endsWithParent:!0,keywords:"__halt_compiler"}),{className:"string",begin:/<<<['"]?\w+['"]?$/,end:/^\w+;?$/,contains:[e.BACKSLASH_ESCAPE,{className:"subst",variants:[{begin:/\$\w+/},{begin:/\{\$/,end:/\}/}]}]},t,{className:"keyword",begin:/\$this\b/},r,{begin:/(::|->)+[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*/},{className:"function",beginKeywords:"fn function",end:/[;{]/,excludeEnd:!0,illegal:"[$%\\[]",contains:[e.UNDERSCORE_TITLE_MODE,{className:"params",begin:"\\(",end:"\\)",excludeBegin:!0,excludeEnd:!0,keywords:i,contains:["self",r,e.C_BLOCK_COMMENT_MODE,a,n]}]},{className:"class",beginKeywords:"class interface",end:"{",excludeEnd:!0,illegal:/[:\(\$"]/,contains:[{beginKeywords:"extends implements"},e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"namespace",end:";",illegal:/[\.']/,contains:[e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"use",end:";",contains:[e.UNDERSCORE_TITLE_MODE]},{begin:"=>"},a,n]}}}());hljs.registerLanguage("nginx",function(){"use strict";return function(e){var n={className:"variable",variants:[{begin:/\$\d+/},{begin:/\$\{/,end:/}/},{begin:"[\\$\\@]"+e.UNDERSCORE_IDENT_RE}]},a={endsWithParent:!0,keywords:{$pattern:"[a-z/_]+",literal:"on off yes no true false none blocked debug info notice warn error crit select break last permanent redirect kqueue rtsig epoll poll /dev/poll"},relevance:0,illegal:"=>",contains:[e.HASH_COMMENT_MODE,{className:"string",contains:[e.BACKSLASH_ESCAPE,n],variants:[{begin:/"/,end:/"/},{begin:/'/,end:/'/}]},{begin:"([a-z]+):/",end:"\\s",endsWithParent:!0,excludeEnd:!0,contains:[n]},{className:"regexp",contains:[e.BACKSLASH_ESCAPE,n],variants:[{begin:"\\s\\^",end:"\\s|{|;",returnEnd:!0},{begin:"~\\*?\\s+",end:"\\s|{|;",returnEnd:!0},{begin:"\\*(\\.[a-z\\-]+)+"},{begin:"([a-z\\-]+\\.)+\\*"}]},{className:"number",begin:"\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?\\b"},{className:"number",begin:"\\b\\d+[kKmMgGdshdwy]*\\b",relevance:0},n]};return{name:"Nginx config",aliases:["nginxconf"],contains:[e.HASH_COMMENT_MODE,{begin:e.UNDERSCORE_IDENT_RE+"\\s+{",returnBegin:!0,end:"{",contains:[{className:"section",begin:e.UNDERSCORE_IDENT_RE}],relevance:0},{begin:e.UNDERSCORE_IDENT_RE+"\\s",end:";|{",returnBegin:!0,contains:[{className:"attribute",begin:e.UNDERSCORE_IDENT_RE,starts:a}],relevance:0}],illegal:"[^\\s\\}]"}}}());hljs.registerLanguage("csharp",function(){"use strict";return function(e){var n={keyword:"abstract as base bool break byte case catch char checked const continue decimal default delegate do double enum event explicit extern finally fixed float for foreach goto if implicit in int interface internal is lock long object operator out override params private protected public readonly ref sbyte sealed short sizeof stackalloc static string struct switch this try typeof uint ulong unchecked unsafe ushort using virtual void volatile while add alias ascending async await by descending dynamic equals from get global group into join let nameof on orderby partial remove select set value var when where yield",literal:"null false true"},i=e.inherit(e.TITLE_MODE,{begin:"[a-zA-Z](\\.?\\w)*"}),a={className:"number",variants:[{begin:"\\b(0b[01']+)"},{begin:"(-?)\\b([\\d']+(\\.[\\d']*)?|\\.[\\d']+)(u|U|l|L|ul|UL|f|F|b|B)"},{begin:"(-?)(\\b0[xX][a-fA-F0-9']+|(\\b[\\d']+(\\.[\\d']*)?|\\.[\\d']+)([eE][-+]?[\\d']+)?)"}],relevance:0},s={className:"string",begin:'@"',end:'"',contains:[{begin:'""'}]},t=e.inherit(s,{illegal:/\n/}),l={className:"subst",begin:"{",end:"}",keywords:n},r=e.inherit(l,{illegal:/\n/}),c={className:"string",begin:/\$"/,end:'"',illegal:/\n/,contains:[{begin:"{{"},{begin:"}}"},e.BACKSLASH_ESCAPE,r]},o={className:"string",begin:/\$@"/,end:'"',contains:[{begin:"{{"},{begin:"}}"},{begin:'""'},l]},g=e.inherit(o,{illegal:/\n/,contains:[{begin:"{{"},{begin:"}}"},{begin:'""'},r]});l.contains=[o,c,s,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,a,e.C_BLOCK_COMMENT_MODE],r.contains=[g,c,t,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,a,e.inherit(e.C_BLOCK_COMMENT_MODE,{illegal:/\n/})];var d={variants:[o,c,s,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]},E={begin:"<",end:">",contains:[{beginKeywords:"in out"},i]},_=e.IDENT_RE+"(<"+e.IDENT_RE+"(\\s*,\\s*"+e.IDENT_RE+")*>)?(\\[\\])?",b={begin:"@"+e.IDENT_RE,relevance:0};return{name:"C#",aliases:["cs","c#"],keywords:n,illegal:/::/,contains:[e.COMMENT("///","$",{returnBegin:!0,contains:[{className:"doctag",variants:[{begin:"///",relevance:0},{begin:"\x3c!--|--\x3e"},{begin:""}]}]}),e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,{className:"meta",begin:"#",end:"$",keywords:{"meta-keyword":"if else elif endif define undef warning error line region endregion pragma checksum"}},d,a,{beginKeywords:"class interface",end:/[{;=]/,illegal:/[^\s:,]/,contains:[{beginKeywords:"where class"},i,E,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},{beginKeywords:"namespace",end:/[{;=]/,illegal:/[^\s:]/,contains:[i,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},{className:"meta",begin:"^\\s*\\[",excludeBegin:!0,end:"\\]",excludeEnd:!0,contains:[{className:"meta-string",begin:/"/,end:/"/}]},{beginKeywords:"new return throw await else",relevance:0},{className:"function",begin:"("+_+"\\s+)+"+e.IDENT_RE+"\\s*(\\<.+\\>)?\\s*\\(",returnBegin:!0,end:/\s*[{;=]/,excludeEnd:!0,keywords:n,contains:[{begin:e.IDENT_RE+"\\s*(\\<.+\\>)?\\s*\\(",returnBegin:!0,contains:[e.TITLE_MODE,E],relevance:0},{className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:n,relevance:0,contains:[d,a,e.C_BLOCK_COMMENT_MODE]},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},b]}}}());hljs.registerLanguage("perl",function(){"use strict";return function(e){var n={$pattern:/[\w.]+/,keyword:"getpwent getservent quotemeta msgrcv scalar kill dbmclose undef lc ma syswrite tr send umask sysopen shmwrite vec qx utime local oct semctl localtime readpipe do return format read sprintf dbmopen pop getpgrp not getpwnam rewinddir qq fileno qw endprotoent wait sethostent bless s|0 opendir continue each sleep endgrent shutdown dump chomp connect getsockname die socketpair close flock exists index shmget sub for endpwent redo lstat msgctl setpgrp abs exit select print ref gethostbyaddr unshift fcntl syscall goto getnetbyaddr join gmtime symlink semget splice x|0 getpeername recv log setsockopt cos last reverse gethostbyname getgrnam study formline endhostent times chop length gethostent getnetent pack getprotoent getservbyname rand mkdir pos chmod y|0 substr endnetent printf next open msgsnd readdir use unlink getsockopt getpriority rindex wantarray hex system getservbyport endservent int chr untie rmdir prototype tell listen fork shmread ucfirst setprotoent else sysseek link getgrgid shmctl waitpid unpack getnetbyname reset chdir grep split require caller lcfirst until warn while values shift telldir getpwuid my getprotobynumber delete and sort uc defined srand accept package seekdir getprotobyname semop our rename seek if q|0 chroot sysread setpwent no crypt getc chown sqrt write setnetent setpriority foreach tie sin msgget map stat getlogin unless elsif truncate exec keys glob tied closedir ioctl socket readlink eval xor readline binmode setservent eof ord bind alarm pipe atan2 getgrent exp time push setgrent gt lt or ne m|0 break given say state when"},t={className:"subst",begin:"[$@]\\{",end:"\\}",keywords:n},s={begin:"->{",end:"}"},r={variants:[{begin:/\$\d/},{begin:/[\$%@](\^\w\b|#\w+(::\w+)*|{\w+}|\w+(::\w*)*)/},{begin:/[\$%@][^\s\w{]/,relevance:0}]},i=[e.BACKSLASH_ESCAPE,t,r],a=[r,e.HASH_COMMENT_MODE,e.COMMENT("^\\=\\w","\\=cut",{endsWithParent:!0}),s,{className:"string",contains:i,variants:[{begin:"q[qwxr]?\\s*\\(",end:"\\)",relevance:5},{begin:"q[qwxr]?\\s*\\[",end:"\\]",relevance:5},{begin:"q[qwxr]?\\s*\\{",end:"\\}",relevance:5},{begin:"q[qwxr]?\\s*\\|",end:"\\|",relevance:5},{begin:"q[qwxr]?\\s*\\<",end:"\\>",relevance:5},{begin:"qw\\s+q",end:"q",relevance:5},{begin:"'",end:"'",contains:[e.BACKSLASH_ESCAPE]},{begin:'"',end:'"'},{begin:"`",end:"`",contains:[e.BACKSLASH_ESCAPE]},{begin:"{\\w+}",contains:[],relevance:0},{begin:"-?\\w+\\s*\\=\\>",contains:[],relevance:0}]},{className:"number",begin:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",relevance:0},{begin:"(\\/\\/|"+e.RE_STARTERS_RE+"|\\b(split|return|print|reverse|grep)\\b)\\s*",keywords:"split return print reverse grep",relevance:0,contains:[e.HASH_COMMENT_MODE,{className:"regexp",begin:"(s|tr|y)/(\\\\.|[^/])*/(\\\\.|[^/])*/[a-z]*",relevance:10},{className:"regexp",begin:"(m|qr)?/",end:"/[a-z]*",contains:[e.BACKSLASH_ESCAPE],relevance:0}]},{className:"function",beginKeywords:"sub",end:"(\\s*\\(.*?\\))?[;{]",excludeEnd:!0,relevance:5,contains:[e.TITLE_MODE]},{begin:"-\\w\\b",relevance:0},{begin:"^__DATA__$",end:"^__END__$",subLanguage:"mojolicious",contains:[{begin:"^@@.*",end:"$",className:"comment"}]}];return t.contains=a,s.contains=a,{name:"Perl",aliases:["pl","pm"],keywords:n,contains:a}}}());hljs.registerLanguage("swift",function(){"use strict";return function(e){var i={keyword:"#available #colorLiteral #column #else #elseif #endif #file #fileLiteral #function #if #imageLiteral #line #selector #sourceLocation _ __COLUMN__ __FILE__ __FUNCTION__ __LINE__ Any as as! as? associatedtype associativity break case catch class continue convenience default defer deinit didSet do dynamic dynamicType else enum extension fallthrough false fileprivate final for func get guard if import in indirect infix init inout internal is lazy left let mutating nil none nonmutating open operator optional override postfix precedence prefix private protocol Protocol public repeat required rethrows return right self Self set static struct subscript super switch throw throws true try try! try? Type typealias unowned var weak where while willSet",literal:"true false nil",built_in:"abs advance alignof alignofValue anyGenerator assert assertionFailure bridgeFromObjectiveC bridgeFromObjectiveCUnconditional bridgeToObjectiveC bridgeToObjectiveCUnconditional c compactMap contains count countElements countLeadingZeros debugPrint debugPrintln distance dropFirst dropLast dump encodeBitsAsWords enumerate equal fatalError filter find getBridgedObjectiveCType getVaList indices insertionSort isBridgedToObjectiveC isBridgedVerbatimToObjectiveC isUniquelyReferenced isUniquelyReferencedNonObjC join lazy lexicographicalCompare map max maxElement min minElement numericCast overlaps partition posix precondition preconditionFailure print println quickSort readLine reduce reflect reinterpretCast reverse roundUpToAlignment sizeof sizeofValue sort split startsWith stride strideof strideofValue swap toString transcode underestimateCount unsafeAddressOf unsafeBitCast unsafeDowncast unsafeUnwrap unsafeReflect withExtendedLifetime withObjectAtPlusZero withUnsafePointer withUnsafePointerToObject withUnsafeMutablePointer withUnsafeMutablePointers withUnsafePointer withUnsafePointers withVaList zip"},n=e.COMMENT("/\\*","\\*/",{contains:["self"]}),t={className:"subst",begin:/\\\(/,end:"\\)",keywords:i,contains:[]},a={className:"string",contains:[e.BACKSLASH_ESCAPE,t],variants:[{begin:/"""/,end:/"""/},{begin:/"/,end:/"/}]},r={className:"number",begin:"\\b([\\d_]+(\\.[\\deE_]+)?|0x[a-fA-F0-9_]+(\\.[a-fA-F0-9p_]+)?|0b[01_]+|0o[0-7_]+)\\b",relevance:0};return t.contains=[r],{name:"Swift",keywords:i,contains:[a,e.C_LINE_COMMENT_MODE,n,{className:"type",begin:"\\b[A-Z][\\wÀ-ʸ']*[!?]"},{className:"type",begin:"\\b[A-Z][\\wÀ-ʸ']*",relevance:0},r,{className:"function",beginKeywords:"func",end:"{",excludeEnd:!0,contains:[e.inherit(e.TITLE_MODE,{begin:/[A-Za-z$_][0-9A-Za-z$_]*/}),{begin://},{className:"params",begin:/\(/,end:/\)/,endsParent:!0,keywords:i,contains:["self",r,a,e.C_BLOCK_COMMENT_MODE,{begin:":"}],illegal:/["']/}],illegal:/\[|%/},{className:"class",beginKeywords:"struct protocol class extension enum",keywords:i,end:"\\{",excludeEnd:!0,contains:[e.inherit(e.TITLE_MODE,{begin:/[A-Za-z$_][\u00C0-\u02B80-9A-Za-z$_]*/})]},{className:"meta",begin:"(@discardableResult|@warn_unused_result|@exported|@lazy|@noescape|@NSCopying|@NSManaged|@objc|@objcMembers|@convention|@required|@noreturn|@IBAction|@IBDesignable|@IBInspectable|@IBOutlet|@infix|@prefix|@postfix|@autoclosure|@testable|@available|@nonobjc|@NSApplicationMain|@UIApplicationMain|@dynamicMemberLookup|@propertyWrapper)\\b"},{beginKeywords:"import",end:/$/,contains:[e.C_LINE_COMMENT_MODE,n]}]}}}());hljs.registerLanguage("makefile",function(){"use strict";return function(e){var i={className:"variable",variants:[{begin:"\\$\\("+e.UNDERSCORE_IDENT_RE+"\\)",contains:[e.BACKSLASH_ESCAPE]},{begin:/\$[@%`]+/}]}]}]};return{name:"HTML, XML",aliases:["html","xhtml","rss","atom","xjb","xsd","xsl","plist","wsf","svg"],case_insensitive:!0,contains:[{className:"meta",begin:"",relevance:10,contains:[a,i,t,s,{begin:"\\[",end:"\\]",contains:[{className:"meta",begin:"",contains:[a,s,i,t]}]}]},e.COMMENT("\x3c!--","--\x3e",{relevance:10}),{begin:"<\\!\\[CDATA\\[",end:"\\]\\]>",relevance:10},n,{className:"meta",begin:/<\?xml/,end:/\?>/,relevance:10},{className:"tag",begin:")",end:">",keywords:{name:"style"},contains:[c],starts:{end:"",returnEnd:!0,subLanguage:["css","xml"]}},{className:"tag",begin:")",end:">",keywords:{name:"script"},contains:[c],starts:{end:"<\/script>",returnEnd:!0,subLanguage:["javascript","handlebars","xml"]}},{className:"tag",begin:"",contains:[{className:"name",begin:/[^\/><\s]+/,relevance:0},c]}]}}}());hljs.registerLanguage("bash",function(){"use strict";return function(e){const s={};Object.assign(s,{className:"variable",variants:[{begin:/\$[\w\d#@][\w\d_]*/},{begin:/\$\{/,end:/\}/,contains:[{begin:/:-/,contains:[s]}]}]});const t={className:"subst",begin:/\$\(/,end:/\)/,contains:[e.BACKSLASH_ESCAPE]},n={className:"string",begin:/"/,end:/"/,contains:[e.BACKSLASH_ESCAPE,s,t]};t.contains.push(n);const a={begin:/\$\(\(/,end:/\)\)/,contains:[{begin:/\d+#[0-9a-f]+/,className:"number"},e.NUMBER_MODE,s]},i=e.SHEBANG({binary:"(fish|bash|zsh|sh|csh|ksh|tcsh|dash|scsh)",relevance:10}),c={className:"function",begin:/\w[\w\d_]*\s*\(\s*\)\s*\{/,returnBegin:!0,contains:[e.inherit(e.TITLE_MODE,{begin:/\w[\w\d_]*/})],relevance:0};return{name:"Bash",aliases:["sh","zsh"],keywords:{$pattern:/\b-?[a-z\._]+\b/,keyword:"if then else elif fi for while in do done case esac function",literal:"true false",built_in:"break cd continue eval exec exit export getopts hash pwd readonly return shift test times trap umask unset alias bind builtin caller command declare echo enable help let local logout mapfile printf read readarray source type typeset ulimit unalias set shopt autoload bg bindkey bye cap chdir clone comparguments compcall compctl compdescribe compfiles compgroups compquote comptags comptry compvalues dirs disable disown echotc echoti emulate fc fg float functions getcap getln history integer jobs kill limit log noglob popd print pushd pushln rehash sched setcap setopt stat suspend ttyctl unfunction unhash unlimit unsetopt vared wait whence where which zcompile zformat zftp zle zmodload zparseopts zprof zpty zregexparse zsocket zstyle ztcp",_:"-ne -eq -lt -gt -f -d -e -s -l -a"},contains:[i,e.SHEBANG(),c,a,e.HASH_COMMENT_MODE,n,{className:"",begin:/\\"/},{className:"string",begin:/'/,end:/'/},s]}}}());hljs.registerLanguage("c-like",function(){"use strict";return function(e){function t(e){return"(?:"+e+")?"}var n="(decltype\\(auto\\)|"+t("[a-zA-Z_]\\w*::")+"[a-zA-Z_]\\w*"+t("<.*?>")+")",r={className:"keyword",begin:"\\b[a-z\\d_]*_t\\b"},a={className:"string",variants:[{begin:'(u8?|U|L)?"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]},{begin:"(u8?|U|L)?'(\\\\(x[0-9A-Fa-f]{2}|u[0-9A-Fa-f]{4,8}|[0-7]{3}|\\S)|.)",end:"'",illegal:"."},e.END_SAME_AS_BEGIN({begin:/(?:u8?|U|L)?R"([^()\\ ]{0,16})\(/,end:/\)([^()\\ ]{0,16})"/})]},i={className:"number",variants:[{begin:"\\b(0b[01']+)"},{begin:"(-?)\\b([\\d']+(\\.[\\d']*)?|\\.[\\d']+)(u|U|l|L|ul|UL|f|F|b|B)"},{begin:"(-?)(\\b0[xX][a-fA-F0-9']+|(\\b[\\d']+(\\.[\\d']*)?|\\.[\\d']+)([eE][-+]?[\\d']+)?)"}],relevance:0},s={className:"meta",begin:/#\s*[a-z]+\b/,end:/$/,keywords:{"meta-keyword":"if else elif endif define undef warning error line pragma _Pragma ifdef ifndef include"},contains:[{begin:/\\\n/,relevance:0},e.inherit(a,{className:"meta-string"}),{className:"meta-string",begin:/<.*?>/,end:/$/,illegal:"\\n"},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},o={className:"title",begin:t("[a-zA-Z_]\\w*::")+e.IDENT_RE,relevance:0},c=t("[a-zA-Z_]\\w*::")+e.IDENT_RE+"\\s*\\(",l={keyword:"int float while private char char8_t char16_t char32_t catch import module export virtual operator sizeof dynamic_cast|10 typedef const_cast|10 const for static_cast|10 union namespace unsigned long volatile static protected bool template mutable if public friend do goto auto void enum else break extern using asm case typeid wchar_t short reinterpret_cast|10 default double register explicit signed typename try this switch continue inline delete alignas alignof constexpr consteval constinit decltype concept co_await co_return co_yield requires noexcept static_assert thread_local restrict final override atomic_bool atomic_char atomic_schar atomic_uchar atomic_short atomic_ushort atomic_int atomic_uint atomic_long atomic_ulong atomic_llong atomic_ullong new throw return and and_eq bitand bitor compl not not_eq or or_eq xor xor_eq",built_in:"std string wstring cin cout cerr clog stdin stdout stderr stringstream istringstream ostringstream auto_ptr deque list queue stack vector map set pair bitset multiset multimap unordered_set unordered_map unordered_multiset unordered_multimap priority_queue make_pair array shared_ptr abort terminate abs acos asin atan2 atan calloc ceil cosh cos exit exp fabs floor fmod fprintf fputs free frexp fscanf future isalnum isalpha iscntrl isdigit isgraph islower isprint ispunct isspace isupper isxdigit tolower toupper labs ldexp log10 log malloc realloc memchr memcmp memcpy memset modf pow printf putchar puts scanf sinh sin snprintf sprintf sqrt sscanf strcat strchr strcmp strcpy strcspn strlen strncat strncmp strncpy strpbrk strrchr strspn strstr tanh tan vfprintf vprintf vsprintf endl initializer_list unique_ptr _Bool complex _Complex imaginary _Imaginary",literal:"true false nullptr NULL"},d=[r,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,i,a],_={variants:[{begin:/=/,end:/;/},{begin:/\(/,end:/\)/},{beginKeywords:"new throw return else",end:/;/}],keywords:l,contains:d.concat([{begin:/\(/,end:/\)/,keywords:l,contains:d.concat(["self"]),relevance:0}]),relevance:0},u={className:"function",begin:"("+n+"[\\*&\\s]+)+"+c,returnBegin:!0,end:/[{;=]/,excludeEnd:!0,keywords:l,illegal:/[^\w\s\*&:<>]/,contains:[{begin:"decltype\\(auto\\)",keywords:l,relevance:0},{begin:c,returnBegin:!0,contains:[o],relevance:0},{className:"params",begin:/\(/,end:/\)/,keywords:l,relevance:0,contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,a,i,r,{begin:/\(/,end:/\)/,keywords:l,relevance:0,contains:["self",e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,a,i,r]}]},r,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,s]};return{aliases:["c","cc","h","c++","h++","hpp","hh","hxx","cxx"],keywords:l,disableAutodetect:!0,illegal:"",keywords:l,contains:["self",r]},{begin:e.IDENT_RE+"::",keywords:l},{className:"class",beginKeywords:"class struct",end:/[{;:]/,contains:[{begin://,contains:["self"]},e.TITLE_MODE]}]),exports:{preprocessor:s,strings:a,keywords:l}}}}());hljs.registerLanguage("coffeescript",function(){"use strict";const e=["as","in","of","if","for","while","finally","var","new","function","do","return","void","else","break","catch","instanceof","with","throw","case","default","try","switch","continue","typeof","delete","let","yield","const","class","debugger","async","await","static","import","from","export","extends"],n=["true","false","null","undefined","NaN","Infinity"],a=[].concat(["setInterval","setTimeout","clearInterval","clearTimeout","require","exports","eval","isFinite","isNaN","parseFloat","parseInt","decodeURI","decodeURIComponent","encodeURI","encodeURIComponent","escape","unescape"],["arguments","this","super","console","window","document","localStorage","module","global"],["Intl","DataView","Number","Math","Date","String","RegExp","Object","Function","Boolean","Error","Symbol","Set","Map","WeakSet","WeakMap","Proxy","Reflect","JSON","Promise","Float64Array","Int16Array","Int32Array","Int8Array","Uint16Array","Uint32Array","Float32Array","Array","Uint8Array","Uint8ClampedArray","ArrayBuffer"],["EvalError","InternalError","RangeError","ReferenceError","SyntaxError","TypeError","URIError"]);return function(r){var t={keyword:e.concat(["then","unless","until","loop","by","when","and","or","is","isnt","not"]).filter((e=>n=>!e.includes(n))(["var","const","let","function","static"])).join(" "),literal:n.concat(["yes","no","on","off"]).join(" "),built_in:a.concat(["npm","print"]).join(" ")},i="[A-Za-z$_][0-9A-Za-z$_]*",s={className:"subst",begin:/#\{/,end:/}/,keywords:t},o=[r.BINARY_NUMBER_MODE,r.inherit(r.C_NUMBER_MODE,{starts:{end:"(\\s*/)?",relevance:0}}),{className:"string",variants:[{begin:/'''/,end:/'''/,contains:[r.BACKSLASH_ESCAPE]},{begin:/'/,end:/'/,contains:[r.BACKSLASH_ESCAPE]},{begin:/"""/,end:/"""/,contains:[r.BACKSLASH_ESCAPE,s]},{begin:/"/,end:/"/,contains:[r.BACKSLASH_ESCAPE,s]}]},{className:"regexp",variants:[{begin:"///",end:"///",contains:[s,r.HASH_COMMENT_MODE]},{begin:"//[gim]{0,3}(?=\\W)",relevance:0},{begin:/\/(?![ *]).*?(?![\\]).\/[gim]{0,3}(?=\W)/}]},{begin:"@"+i},{subLanguage:"javascript",excludeBegin:!0,excludeEnd:!0,variants:[{begin:"```",end:"```"},{begin:"`",end:"`"}]}];s.contains=o;var c=r.inherit(r.TITLE_MODE,{begin:i}),l={className:"params",begin:"\\([^\\(]",returnBegin:!0,contains:[{begin:/\(/,end:/\)/,keywords:t,contains:["self"].concat(o)}]};return{name:"CoffeeScript",aliases:["coffee","cson","iced"],keywords:t,illegal:/\/\*/,contains:o.concat([r.COMMENT("###","###"),r.HASH_COMMENT_MODE,{className:"function",begin:"^\\s*"+i+"\\s*=\\s*(\\(.*\\))?\\s*\\B[-=]>",end:"[-=]>",returnBegin:!0,contains:[c,l]},{begin:/[:\(,=]\s*/,relevance:0,contains:[{className:"function",begin:"(\\(.*\\))?\\s*\\B[-=]>",end:"[-=]>",returnBegin:!0,contains:[l]}]},{className:"class",beginKeywords:"class",end:"$",illegal:/[:="\[\]]/,contains:[{beginKeywords:"extends",endsWithParent:!0,illegal:/[:="\[\]]/,contains:[c]},c]},{begin:i+":",end:":",returnBegin:!0,returnEnd:!0,relevance:0}])}}}());hljs.registerLanguage("ruby",function(){"use strict";return function(e){var n="[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|\\*\\*|[-/+%^&*~`|]|\\[\\]=?",a={keyword:"and then defined module in return redo if BEGIN retry end for self when next until do begin unless END rescue else break undef not super class case require yield alias while ensure elsif or include attr_reader attr_writer attr_accessor",literal:"true false nil"},s={className:"doctag",begin:"@[A-Za-z]+"},i={begin:"#<",end:">"},r=[e.COMMENT("#","$",{contains:[s]}),e.COMMENT("^\\=begin","^\\=end",{contains:[s],relevance:10}),e.COMMENT("^__END__","\\n$")],c={className:"subst",begin:"#\\{",end:"}",keywords:a},t={className:"string",contains:[e.BACKSLASH_ESCAPE,c],variants:[{begin:/'/,end:/'/},{begin:/"/,end:/"/},{begin:/`/,end:/`/},{begin:"%[qQwWx]?\\(",end:"\\)"},{begin:"%[qQwWx]?\\[",end:"\\]"},{begin:"%[qQwWx]?{",end:"}"},{begin:"%[qQwWx]?<",end:">"},{begin:"%[qQwWx]?/",end:"/"},{begin:"%[qQwWx]?%",end:"%"},{begin:"%[qQwWx]?-",end:"-"},{begin:"%[qQwWx]?\\|",end:"\\|"},{begin:/\B\?(\\\d{1,3}|\\x[A-Fa-f0-9]{1,2}|\\u[A-Fa-f0-9]{4}|\\?\S)\b/},{begin:/<<[-~]?'?(\w+)(?:.|\n)*?\n\s*\1\b/,returnBegin:!0,contains:[{begin:/<<[-~]?'?/},e.END_SAME_AS_BEGIN({begin:/(\w+)/,end:/(\w+)/,contains:[e.BACKSLASH_ESCAPE,c]})]}]},b={className:"params",begin:"\\(",end:"\\)",endsParent:!0,keywords:a},d=[t,i,{className:"class",beginKeywords:"class module",end:"$|;",illegal:/=/,contains:[e.inherit(e.TITLE_MODE,{begin:"[A-Za-z_]\\w*(::\\w+)*(\\?|\\!)?"}),{begin:"<\\s*",contains:[{begin:"("+e.IDENT_RE+"::)?"+e.IDENT_RE}]}].concat(r)},{className:"function",beginKeywords:"def",end:"$|;",contains:[e.inherit(e.TITLE_MODE,{begin:n}),b].concat(r)},{begin:e.IDENT_RE+"::"},{className:"symbol",begin:e.UNDERSCORE_IDENT_RE+"(\\!|\\?)?:",relevance:0},{className:"symbol",begin:":(?!\\s)",contains:[t,{begin:n}],relevance:0},{className:"number",begin:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",relevance:0},{begin:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{className:"params",begin:/\|/,end:/\|/,keywords:a},{begin:"("+e.RE_STARTERS_RE+"|unless)\\s*",keywords:"unless",contains:[i,{className:"regexp",contains:[e.BACKSLASH_ESCAPE,c],illegal:/\n/,variants:[{begin:"/",end:"/[a-z]*"},{begin:"%r{",end:"}[a-z]*"},{begin:"%r\\(",end:"\\)[a-z]*"},{begin:"%r!",end:"![a-z]*"},{begin:"%r\\[",end:"\\][a-z]*"}]}].concat(r),relevance:0}].concat(r);c.contains=d,b.contains=d;var g=[{begin:/^\s*=>/,starts:{end:"$",contains:d}},{className:"meta",begin:"^([>?]>|[\\w#]+\\(\\w+\\):\\d+:\\d+>|(\\w+-)?\\d+\\.\\d+\\.\\d(p\\d+)?[^>]+>)",starts:{end:"$",contains:d}}];return{name:"Ruby",aliases:["rb","gemspec","podspec","thor","irb"],keywords:a,illegal:/\/\*/,contains:r.concat(g).concat(d)}}}());hljs.registerLanguage("yaml",function(){"use strict";return function(e){var n="true false yes no null",a="[\\w#;/?:@&=+$,.~*\\'()[\\]]+",s={className:"string",relevance:0,variants:[{begin:/'/,end:/'/},{begin:/"/,end:/"/},{begin:/\S+/}],contains:[e.BACKSLASH_ESCAPE,{className:"template-variable",variants:[{begin:"{{",end:"}}"},{begin:"%{",end:"}"}]}]},i=e.inherit(s,{variants:[{begin:/'/,end:/'/},{begin:/"/,end:/"/},{begin:/[^\s,{}[\]]+/}]}),l={end:",",endsWithParent:!0,excludeEnd:!0,contains:[],keywords:n,relevance:0},t={begin:"{",end:"}",contains:[l],illegal:"\\n",relevance:0},g={begin:"\\[",end:"\\]",contains:[l],illegal:"\\n",relevance:0},b=[{className:"attr",variants:[{begin:"\\w[\\w :\\/.-]*:(?=[ \t]|$)"},{begin:'"\\w[\\w :\\/.-]*":(?=[ \t]|$)'},{begin:"'\\w[\\w :\\/.-]*':(?=[ \t]|$)"}]},{className:"meta",begin:"^---s*$",relevance:10},{className:"string",begin:"[\\|>]([0-9]?[+-])?[ ]*\\n( *)[\\S ]+\\n(\\2[\\S ]+\\n?)*"},{begin:"<%[%=-]?",end:"[%-]?%>",subLanguage:"ruby",excludeBegin:!0,excludeEnd:!0,relevance:0},{className:"type",begin:"!\\w+!"+a},{className:"type",begin:"!<"+a+">"},{className:"type",begin:"!"+a},{className:"type",begin:"!!"+a},{className:"meta",begin:"&"+e.UNDERSCORE_IDENT_RE+"$"},{className:"meta",begin:"\\*"+e.UNDERSCORE_IDENT_RE+"$"},{className:"bullet",begin:"\\-(?=[ ]|$)",relevance:0},e.HASH_COMMENT_MODE,{beginKeywords:n,keywords:{literal:n}},{className:"number",begin:"\\b[0-9]{4}(-[0-9][0-9]){0,2}([Tt \\t][0-9][0-9]?(:[0-9][0-9]){2})?(\\.[0-9]*)?([ \\t])*(Z|[-+][0-9][0-9]?(:[0-9][0-9])?)?\\b"},{className:"number",begin:e.C_NUMBER_RE+"\\b"},t,g,s],c=[...b];return c.pop(),c.push(i),l.contains=c,{name:"YAML",case_insensitive:!0,aliases:["yml","YAML"],contains:b}}}());hljs.registerLanguage("d",function(){"use strict";return function(e){var a={$pattern:e.UNDERSCORE_IDENT_RE,keyword:"abstract alias align asm assert auto body break byte case cast catch class const continue debug default delete deprecated do else enum export extern final finally for foreach foreach_reverse|10 goto if immutable import in inout int interface invariant is lazy macro mixin module new nothrow out override package pragma private protected public pure ref return scope shared static struct super switch synchronized template this throw try typedef typeid typeof union unittest version void volatile while with __FILE__ __LINE__ __gshared|10 __thread __traits __DATE__ __EOF__ __TIME__ __TIMESTAMP__ __VENDOR__ __VERSION__",built_in:"bool cdouble cent cfloat char creal dchar delegate double dstring float function idouble ifloat ireal long real short string ubyte ucent uint ulong ushort wchar wstring",literal:"false null true"},d="((0|[1-9][\\d_]*)|0[bB][01_]+|0[xX]([\\da-fA-F][\\da-fA-F_]*|_[\\da-fA-F][\\da-fA-F_]*))",n="\\\\(['\"\\?\\\\abfnrtv]|u[\\dA-Fa-f]{4}|[0-7]{1,3}|x[\\dA-Fa-f]{2}|U[\\dA-Fa-f]{8})|&[a-zA-Z\\d]{2,};",t={className:"number",begin:"\\b"+d+"(L|u|U|Lu|LU|uL|UL)?",relevance:0},_={className:"number",begin:"\\b(((0[xX](([\\da-fA-F][\\da-fA-F_]*|_[\\da-fA-F][\\da-fA-F_]*)\\.([\\da-fA-F][\\da-fA-F_]*|_[\\da-fA-F][\\da-fA-F_]*)|\\.?([\\da-fA-F][\\da-fA-F_]*|_[\\da-fA-F][\\da-fA-F_]*))[pP][+-]?(0|[1-9][\\d_]*|\\d[\\d_]*|[\\d_]+?\\d))|((0|[1-9][\\d_]*|\\d[\\d_]*|[\\d_]+?\\d)(\\.\\d*|([eE][+-]?(0|[1-9][\\d_]*|\\d[\\d_]*|[\\d_]+?\\d)))|\\d+\\.(0|[1-9][\\d_]*|\\d[\\d_]*|[\\d_]+?\\d)(0|[1-9][\\d_]*|\\d[\\d_]*|[\\d_]+?\\d)|\\.(0|[1-9][\\d_]*)([eE][+-]?(0|[1-9][\\d_]*|\\d[\\d_]*|[\\d_]+?\\d))?))([fF]|L|i|[fF]i|Li)?|"+d+"(i|[fF]i|Li))",relevance:0},r={className:"string",begin:"'("+n+"|.)",end:"'",illegal:"."},i={className:"string",begin:'"',contains:[{begin:n,relevance:0}],end:'"[cwd]?'},s=e.COMMENT("\\/\\+","\\+\\/",{contains:["self"],relevance:10});return{name:"D",keywords:a,contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,s,{className:"string",begin:'x"[\\da-fA-F\\s\\n\\r]*"[cwd]?',relevance:10},i,{className:"string",begin:'[rq]"',end:'"[cwd]?',relevance:5},{className:"string",begin:"`",end:"`[cwd]?"},{className:"string",begin:'q"\\{',end:'\\}"'},_,t,r,{className:"meta",begin:"^#!",end:"$",relevance:5},{className:"meta",begin:"#(line)",end:"$",relevance:5},{className:"keyword",begin:"@[a-zA-Z_][a-zA-Z_\\d]*"}]}}}());hljs.registerLanguage("properties",function(){"use strict";return function(e){var n="[ \\t\\f]*",t="("+n+"[:=]"+n+"|[ \\t\\f]+)",a="([^\\\\:= \\t\\f\\n]|\\\\.)+",s={end:t,relevance:0,starts:{className:"string",end:/$/,relevance:0,contains:[{begin:"\\\\\\n"}]}};return{name:".properties",case_insensitive:!0,illegal:/\S/,contains:[e.COMMENT("^\\s*[!#]","$"),{begin:"([^\\\\\\W:= \\t\\f\\n]|\\\\.)+"+t,returnBegin:!0,contains:[{className:"attr",begin:"([^\\\\\\W:= \\t\\f\\n]|\\\\.)+",endsParent:!0,relevance:0}],starts:s},{begin:a+t,returnBegin:!0,relevance:0,contains:[{className:"meta",begin:a,endsParent:!0,relevance:0}],starts:s},{className:"attr",relevance:0,begin:a+n+"$"}]}}}());hljs.registerLanguage("http",function(){"use strict";return function(e){var n="HTTP/[0-9\\.]+";return{name:"HTTP",aliases:["https"],illegal:"\\S",contains:[{begin:"^"+n,end:"$",contains:[{className:"number",begin:"\\b\\d{3}\\b"}]},{begin:"^[A-Z]+ (.*?) "+n+"$",returnBegin:!0,end:"$",contains:[{className:"string",begin:" ",end:" ",excludeBegin:!0,excludeEnd:!0},{begin:n},{className:"keyword",begin:"[A-Z]+"}]},{className:"attribute",begin:"^\\w",end:": ",excludeEnd:!0,illegal:"\\n|\\s|=",starts:{end:"$",relevance:0}},{begin:"\\n\\n",starts:{subLanguage:[],endsWithParent:!0}}]}}}());hljs.registerLanguage("haskell",function(){"use strict";return function(e){var n={variants:[e.COMMENT("--","$"),e.COMMENT("{-","-}",{contains:["self"]})]},i={className:"meta",begin:"{-#",end:"#-}"},a={className:"meta",begin:"^#",end:"$"},s={className:"type",begin:"\\b[A-Z][\\w']*",relevance:0},l={begin:"\\(",end:"\\)",illegal:'"',contains:[i,a,{className:"type",begin:"\\b[A-Z][\\w]*(\\((\\.\\.|,|\\w+)\\))?"},e.inherit(e.TITLE_MODE,{begin:"[_a-z][\\w']*"}),n]};return{name:"Haskell",aliases:["hs"],keywords:"let in if then else case of where do module import hiding qualified type data newtype deriving class instance as default infix infixl infixr foreign export ccall stdcall cplusplus jvm dotnet safe unsafe family forall mdo proc rec",contains:[{beginKeywords:"module",end:"where",keywords:"module where",contains:[l,n],illegal:"\\W\\.|;"},{begin:"\\bimport\\b",end:"$",keywords:"import qualified as hiding",contains:[l,n],illegal:"\\W\\.|;"},{className:"class",begin:"^(\\s*)?(class|instance)\\b",end:"where",keywords:"class family instance where",contains:[s,l,n]},{className:"class",begin:"\\b(data|(new)?type)\\b",end:"$",keywords:"data family type newtype deriving",contains:[i,s,l,{begin:"{",end:"}",contains:l.contains},n]},{beginKeywords:"default",end:"$",contains:[s,l,n]},{beginKeywords:"infix infixl infixr",end:"$",contains:[e.C_NUMBER_MODE,n]},{begin:"\\bforeign\\b",end:"$",keywords:"foreign import export ccall stdcall cplusplus jvm dotnet safe unsafe",contains:[s,e.QUOTE_STRING_MODE,n]},{className:"meta",begin:"#!\\/usr\\/bin\\/env runhaskell",end:"$"},i,a,e.QUOTE_STRING_MODE,e.C_NUMBER_MODE,s,e.inherit(e.TITLE_MODE,{begin:"^[_a-z][\\w']*"}),n,{begin:"->|<-"}]}}}());hljs.registerLanguage("handlebars",function(){"use strict";function e(...e){return e.map(e=>(function(e){return e?"string"==typeof e?e:e.source:null})(e)).join("")}return function(n){const a={"builtin-name":"action bindattr collection component concat debugger each each-in get hash if in input link-to loc log lookup mut outlet partial query-params render template textarea unbound unless view with yield"},t=/\[.*?\]/,s=/[^\s!"#%&'()*+,.\/;<=>@\[\\\]^`{|}~]+/,i=e("(",/'.*?'/,"|",/".*?"/,"|",t,"|",s,"|",/\.|\//,")+"),r=e("(",t,"|",s,")(?==)"),l={begin:i,lexemes:/[\w.\/]+/},c=n.inherit(l,{keywords:{literal:"true false undefined null"}}),o={begin:/\(/,end:/\)/},m={className:"attr",begin:r,relevance:0,starts:{begin:/=/,end:/=/,starts:{contains:[n.NUMBER_MODE,n.QUOTE_STRING_MODE,n.APOS_STRING_MODE,c,o]}}},d={contains:[n.NUMBER_MODE,n.QUOTE_STRING_MODE,n.APOS_STRING_MODE,{begin:/as\s+\|/,keywords:{keyword:"as"},end:/\|/,contains:[{begin:/\w+/}]},m,c,o],returnEnd:!0},g=n.inherit(l,{className:"name",keywords:a,starts:n.inherit(d,{end:/\)/})});o.contains=[g];const u=n.inherit(l,{keywords:a,className:"name",starts:n.inherit(d,{end:/}}/})}),b=n.inherit(l,{keywords:a,className:"name"}),h=n.inherit(l,{className:"name",keywords:a,starts:n.inherit(d,{end:/}}/})});return{name:"Handlebars",aliases:["hbs","html.hbs","html.handlebars","htmlbars"],case_insensitive:!0,subLanguage:"xml",contains:[{begin:/\\\{\{/,skip:!0},{begin:/\\\\(?=\{\{)/,skip:!0},n.COMMENT(/\{\{!--/,/--\}\}/),n.COMMENT(/\{\{!/,/\}\}/),{className:"template-tag",begin:/\{\{\{\{(?!\/)/,end:/\}\}\}\}/,contains:[u],starts:{end:/\{\{\{\{\//,returnEnd:!0,subLanguage:"xml"}},{className:"template-tag",begin:/\{\{\{\{\//,end:/\}\}\}\}/,contains:[b]},{className:"template-tag",begin:/\{\{#/,end:/\}\}/,contains:[u]},{className:"template-tag",begin:/\{\{(?=else\}\})/,end:/\}\}/,keywords:"else"},{className:"template-tag",begin:/\{\{\//,end:/\}\}/,contains:[b]},{className:"template-variable",begin:/\{\{\{/,end:/\}\}\}/,contains:[h]},{className:"template-variable",begin:/\{\{/,end:/\}\}/,contains:[h]}]}}}());hljs.registerLanguage("rust",function(){"use strict";return function(e){var n="([ui](8|16|32|64|128|size)|f(32|64))?",t="drop i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize f32 f64 str char bool Box Option Result String Vec Copy Send Sized Sync Drop Fn FnMut FnOnce ToOwned Clone Debug PartialEq PartialOrd Eq Ord AsRef AsMut Into From Default Iterator Extend IntoIterator DoubleEndedIterator ExactSizeIterator SliceConcatExt ToString assert! assert_eq! bitflags! bytes! cfg! col! concat! concat_idents! debug_assert! debug_assert_eq! env! panic! file! format! format_args! include_bin! include_str! line! local_data_key! module_path! option_env! print! println! select! stringify! try! unimplemented! unreachable! vec! write! writeln! macro_rules! assert_ne! debug_assert_ne!";return{name:"Rust",aliases:["rs"],keywords:{$pattern:e.IDENT_RE+"!?",keyword:"abstract as async await become box break const continue crate do dyn else enum extern false final fn for if impl in let loop macro match mod move mut override priv pub ref return self Self static struct super trait true try type typeof unsafe unsized use virtual where while yield",literal:"true false Some None Ok Err",built_in:t},illegal:""}]}}}());hljs.registerLanguage("cpp",function(){"use strict";return function(e){var t=e.getLanguage("c-like").rawDefinition();return t.disableAutodetect=!1,t.name="C++",t.aliases=["cc","c++","h++","hpp","hh","hxx","cxx"],t}}());hljs.registerLanguage("ini",function(){"use strict";function e(e){return e?"string"==typeof e?e:e.source:null}function n(...n){return n.map(n=>e(n)).join("")}return function(a){var s={className:"number",relevance:0,variants:[{begin:/([\+\-]+)?[\d]+_[\d_]+/},{begin:a.NUMBER_RE}]},i=a.COMMENT();i.variants=[{begin:/;/,end:/$/},{begin:/#/,end:/$/}];var t={className:"variable",variants:[{begin:/\$[\w\d"][\w\d_]*/},{begin:/\$\{(.*?)}/}]},r={className:"literal",begin:/\bon|off|true|false|yes|no\b/},l={className:"string",contains:[a.BACKSLASH_ESCAPE],variants:[{begin:"'''",end:"'''",relevance:10},{begin:'"""',end:'"""',relevance:10},{begin:'"',end:'"'},{begin:"'",end:"'"}]},c={begin:/\[/,end:/\]/,contains:[i,r,t,l,s,"self"],relevance:0},g="("+[/[A-Za-z0-9_-]+/,/"(\\"|[^"])*"/,/'[^']*'/].map(n=>e(n)).join("|")+")";return{name:"TOML, also INI",aliases:["toml"],case_insensitive:!0,illegal:/\S/,contains:[i,{className:"section",begin:/\[+/,end:/\]+/},{begin:n(g,"(\\s*\\.\\s*",g,")*",n("(?=",/\s*=\s*[^#\s]/,")")),className:"attr",starts:{end:/$/,contains:[i,c,r,t,l,s]}}]}}}());hljs.registerLanguage("objectivec",function(){"use strict";return function(e){var n=/[a-zA-Z@][a-zA-Z0-9_]*/,_={$pattern:n,keyword:"@interface @class @protocol @implementation"};return{name:"Objective-C",aliases:["mm","objc","obj-c"],keywords:{$pattern:n,keyword:"int float while char export sizeof typedef const struct for union unsigned long volatile static bool mutable if do return goto void enum else break extern asm case short default double register explicit signed typename this switch continue wchar_t inline readonly assign readwrite self @synchronized id typeof nonatomic super unichar IBOutlet IBAction strong weak copy in out inout bycopy byref oneway __strong __weak __block __autoreleasing @private @protected @public @try @property @end @throw @catch @finally @autoreleasepool @synthesize @dynamic @selector @optional @required @encode @package @import @defs @compatibility_alias __bridge __bridge_transfer __bridge_retained __bridge_retain __covariant __contravariant __kindof _Nonnull _Nullable _Null_unspecified __FUNCTION__ __PRETTY_FUNCTION__ __attribute__ getter setter retain unsafe_unretained nonnull nullable null_unspecified null_resettable class instancetype NS_DESIGNATED_INITIALIZER NS_UNAVAILABLE NS_REQUIRES_SUPER NS_RETURNS_INNER_POINTER NS_INLINE NS_AVAILABLE NS_DEPRECATED NS_ENUM NS_OPTIONS NS_SWIFT_UNAVAILABLE NS_ASSUME_NONNULL_BEGIN NS_ASSUME_NONNULL_END NS_REFINED_FOR_SWIFT NS_SWIFT_NAME NS_SWIFT_NOTHROW NS_DURING NS_HANDLER NS_ENDHANDLER NS_VALUERETURN NS_VOIDRETURN",literal:"false true FALSE TRUE nil YES NO NULL",built_in:"BOOL dispatch_once_t dispatch_queue_t dispatch_sync dispatch_async dispatch_once"},illegal:"/,end:/$/,illegal:"\\n"},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},{className:"class",begin:"("+_.keyword.split(" ").join("|")+")\\b",end:"({|$)",excludeEnd:!0,keywords:_,contains:[e.UNDERSCORE_TITLE_MODE]},{begin:"\\."+e.UNDERSCORE_IDENT_RE,relevance:0}]}}}());hljs.registerLanguage("apache",function(){"use strict";return function(e){var n={className:"number",begin:"\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?"};return{name:"Apache config",aliases:["apacheconf"],case_insensitive:!0,contains:[e.HASH_COMMENT_MODE,{className:"section",begin:"",contains:[n,{className:"number",begin:":\\d{1,5}"},e.inherit(e.QUOTE_STRING_MODE,{relevance:0})]},{className:"attribute",begin:/\w+/,relevance:0,keywords:{nomarkup:"order deny allow setenv rewriterule rewriteengine rewritecond documentroot sethandler errordocument loadmodule options header listen serverroot servername"},starts:{end:/$/,relevance:0,keywords:{literal:"on off all deny allow"},contains:[{className:"meta",begin:"\\s\\[",end:"\\]$"},{className:"variable",begin:"[\\$%]\\{",end:"\\}",contains:["self",{className:"number",begin:"[\\$%]\\d+"}]},n,{className:"number",begin:"\\d+"},e.QUOTE_STRING_MODE]}}],illegal:/\S/}}}());hljs.registerLanguage("java",function(){"use strict";function e(e){return e?"string"==typeof e?e:e.source:null}function n(e){return a("(",e,")?")}function a(...n){return n.map(n=>e(n)).join("")}function s(...n){return"("+n.map(n=>e(n)).join("|")+")"}return function(e){var t="false synchronized int abstract float private char boolean var static null if const for true while long strictfp finally protected import native final void enum else break transient catch instanceof byte super volatile case assert short package default double public try this switch continue throws protected public private module requires exports do",i={className:"meta",begin:"@[À-ʸa-zA-Z_$][À-ʸa-zA-Z_$0-9]*",contains:[{begin:/\(/,end:/\)/,contains:["self"]}]},r=e=>a("[",e,"]+([",e,"_]*[",e,"]+)?"),c={className:"number",variants:[{begin:`\\b(0[bB]${r("01")})[lL]?`},{begin:`\\b(0${r("0-7")})[dDfFlL]?`},{begin:a(/\b0[xX]/,s(a(r("a-fA-F0-9"),/\./,r("a-fA-F0-9")),a(r("a-fA-F0-9"),/\.?/),a(/\./,r("a-fA-F0-9"))),/([pP][+-]?(\d+))?/,/[fFdDlL]?/)},{begin:a(/\b/,s(a(/\d*\./,r("\\d")),r("\\d")),/[eE][+-]?[\d]+[dDfF]?/)},{begin:a(/\b/,r(/\d/),n(/\.?/),n(r(/\d/)),/[dDfFlL]?/)}],relevance:0};return{name:"Java",aliases:["jsp"],keywords:t,illegal:/<\/|#/,contains:[e.COMMENT("/\\*\\*","\\*/",{relevance:0,contains:[{begin:/\w+@/,relevance:0},{className:"doctag",begin:"@[A-Za-z]+"}]}),e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{className:"class",beginKeywords:"class interface",end:/[{;=]/,excludeEnd:!0,keywords:"class interface",illegal:/[:"\[\]]/,contains:[{beginKeywords:"extends implements"},e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"new throw return else",relevance:0},{className:"function",begin:"([À-ʸa-zA-Z_$][À-ʸa-zA-Z_$0-9]*(<[À-ʸa-zA-Z_$][À-ʸa-zA-Z_$0-9]*(\\s*,\\s*[À-ʸa-zA-Z_$][À-ʸa-zA-Z_$0-9]*)*>)?\\s+)+"+e.UNDERSCORE_IDENT_RE+"\\s*\\(",returnBegin:!0,end:/[{;=]/,excludeEnd:!0,keywords:t,contains:[{begin:e.UNDERSCORE_IDENT_RE+"\\s*\\(",returnBegin:!0,relevance:0,contains:[e.UNDERSCORE_TITLE_MODE]},{className:"params",begin:/\(/,end:/\)/,keywords:t,relevance:0,contains:[i,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE]},e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE]},c,i]}}}());hljs.registerLanguage("x86asm",function(){"use strict";return function(s){return{name:"Intel x86 Assembly",case_insensitive:!0,keywords:{$pattern:"[.%]?"+s.IDENT_RE,keyword:"lock rep repe repz repne repnz xaquire xrelease bnd nobnd aaa aad aam aas adc add and arpl bb0_reset bb1_reset bound bsf bsr bswap bt btc btr bts call cbw cdq cdqe clc cld cli clts cmc cmp cmpsb cmpsd cmpsq cmpsw cmpxchg cmpxchg486 cmpxchg8b cmpxchg16b cpuid cpu_read cpu_write cqo cwd cwde daa das dec div dmint emms enter equ f2xm1 fabs fadd faddp fbld fbstp fchs fclex fcmovb fcmovbe fcmove fcmovnb fcmovnbe fcmovne fcmovnu fcmovu fcom fcomi fcomip fcomp fcompp fcos fdecstp fdisi fdiv fdivp fdivr fdivrp femms feni ffree ffreep fiadd ficom ficomp fidiv fidivr fild fimul fincstp finit fist fistp fisttp fisub fisubr fld fld1 fldcw fldenv fldl2e fldl2t fldlg2 fldln2 fldpi fldz fmul fmulp fnclex fndisi fneni fninit fnop fnsave fnstcw fnstenv fnstsw fpatan fprem fprem1 fptan frndint frstor fsave fscale fsetpm fsin fsincos fsqrt fst fstcw fstenv fstp fstsw fsub fsubp fsubr fsubrp ftst fucom fucomi fucomip fucomp fucompp fxam fxch fxtract fyl2x fyl2xp1 hlt ibts icebp idiv imul in inc incbin insb insd insw int int01 int1 int03 int3 into invd invpcid invlpg invlpga iret iretd iretq iretw jcxz jecxz jrcxz jmp jmpe lahf lar lds lea leave les lfence lfs lgdt lgs lidt lldt lmsw loadall loadall286 lodsb lodsd lodsq lodsw loop loope loopne loopnz loopz lsl lss ltr mfence monitor mov movd movq movsb movsd movsq movsw movsx movsxd movzx mul mwait neg nop not or out outsb outsd outsw packssdw packsswb packuswb paddb paddd paddsb paddsiw paddsw paddusb paddusw paddw pand pandn pause paveb pavgusb pcmpeqb pcmpeqd pcmpeqw pcmpgtb pcmpgtd pcmpgtw pdistib pf2id pfacc pfadd pfcmpeq pfcmpge pfcmpgt pfmax pfmin pfmul pfrcp pfrcpit1 pfrcpit2 pfrsqit1 pfrsqrt pfsub pfsubr pi2fd pmachriw pmaddwd pmagw pmulhriw pmulhrwa pmulhrwc pmulhw pmullw pmvgezb pmvlzb pmvnzb pmvzb pop popa popad popaw popf popfd popfq popfw por prefetch prefetchw pslld psllq psllw psrad psraw psrld psrlq psrlw psubb psubd psubsb psubsiw psubsw psubusb psubusw psubw punpckhbw punpckhdq punpckhwd punpcklbw punpckldq punpcklwd push pusha pushad pushaw pushf pushfd pushfq pushfw pxor rcl rcr rdshr rdmsr rdpmc rdtsc rdtscp ret retf retn rol ror rdm rsdc rsldt rsm rsts sahf sal salc sar sbb scasb scasd scasq scasw sfence sgdt shl shld shr shrd sidt sldt skinit smi smint smintold smsw stc std sti stosb stosd stosq stosw str sub svdc svldt svts swapgs syscall sysenter sysexit sysret test ud0 ud1 ud2b ud2 ud2a umov verr verw fwait wbinvd wrshr wrmsr xadd xbts xchg xlatb xlat xor cmove cmovz cmovne cmovnz cmova cmovnbe cmovae cmovnb cmovb cmovnae cmovbe cmovna cmovg cmovnle cmovge cmovnl cmovl cmovnge cmovle cmovng cmovc cmovnc cmovo cmovno cmovs cmovns cmovp cmovpe cmovnp cmovpo je jz jne jnz ja jnbe jae jnb jb jnae jbe jna jg jnle jge jnl jl jnge jle jng jc jnc jo jno js jns jpo jnp jpe jp sete setz setne setnz seta setnbe setae setnb setnc setb setnae setcset setbe setna setg setnle setge setnl setl setnge setle setng sets setns seto setno setpe setp setpo setnp addps addss andnps andps cmpeqps cmpeqss cmpleps cmpless cmpltps cmpltss cmpneqps cmpneqss cmpnleps cmpnless cmpnltps cmpnltss cmpordps cmpordss cmpunordps cmpunordss cmpps cmpss comiss cvtpi2ps cvtps2pi cvtsi2ss cvtss2si cvttps2pi cvttss2si divps divss ldmxcsr maxps maxss minps minss movaps movhps movlhps movlps movhlps movmskps movntps movss movups mulps mulss orps rcpps rcpss rsqrtps rsqrtss shufps sqrtps sqrtss stmxcsr subps subss ucomiss unpckhps unpcklps xorps fxrstor fxrstor64 fxsave fxsave64 xgetbv xsetbv xsave xsave64 xsaveopt xsaveopt64 xrstor xrstor64 prefetchnta prefetcht0 prefetcht1 prefetcht2 maskmovq movntq pavgb pavgw pextrw pinsrw pmaxsw pmaxub pminsw pminub pmovmskb pmulhuw psadbw pshufw pf2iw pfnacc pfpnacc pi2fw pswapd maskmovdqu clflush movntdq movnti movntpd movdqa movdqu movdq2q movq2dq paddq pmuludq pshufd pshufhw pshuflw pslldq psrldq psubq punpckhqdq punpcklqdq addpd addsd andnpd andpd cmpeqpd cmpeqsd cmplepd cmplesd cmpltpd cmpltsd cmpneqpd cmpneqsd cmpnlepd cmpnlesd cmpnltpd cmpnltsd cmpordpd cmpordsd cmpunordpd cmpunordsd cmppd comisd cvtdq2pd cvtdq2ps cvtpd2dq cvtpd2pi cvtpd2ps cvtpi2pd cvtps2dq cvtps2pd cvtsd2si cvtsd2ss cvtsi2sd cvtss2sd cvttpd2pi cvttpd2dq cvttps2dq cvttsd2si divpd divsd maxpd maxsd minpd minsd movapd movhpd movlpd movmskpd movupd mulpd mulsd orpd shufpd sqrtpd sqrtsd subpd subsd ucomisd unpckhpd unpcklpd xorpd addsubpd addsubps haddpd haddps hsubpd hsubps lddqu movddup movshdup movsldup clgi stgi vmcall vmclear vmfunc vmlaunch vmload vmmcall vmptrld vmptrst vmread vmresume vmrun vmsave vmwrite vmxoff vmxon invept invvpid pabsb pabsw pabsd palignr phaddw phaddd phaddsw phsubw phsubd phsubsw pmaddubsw pmulhrsw pshufb psignb psignw psignd extrq insertq movntsd movntss lzcnt blendpd blendps blendvpd blendvps dppd dpps extractps insertps movntdqa mpsadbw packusdw pblendvb pblendw pcmpeqq pextrb pextrd pextrq phminposuw pinsrb pinsrd pinsrq pmaxsb pmaxsd pmaxud pmaxuw pminsb pminsd pminud pminuw pmovsxbw pmovsxbd pmovsxbq pmovsxwd pmovsxwq pmovsxdq pmovzxbw pmovzxbd pmovzxbq pmovzxwd pmovzxwq pmovzxdq pmuldq pmulld ptest roundpd roundps roundsd roundss crc32 pcmpestri pcmpestrm pcmpistri pcmpistrm pcmpgtq popcnt getsec pfrcpv pfrsqrtv movbe aesenc aesenclast aesdec aesdeclast aesimc aeskeygenassist vaesenc vaesenclast vaesdec vaesdeclast vaesimc vaeskeygenassist vaddpd vaddps vaddsd vaddss vaddsubpd vaddsubps vandpd vandps vandnpd vandnps vblendpd vblendps vblendvpd vblendvps vbroadcastss vbroadcastsd vbroadcastf128 vcmpeq_ospd vcmpeqpd vcmplt_ospd vcmpltpd vcmple_ospd vcmplepd vcmpunord_qpd vcmpunordpd vcmpneq_uqpd vcmpneqpd vcmpnlt_uspd vcmpnltpd vcmpnle_uspd vcmpnlepd vcmpord_qpd vcmpordpd vcmpeq_uqpd vcmpnge_uspd vcmpngepd vcmpngt_uspd vcmpngtpd vcmpfalse_oqpd vcmpfalsepd vcmpneq_oqpd vcmpge_ospd vcmpgepd vcmpgt_ospd vcmpgtpd vcmptrue_uqpd vcmptruepd vcmplt_oqpd vcmple_oqpd vcmpunord_spd vcmpneq_uspd vcmpnlt_uqpd vcmpnle_uqpd vcmpord_spd vcmpeq_uspd vcmpnge_uqpd vcmpngt_uqpd vcmpfalse_ospd vcmpneq_ospd vcmpge_oqpd vcmpgt_oqpd vcmptrue_uspd vcmppd vcmpeq_osps vcmpeqps vcmplt_osps vcmpltps vcmple_osps vcmpleps vcmpunord_qps vcmpunordps vcmpneq_uqps vcmpneqps vcmpnlt_usps vcmpnltps vcmpnle_usps vcmpnleps vcmpord_qps vcmpordps vcmpeq_uqps vcmpnge_usps vcmpngeps vcmpngt_usps vcmpngtps vcmpfalse_oqps vcmpfalseps vcmpneq_oqps vcmpge_osps vcmpgeps vcmpgt_osps vcmpgtps vcmptrue_uqps vcmptrueps vcmplt_oqps vcmple_oqps vcmpunord_sps vcmpneq_usps vcmpnlt_uqps vcmpnle_uqps vcmpord_sps vcmpeq_usps vcmpnge_uqps vcmpngt_uqps vcmpfalse_osps vcmpneq_osps vcmpge_oqps vcmpgt_oqps vcmptrue_usps vcmpps vcmpeq_ossd vcmpeqsd vcmplt_ossd vcmpltsd vcmple_ossd vcmplesd vcmpunord_qsd vcmpunordsd vcmpneq_uqsd vcmpneqsd vcmpnlt_ussd vcmpnltsd vcmpnle_ussd vcmpnlesd vcmpord_qsd vcmpordsd vcmpeq_uqsd vcmpnge_ussd vcmpngesd vcmpngt_ussd vcmpngtsd vcmpfalse_oqsd vcmpfalsesd vcmpneq_oqsd vcmpge_ossd vcmpgesd vcmpgt_ossd vcmpgtsd vcmptrue_uqsd vcmptruesd vcmplt_oqsd vcmple_oqsd vcmpunord_ssd vcmpneq_ussd vcmpnlt_uqsd vcmpnle_uqsd vcmpord_ssd vcmpeq_ussd vcmpnge_uqsd vcmpngt_uqsd vcmpfalse_ossd vcmpneq_ossd vcmpge_oqsd vcmpgt_oqsd vcmptrue_ussd vcmpsd vcmpeq_osss vcmpeqss vcmplt_osss vcmpltss vcmple_osss vcmpless vcmpunord_qss vcmpunordss vcmpneq_uqss vcmpneqss vcmpnlt_usss vcmpnltss vcmpnle_usss vcmpnless vcmpord_qss vcmpordss vcmpeq_uqss vcmpnge_usss vcmpngess vcmpngt_usss vcmpngtss vcmpfalse_oqss vcmpfalsess vcmpneq_oqss vcmpge_osss vcmpgess vcmpgt_osss vcmpgtss vcmptrue_uqss vcmptruess vcmplt_oqss vcmple_oqss vcmpunord_sss vcmpneq_usss vcmpnlt_uqss vcmpnle_uqss vcmpord_sss vcmpeq_usss vcmpnge_uqss vcmpngt_uqss vcmpfalse_osss vcmpneq_osss vcmpge_oqss vcmpgt_oqss vcmptrue_usss vcmpss vcomisd vcomiss vcvtdq2pd vcvtdq2ps vcvtpd2dq vcvtpd2ps vcvtps2dq vcvtps2pd vcvtsd2si vcvtsd2ss vcvtsi2sd vcvtsi2ss vcvtss2sd vcvtss2si vcvttpd2dq vcvttps2dq vcvttsd2si vcvttss2si vdivpd vdivps vdivsd vdivss vdppd vdpps vextractf128 vextractps vhaddpd vhaddps vhsubpd vhsubps vinsertf128 vinsertps vlddqu vldqqu vldmxcsr vmaskmovdqu vmaskmovps vmaskmovpd vmaxpd vmaxps vmaxsd vmaxss vminpd vminps vminsd vminss vmovapd vmovaps vmovd vmovq vmovddup vmovdqa vmovqqa vmovdqu vmovqqu vmovhlps vmovhpd vmovhps vmovlhps vmovlpd vmovlps vmovmskpd vmovmskps vmovntdq vmovntqq vmovntdqa vmovntpd vmovntps vmovsd vmovshdup vmovsldup vmovss vmovupd vmovups vmpsadbw vmulpd vmulps vmulsd vmulss vorpd vorps vpabsb vpabsw vpabsd vpacksswb vpackssdw vpackuswb vpackusdw vpaddb vpaddw vpaddd vpaddq vpaddsb vpaddsw vpaddusb vpaddusw vpalignr vpand vpandn vpavgb vpavgw vpblendvb vpblendw vpcmpestri vpcmpestrm vpcmpistri vpcmpistrm vpcmpeqb vpcmpeqw vpcmpeqd vpcmpeqq vpcmpgtb vpcmpgtw vpcmpgtd vpcmpgtq vpermilpd vpermilps vperm2f128 vpextrb vpextrw vpextrd vpextrq vphaddw vphaddd vphaddsw vphminposuw vphsubw vphsubd vphsubsw vpinsrb vpinsrw vpinsrd vpinsrq vpmaddwd vpmaddubsw vpmaxsb vpmaxsw vpmaxsd vpmaxub vpmaxuw vpmaxud vpminsb vpminsw vpminsd vpminub vpminuw vpminud vpmovmskb vpmovsxbw vpmovsxbd vpmovsxbq vpmovsxwd vpmovsxwq vpmovsxdq vpmovzxbw vpmovzxbd vpmovzxbq vpmovzxwd vpmovzxwq vpmovzxdq vpmulhuw vpmulhrsw vpmulhw vpmullw vpmulld vpmuludq vpmuldq vpor vpsadbw vpshufb vpshufd vpshufhw vpshuflw vpsignb vpsignw vpsignd vpslldq vpsrldq vpsllw vpslld vpsllq vpsraw vpsrad vpsrlw vpsrld vpsrlq vptest vpsubb vpsubw vpsubd vpsubq vpsubsb vpsubsw vpsubusb vpsubusw vpunpckhbw vpunpckhwd vpunpckhdq vpunpckhqdq vpunpcklbw vpunpcklwd vpunpckldq vpunpcklqdq vpxor vrcpps vrcpss vrsqrtps vrsqrtss vroundpd vroundps vroundsd vroundss vshufpd vshufps vsqrtpd vsqrtps vsqrtsd vsqrtss vstmxcsr vsubpd vsubps vsubsd vsubss vtestps vtestpd vucomisd vucomiss vunpckhpd vunpckhps vunpcklpd vunpcklps vxorpd vxorps vzeroall vzeroupper pclmullqlqdq pclmulhqlqdq pclmullqhqdq pclmulhqhqdq pclmulqdq vpclmullqlqdq vpclmulhqlqdq vpclmullqhqdq vpclmulhqhqdq vpclmulqdq vfmadd132ps vfmadd132pd vfmadd312ps vfmadd312pd vfmadd213ps vfmadd213pd vfmadd123ps vfmadd123pd vfmadd231ps vfmadd231pd vfmadd321ps vfmadd321pd vfmaddsub132ps vfmaddsub132pd vfmaddsub312ps vfmaddsub312pd vfmaddsub213ps vfmaddsub213pd vfmaddsub123ps vfmaddsub123pd vfmaddsub231ps vfmaddsub231pd vfmaddsub321ps vfmaddsub321pd vfmsub132ps vfmsub132pd vfmsub312ps vfmsub312pd vfmsub213ps vfmsub213pd vfmsub123ps vfmsub123pd vfmsub231ps vfmsub231pd vfmsub321ps vfmsub321pd vfmsubadd132ps vfmsubadd132pd vfmsubadd312ps vfmsubadd312pd vfmsubadd213ps vfmsubadd213pd vfmsubadd123ps vfmsubadd123pd vfmsubadd231ps vfmsubadd231pd vfmsubadd321ps vfmsubadd321pd vfnmadd132ps vfnmadd132pd vfnmadd312ps vfnmadd312pd vfnmadd213ps vfnmadd213pd vfnmadd123ps vfnmadd123pd vfnmadd231ps vfnmadd231pd vfnmadd321ps vfnmadd321pd vfnmsub132ps vfnmsub132pd vfnmsub312ps vfnmsub312pd vfnmsub213ps vfnmsub213pd vfnmsub123ps vfnmsub123pd vfnmsub231ps vfnmsub231pd vfnmsub321ps vfnmsub321pd vfmadd132ss vfmadd132sd vfmadd312ss vfmadd312sd vfmadd213ss vfmadd213sd vfmadd123ss vfmadd123sd vfmadd231ss vfmadd231sd vfmadd321ss vfmadd321sd vfmsub132ss vfmsub132sd vfmsub312ss vfmsub312sd vfmsub213ss vfmsub213sd vfmsub123ss vfmsub123sd vfmsub231ss vfmsub231sd vfmsub321ss vfmsub321sd vfnmadd132ss vfnmadd132sd vfnmadd312ss vfnmadd312sd vfnmadd213ss vfnmadd213sd vfnmadd123ss vfnmadd123sd vfnmadd231ss vfnmadd231sd vfnmadd321ss vfnmadd321sd vfnmsub132ss vfnmsub132sd vfnmsub312ss vfnmsub312sd vfnmsub213ss vfnmsub213sd vfnmsub123ss vfnmsub123sd vfnmsub231ss vfnmsub231sd vfnmsub321ss vfnmsub321sd rdfsbase rdgsbase rdrand wrfsbase wrgsbase vcvtph2ps vcvtps2ph adcx adox rdseed clac stac xstore xcryptecb xcryptcbc xcryptctr xcryptcfb xcryptofb montmul xsha1 xsha256 llwpcb slwpcb lwpval lwpins vfmaddpd vfmaddps vfmaddsd vfmaddss vfmaddsubpd vfmaddsubps vfmsubaddpd vfmsubaddps vfmsubpd vfmsubps vfmsubsd vfmsubss vfnmaddpd vfnmaddps vfnmaddsd vfnmaddss vfnmsubpd vfnmsubps vfnmsubsd vfnmsubss vfrczpd vfrczps vfrczsd vfrczss vpcmov vpcomb vpcomd vpcomq vpcomub vpcomud vpcomuq vpcomuw vpcomw vphaddbd vphaddbq vphaddbw vphadddq vphaddubd vphaddubq vphaddubw vphaddudq vphadduwd vphadduwq vphaddwd vphaddwq vphsubbw vphsubdq vphsubwd vpmacsdd vpmacsdqh vpmacsdql vpmacssdd vpmacssdqh vpmacssdql vpmacsswd vpmacssww vpmacswd vpmacsww vpmadcsswd vpmadcswd vpperm vprotb vprotd vprotq vprotw vpshab vpshad vpshaq vpshaw vpshlb vpshld vpshlq vpshlw vbroadcasti128 vpblendd vpbroadcastb vpbroadcastw vpbroadcastd vpbroadcastq vpermd vpermpd vpermps vpermq vperm2i128 vextracti128 vinserti128 vpmaskmovd vpmaskmovq vpsllvd vpsllvq vpsravd vpsrlvd vpsrlvq vgatherdpd vgatherqpd vgatherdps vgatherqps vpgatherdd vpgatherqd vpgatherdq vpgatherqq xabort xbegin xend xtest andn bextr blci blcic blsi blsic blcfill blsfill blcmsk blsmsk blsr blcs bzhi mulx pdep pext rorx sarx shlx shrx tzcnt tzmsk t1mskc valignd valignq vblendmpd vblendmps vbroadcastf32x4 vbroadcastf64x4 vbroadcasti32x4 vbroadcasti64x4 vcompresspd vcompressps vcvtpd2udq vcvtps2udq vcvtsd2usi vcvtss2usi vcvttpd2udq vcvttps2udq vcvttsd2usi vcvttss2usi vcvtudq2pd vcvtudq2ps vcvtusi2sd vcvtusi2ss vexpandpd vexpandps vextractf32x4 vextractf64x4 vextracti32x4 vextracti64x4 vfixupimmpd vfixupimmps vfixupimmsd vfixupimmss vgetexppd vgetexpps vgetexpsd vgetexpss vgetmantpd vgetmantps vgetmantsd vgetmantss vinsertf32x4 vinsertf64x4 vinserti32x4 vinserti64x4 vmovdqa32 vmovdqa64 vmovdqu32 vmovdqu64 vpabsq vpandd vpandnd vpandnq vpandq vpblendmd vpblendmq vpcmpltd vpcmpled vpcmpneqd vpcmpnltd vpcmpnled vpcmpd vpcmpltq vpcmpleq vpcmpneqq vpcmpnltq vpcmpnleq vpcmpq vpcmpequd vpcmpltud vpcmpleud vpcmpnequd vpcmpnltud vpcmpnleud vpcmpud vpcmpequq vpcmpltuq vpcmpleuq vpcmpnequq vpcmpnltuq vpcmpnleuq vpcmpuq vpcompressd vpcompressq vpermi2d vpermi2pd vpermi2ps vpermi2q vpermt2d vpermt2pd vpermt2ps vpermt2q vpexpandd vpexpandq vpmaxsq vpmaxuq vpminsq vpminuq vpmovdb vpmovdw vpmovqb vpmovqd vpmovqw vpmovsdb vpmovsdw vpmovsqb vpmovsqd vpmovsqw vpmovusdb vpmovusdw vpmovusqb vpmovusqd vpmovusqw vpord vporq vprold vprolq vprolvd vprolvq vprord vprorq vprorvd vprorvq vpscatterdd vpscatterdq vpscatterqd vpscatterqq vpsraq vpsravq vpternlogd vpternlogq vptestmd vptestmq vptestnmd vptestnmq vpxord vpxorq vrcp14pd vrcp14ps vrcp14sd vrcp14ss vrndscalepd vrndscaleps vrndscalesd vrndscaless vrsqrt14pd vrsqrt14ps vrsqrt14sd vrsqrt14ss vscalefpd vscalefps vscalefsd vscalefss vscatterdpd vscatterdps vscatterqpd vscatterqps vshuff32x4 vshuff64x2 vshufi32x4 vshufi64x2 kandnw kandw kmovw knotw kortestw korw kshiftlw kshiftrw kunpckbw kxnorw kxorw vpbroadcastmb2q vpbroadcastmw2d vpconflictd vpconflictq vplzcntd vplzcntq vexp2pd vexp2ps vrcp28pd vrcp28ps vrcp28sd vrcp28ss vrsqrt28pd vrsqrt28ps vrsqrt28sd vrsqrt28ss vgatherpf0dpd vgatherpf0dps vgatherpf0qpd vgatherpf0qps vgatherpf1dpd vgatherpf1dps vgatherpf1qpd vgatherpf1qps vscatterpf0dpd vscatterpf0dps vscatterpf0qpd vscatterpf0qps vscatterpf1dpd vscatterpf1dps vscatterpf1qpd vscatterpf1qps prefetchwt1 bndmk bndcl bndcu bndcn bndmov bndldx bndstx sha1rnds4 sha1nexte sha1msg1 sha1msg2 sha256rnds2 sha256msg1 sha256msg2 hint_nop0 hint_nop1 hint_nop2 hint_nop3 hint_nop4 hint_nop5 hint_nop6 hint_nop7 hint_nop8 hint_nop9 hint_nop10 hint_nop11 hint_nop12 hint_nop13 hint_nop14 hint_nop15 hint_nop16 hint_nop17 hint_nop18 hint_nop19 hint_nop20 hint_nop21 hint_nop22 hint_nop23 hint_nop24 hint_nop25 hint_nop26 hint_nop27 hint_nop28 hint_nop29 hint_nop30 hint_nop31 hint_nop32 hint_nop33 hint_nop34 hint_nop35 hint_nop36 hint_nop37 hint_nop38 hint_nop39 hint_nop40 hint_nop41 hint_nop42 hint_nop43 hint_nop44 hint_nop45 hint_nop46 hint_nop47 hint_nop48 hint_nop49 hint_nop50 hint_nop51 hint_nop52 hint_nop53 hint_nop54 hint_nop55 hint_nop56 hint_nop57 hint_nop58 hint_nop59 hint_nop60 hint_nop61 hint_nop62 hint_nop63",built_in:"ip eip rip al ah bl bh cl ch dl dh sil dil bpl spl r8b r9b r10b r11b r12b r13b r14b r15b ax bx cx dx si di bp sp r8w r9w r10w r11w r12w r13w r14w r15w eax ebx ecx edx esi edi ebp esp eip r8d r9d r10d r11d r12d r13d r14d r15d rax rbx rcx rdx rsi rdi rbp rsp r8 r9 r10 r11 r12 r13 r14 r15 cs ds es fs gs ss st st0 st1 st2 st3 st4 st5 st6 st7 mm0 mm1 mm2 mm3 mm4 mm5 mm6 mm7 xmm0 xmm1 xmm2 xmm3 xmm4 xmm5 xmm6 xmm7 xmm8 xmm9 xmm10 xmm11 xmm12 xmm13 xmm14 xmm15 xmm16 xmm17 xmm18 xmm19 xmm20 xmm21 xmm22 xmm23 xmm24 xmm25 xmm26 xmm27 xmm28 xmm29 xmm30 xmm31 ymm0 ymm1 ymm2 ymm3 ymm4 ymm5 ymm6 ymm7 ymm8 ymm9 ymm10 ymm11 ymm12 ymm13 ymm14 ymm15 ymm16 ymm17 ymm18 ymm19 ymm20 ymm21 ymm22 ymm23 ymm24 ymm25 ymm26 ymm27 ymm28 ymm29 ymm30 ymm31 zmm0 zmm1 zmm2 zmm3 zmm4 zmm5 zmm6 zmm7 zmm8 zmm9 zmm10 zmm11 zmm12 zmm13 zmm14 zmm15 zmm16 zmm17 zmm18 zmm19 zmm20 zmm21 zmm22 zmm23 zmm24 zmm25 zmm26 zmm27 zmm28 zmm29 zmm30 zmm31 k0 k1 k2 k3 k4 k5 k6 k7 bnd0 bnd1 bnd2 bnd3 cr0 cr1 cr2 cr3 cr4 cr8 dr0 dr1 dr2 dr3 dr8 tr3 tr4 tr5 tr6 tr7 r0 r1 r2 r3 r4 r5 r6 r7 r0b r1b r2b r3b r4b r5b r6b r7b r0w r1w r2w r3w r4w r5w r6w r7w r0d r1d r2d r3d r4d r5d r6d r7d r0h r1h r2h r3h r0l r1l r2l r3l r4l r5l r6l r7l r8l r9l r10l r11l r12l r13l r14l r15l db dw dd dq dt ddq do dy dz resb resw resd resq rest resdq reso resy resz incbin equ times byte word dword qword nosplit rel abs seg wrt strict near far a32 ptr",meta:"%define %xdefine %+ %undef %defstr %deftok %assign %strcat %strlen %substr %rotate %elif %else %endif %if %ifmacro %ifctx %ifidn %ifidni %ifid %ifnum %ifstr %iftoken %ifempty %ifenv %error %warning %fatal %rep %endrep %include %push %pop %repl %pathsearch %depend %use %arg %stacksize %local %line %comment %endcomment .nolist __FILE__ __LINE__ __SECT__ __BITS__ __OUTPUT_FORMAT__ __DATE__ __TIME__ __DATE_NUM__ __TIME_NUM__ __UTC_DATE__ __UTC_TIME__ __UTC_DATE_NUM__ __UTC_TIME_NUM__ __PASS__ struc endstruc istruc at iend align alignb sectalign daz nodaz up down zero default option assume public bits use16 use32 use64 default section segment absolute extern global common cpu float __utf16__ __utf16le__ __utf16be__ __utf32__ __utf32le__ __utf32be__ __float8__ __float16__ __float32__ __float64__ __float80m__ __float80e__ __float128l__ __float128h__ __Infinity__ __QNaN__ __SNaN__ Inf NaN QNaN SNaN float8 float16 float32 float64 float80m float80e float128l float128h __FLOAT_DAZ__ __FLOAT_ROUND__ __FLOAT__"},contains:[s.COMMENT(";","$",{relevance:0}),{className:"number",variants:[{begin:"\\b(?:([0-9][0-9_]*)?\\.[0-9_]*(?:[eE][+-]?[0-9_]+)?|(0[Xx])?[0-9][0-9_]*\\.?[0-9_]*(?:[pP](?:[+-]?[0-9_]+)?)?)\\b",relevance:0},{begin:"\\$[0-9][0-9A-Fa-f]*",relevance:0},{begin:"\\b(?:[0-9A-Fa-f][0-9A-Fa-f_]*[Hh]|[0-9][0-9_]*[DdTt]?|[0-7][0-7_]*[QqOo]|[0-1][0-1_]*[BbYy])\\b"},{begin:"\\b(?:0[Xx][0-9A-Fa-f_]+|0[DdTt][0-9_]+|0[QqOo][0-7_]+|0[BbYy][0-1_]+)\\b"}]},s.QUOTE_STRING_MODE,{className:"string",variants:[{begin:"'",end:"[^\\\\]'"},{begin:"`",end:"[^\\\\]`"}],relevance:0},{className:"symbol",variants:[{begin:"^\\s*[A-Za-z._?][A-Za-z0-9_$#@~.?]*(:|\\s+label)"},{begin:"^\\s*%%[A-Za-z0-9_$#@~.?]*:"}],relevance:0},{className:"subst",begin:"%[0-9]+",relevance:0},{className:"subst",begin:"%!S+",relevance:0},{className:"meta",begin:/^\s*\.[\w_-]+/}]}}}());hljs.registerLanguage("kotlin",function(){"use strict";return function(e){var n={keyword:"abstract as val var vararg get set class object open private protected public noinline crossinline dynamic final enum if else do while for when throw try catch finally import package is in fun override companion reified inline lateinit init interface annotation data sealed internal infix operator out by constructor super tailrec where const inner suspend typealias external expect actual trait volatile transient native default",built_in:"Byte Short Char Int Long Boolean Float Double Void Unit Nothing",literal:"true false null"},a={className:"symbol",begin:e.UNDERSCORE_IDENT_RE+"@"},i={className:"subst",begin:"\\${",end:"}",contains:[e.C_NUMBER_MODE]},s={className:"variable",begin:"\\$"+e.UNDERSCORE_IDENT_RE},t={className:"string",variants:[{begin:'"""',end:'"""(?=[^"])',contains:[s,i]},{begin:"'",end:"'",illegal:/\n/,contains:[e.BACKSLASH_ESCAPE]},{begin:'"',end:'"',illegal:/\n/,contains:[e.BACKSLASH_ESCAPE,s,i]}]};i.contains.push(t);var r={className:"meta",begin:"@(?:file|property|field|get|set|receiver|param|setparam|delegate)\\s*:(?:\\s*"+e.UNDERSCORE_IDENT_RE+")?"},l={className:"meta",begin:"@"+e.UNDERSCORE_IDENT_RE,contains:[{begin:/\(/,end:/\)/,contains:[e.inherit(t,{className:"meta-string"})]}]},c=e.COMMENT("/\\*","\\*/",{contains:[e.C_BLOCK_COMMENT_MODE]}),o={variants:[{className:"type",begin:e.UNDERSCORE_IDENT_RE},{begin:/\(/,end:/\)/,contains:[]}]},d=o;return d.variants[1].contains=[o],o.variants[1].contains=[d],{name:"Kotlin",aliases:["kt"],keywords:n,contains:[e.COMMENT("/\\*\\*","\\*/",{relevance:0,contains:[{className:"doctag",begin:"@[A-Za-z]+"}]}),e.C_LINE_COMMENT_MODE,c,{className:"keyword",begin:/\b(break|continue|return|this)\b/,starts:{contains:[{className:"symbol",begin:/@\w+/}]}},a,r,l,{className:"function",beginKeywords:"fun",end:"[(]|$",returnBegin:!0,excludeEnd:!0,keywords:n,illegal:/fun\s+(<.*>)?[^\s\(]+(\s+[^\s\(]+)\s*=/,relevance:5,contains:[{begin:e.UNDERSCORE_IDENT_RE+"\\s*\\(",returnBegin:!0,relevance:0,contains:[e.UNDERSCORE_TITLE_MODE]},{className:"type",begin://,keywords:"reified",relevance:0},{className:"params",begin:/\(/,end:/\)/,endsParent:!0,keywords:n,relevance:0,contains:[{begin:/:/,end:/[=,\/]/,endsWithParent:!0,contains:[o,e.C_LINE_COMMENT_MODE,c],relevance:0},e.C_LINE_COMMENT_MODE,c,r,l,t,e.C_NUMBER_MODE]},c]},{className:"class",beginKeywords:"class interface trait",end:/[:\{(]|$/,excludeEnd:!0,illegal:"extends implements",contains:[{beginKeywords:"public protected internal private constructor"},e.UNDERSCORE_TITLE_MODE,{className:"type",begin://,excludeBegin:!0,excludeEnd:!0,relevance:0},{className:"type",begin:/[,:]\s*/,end:/[<\(,]|$/,excludeBegin:!0,returnEnd:!0},r,l]},t,{className:"meta",begin:"^#!/usr/bin/env",end:"$",illegal:"\n"},{className:"number",begin:"\\b(0[bB]([01]+[01_]+[01]+|[01]+)|0[xX]([a-fA-F0-9]+[a-fA-F0-9_]+[a-fA-F0-9]+|[a-fA-F0-9]+)|(([\\d]+[\\d_]+[\\d]+|[\\d]+)(\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))?|\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))([eE][-+]?\\d+)?)[lLfF]?",relevance:0}]}}}());hljs.registerLanguage("armasm",function(){"use strict";return function(s){const e={variants:[s.COMMENT("^[ \\t]*(?=#)","$",{relevance:0,excludeBegin:!0}),s.COMMENT("[;@]","$",{relevance:0}),s.C_LINE_COMMENT_MODE,s.C_BLOCK_COMMENT_MODE]};return{name:"ARM Assembly",case_insensitive:!0,aliases:["arm"],keywords:{$pattern:"\\.?"+s.IDENT_RE,meta:".2byte .4byte .align .ascii .asciz .balign .byte .code .data .else .end .endif .endm .endr .equ .err .exitm .extern .global .hword .if .ifdef .ifndef .include .irp .long .macro .rept .req .section .set .skip .space .text .word .arm .thumb .code16 .code32 .force_thumb .thumb_func .ltorg ALIAS ALIGN ARM AREA ASSERT ATTR CN CODE CODE16 CODE32 COMMON CP DATA DCB DCD DCDU DCDO DCFD DCFDU DCI DCQ DCQU DCW DCWU DN ELIF ELSE END ENDFUNC ENDIF ENDP ENTRY EQU EXPORT EXPORTAS EXTERN FIELD FILL FUNCTION GBLA GBLL GBLS GET GLOBAL IF IMPORT INCBIN INCLUDE INFO KEEP LCLA LCLL LCLS LTORG MACRO MAP MEND MEXIT NOFP OPT PRESERVE8 PROC QN READONLY RELOC REQUIRE REQUIRE8 RLIST FN ROUT SETA SETL SETS SN SPACE SUBT THUMB THUMBX TTL WHILE WEND ",built_in:"r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 pc lr sp ip sl sb fp a1 a2 a3 a4 v1 v2 v3 v4 v5 v6 v7 v8 f0 f1 f2 f3 f4 f5 f6 f7 p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 cpsr_c cpsr_x cpsr_s cpsr_f cpsr_cx cpsr_cxs cpsr_xs cpsr_xsf cpsr_sf cpsr_cxsf spsr_c spsr_x spsr_s spsr_f spsr_cx spsr_cxs spsr_xs spsr_xsf spsr_sf spsr_cxsf s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31 d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23 d24 d25 d26 d27 d28 d29 d30 d31 {PC} {VAR} {TRUE} {FALSE} {OPT} {CONFIG} {ENDIAN} {CODESIZE} {CPU} {FPU} {ARCHITECTURE} {PCSTOREOFFSET} {ARMASM_VERSION} {INTER} {ROPI} {RWPI} {SWST} {NOSWST} . @"},contains:[{className:"keyword",begin:"\\b(adc|(qd?|sh?|u[qh]?)?add(8|16)?|usada?8|(q|sh?|u[qh]?)?(as|sa)x|and|adrl?|sbc|rs[bc]|asr|b[lx]?|blx|bxj|cbn?z|tb[bh]|bic|bfc|bfi|[su]bfx|bkpt|cdp2?|clz|clrex|cmp|cmn|cpsi[ed]|cps|setend|dbg|dmb|dsb|eor|isb|it[te]{0,3}|lsl|lsr|ror|rrx|ldm(([id][ab])|f[ds])?|ldr((s|ex)?[bhd])?|movt?|mvn|mra|mar|mul|[us]mull|smul[bwt][bt]|smu[as]d|smmul|smmla|mla|umlaal|smlal?([wbt][bt]|d)|mls|smlsl?[ds]|smc|svc|sev|mia([bt]{2}|ph)?|mrr?c2?|mcrr2?|mrs|msr|orr|orn|pkh(tb|bt)|rbit|rev(16|sh)?|sel|[su]sat(16)?|nop|pop|push|rfe([id][ab])?|stm([id][ab])?|str(ex)?[bhd]?|(qd?)?sub|(sh?|q|u[qh]?)?sub(8|16)|[su]xt(a?h|a?b(16)?)|srs([id][ab])?|swpb?|swi|smi|tst|teq|wfe|wfi|yield)(eq|ne|cs|cc|mi|pl|vs|vc|hi|ls|ge|lt|gt|le|al|hs|lo)?[sptrx]?(?=\\s)"},e,s.QUOTE_STRING_MODE,{className:"string",begin:"'",end:"[^\\\\]'",relevance:0},{className:"title",begin:"\\|",end:"\\|",illegal:"\\n",relevance:0},{className:"number",variants:[{begin:"[#$=]?0x[0-9a-f]+"},{begin:"[#$=]?0b[01]+"},{begin:"[#$=]\\d+"},{begin:"\\b\\d+"}],relevance:0},{className:"symbol",variants:[{begin:"^[ \\t]*[a-z_\\.\\$][a-z0-9_\\.\\$]+:"},{begin:"^[a-z_\\.\\$][a-z0-9_\\.\\$]+"},{begin:"[=#]\\w+"}],relevance:0}]}}}());hljs.registerLanguage("go",function(){"use strict";return function(e){var n={keyword:"break default func interface select case map struct chan else goto package switch const fallthrough if range type continue for import return var go defer bool byte complex64 complex128 float32 float64 int8 int16 int32 int64 string uint8 uint16 uint32 uint64 int uint uintptr rune",literal:"true false iota nil",built_in:"append cap close complex copy imag len make new panic print println real recover delete"};return{name:"Go",aliases:["golang"],keywords:n,illegal:">>|\.\.\.) /},i={className:"subst",begin:/\{/,end:/\}/,keywords:n,illegal:/#/},s={begin:/\{\{/,relevance:0},r={className:"string",contains:[e.BACKSLASH_ESCAPE],variants:[{begin:/(u|b)?r?'''/,end:/'''/,contains:[e.BACKSLASH_ESCAPE,a],relevance:10},{begin:/(u|b)?r?"""/,end:/"""/,contains:[e.BACKSLASH_ESCAPE,a],relevance:10},{begin:/(fr|rf|f)'''/,end:/'''/,contains:[e.BACKSLASH_ESCAPE,a,s,i]},{begin:/(fr|rf|f)"""/,end:/"""/,contains:[e.BACKSLASH_ESCAPE,a,s,i]},{begin:/(u|r|ur)'/,end:/'/,relevance:10},{begin:/(u|r|ur)"/,end:/"/,relevance:10},{begin:/(b|br)'/,end:/'/},{begin:/(b|br)"/,end:/"/},{begin:/(fr|rf|f)'/,end:/'/,contains:[e.BACKSLASH_ESCAPE,s,i]},{begin:/(fr|rf|f)"/,end:/"/,contains:[e.BACKSLASH_ESCAPE,s,i]},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]},l={className:"number",relevance:0,variants:[{begin:e.BINARY_NUMBER_RE+"[lLjJ]?"},{begin:"\\b(0o[0-7]+)[lLjJ]?"},{begin:e.C_NUMBER_RE+"[lLjJ]?"}]},t={className:"params",variants:[{begin:/\(\s*\)/,skip:!0,className:null},{begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,contains:["self",a,l,r,e.HASH_COMMENT_MODE]}]};return i.contains=[r,l,a],{name:"Python",aliases:["py","gyp","ipython"],keywords:n,illegal:/(<\/|->|\?)|=>/,contains:[a,l,{beginKeywords:"if",relevance:0},r,e.HASH_COMMENT_MODE,{variants:[{className:"function",beginKeywords:"def"},{className:"class",beginKeywords:"class"}],end:/:/,illegal:/[${=;\n,]/,contains:[e.UNDERSCORE_TITLE_MODE,t,{begin:/->/,endsWithParent:!0,keywords:"None"}]},{className:"meta",begin:/^[\t ]*@/,end:/$/},{begin:/\b(print|exec)\(/}]}}}());hljs.registerLanguage("shell",function(){"use strict";return function(s){return{name:"Shell Session",aliases:["console"],contains:[{className:"meta",begin:"^\\s{0,3}[/\\w\\d\\[\\]()@-]*[>%$#]",starts:{end:"$",subLanguage:"bash"}}]}}}());hljs.registerLanguage("scala",function(){"use strict";return function(e){var n={className:"subst",variants:[{begin:"\\$[A-Za-z0-9_]+"},{begin:"\\${",end:"}"}]},a={className:"string",variants:[{begin:'"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]},{begin:'"""',end:'"""',relevance:10},{begin:'[a-z]+"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE,n]},{className:"string",begin:'[a-z]+"""',end:'"""',contains:[n],relevance:10}]},s={className:"type",begin:"\\b[A-Z][A-Za-z0-9_]*",relevance:0},t={className:"title",begin:/[^0-9\n\t "'(),.`{}\[\]:;][^\n\t "'(),.`{}\[\]:;]+|[^0-9\n\t "'(),.`{}\[\]:;=]/,relevance:0},i={className:"class",beginKeywords:"class object trait type",end:/[:={\[\n;]/,excludeEnd:!0,contains:[{beginKeywords:"extends with",relevance:10},{begin:/\[/,end:/\]/,excludeBegin:!0,excludeEnd:!0,relevance:0,contains:[s]},{className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,relevance:0,contains:[s]},t]},l={className:"function",beginKeywords:"def",end:/[:={\[(\n;]/,excludeEnd:!0,contains:[t]};return{name:"Scala",keywords:{literal:"true false null",keyword:"type yield lazy override def with val var sealed abstract private trait object if forSome for while throw finally protected extends import final return else break new catch super class case package default try this match continue throws implicit"},contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,a,{className:"symbol",begin:"'\\w[\\w\\d_]*(?!')"},s,l,i,e.C_NUMBER_MODE,{className:"meta",begin:"@[A-Za-z]+"}]}}}());hljs.registerLanguage("julia",function(){"use strict";return function(e){var r="[A-Za-z_\\u00A1-\\uFFFF][A-Za-z_0-9\\u00A1-\\uFFFF]*",t={$pattern:r,keyword:"in isa where baremodule begin break catch ccall const continue do else elseif end export false finally for function global if import importall let local macro module quote return true try using while type immutable abstract bitstype typealias ",literal:"true false ARGS C_NULL DevNull ENDIAN_BOM ENV I Inf Inf16 Inf32 Inf64 InsertionSort JULIA_HOME LOAD_PATH MergeSort NaN NaN16 NaN32 NaN64 PROGRAM_FILE QuickSort RoundDown RoundFromZero RoundNearest RoundNearestTiesAway RoundNearestTiesUp RoundToZero RoundUp STDERR STDIN STDOUT VERSION catalan e|0 eu|0 eulergamma golden im nothing pi γ π φ ",built_in:"ANY AbstractArray AbstractChannel AbstractFloat AbstractMatrix AbstractRNG AbstractSerializer AbstractSet AbstractSparseArray AbstractSparseMatrix AbstractSparseVector AbstractString AbstractUnitRange AbstractVecOrMat AbstractVector Any ArgumentError Array AssertionError Associative Base64DecodePipe Base64EncodePipe Bidiagonal BigFloat BigInt BitArray BitMatrix BitVector Bool BoundsError BufferStream CachingPool CapturedException CartesianIndex CartesianRange Cchar Cdouble Cfloat Channel Char Cint Cintmax_t Clong Clonglong ClusterManager Cmd CodeInfo Colon Complex Complex128 Complex32 Complex64 CompositeException Condition ConjArray ConjMatrix ConjVector Cptrdiff_t Cshort Csize_t Cssize_t Cstring Cuchar Cuint Cuintmax_t Culong Culonglong Cushort Cwchar_t Cwstring DataType Date DateFormat DateTime DenseArray DenseMatrix DenseVecOrMat DenseVector Diagonal Dict DimensionMismatch Dims DirectIndexString Display DivideError DomainError EOFError EachLine Enum Enumerate ErrorException Exception ExponentialBackOff Expr Factorization FileMonitor Float16 Float32 Float64 Function Future GlobalRef GotoNode HTML Hermitian IO IOBuffer IOContext IOStream IPAddr IPv4 IPv6 IndexCartesian IndexLinear IndexStyle InexactError InitError Int Int128 Int16 Int32 Int64 Int8 IntSet Integer InterruptException InvalidStateException Irrational KeyError LabelNode LinSpace LineNumberNode LoadError LowerTriangular MIME Matrix MersenneTwister Method MethodError MethodTable Module NTuple NewvarNode NullException Nullable Number ObjectIdDict OrdinalRange OutOfMemoryError OverflowError Pair ParseError PartialQuickSort PermutedDimsArray Pipe PollingFileWatcher ProcessExitedException Ptr QuoteNode RandomDevice Range RangeIndex Rational RawFD ReadOnlyMemoryError Real ReentrantLock Ref Regex RegexMatch RemoteChannel RemoteException RevString RoundingMode RowVector SSAValue SegmentationFault SerializationState Set SharedArray SharedMatrix SharedVector Signed SimpleVector Slot SlotNumber SparseMatrixCSC SparseVector StackFrame StackOverflowError StackTrace StepRange StepRangeLen StridedArray StridedMatrix StridedVecOrMat StridedVector String SubArray SubString SymTridiagonal Symbol Symmetric SystemError TCPSocket Task Text TextDisplay Timer Tridiagonal Tuple Type TypeError TypeMapEntry TypeMapLevel TypeName TypeVar TypedSlot UDPSocket UInt UInt128 UInt16 UInt32 UInt64 UInt8 UndefRefError UndefVarError UnicodeError UniformScaling Union UnionAll UnitRange Unsigned UpperTriangular Val Vararg VecElement VecOrMat Vector VersionNumber Void WeakKeyDict WeakRef WorkerConfig WorkerPool "},a={keywords:t,illegal:/<\//},n={className:"subst",begin:/\$\(/,end:/\)/,keywords:t},o={className:"variable",begin:"\\$"+r},i={className:"string",contains:[e.BACKSLASH_ESCAPE,n,o],variants:[{begin:/\w*"""/,end:/"""\w*/,relevance:10},{begin:/\w*"/,end:/"\w*/}]},l={className:"string",contains:[e.BACKSLASH_ESCAPE,n,o],begin:"`",end:"`"},s={className:"meta",begin:"@"+r};return a.name="Julia",a.contains=[{className:"number",begin:/(\b0x[\d_]*(\.[\d_]*)?|0x\.\d[\d_]*)p[-+]?\d+|\b0[box][a-fA-F0-9][a-fA-F0-9_]*|(\b\d[\d_]*(\.[\d_]*)?|\.\d[\d_]*)([eEfF][-+]?\d+)?/,relevance:0},{className:"string",begin:/'(.|\\[xXuU][a-zA-Z0-9]+)'/},i,l,s,{className:"comment",variants:[{begin:"#=",end:"=#",relevance:10},{begin:"#",end:"$"}]},e.HASH_COMMENT_MODE,{className:"keyword",begin:"\\b(((abstract|primitive)\\s+)type|(mutable\\s+)?struct)\\b"},{begin:/<:/}],n.contains=a.contains,a}}());hljs.registerLanguage("php-template",function(){"use strict";return function(n){return{name:"PHP template",subLanguage:"xml",contains:[{begin:/<\?(php|=)?/,end:/\?>/,subLanguage:"php",contains:[{begin:"/\\*",end:"\\*/",skip:!0},{begin:'b"',end:'"',skip:!0},{begin:"b'",end:"'",skip:!0},n.inherit(n.APOS_STRING_MODE,{illegal:null,className:null,contains:null,skip:!0}),n.inherit(n.QUOTE_STRING_MODE,{illegal:null,className:null,contains:null,skip:!0})]}]}}}());hljs.registerLanguage("scss",function(){"use strict";return function(e){var t={className:"variable",begin:"(\\$[a-zA-Z-][a-zA-Z0-9_-]*)\\b"},i={className:"number",begin:"#[0-9A-Fa-f]+"};return e.CSS_NUMBER_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,e.C_BLOCK_COMMENT_MODE,{name:"SCSS",case_insensitive:!0,illegal:"[=/|']",contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,{className:"selector-id",begin:"\\#[A-Za-z0-9_-]+",relevance:0},{className:"selector-class",begin:"\\.[A-Za-z0-9_-]+",relevance:0},{className:"selector-attr",begin:"\\[",end:"\\]",illegal:"$"},{className:"selector-tag",begin:"\\b(a|abbr|acronym|address|area|article|aside|audio|b|base|big|blockquote|body|br|button|canvas|caption|cite|code|col|colgroup|command|datalist|dd|del|details|dfn|div|dl|dt|em|embed|fieldset|figcaption|figure|footer|form|frame|frameset|(h[1-6])|head|header|hgroup|hr|html|i|iframe|img|input|ins|kbd|keygen|label|legend|li|link|map|mark|meta|meter|nav|noframes|noscript|object|ol|optgroup|option|output|p|param|pre|progress|q|rp|rt|ruby|samp|script|section|select|small|span|strike|strong|style|sub|sup|table|tbody|td|textarea|tfoot|th|thead|time|title|tr|tt|ul|var|video)\\b",relevance:0},{className:"selector-pseudo",begin:":(visited|valid|root|right|required|read-write|read-only|out-range|optional|only-of-type|only-child|nth-of-type|nth-last-of-type|nth-last-child|nth-child|not|link|left|last-of-type|last-child|lang|invalid|indeterminate|in-range|hover|focus|first-of-type|first-line|first-letter|first-child|first|enabled|empty|disabled|default|checked|before|after|active)"},{className:"selector-pseudo",begin:"::(after|before|choices|first-letter|first-line|repeat-index|repeat-item|selection|value)"},t,{className:"attribute",begin:"\\b(src|z-index|word-wrap|word-spacing|word-break|width|widows|white-space|visibility|vertical-align|unicode-bidi|transition-timing-function|transition-property|transition-duration|transition-delay|transition|transform-style|transform-origin|transform|top|text-underline-position|text-transform|text-shadow|text-rendering|text-overflow|text-indent|text-decoration-style|text-decoration-line|text-decoration-color|text-decoration|text-align-last|text-align|tab-size|table-layout|right|resize|quotes|position|pointer-events|perspective-origin|perspective|page-break-inside|page-break-before|page-break-after|padding-top|padding-right|padding-left|padding-bottom|padding|overflow-y|overflow-x|overflow-wrap|overflow|outline-width|outline-style|outline-offset|outline-color|outline|orphans|order|opacity|object-position|object-fit|normal|none|nav-up|nav-right|nav-left|nav-index|nav-down|min-width|min-height|max-width|max-height|mask|marks|margin-top|margin-right|margin-left|margin-bottom|margin|list-style-type|list-style-position|list-style-image|list-style|line-height|letter-spacing|left|justify-content|initial|inherit|ime-mode|image-orientation|image-resolution|image-rendering|icon|hyphens|height|font-weight|font-variant-ligatures|font-variant|font-style|font-stretch|font-size-adjust|font-size|font-language-override|font-kerning|font-feature-settings|font-family|font|float|flex-wrap|flex-shrink|flex-grow|flex-flow|flex-direction|flex-basis|flex|filter|empty-cells|display|direction|cursor|counter-reset|counter-increment|content|column-width|column-span|column-rule-width|column-rule-style|column-rule-color|column-rule|column-gap|column-fill|column-count|columns|color|clip-path|clip|clear|caption-side|break-inside|break-before|break-after|box-sizing|box-shadow|box-decoration-break|bottom|border-width|border-top-width|border-top-style|border-top-right-radius|border-top-left-radius|border-top-color|border-top|border-style|border-spacing|border-right-width|border-right-style|border-right-color|border-right|border-radius|border-left-width|border-left-style|border-left-color|border-left|border-image-width|border-image-source|border-image-slice|border-image-repeat|border-image-outset|border-image|border-color|border-collapse|border-bottom-width|border-bottom-style|border-bottom-right-radius|border-bottom-left-radius|border-bottom-color|border-bottom|border|background-size|background-repeat|background-position|background-origin|background-image|background-color|background-clip|background-attachment|background-blend-mode|background|backface-visibility|auto|animation-timing-function|animation-play-state|animation-name|animation-iteration-count|animation-fill-mode|animation-duration|animation-direction|animation-delay|animation|align-self|align-items|align-content)\\b",illegal:"[^\\s]"},{begin:"\\b(whitespace|wait|w-resize|visible|vertical-text|vertical-ideographic|uppercase|upper-roman|upper-alpha|underline|transparent|top|thin|thick|text|text-top|text-bottom|tb-rl|table-header-group|table-footer-group|sw-resize|super|strict|static|square|solid|small-caps|separate|se-resize|scroll|s-resize|rtl|row-resize|ridge|right|repeat|repeat-y|repeat-x|relative|progress|pointer|overline|outside|outset|oblique|nowrap|not-allowed|normal|none|nw-resize|no-repeat|no-drop|newspaper|ne-resize|n-resize|move|middle|medium|ltr|lr-tb|lowercase|lower-roman|lower-alpha|loose|list-item|line|line-through|line-edge|lighter|left|keep-all|justify|italic|inter-word|inter-ideograph|inside|inset|inline|inline-block|inherit|inactive|ideograph-space|ideograph-parenthesis|ideograph-numeric|ideograph-alpha|horizontal|hidden|help|hand|groove|fixed|ellipsis|e-resize|double|dotted|distribute|distribute-space|distribute-letter|distribute-all-lines|disc|disabled|default|decimal|dashed|crosshair|collapse|col-resize|circle|char|center|capitalize|break-word|break-all|bottom|both|bolder|bold|block|bidi-override|below|baseline|auto|always|all-scroll|absolute|table|table-cell)\\b"},{begin:":",end:";",contains:[t,i,e.CSS_NUMBER_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,{className:"meta",begin:"!important"}]},{begin:"@(page|font-face)",lexemes:"@[a-z-]+",keywords:"@page @font-face"},{begin:"@",end:"[{;]",returnBegin:!0,keywords:"and or not only",contains:[{begin:"@[a-z-]+",className:"keyword"},t,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,i,e.CSS_NUMBER_MODE]}]}}}());hljs.registerLanguage("r",function(){"use strict";return function(e){var n="([a-zA-Z]|\\.[a-zA-Z.])[a-zA-Z0-9._]*";return{name:"R",contains:[e.HASH_COMMENT_MODE,{begin:n,keywords:{$pattern:n,keyword:"function if in break next repeat else for return switch while try tryCatch stop warning require library attach detach source setMethod setGeneric setGroupGeneric setClass ...",literal:"NULL NA TRUE FALSE T F Inf NaN NA_integer_|10 NA_real_|10 NA_character_|10 NA_complex_|10"},relevance:0},{className:"number",begin:"0[xX][0-9a-fA-F]+[Li]?\\b",relevance:0},{className:"number",begin:"\\d+(?:[eE][+\\-]?\\d*)?L\\b",relevance:0},{className:"number",begin:"\\d+\\.(?!\\d)(?:i\\b)?",relevance:0},{className:"number",begin:"\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",relevance:0},{className:"number",begin:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",relevance:0},{begin:"`",end:"`",relevance:0},{className:"string",contains:[e.BACKSLASH_ESCAPE],variants:[{begin:'"',end:'"'},{begin:"'",end:"'"}]}]}}}());hljs.registerLanguage("sql",function(){"use strict";return function(e){var t=e.COMMENT("--","$");return{name:"SQL",case_insensitive:!0,illegal:/[<>{}*]/,contains:[{beginKeywords:"begin end start commit rollback savepoint lock alter create drop rename call delete do handler insert load replace select truncate update set show pragma grant merge describe use explain help declare prepare execute deallocate release unlock purge reset change stop analyze cache flush optimize repair kill install uninstall checksum restore check backup revoke comment values with",end:/;/,endsWithParent:!0,keywords:{$pattern:/[\w\.]+/,keyword:"as abort abs absolute acc acce accep accept access accessed accessible account acos action activate add addtime admin administer advanced advise aes_decrypt aes_encrypt after agent aggregate ali alia alias all allocate allow alter always analyze ancillary and anti any anydata anydataset anyschema anytype apply archive archived archivelog are as asc ascii asin assembly assertion associate asynchronous at atan atn2 attr attri attrib attribu attribut attribute attributes audit authenticated authentication authid authors auto autoallocate autodblink autoextend automatic availability avg backup badfile basicfile before begin beginning benchmark between bfile bfile_base big bigfile bin binary_double binary_float binlog bit_and bit_count bit_length bit_or bit_xor bitmap blob_base block blocksize body both bound bucket buffer_cache buffer_pool build bulk by byte byteordermark bytes cache caching call calling cancel capacity cascade cascaded case cast catalog category ceil ceiling chain change changed char_base char_length character_length characters characterset charindex charset charsetform charsetid check checksum checksum_agg child choose chr chunk class cleanup clear client clob clob_base clone close cluster_id cluster_probability cluster_set clustering coalesce coercibility col collate collation collect colu colum column column_value columns columns_updated comment commit compact compatibility compiled complete composite_limit compound compress compute concat concat_ws concurrent confirm conn connec connect connect_by_iscycle connect_by_isleaf connect_by_root connect_time connection consider consistent constant constraint constraints constructor container content contents context contributors controlfile conv convert convert_tz corr corr_k corr_s corresponding corruption cos cost count count_big counted covar_pop covar_samp cpu_per_call cpu_per_session crc32 create creation critical cross cube cume_dist curdate current current_date current_time current_timestamp current_user cursor curtime customdatum cycle data database databases datafile datafiles datalength date_add date_cache date_format date_sub dateadd datediff datefromparts datename datepart datetime2fromparts day day_to_second dayname dayofmonth dayofweek dayofyear days db_role_change dbtimezone ddl deallocate declare decode decompose decrement decrypt deduplicate def defa defau defaul default defaults deferred defi defin define degrees delayed delegate delete delete_all delimited demand dense_rank depth dequeue des_decrypt des_encrypt des_key_file desc descr descri describ describe descriptor deterministic diagnostics difference dimension direct_load directory disable disable_all disallow disassociate discardfile disconnect diskgroup distinct distinctrow distribute distributed div do document domain dotnet double downgrade drop dumpfile duplicate duration each edition editionable editions element ellipsis else elsif elt empty enable enable_all enclosed encode encoding encrypt end end-exec endian enforced engine engines enqueue enterprise entityescaping eomonth error errors escaped evalname evaluate event eventdata events except exception exceptions exchange exclude excluding execu execut execute exempt exists exit exp expire explain explode export export_set extended extent external external_1 external_2 externally extract failed failed_login_attempts failover failure far fast feature_set feature_value fetch field fields file file_name_convert filesystem_like_logging final finish first first_value fixed flash_cache flashback floor flush following follows for forall force foreign form forma format found found_rows freelist freelists freepools fresh from from_base64 from_days ftp full function general generated get get_format get_lock getdate getutcdate global global_name globally go goto grant grants greatest group group_concat group_id grouping grouping_id groups gtid_subtract guarantee guard handler hash hashkeys having hea head headi headin heading heap help hex hierarchy high high_priority hosts hour hours http id ident_current ident_incr ident_seed identified identity idle_time if ifnull ignore iif ilike ilm immediate import in include including increment index indexes indexing indextype indicator indices inet6_aton inet6_ntoa inet_aton inet_ntoa infile initial initialized initially initrans inmemory inner innodb input insert install instance instantiable instr interface interleaved intersect into invalidate invisible is is_free_lock is_ipv4 is_ipv4_compat is_not is_not_null is_used_lock isdate isnull isolation iterate java join json json_exists keep keep_duplicates key keys kill language large last last_day last_insert_id last_value lateral lax lcase lead leading least leaves left len lenght length less level levels library like like2 like4 likec limit lines link list listagg little ln load load_file lob lobs local localtime localtimestamp locate locator lock locked log log10 log2 logfile logfiles logging logical logical_reads_per_call logoff logon logs long loop low low_priority lower lpad lrtrim ltrim main make_set makedate maketime managed management manual map mapping mask master master_pos_wait match matched materialized max maxextents maximize maxinstances maxlen maxlogfiles maxloghistory maxlogmembers maxsize maxtrans md5 measures median medium member memcompress memory merge microsecond mid migration min minextents minimum mining minus minute minutes minvalue missing mod mode model modification modify module monitoring month months mount move movement multiset mutex name name_const names nan national native natural nav nchar nclob nested never new newline next nextval no no_write_to_binlog noarchivelog noaudit nobadfile nocheck nocompress nocopy nocycle nodelay nodiscardfile noentityescaping noguarantee nokeep nologfile nomapping nomaxvalue nominimize nominvalue nomonitoring none noneditionable nonschema noorder nopr nopro noprom nopromp noprompt norely noresetlogs noreverse normal norowdependencies noschemacheck noswitch not nothing notice notnull notrim novalidate now nowait nth_value nullif nulls num numb numbe nvarchar nvarchar2 object ocicoll ocidate ocidatetime ociduration ociinterval ociloblocator ocinumber ociref ocirefcursor ocirowid ocistring ocitype oct octet_length of off offline offset oid oidindex old on online only opaque open operations operator optimal optimize option optionally or oracle oracle_date oradata ord ordaudio orddicom orddoc order ordimage ordinality ordvideo organization orlany orlvary out outer outfile outline output over overflow overriding package pad parallel parallel_enable parameters parent parse partial partition partitions pascal passing password password_grace_time password_lock_time password_reuse_max password_reuse_time password_verify_function patch path patindex pctincrease pctthreshold pctused pctversion percent percent_rank percentile_cont percentile_disc performance period period_add period_diff permanent physical pi pipe pipelined pivot pluggable plugin policy position post_transaction pow power pragma prebuilt precedes preceding precision prediction prediction_cost prediction_details prediction_probability prediction_set prepare present preserve prior priority private private_sga privileges procedural procedure procedure_analyze processlist profiles project prompt protection public publishingservername purge quarter query quick quiesce quota quotename radians raise rand range rank raw read reads readsize rebuild record records recover recovery recursive recycle redo reduced ref reference referenced references referencing refresh regexp_like register regr_avgx regr_avgy regr_count regr_intercept regr_r2 regr_slope regr_sxx regr_sxy reject rekey relational relative relaylog release release_lock relies_on relocate rely rem remainder rename repair repeat replace replicate replication required reset resetlogs resize resource respect restore restricted result result_cache resumable resume retention return returning returns reuse reverse revoke right rlike role roles rollback rolling rollup round row row_count rowdependencies rowid rownum rows rtrim rules safe salt sample save savepoint sb1 sb2 sb4 scan schema schemacheck scn scope scroll sdo_georaster sdo_topo_geometry search sec_to_time second seconds section securefile security seed segment select self semi sequence sequential serializable server servererror session session_user sessions_per_user set sets settings sha sha1 sha2 share shared shared_pool short show shrink shutdown si_averagecolor si_colorhistogram si_featurelist si_positionalcolor si_stillimage si_texture siblings sid sign sin size size_t sizes skip slave sleep smalldatetimefromparts smallfile snapshot some soname sort soundex source space sparse spfile split sql sql_big_result sql_buffer_result sql_cache sql_calc_found_rows sql_small_result sql_variant_property sqlcode sqldata sqlerror sqlname sqlstate sqrt square standalone standby start starting startup statement static statistics stats_binomial_test stats_crosstab stats_ks_test stats_mode stats_mw_test stats_one_way_anova stats_t_test_ stats_t_test_indep stats_t_test_one stats_t_test_paired stats_wsr_test status std stddev stddev_pop stddev_samp stdev stop storage store stored str str_to_date straight_join strcmp strict string struct stuff style subdate subpartition subpartitions substitutable substr substring subtime subtring_index subtype success sum suspend switch switchoffset switchover sync synchronous synonym sys sys_xmlagg sysasm sysaux sysdate sysdatetimeoffset sysdba sysoper system system_user sysutcdatetime table tables tablespace tablesample tan tdo template temporary terminated tertiary_weights test than then thread through tier ties time time_format time_zone timediff timefromparts timeout timestamp timestampadd timestampdiff timezone_abbr timezone_minute timezone_region to to_base64 to_date to_days to_seconds todatetimeoffset trace tracking transaction transactional translate translation treat trigger trigger_nestlevel triggers trim truncate try_cast try_convert try_parse type ub1 ub2 ub4 ucase unarchived unbounded uncompress under undo unhex unicode uniform uninstall union unique unix_timestamp unknown unlimited unlock unnest unpivot unrecoverable unsafe unsigned until untrusted unusable unused update updated upgrade upped upper upsert url urowid usable usage use use_stored_outlines user user_data user_resources users using utc_date utc_timestamp uuid uuid_short validate validate_password_strength validation valist value values var var_samp varcharc vari varia variab variabl variable variables variance varp varraw varrawc varray verify version versions view virtual visible void wait wallet warning warnings week weekday weekofyear wellformed when whene whenev wheneve whenever where while whitespace window with within without work wrapped xdb xml xmlagg xmlattributes xmlcast xmlcolattval xmlelement xmlexists xmlforest xmlindex xmlnamespaces xmlpi xmlquery xmlroot xmlschema xmlserialize xmltable xmltype xor year year_to_month years yearweek",literal:"true false null unknown",built_in:"array bigint binary bit blob bool boolean char character date dec decimal float int int8 integer interval number numeric real record serial serial8 smallint text time timestamp tinyint varchar varchar2 varying void"},contains:[{className:"string",begin:"'",end:"'",contains:[{begin:"''"}]},{className:"string",begin:'"',end:'"',contains:[{begin:'""'}]},{className:"string",begin:"`",end:"`"},e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE,t,e.HASH_COMMENT_MODE]},e.C_BLOCK_COMMENT_MODE,t,e.HASH_COMMENT_MODE]}}}());hljs.registerLanguage("c",function(){"use strict";return function(e){var n=e.getLanguage("c-like").rawDefinition();return n.name="C",n.aliases=["c","h"],n}}());hljs.registerLanguage("json",function(){"use strict";return function(n){var e={literal:"true false null"},i=[n.C_LINE_COMMENT_MODE,n.C_BLOCK_COMMENT_MODE],t=[n.QUOTE_STRING_MODE,n.C_NUMBER_MODE],a={end:",",endsWithParent:!0,excludeEnd:!0,contains:t,keywords:e},l={begin:"{",end:"}",contains:[{className:"attr",begin:/"/,end:/"/,contains:[n.BACKSLASH_ESCAPE],illegal:"\\n"},n.inherit(a,{begin:/:/})].concat(i),illegal:"\\S"},s={begin:"\\[",end:"\\]",contains:[n.inherit(a)],illegal:"\\S"};return t.push(l,s),i.forEach((function(n){t.push(n)})),{name:"JSON",contains:t,keywords:e,illegal:"\\S"}}}());hljs.registerLanguage("python-repl",function(){"use strict";return function(n){return{aliases:["pycon"],contains:[{className:"meta",starts:{end:/ |$/,starts:{end:"$",subLanguage:"python"}},variants:[{begin:/^>>>(?=[ ]|$)/},{begin:/^\.\.\.(?=[ ]|$)/}]}]}}}());hljs.registerLanguage("markdown",function(){"use strict";return function(n){const e={begin:"<",end:">",subLanguage:"xml",relevance:0},a={begin:"\\[.+?\\][\\(\\[].*?[\\)\\]]",returnBegin:!0,contains:[{className:"string",begin:"\\[",end:"\\]",excludeBegin:!0,returnEnd:!0,relevance:0},{className:"link",begin:"\\]\\(",end:"\\)",excludeBegin:!0,excludeEnd:!0},{className:"symbol",begin:"\\]\\[",end:"\\]",excludeBegin:!0,excludeEnd:!0}],relevance:10},i={className:"strong",contains:[],variants:[{begin:/_{2}/,end:/_{2}/},{begin:/\*{2}/,end:/\*{2}/}]},s={className:"emphasis",contains:[],variants:[{begin:/\*(?!\*)/,end:/\*/},{begin:/_(?!_)/,end:/_/,relevance:0}]};i.contains.push(s),s.contains.push(i);var c=[e,a];return i.contains=i.contains.concat(c),s.contains=s.contains.concat(c),{name:"Markdown",aliases:["md","mkdown","mkd"],contains:[{className:"section",variants:[{begin:"^#{1,6}",end:"$",contains:c=c.concat(i,s)},{begin:"(?=^.+?\\n[=-]{2,}$)",contains:[{begin:"^[=-]*$"},{begin:"^",end:"\\n",contains:c}]}]},e,{className:"bullet",begin:"^[ \t]*([*+-]|(\\d+\\.))(?=\\s+)",end:"\\s+",excludeEnd:!0},i,s,{className:"quote",begin:"^>\\s+",contains:c,end:"$"},{className:"code",variants:[{begin:"(`{3,})(.|\\n)*?\\1`*[ ]*"},{begin:"(~{3,})(.|\\n)*?\\1~*[ ]*"},{begin:"```",end:"```+[ ]*$"},{begin:"~~~",end:"~~~+[ ]*$"},{begin:"`.+?`"},{begin:"(?=^( {4}|\\t))",contains:[{begin:"^( {4}|\\t)",end:"(\\n)$"}],relevance:0}]},{begin:"^[-\\*]{3,}",end:"$"},a,{begin:/^\[[^\n]+\]:/,returnBegin:!0,contains:[{className:"symbol",begin:/\[/,end:/\]/,excludeBegin:!0,excludeEnd:!0},{className:"link",begin:/:\s*/,end:/$/,excludeBegin:!0}]}]}}}());hljs.registerLanguage("javascript",function(){"use strict";const e=["as","in","of","if","for","while","finally","var","new","function","do","return","void","else","break","catch","instanceof","with","throw","case","default","try","switch","continue","typeof","delete","let","yield","const","class","debugger","async","await","static","import","from","export","extends"],n=["true","false","null","undefined","NaN","Infinity"],a=[].concat(["setInterval","setTimeout","clearInterval","clearTimeout","require","exports","eval","isFinite","isNaN","parseFloat","parseInt","decodeURI","decodeURIComponent","encodeURI","encodeURIComponent","escape","unescape"],["arguments","this","super","console","window","document","localStorage","module","global"],["Intl","DataView","Number","Math","Date","String","RegExp","Object","Function","Boolean","Error","Symbol","Set","Map","WeakSet","WeakMap","Proxy","Reflect","JSON","Promise","Float64Array","Int16Array","Int32Array","Int8Array","Uint16Array","Uint32Array","Float32Array","Array","Uint8Array","Uint8ClampedArray","ArrayBuffer"],["EvalError","InternalError","RangeError","ReferenceError","SyntaxError","TypeError","URIError"]);function s(e){return r("(?=",e,")")}function r(...e){return e.map(e=>(function(e){return e?"string"==typeof e?e:e.source:null})(e)).join("")}return function(t){var i="[A-Za-z$_][0-9A-Za-z$_]*",c={begin:/<[A-Za-z0-9\\._:-]+/,end:/\/[A-Za-z0-9\\._:-]+>|\/>/},o={$pattern:"[A-Za-z$_][0-9A-Za-z$_]*",keyword:e.join(" "),literal:n.join(" "),built_in:a.join(" ")},l={className:"number",variants:[{begin:"\\b(0[bB][01]+)n?"},{begin:"\\b(0[oO][0-7]+)n?"},{begin:t.C_NUMBER_RE+"n?"}],relevance:0},E={className:"subst",begin:"\\$\\{",end:"\\}",keywords:o,contains:[]},d={begin:"html`",end:"",starts:{end:"`",returnEnd:!1,contains:[t.BACKSLASH_ESCAPE,E],subLanguage:"xml"}},g={begin:"css`",end:"",starts:{end:"`",returnEnd:!1,contains:[t.BACKSLASH_ESCAPE,E],subLanguage:"css"}},u={className:"string",begin:"`",end:"`",contains:[t.BACKSLASH_ESCAPE,E]};E.contains=[t.APOS_STRING_MODE,t.QUOTE_STRING_MODE,d,g,u,l,t.REGEXP_MODE];var b=E.contains.concat([{begin:/\(/,end:/\)/,contains:["self"].concat(E.contains,[t.C_BLOCK_COMMENT_MODE,t.C_LINE_COMMENT_MODE])},t.C_BLOCK_COMMENT_MODE,t.C_LINE_COMMENT_MODE]),_={className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,contains:b};return{name:"JavaScript",aliases:["js","jsx","mjs","cjs"],keywords:o,contains:[t.SHEBANG({binary:"node",relevance:5}),{className:"meta",relevance:10,begin:/^\s*['"]use (strict|asm)['"]/},t.APOS_STRING_MODE,t.QUOTE_STRING_MODE,d,g,u,t.C_LINE_COMMENT_MODE,t.COMMENT("/\\*\\*","\\*/",{relevance:0,contains:[{className:"doctag",begin:"@[A-Za-z]+",contains:[{className:"type",begin:"\\{",end:"\\}",relevance:0},{className:"variable",begin:i+"(?=\\s*(-)|$)",endsParent:!0,relevance:0},{begin:/(?=[^\n])\s/,relevance:0}]}]}),t.C_BLOCK_COMMENT_MODE,l,{begin:r(/[{,\n]\s*/,s(r(/(((\/\/.*)|(\/\*(.|\n)*\*\/))\s*)*/,i+"\\s*:"))),relevance:0,contains:[{className:"attr",begin:i+s("\\s*:"),relevance:0}]},{begin:"("+t.RE_STARTERS_RE+"|\\b(case|return|throw)\\b)\\s*",keywords:"return throw case",contains:[t.C_LINE_COMMENT_MODE,t.C_BLOCK_COMMENT_MODE,t.REGEXP_MODE,{className:"function",begin:"(\\([^(]*(\\([^(]*(\\([^(]*\\))?\\))?\\)|"+t.UNDERSCORE_IDENT_RE+")\\s*=>",returnBegin:!0,end:"\\s*=>",contains:[{className:"params",variants:[{begin:t.UNDERSCORE_IDENT_RE},{className:null,begin:/\(\s*\)/,skip:!0},{begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:o,contains:b}]}]},{begin:/,/,relevance:0},{className:"",begin:/\s/,end:/\s*/,skip:!0},{variants:[{begin:"<>",end:""},{begin:c.begin,end:c.end}],subLanguage:"xml",contains:[{begin:c.begin,end:c.end,skip:!0,contains:["self"]}]}],relevance:0},{className:"function",beginKeywords:"function",end:/\{/,excludeEnd:!0,contains:[t.inherit(t.TITLE_MODE,{begin:i}),_],illegal:/\[|%/},{begin:/\$[(.]/},t.METHOD_GUARD,{className:"class",beginKeywords:"class",end:/[{;=]/,excludeEnd:!0,illegal:/[:"\[\]]/,contains:[{beginKeywords:"extends"},t.UNDERSCORE_TITLE_MODE]},{beginKeywords:"constructor",end:/\{/,excludeEnd:!0},{begin:"(get|set)\\s+(?="+i+"\\()",end:/{/,keywords:"get set",contains:[t.inherit(t.TITLE_MODE,{begin:i}),{begin:/\(\)/},_]}],illegal:/#(?!!)/}}}());hljs.registerLanguage("typescript",function(){"use strict";const e=["as","in","of","if","for","while","finally","var","new","function","do","return","void","else","break","catch","instanceof","with","throw","case","default","try","switch","continue","typeof","delete","let","yield","const","class","debugger","async","await","static","import","from","export","extends"],n=["true","false","null","undefined","NaN","Infinity"],a=[].concat(["setInterval","setTimeout","clearInterval","clearTimeout","require","exports","eval","isFinite","isNaN","parseFloat","parseInt","decodeURI","decodeURIComponent","encodeURI","encodeURIComponent","escape","unescape"],["arguments","this","super","console","window","document","localStorage","module","global"],["Intl","DataView","Number","Math","Date","String","RegExp","Object","Function","Boolean","Error","Symbol","Set","Map","WeakSet","WeakMap","Proxy","Reflect","JSON","Promise","Float64Array","Int16Array","Int32Array","Int8Array","Uint16Array","Uint32Array","Float32Array","Array","Uint8Array","Uint8ClampedArray","ArrayBuffer"],["EvalError","InternalError","RangeError","ReferenceError","SyntaxError","TypeError","URIError"]);return function(r){var t={$pattern:"[A-Za-z$_][0-9A-Za-z$_]*",keyword:e.concat(["type","namespace","typedef","interface","public","private","protected","implements","declare","abstract","readonly"]).join(" "),literal:n.join(" "),built_in:a.concat(["any","void","number","boolean","string","object","never","enum"]).join(" ")},s={className:"meta",begin:"@[A-Za-z$_][0-9A-Za-z$_]*"},i={className:"number",variants:[{begin:"\\b(0[bB][01]+)n?"},{begin:"\\b(0[oO][0-7]+)n?"},{begin:r.C_NUMBER_RE+"n?"}],relevance:0},o={className:"subst",begin:"\\$\\{",end:"\\}",keywords:t,contains:[]},c={begin:"html`",end:"",starts:{end:"`",returnEnd:!1,contains:[r.BACKSLASH_ESCAPE,o],subLanguage:"xml"}},l={begin:"css`",end:"",starts:{end:"`",returnEnd:!1,contains:[r.BACKSLASH_ESCAPE,o],subLanguage:"css"}},E={className:"string",begin:"`",end:"`",contains:[r.BACKSLASH_ESCAPE,o]};o.contains=[r.APOS_STRING_MODE,r.QUOTE_STRING_MODE,c,l,E,i,r.REGEXP_MODE];var d={begin:"\\(",end:/\)/,keywords:t,contains:["self",r.QUOTE_STRING_MODE,r.APOS_STRING_MODE,r.NUMBER_MODE]},u={className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:t,contains:[r.C_LINE_COMMENT_MODE,r.C_BLOCK_COMMENT_MODE,s,d]};return{name:"TypeScript",aliases:["ts"],keywords:t,contains:[r.SHEBANG(),{className:"meta",begin:/^\s*['"]use strict['"]/},r.APOS_STRING_MODE,r.QUOTE_STRING_MODE,c,l,E,r.C_LINE_COMMENT_MODE,r.C_BLOCK_COMMENT_MODE,i,{begin:"("+r.RE_STARTERS_RE+"|\\b(case|return|throw)\\b)\\s*",keywords:"return throw case",contains:[r.C_LINE_COMMENT_MODE,r.C_BLOCK_COMMENT_MODE,r.REGEXP_MODE,{className:"function",begin:"(\\([^(]*(\\([^(]*(\\([^(]*\\))?\\))?\\)|"+r.UNDERSCORE_IDENT_RE+")\\s*=>",returnBegin:!0,end:"\\s*=>",contains:[{className:"params",variants:[{begin:r.UNDERSCORE_IDENT_RE},{className:null,begin:/\(\s*\)/,skip:!0},{begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:t,contains:d.contains}]}]}],relevance:0},{className:"function",beginKeywords:"function",end:/[\{;]/,excludeEnd:!0,keywords:t,contains:["self",r.inherit(r.TITLE_MODE,{begin:"[A-Za-z$_][0-9A-Za-z$_]*"}),u],illegal:/%/,relevance:0},{beginKeywords:"constructor",end:/[\{;]/,excludeEnd:!0,contains:["self",u]},{begin:/module\./,keywords:{built_in:"module"},relevance:0},{beginKeywords:"module",end:/\{/,excludeEnd:!0},{beginKeywords:"interface",end:/\{/,excludeEnd:!0,keywords:"interface extends"},{begin:/\$[(.]/},{begin:"\\."+r.IDENT_RE,relevance:0},s,d]}}}());hljs.registerLanguage("plaintext",function(){"use strict";return function(t){return{name:"Plain text",aliases:["text","txt"],disableAutodetect:!0}}}());hljs.registerLanguage("less",function(){"use strict";return function(e){var n="([\\w-]+|@{[\\w-]+})",a=[],s=[],t=function(e){return{className:"string",begin:"~?"+e+".*?"+e}},r=function(e,n,a){return{className:e,begin:n,relevance:a}},i={begin:"\\(",end:"\\)",contains:s,relevance:0};s.push(e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,t("'"),t('"'),e.CSS_NUMBER_MODE,{begin:"(url|data-uri)\\(",starts:{className:"string",end:"[\\)\\n]",excludeEnd:!0}},r("number","#[0-9A-Fa-f]+\\b"),i,r("variable","@@?[\\w-]+",10),r("variable","@{[\\w-]+}"),r("built_in","~?`[^`]*?`"),{className:"attribute",begin:"[\\w-]+\\s*:",end:":",returnBegin:!0,excludeEnd:!0},{className:"meta",begin:"!important"});var c=s.concat({begin:"{",end:"}",contains:a}),l={beginKeywords:"when",endsWithParent:!0,contains:[{beginKeywords:"and not"}].concat(s)},o={begin:n+"\\s*:",returnBegin:!0,end:"[;}]",relevance:0,contains:[{className:"attribute",begin:n,end:":",excludeEnd:!0,starts:{endsWithParent:!0,illegal:"[<=$]",relevance:0,contains:s}}]},g={className:"keyword",begin:"@(import|media|charset|font-face|(-[a-z]+-)?keyframes|supports|document|namespace|page|viewport|host)\\b",starts:{end:"[;{}]",returnEnd:!0,contains:s,relevance:0}},d={className:"variable",variants:[{begin:"@[\\w-]+\\s*:",relevance:15},{begin:"@[\\w-]+"}],starts:{end:"[;}]",returnEnd:!0,contains:c}},b={variants:[{begin:"[\\.#:&\\[>]",end:"[;{}]"},{begin:n,end:"{"}],returnBegin:!0,returnEnd:!0,illegal:"[<='$\"]",relevance:0,contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,l,r("keyword","all\\b"),r("variable","@{[\\w-]+}"),r("selector-tag",n+"%?",0),r("selector-id","#"+n),r("selector-class","\\."+n,0),r("selector-tag","&",0),{className:"selector-attr",begin:"\\[",end:"\\]"},{className:"selector-pseudo",begin:/:(:)?[a-zA-Z0-9\_\-\+\(\)"'.]+/},{begin:"\\(",end:"\\)",contains:c},{begin:"!important"}]};return a.push(e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,g,d,o,b),{name:"Less",case_insensitive:!0,illegal:"[=>'/<($\"]",contains:a}}}());hljs.registerLanguage("lua",function(){"use strict";return function(e){var t={begin:"\\[=*\\[",end:"\\]=*\\]",contains:["self"]},a=[e.COMMENT("--(?!\\[=*\\[)","$"),e.COMMENT("--\\[=*\\[","\\]=*\\]",{contains:[t],relevance:10})];return{name:"Lua",keywords:{$pattern:e.UNDERSCORE_IDENT_RE,literal:"true false nil",keyword:"and break do else elseif end for goto if in local not or repeat return then until while",built_in:"_G _ENV _VERSION __index __newindex __mode __call __metatable __tostring __len __gc __add __sub __mul __div __mod __pow __concat __unm __eq __lt __le assert collectgarbage dofile error getfenv getmetatable ipairs load loadfile loadstring module next pairs pcall print rawequal rawget rawset require select setfenv setmetatable tonumber tostring type unpack xpcall arg self coroutine resume yield status wrap create running debug getupvalue debug sethook getmetatable gethook setmetatable setlocal traceback setfenv getinfo setupvalue getlocal getregistry getfenv io lines write close flush open output type read stderr stdin input stdout popen tmpfile math log max acos huge ldexp pi cos tanh pow deg tan cosh sinh random randomseed frexp ceil floor rad abs sqrt modf asin min mod fmod log10 atan2 exp sin atan os exit setlocale date getenv difftime remove time clock tmpname rename execute package preload loadlib loaded loaders cpath config path seeall string sub upper len gfind rep find match char dump gmatch reverse byte format gsub lower table setn insert getn foreachi maxn foreach concat sort remove"},contains:a.concat([{className:"function",beginKeywords:"function",end:"\\)",contains:[e.inherit(e.TITLE_MODE,{begin:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),{className:"params",begin:"\\(",endsWithParent:!0,contains:a}].concat(a)},e.C_NUMBER_MODE,e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{className:"string",begin:"\\[=*\\[",end:"\\]=*\\]",contains:[t],relevance:5}])}}}()); diff --git a/index.html b/index.html new file mode 100644 index 0000000..edfeb5a --- /dev/null +++ b/index.html @@ -0,0 +1,249 @@ + + + + + + Introduction - tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+ +

Introduction

+

TLSNotary is a protocol which allows users to export data from any website in a +credible way. This way they can verify the authenticity of parts of a +TLS-encrypted web session without compromising on privacy.

+

It works by adding a third party, the Notary, to the usual TLS connection +between the User and a web server. The User forwards the encrypted TLS traffic +to the Notary which checks that it has not been tampered with and notarizes the +whole TLS session by signing a transcript of it.

+

The User can now use this transcript and disclose parts of it to another +party, which we call the Verifier. The Verifier only needs to trust the Notary +in order to accept proofs from many different users. This way, TLSNotary +can be used for a variety of purposes. For example you can use TLSNotary to +prove that

+
    +
  • you have received a money transfer using your online banking account, without +revealing your login credentials or sensitive financial information.
  • +
  • you have access to an account on a web platform.
  • +
  • a website showed some specific content on a certain date.
  • +
+

Overall, the TLSNotary protocol can be used in any scenario where you need to +prove to a third party facts about the content of a TLS connection.

+

Some interesting aspects of TLSNotary are:

+
    +
  • The protocol is transparent to the web server, because it is not aware of the +notarization process. For the server it just looks like normal browsing.
  • +
  • Data is kept private from the Notary. The Notary only sees the ciphertext and +never has access to the plaintext.
  • +
  • No modifications to the TLS protocol are needed. You can use it without any +changes to web servers.
  • +
  • The Notary and the Verifier can be the same entity. That means if you as a +Verifier do not want to trust some Notary server, you can run one yourself.
  • +
+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + +
+ + diff --git a/intro.html b/intro.html new file mode 100644 index 0000000..edfeb5a --- /dev/null +++ b/intro.html @@ -0,0 +1,249 @@ + + + + + + Introduction - tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+ +

Introduction

+

TLSNotary is a protocol which allows users to export data from any website in a +credible way. This way they can verify the authenticity of parts of a +TLS-encrypted web session without compromising on privacy.

+

It works by adding a third party, the Notary, to the usual TLS connection +between the User and a web server. The User forwards the encrypted TLS traffic +to the Notary which checks that it has not been tampered with and notarizes the +whole TLS session by signing a transcript of it.

+

The User can now use this transcript and disclose parts of it to another +party, which we call the Verifier. The Verifier only needs to trust the Notary +in order to accept proofs from many different users. This way, TLSNotary +can be used for a variety of purposes. For example you can use TLSNotary to +prove that

+
    +
  • you have received a money transfer using your online banking account, without +revealing your login credentials or sensitive financial information.
  • +
  • you have access to an account on a web platform.
  • +
  • a website showed some specific content on a certain date.
  • +
+

Overall, the TLSNotary protocol can be used in any scenario where you need to +prove to a third party facts about the content of a TLS connection.

+

Some interesting aspects of TLSNotary are:

+
    +
  • The protocol is transparent to the web server, because it is not aware of the +notarization process. For the server it just looks like normal browsing.
  • +
  • Data is kept private from the Notary. The Notary only sees the ciphertext and +never has access to the plaintext.
  • +
  • No modifications to the TLS protocol are needed. You can use it without any +changes to web servers.
  • +
  • The Notary and the Verifier can be the same entity. That means if you as a +Verifier do not want to trust some Notary server, you can run one yourself.
  • +
+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + +
+ + diff --git a/mark.min.js b/mark.min.js new file mode 100644 index 0000000..1636231 --- /dev/null +++ b/mark.min.js @@ -0,0 +1,7 @@ +/*!*************************************************** +* mark.js v8.11.1 +* https://markjs.io/ +* Copyright (c) 2014–2018, Julian Kühnel +* Released under the MIT license https://git.io/vwTVl +*****************************************************/ +!function(e,t){"object"==typeof exports&&"undefined"!=typeof module?module.exports=t():"function"==typeof define&&define.amd?define(t):e.Mark=t()}(this,function(){"use strict";var e="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e},t=function(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")},n=function(){function e(e,t){for(var n=0;n1&&void 0!==arguments[1])||arguments[1],i=arguments.length>2&&void 0!==arguments[2]?arguments[2]:[],o=arguments.length>3&&void 0!==arguments[3]?arguments[3]:5e3;t(this,e),this.ctx=n,this.iframes=r,this.exclude=i,this.iframesTimeout=o}return n(e,[{key:"getContexts",value:function(){var e=[];return(void 0!==this.ctx&&this.ctx?NodeList.prototype.isPrototypeOf(this.ctx)?Array.prototype.slice.call(this.ctx):Array.isArray(this.ctx)?this.ctx:"string"==typeof this.ctx?Array.prototype.slice.call(document.querySelectorAll(this.ctx)):[this.ctx]:[]).forEach(function(t){var n=e.filter(function(e){return e.contains(t)}).length>0;-1!==e.indexOf(t)||n||e.push(t)}),e}},{key:"getIframeContents",value:function(e,t){var n=arguments.length>2&&void 0!==arguments[2]?arguments[2]:function(){},r=void 0;try{var i=e.contentWindow;if(r=i.document,!i||!r)throw new Error("iframe inaccessible")}catch(e){n()}r&&t(r)}},{key:"isIframeBlank",value:function(e){var t="about:blank",n=e.getAttribute("src").trim();return e.contentWindow.location.href===t&&n!==t&&n}},{key:"observeIframeLoad",value:function(e,t,n){var r=this,i=!1,o=null,a=function a(){if(!i){i=!0,clearTimeout(o);try{r.isIframeBlank(e)||(e.removeEventListener("load",a),r.getIframeContents(e,t,n))}catch(e){n()}}};e.addEventListener("load",a),o=setTimeout(a,this.iframesTimeout)}},{key:"onIframeReady",value:function(e,t,n){try{"complete"===e.contentWindow.document.readyState?this.isIframeBlank(e)?this.observeIframeLoad(e,t,n):this.getIframeContents(e,t,n):this.observeIframeLoad(e,t,n)}catch(e){n()}}},{key:"waitForIframes",value:function(e,t){var n=this,r=0;this.forEachIframe(e,function(){return!0},function(e){r++,n.waitForIframes(e.querySelector("html"),function(){--r||t()})},function(e){e||t()})}},{key:"forEachIframe",value:function(t,n,r){var i=this,o=arguments.length>3&&void 0!==arguments[3]?arguments[3]:function(){},a=t.querySelectorAll("iframe"),s=a.length,c=0;a=Array.prototype.slice.call(a);var u=function(){--s<=0&&o(c)};s||u(),a.forEach(function(t){e.matches(t,i.exclude)?u():i.onIframeReady(t,function(e){n(t)&&(c++,r(e)),u()},u)})}},{key:"createIterator",value:function(e,t,n){return document.createNodeIterator(e,t,n,!1)}},{key:"createInstanceOnIframe",value:function(t){return new e(t.querySelector("html"),this.iframes)}},{key:"compareNodeIframe",value:function(e,t,n){if(e.compareDocumentPosition(n)&Node.DOCUMENT_POSITION_PRECEDING){if(null===t)return!0;if(t.compareDocumentPosition(n)&Node.DOCUMENT_POSITION_FOLLOWING)return!0}return!1}},{key:"getIteratorNode",value:function(e){var t=e.previousNode();return{prevNode:t,node:null===t?e.nextNode():e.nextNode()&&e.nextNode()}}},{key:"checkIframeFilter",value:function(e,t,n,r){var i=!1,o=!1;return r.forEach(function(e,t){e.val===n&&(i=t,o=e.handled)}),this.compareNodeIframe(e,t,n)?(!1!==i||o?!1===i||o||(r[i].handled=!0):r.push({val:n,handled:!0}),!0):(!1===i&&r.push({val:n,handled:!1}),!1)}},{key:"handleOpenIframes",value:function(e,t,n,r){var i=this;e.forEach(function(e){e.handled||i.getIframeContents(e.val,function(e){i.createInstanceOnIframe(e).forEachNode(t,n,r)})})}},{key:"iterateThroughNodes",value:function(e,t,n,r,i){for(var o,a=this,s=this.createIterator(t,e,r),c=[],u=[],l=void 0,h=void 0;void 0,o=a.getIteratorNode(s),h=o.prevNode,l=o.node;)this.iframes&&this.forEachIframe(t,function(e){return a.checkIframeFilter(l,h,e,c)},function(t){a.createInstanceOnIframe(t).forEachNode(e,function(e){return u.push(e)},r)}),u.push(l);u.forEach(function(e){n(e)}),this.iframes&&this.handleOpenIframes(c,e,n,r),i()}},{key:"forEachNode",value:function(e,t,n){var r=this,i=arguments.length>3&&void 0!==arguments[3]?arguments[3]:function(){},o=this.getContexts(),a=o.length;a||i(),o.forEach(function(o){var s=function(){r.iterateThroughNodes(e,o,t,n,function(){--a<=0&&i()})};r.iframes?r.waitForIframes(o,s):s()})}}],[{key:"matches",value:function(e,t){var n="string"==typeof t?[t]:t,r=e.matches||e.matchesSelector||e.msMatchesSelector||e.mozMatchesSelector||e.oMatchesSelector||e.webkitMatchesSelector;if(r){var i=!1;return n.every(function(t){return!r.call(e,t)||(i=!0,!1)}),i}return!1}}]),e}(),o=function(){function e(n){t(this,e),this.opt=r({},{diacritics:!0,synonyms:{},accuracy:"partially",caseSensitive:!1,ignoreJoiners:!1,ignorePunctuation:[],wildcards:"disabled"},n)}return n(e,[{key:"create",value:function(e){return"disabled"!==this.opt.wildcards&&(e=this.setupWildcardsRegExp(e)),e=this.escapeStr(e),Object.keys(this.opt.synonyms).length&&(e=this.createSynonymsRegExp(e)),(this.opt.ignoreJoiners||this.opt.ignorePunctuation.length)&&(e=this.setupIgnoreJoinersRegExp(e)),this.opt.diacritics&&(e=this.createDiacriticsRegExp(e)),e=this.createMergedBlanksRegExp(e),(this.opt.ignoreJoiners||this.opt.ignorePunctuation.length)&&(e=this.createJoinersRegExp(e)),"disabled"!==this.opt.wildcards&&(e=this.createWildcardsRegExp(e)),e=this.createAccuracyRegExp(e),new RegExp(e,"gm"+(this.opt.caseSensitive?"":"i"))}},{key:"escapeStr",value:function(e){return e.replace(/[\-\[\]\/\{\}\(\)\*\+\?\.\\\^\$\|]/g,"\\$&")}},{key:"createSynonymsRegExp",value:function(e){var t=this.opt.synonyms,n=this.opt.caseSensitive?"":"i",r=this.opt.ignoreJoiners||this.opt.ignorePunctuation.length?"\0":"";for(var i in t)if(t.hasOwnProperty(i)){var o=t[i],a="disabled"!==this.opt.wildcards?this.setupWildcardsRegExp(i):this.escapeStr(i),s="disabled"!==this.opt.wildcards?this.setupWildcardsRegExp(o):this.escapeStr(o);""!==a&&""!==s&&(e=e.replace(new RegExp("("+this.escapeStr(a)+"|"+this.escapeStr(s)+")","gm"+n),r+"("+this.processSynonyms(a)+"|"+this.processSynonyms(s)+")"+r))}return e}},{key:"processSynonyms",value:function(e){return(this.opt.ignoreJoiners||this.opt.ignorePunctuation.length)&&(e=this.setupIgnoreJoinersRegExp(e)),e}},{key:"setupWildcardsRegExp",value:function(e){return(e=e.replace(/(?:\\)*\?/g,function(e){return"\\"===e.charAt(0)?"?":""})).replace(/(?:\\)*\*/g,function(e){return"\\"===e.charAt(0)?"*":""})}},{key:"createWildcardsRegExp",value:function(e){var t="withSpaces"===this.opt.wildcards;return e.replace(/\u0001/g,t?"[\\S\\s]?":"\\S?").replace(/\u0002/g,t?"[\\S\\s]*?":"\\S*")}},{key:"setupIgnoreJoinersRegExp",value:function(e){return e.replace(/[^(|)\\]/g,function(e,t,n){var r=n.charAt(t+1);return/[(|)\\]/.test(r)||""===r?e:e+"\0"})}},{key:"createJoinersRegExp",value:function(e){var t=[],n=this.opt.ignorePunctuation;return Array.isArray(n)&&n.length&&t.push(this.escapeStr(n.join(""))),this.opt.ignoreJoiners&&t.push("\\u00ad\\u200b\\u200c\\u200d"),t.length?e.split(/\u0000+/).join("["+t.join("")+"]*"):e}},{key:"createDiacriticsRegExp",value:function(e){var t=this.opt.caseSensitive?"":"i",n=this.opt.caseSensitive?["aàáảãạăằắẳẵặâầấẩẫậäåāą","AÀÁẢÃẠĂẰẮẲẴẶÂẦẤẨẪẬÄÅĀĄ","cçćč","CÇĆČ","dđď","DĐĎ","eèéẻẽẹêềếểễệëěēę","EÈÉẺẼẸÊỀẾỂỄỆËĚĒĘ","iìíỉĩịîïī","IÌÍỈĨỊÎÏĪ","lł","LŁ","nñňń","NÑŇŃ","oòóỏõọôồốổỗộơởỡớờợöøō","OÒÓỎÕỌÔỒỐỔỖỘƠỞỠỚỜỢÖØŌ","rř","RŘ","sšśșş","SŠŚȘŞ","tťțţ","TŤȚŢ","uùúủũụưừứửữựûüůū","UÙÚỦŨỤƯỪỨỬỮỰÛÜŮŪ","yýỳỷỹỵÿ","YÝỲỶỸỴŸ","zžżź","ZŽŻŹ"]:["aàáảãạăằắẳẵặâầấẩẫậäåāąAÀÁẢÃẠĂẰẮẲẴẶÂẦẤẨẪẬÄÅĀĄ","cçćčCÇĆČ","dđďDĐĎ","eèéẻẽẹêềếểễệëěēęEÈÉẺẼẸÊỀẾỂỄỆËĚĒĘ","iìíỉĩịîïīIÌÍỈĨỊÎÏĪ","lłLŁ","nñňńNÑŇŃ","oòóỏõọôồốổỗộơởỡớờợöøōOÒÓỎÕỌÔỒỐỔỖỘƠỞỠỚỜỢÖØŌ","rřRŘ","sšśșşSŠŚȘŞ","tťțţTŤȚŢ","uùúủũụưừứửữựûüůūUÙÚỦŨỤƯỪỨỬỮỰÛÜŮŪ","yýỳỷỹỵÿYÝỲỶỸỴŸ","zžżźZŽŻŹ"],r=[];return e.split("").forEach(function(i){n.every(function(n){if(-1!==n.indexOf(i)){if(r.indexOf(n)>-1)return!1;e=e.replace(new RegExp("["+n+"]","gm"+t),"["+n+"]"),r.push(n)}return!0})}),e}},{key:"createMergedBlanksRegExp",value:function(e){return e.replace(/[\s]+/gim,"[\\s]+")}},{key:"createAccuracyRegExp",value:function(e){var t=this,n=this.opt.accuracy,r="string"==typeof n?n:n.value,i="";switch(("string"==typeof n?[]:n.limiters).forEach(function(e){i+="|"+t.escapeStr(e)}),r){case"partially":default:return"()("+e+")";case"complementary":return"()([^"+(i="\\s"+(i||this.escapeStr("!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~¡¿")))+"]*"+e+"[^"+i+"]*)";case"exactly":return"(^|\\s"+i+")("+e+")(?=$|\\s"+i+")"}}}]),e}(),a=function(){function a(e){t(this,a),this.ctx=e,this.ie=!1;var n=window.navigator.userAgent;(n.indexOf("MSIE")>-1||n.indexOf("Trident")>-1)&&(this.ie=!0)}return n(a,[{key:"log",value:function(t){var n=arguments.length>1&&void 0!==arguments[1]?arguments[1]:"debug",r=this.opt.log;this.opt.debug&&"object"===(void 0===r?"undefined":e(r))&&"function"==typeof r[n]&&r[n]("mark.js: "+t)}},{key:"getSeparatedKeywords",value:function(e){var t=this,n=[];return e.forEach(function(e){t.opt.separateWordSearch?e.split(" ").forEach(function(e){e.trim()&&-1===n.indexOf(e)&&n.push(e)}):e.trim()&&-1===n.indexOf(e)&&n.push(e)}),{keywords:n.sort(function(e,t){return t.length-e.length}),length:n.length}}},{key:"isNumeric",value:function(e){return Number(parseFloat(e))==e}},{key:"checkRanges",value:function(e){var t=this;if(!Array.isArray(e)||"[object Object]"!==Object.prototype.toString.call(e[0]))return this.log("markRanges() will only accept an array of objects"),this.opt.noMatch(e),[];var n=[],r=0;return e.sort(function(e,t){return e.start-t.start}).forEach(function(e){var i=t.callNoMatchOnInvalidRanges(e,r),o=i.start,a=i.end;i.valid&&(e.start=o,e.length=a-o,n.push(e),r=a)}),n}},{key:"callNoMatchOnInvalidRanges",value:function(e,t){var n=void 0,r=void 0,i=!1;return e&&void 0!==e.start?(r=(n=parseInt(e.start,10))+parseInt(e.length,10),this.isNumeric(e.start)&&this.isNumeric(e.length)&&r-t>0&&r-n>0?i=!0:(this.log("Ignoring invalid or overlapping range: "+JSON.stringify(e)),this.opt.noMatch(e))):(this.log("Ignoring invalid range: "+JSON.stringify(e)),this.opt.noMatch(e)),{start:n,end:r,valid:i}}},{key:"checkWhitespaceRanges",value:function(e,t,n){var r=void 0,i=!0,o=n.length,a=t-o,s=parseInt(e.start,10)-a;return(r=(s=s>o?o:s)+parseInt(e.length,10))>o&&(r=o,this.log("End range automatically set to the max value of "+o)),s<0||r-s<0||s>o||r>o?(i=!1,this.log("Invalid range: "+JSON.stringify(e)),this.opt.noMatch(e)):""===n.substring(s,r).replace(/\s+/g,"")&&(i=!1,this.log("Skipping whitespace only range: "+JSON.stringify(e)),this.opt.noMatch(e)),{start:s,end:r,valid:i}}},{key:"getTextNodes",value:function(e){var t=this,n="",r=[];this.iterator.forEachNode(NodeFilter.SHOW_TEXT,function(e){r.push({start:n.length,end:(n+=e.textContent).length,node:e})},function(e){return t.matchesExclude(e.parentNode)?NodeFilter.FILTER_REJECT:NodeFilter.FILTER_ACCEPT},function(){e({value:n,nodes:r})})}},{key:"matchesExclude",value:function(e){return i.matches(e,this.opt.exclude.concat(["script","style","title","head","html"]))}},{key:"wrapRangeInTextNode",value:function(e,t,n){var r=this.opt.element?this.opt.element:"mark",i=e.splitText(t),o=i.splitText(n-t),a=document.createElement(r);return a.setAttribute("data-markjs","true"),this.opt.className&&a.setAttribute("class",this.opt.className),a.textContent=i.textContent,i.parentNode.replaceChild(a,i),o}},{key:"wrapRangeInMappedTextNode",value:function(e,t,n,r,i){var o=this;e.nodes.every(function(a,s){var c=e.nodes[s+1];if(void 0===c||c.start>t){if(!r(a.node))return!1;var u=t-a.start,l=(n>a.end?a.end:n)-a.start,h=e.value.substr(0,a.start),f=e.value.substr(l+a.start);if(a.node=o.wrapRangeInTextNode(a.node,u,l),e.value=h+f,e.nodes.forEach(function(t,n){n>=s&&(e.nodes[n].start>0&&n!==s&&(e.nodes[n].start-=l),e.nodes[n].end-=l)}),n-=l,i(a.node.previousSibling,a.start),!(n>a.end))return!1;t=a.end}return!0})}},{key:"wrapGroups",value:function(e,t,n,r){return r((e=this.wrapRangeInTextNode(e,t,t+n)).previousSibling),e}},{key:"separateGroups",value:function(e,t,n,r,i){for(var o=t.length,a=1;a-1&&r(t[a],e)&&(e=this.wrapGroups(e,s,t[a].length,i))}return e}},{key:"wrapMatches",value:function(e,t,n,r,i){var o=this,a=0===t?0:t+1;this.getTextNodes(function(t){t.nodes.forEach(function(t){t=t.node;for(var i=void 0;null!==(i=e.exec(t.textContent))&&""!==i[a];){if(o.opt.separateGroups)t=o.separateGroups(t,i,a,n,r);else{if(!n(i[a],t))continue;var s=i.index;if(0!==a)for(var c=1;c + + + + + Overview - tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+ +

Overview

+

The following diagram is a high-level protocol overview introducing the main components of +TLSNotary.

+

TLSNotary Overview

+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + +
+ + diff --git a/print.html b/print.html new file mode 100644 index 0000000..c185e95 --- /dev/null +++ b/print.html @@ -0,0 +1,1002 @@ + + + + + + tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+ +

Introduction

+

TLSNotary is a protocol which allows users to export data from any website in a +credible way. This way they can verify the authenticity of parts of a +TLS-encrypted web session without compromising on privacy.

+

It works by adding a third party, the Notary, to the usual TLS connection +between the User and a web server. The User forwards the encrypted TLS traffic +to the Notary which checks that it has not been tampered with and notarizes the +whole TLS session by signing a transcript of it.

+

The User can now use this transcript and disclose parts of it to another +party, which we call the Verifier. The Verifier only needs to trust the Notary +in order to accept proofs from many different users. This way, TLSNotary +can be used for a variety of purposes. For example you can use TLSNotary to +prove that

+
    +
  • you have received a money transfer using your online banking account, without +revealing your login credentials or sensitive financial information.
  • +
  • you have access to an account on a web platform.
  • +
  • a website showed some specific content on a certain date.
  • +
+

Overall, the TLSNotary protocol can be used in any scenario where you need to +prove to a third party facts about the content of a TLS connection.

+

Some interesting aspects of TLSNotary are:

+
    +
  • The protocol is transparent to the web server, because it is not aware of the +notarization process. For the server it just looks like normal browsing.
  • +
  • Data is kept private from the Notary. The Notary only sees the ciphertext and +never has access to the plaintext.
  • +
  • No modifications to the TLS protocol are needed. You can use it without any +changes to web servers.
  • +
  • The Notary and the Verifier can be the same entity. That means if you as a +Verifier do not want to trust some Notary server, you can run one yourself.
  • +
+
+

Protocol

+
+

Overview

+

The following diagram is a high-level protocol overview introducing the main components of +TLSNotary.

+

TLSNotary Overview

+
+

Notarization Phase

+

During the Notarization Phase the Requester, otherwise referred to as the User, and the Notary work together to generate an authenticated Transcript of a TLS session with a Server.

+

Listed below are some key points regarding this process:

+
    +
  • The identity of the Server is not revealed to the Notary, but the Requester is capable of proving the Server identity to a Verifier later.
  • +
  • The Notary only ever sees the encrypted application data of the TLS session.
  • +
  • The protocol guarantees that the Requester is not solely capable of constructing requests, nor can they forge responses from the Server.
  • +
+

Requester

+

The Requester is the party which runs the TLS connection with the Server. The Requester constructs application payloads, eg. HTTP requests, and coordinates with the Notary to encrypt them with the TLS session keys prior to sending them. Subsequently, the Requester works with the Notary to decrypt responses from the Server. The plaintext of the application data is only ever revealed to the Requester.

+

Notary

+

The Notary is the party of which the authenticity of the Transcript relies on. During the session the Notary withholds its' shares of the TLS keys and participates in a series of secure 2-party computation protocols with the Requester to operate the TLS connection.

+

Server

+

The Server can be any server which supports TLS. The TLSNotary protocol is entirely transparent to the Server, thus it can not be censored nor does it have to support any additional functionality.

+ +

Transcript

+

The primary artifact generated from this phase is called the Transcript. It contains session meta-data, handshake data, and commitments to all the requests and responses. Typically the Transcript is signed by the Notary, however that is not necessary in the case where the Notary will also act as the Verifier in the selective disclosure phase.

+
+

Note that the server ephemeral key does not reveal the identity of the server to the Notary.

+
+
+

Key Exchange

+

In TLS, the first step towards obtaining TLS session keys is to compute a shared secret between the client and the server by running the ECDH protocol. The resulting shared secret in TLS terms is called the pre-master secret PMS.

+ +

Using the notation from Wikipedia, below is the 3-party ECDH protocol between the Server the Requester and the Notary, enabling the Requester and the Notary to arrive at shares of PMS.

+
    +
  1. Server sends its public key to Requester, and Requester forwards it to Notary
  2. +
  3. Requester picks a random private key share and computes a public key share
  4. +
  5. Notary picks a random private key share and computes a public key share
  6. +
  7. Notary sends to Requester who computes and sends to Server
  8. +
  9. Requester computes an EC point
  10. +
  11. Notary computes an EC point
  12. +
  13. Addition of points and results in the coordinate , which is PMS. (The coordinate is not used in TLS)
  14. +
+

Using the notation from here, our goal is to compute + +in such a way that

+
    +
  1. Neither party learns the other party's value
  2. +
  3. Neither party learns , only their respective shares of .
  4. +
+

We will use two maliciously secure protocols described on p.25 in the paper Efficient Secure Two-Party Exponentiation:

+
    +
  • A2M protocol, which converts additive shares into multiplicative shares, i.e. given shares a and b such that a + b = c, it converts them into shares d and e such that d * e = c
  • +
  • M2A protocol, which converts multiplicative shares into additive shares
  • +
+

We apply A2M to to get and also we apply A2M to to get . Then the above can be rewritten as:

+

+

Then the first party locally computes the first factor and gets , the second party locally computes the second factor and gets . Then we can again rewrite as:

+

+

Now we apply M2A to to get , which leads us to two final terms each of which is the share of of the respective party:

+

+
+

Overview

+

The pre-master secret (PMS) must be put through a PRF (pseudo-random function) defined by the TLS spec in order to compute the symmetric TLS keys and also to compute the verify_data for the Client_Finished and the Server_Finished messages.

+

Below we describe how the parties (N stands for Notary and U stands for User) who have their shares of PMS can use 2PC to compute the PRF.

+
+

Since the TLSNotary protocol already uses Garbled Circuits and Oblivious Transfer which give 128-bit computational security for the parties against each other, we argue that it is acceptable to perform some PRF computations outside of 2PC as long as it is done with at least 128-bit security. +Performing some PRF computations outside of 2PC allows to save on computation and bandwidth.

+
+
+

Note that the User's TLS connection retains the standard TLS security guarantees against any third-party adversary.

+
+

To elaborate, recall how HMAC is computed (assuming |k| <= block size):

+
HMAC(k, m) = H((k ⊕ opad) | H((k ⊕ ipad) | m))
+
+

Notice that both H(k ⊕ opad) and H(k ⊕ ipad) can be computed separately prior to finalization. In this +document we name these units as such:

+
    +
  • outer hash state: H(k ⊕ opad)
  • +
  • inner hash state: H(k ⊕ ipad)
  • +
  • inner hash: H((k ⊕ ipad) | m)
  • +
+

In TLS, the master secret is computed like so:

+
seed = "master secret" | client_random | server_random
+a0 = seed
+a1 = HMAC(pms, a0)
+a2 = HMAC(pms, a1)
+p1 = HMAC(pms, a1 | seed)
+p2 = HMAC(pms, a2 | seed)
+ms = (p1 | p2)[:48]
+
+

Notice that in each step the key, in this case PMS, is constant. Thus both the outer and inner hash state can be reused for each step.

+

Below is the description of the all the steps to compute the PRF both inside and outside the 2PC circuit.

+

Computing the master secret

+

Inside the circuit

+
    +
  1. To evaluate the circuit, the parties input their PMS shares. The circuit outputs:
  2. +
+
    +
  • H(PMS ⊕ opad) called PMS outer hash state to N and
  • +
  • H(PMS ⊕ ipad) called PMS inner hash state to U
  • +
+

Outside the circuit

+
    +
  1. +

    U computes H((PMS ⊕ ipad) || a0) called inner hash of a1 and passes it to N.

    +
  2. +
  3. +

    N computes a1 and passes it to U.

    +
  4. +
  5. +

    U computes the inner hash of a2 and passes it to N.

    +
  6. +
  7. +

    N computes a2 and passes it to U.

    +
  8. +
  9. +

    U computes the inner hash of p2 and passes it to N.

    +
  10. +
  11. +

    N computes p2 and passes it to U. +>Note that now both parties know p2 which is the last 16 bytes of the master secret. They still don't know the other 32 bytes of the master secret, which ensures adequate security.

    +
  12. +
  13. +

    U computes the inner hash of p1.

    +
  14. +
+

Inside the circuit

+
    +
  1. To evaluate the circuit, N inputs the PMS outer hash state and U inputs p2 and the inner hash of p1. The circuit computes the master secret (MS).
  2. +
+

Computing the expanded keys

+

The parties proceed to compute the expanded keys. The corresponding python code is:

+
seed = str.encode("key expansion") + server_random + client_random
+a0 = seed
+a1 = hmac.new(ms , a0, hashlib.sha256).digest()
+a2 = hmac.new(ms , a1, hashlib.sha256).digest()
+p1 = hmac.new(ms, a1+seed, hashlib.sha256).digest()
+p2 = hmac.new(ms, a2+seed, hashlib.sha256).digest()
+ek = (p1 + p2)[:40]
+client_write_key = ek[:16]
+server_write_key = ek[16:32]
+client_write_IV = ek[32:36]
+server_write_IV = ek[36:40]
+
+

Inside the circuit

+
    +
  1. Having computed MS, the circuit outputs:
  2. +
+
    +
  • H(MS ⊕ opad) called the MS outer hash state to N and
  • +
  • H(MS ⊕ ipad) called the MS inner hash state to U
  • +
+

Outside the circuit

+
    +
  1. +

    U computes the inner hash of a1 and sends it to N.

    +
  2. +
  3. +

    N computes a1 and sends it to U.

    +
  4. +
  5. +

    U computes the inner hash of a2 and sends it to N.

    +
  6. +
  7. +

    N computes a2 and sends it to U.

    +
  8. +
  9. +

    U computes the inner hash state of p1 and the inner hash state of p2.

    +
  10. +
+

Inside the circuit

+
    +
  1. To evaluate the circuit, N inputs MS outer hash state (from Step 10) and U inputs inner hash state of p1 and inner hash state of p2. The circuit computes p1 and p2. The circuit outputs xor shares of the expanded keys to each party.
  2. +
+

Computing the encrypted Client_Finished

+

Inside the circuit

+
    +
  1. To evaluate the circuit, the parties input their shares of the expanded keys. The circuit outputs data needed to encrypt and authenticate the Client_Finished (CF) message.
  2. +
+

Outside the circuit

+

The parties proceed to compute verify_data for the CF message. The corresponding python code is:

+
# (handshake_hash) is a sha256 hash of all TLS handshake message up to this point
+seed = str.encode('client finished') + handshake_hash
+a0 = seed
+a1 = hmac.new(ms, a0, hashlib.sha256).digest()
+p1 = hmac.new(ms, a1+seed, hashlib.sha256).digest()
+verify_data = p1[:12]
+
+
    +
  1. +

    U computes inner hash of a1 and sends it to N.

    +
  2. +
  3. +

    N (who has MS outer hash state from Step 10) computes a1 and sends it to U.

    +
  4. +
  5. +

    U computes inner hash of p1 and sends it to N.

    +
  6. +
  7. +

    N computes p1 and gets verify_data and sends it to U.

    +
  8. +
+
+

Note that it is safe for N to know verify_data for CF.

+
+

Using the data from Step 17, U proceeds to encrypt and authenticate CF and sends it to the webserver.

+

Verifying the Server_Finished

+

Upon U's receiving the encrypted Server_Finished (SF) from the webserver, the parties proceed to compute verify_data for SF, to enable U to check that the received SF is correct. The corresponding python code is:

+
# (handshake_hash) is a sha256 hash of all TLS handshake message up to this point
+seed = str.encode('server finished') + handshake_hash
+a0 = seed
+a1 = hmac.new(ms, a0, hashlib.sha256).digest()
+p1 = hmac.new(ms, a1+seed, hashlib.sha256).digest()
+verify_data = p1[:12]
+
+

Outside the circuit

+
    +
  1. +

    U computes inner hash of a1 and sends it to N.

    +
  2. +
  3. +

    N (who has MS outer hash state from Step 10) computes a1 and sends it to U.

    +
  4. +
  5. +

    U computes inner hash of p1.

    +
  6. +
+

Inside the circuit

+
    +
  1. To evaluate the circuit, N inputs MS outer hash state (from Step 10) and U inputs inner hash of p1. The circuit outputs verify_data for SF to U.
  2. +
+

The parties proceed to decrypt and authenticate the SF in 2PC. U checks that verify_data from SF matches verify_data from Step 25.

+
+

Encryption

+

Here we will explain our protocol for 2PC encryption using a block cipher in counter-mode.

+

Our documentation on Dual Execution with Asymmetric Privacy is recommended prior reading for this section.

+

Preliminary

+

Ephemeral Keyshare

+

It is important to recognise that the Notary's keyshare is an ephemeral secret. It is only private for the duration of the User's TLS session, after which the User is free to learn it without affecting the security of the protocol.

+

It is this fact which allows us to achieve malicious security for relatively low cost. More details on this here.

+

Premature Leakage

+

A small amount of undetected premature keyshare leakage is quite tolerable. For example, if the Notary leaks 3 bits of their keyshare, it gives the User no meaningful advantage in any attack, as she could have simply guessed the bits correctly with probability and mounted the same attack. Assuming a sufficiently long cipher key is used, eg. 128 bits, this is not a concern.

+

The equality check at the end of our protocol ensures that premature leakage is detected with a probability of where k is the number of leaked bits. The Notary is virtually guaranteed to detect significant leakage and can abort prior to notarization.

+

Plaintext Leakage

+

Our protocol assures no leakage of the plaintext to the Notary during both encryption and decryption. The Notary reveals their keyshare at the end of the protocol, which allows the Notary to open their garbled circuits and oblivious transfers completely to the User. The User can then perform a series of consistency checks to ensure that the Notary behaved honestly. Because these consistency checks do not depend on any inputs of the User, aborting does not reveal any sensitive information (in contrast to standard DualEx which does).

+

Integrity

+

During the entirety of the TLS session the User performs the role of the garbled circuit generator, thus ensuring that a malicious Notary can not corrupt or otherwise compromise the integrity of messages sent to/from the Server.

+

Notation

+
    +
  • is one block of plaintext
  • +
  • is the corresponding block of ciphertext, ie
  • +
  • is the cipher key
  • +
  • is the counter block
  • +
  • and denote the User and Notary cipher keyshares, respectively, where
  • +
  • is a mask randomly selected by the User
  • +
  • is the encrypted counter-block, ie
  • +
  • denotes the block cipher used by the TLS session
  • +
  • denotes a binding commitment to the value
  • +
  • denotes a garbled encoding of chosen by party
  • +
+

Encryption Protocol

+

The encryption protocol uses DEAP without any special variations. The User and Notary directly compute the ciphertext for each block of a message the User wishes to send to the Server:

+

+

The User creates a commitment to the plaintext active labels for the Notary's circuit where is a random key known only to the User. The User sends this commitment to the Notary to be used in the authdecode protocol later. It's critical that the User commits to prior to the Notary revealing in the final phase of DEAP. This ensures that if is a commitment to valid labels, then it must be a valid commitment to the plaintext . This is because learning the complementary wire label for any bit of prior to learning is virtually impossible.

+

Decryption Protocol

+

The protocol for decryption is very similar but has some key differences to encryption.

+

For decryption, DEAP is used for every block of the ciphertext to compute the masked encrypted counter-block:

+

+

This mask , chosen by the User, hides from the Notary and thus the plaintext too. Conversely, the User can simply remove this mask in order to compute the plaintext .

+

Following this, the User can retrieve the wire labels from the Notary using OT.

+

Similarly to the procedure for encryption, the User creates a commitment where is a random key known only to the User. The User sends this commitment to the Notary to be used in the authdecode protocol later.

+

Proving the validity of

+

In addition to computing the masked encrypted counter-block, the User must also prove that the labels they chose afterwards actually correspond to the ciphertext sent by the Server.

+

This is can be done efficiently in one execution using the zero-knowledge protocol described in [JKO13] the same as we do in the final phase of DEAP.

+

The Notary garbles a circuit which computes:

+

+

Notice that the User and Notary will already have computed when they computed earlier. Conveniently, the Notary can re-use the garbled labels as input labels for this circuit. For more details on the reuse of garbled labels see [AMR17].

+
+

Commitment

+

At the end of the TLSNotary protocol, the User has the authenticated AES ciphertext which can be thought of as a commitment to the plaintext. This form of commitment is not amenable to use cases when the User wants to make part of the plaintext public while keeping another part private. Naively, the User's option is to prove the decryption of the ciphertext in zero-knowledge which is computationally expensive.

+

We describe two less computationally heavy approaches for converting the AES ciphertext commitments.

+

The first approach is useful for commitments to the data which the User intends to make public. It is based on decrypting the ciphertext with Garbled Circuits and producing a hash commitment to the wire labels.

+

The second approach is useful for commitments to the private data which the User later intends to prove statements about in zero-knowledge. This approach produces a Poseidon hash over the private data.

+
+

Commitment to public data

+

We describe an interactive protocol between the User U and the Notary N, whereby U can convert the authenticated AES ciphertext into a hash commitment to Garbled Circuits wire labels.

+

Creating the new commitment

+
    +
  1. +

    At the end of the TLSNotary session, both U and N know the authenticated AES ciphertext.

    +
  2. +
  3. +

    N reveals his TLS session key shares to U.

    +
  4. +
  5. +

    U decrypts the ciphertext in the clear and learns the plaintext p.

    +
  6. +
  7. +

    N picks a seed and uses it as the source of randomness to generate (in the semi-honest model) a privacy-free garbled circuit whose functionality is to accept the plaintext input, encrypt it, and output the ciphertext.

    +
  8. +
  9. +

    With p as her circuit input, U receives input wire labels IWLs via Oblivious Transfer and then evaluates the circuit on those IWLs. The result of the evaluation are output wire labels OWLs which U does not know the decoding for.

    +
  10. +
  11. +

    U sends two commitments: commitment to IWLs and commitment to OWLs to N.

    +
  12. +
  13. +

    N reveals the seed and U checks that the circuit (including its IWLs and OWLs) was generated correctly and, if successful, reveals her OWLs.

    +
  14. +
  15. +

    N verifies commitment to OWLs and then checks that decoded OWLs match the ciphertext (from Step 0) and, if successful, signs (seed + commitment to IWLs).

    +
  16. +
+
+

Now, (seed + commitment to IWLs) become U's new commitment to p.

+
+

Verifying the commitment

+

Verifier performs the following steps:

+
    +
  1. +

    Receives the following from U: plaintext p, signature for (seed + commitment to IWLs), seed, commitment to IWLs.

    +
  2. +
  3. +

    (using a trusted Ns pubkey) Verifies the signature.

    +
  4. +
  5. +

    Re-generates the IWLs from the seed.

    +
  6. +
  7. +

    Picks only those IWLs which correspond to p and checks that the commitment to those IWLs matches commitment to IWLs.

    +
  8. +
  9. +

    Accepts p as authentic.

    +
  10. +
+

Dynamic commitment using a Merkle tree

+

In situations where U does not know in advance which subset of the public data she will be revealing later to the Verifier, U can commit to the Merkle tree of all her input wire labels (from Step 4 above). +Later, U can reveal only those Merkle leaves which she wants to make public to the Verifier.

+
+

Secure 2-Party Computation

+
+

Dual Execution with Asymmetric Privacy

+

Introduction

+

Malicious secure 2-party computation with garbled circuits typically comes at the expense of dramatically lower efficiency compared to execution in the semi-honest model. One technique, called Dual Execution [MF06] [HKE12], achieves malicious security with a minimal 2x overhead. However, it comes with the concession that a malicious adversary may learn bits of the other's input with probability .

+

We present a variant of Dual Execution which provides different trade-offs. Our variant ensures complete privacy for one party, by sacrificing privacy entirely for the other. Hence the name, Dual Execution with Asymmetric Privacy (DEAP). During the execution phase of the protocol both parties have private inputs. The party with complete privacy learns the authentic output prior to the final stage of the protocol. In the final stage, prior to the equality check, one party reveals their private input. This allows a series of consistency checks to be performed which guarantees that the equality check can not cause leakage.

+

Similarly to standard DualEx, our variant ensures output correctness and detects leakage (of the revealing parties input) with probability where is the number of bits leaked.

+

Preliminary

+

The protocol takes place between Alice and Bob who want to compute where and are Alice and Bob's inputs respectively. The privacy of Alice's input is ensured, while Bob's input will be revealed in the final steps of the protocol.

+

Premature Leakage

+

Firstly, our protocol assumes a small amount of premature leakage of Bob's input is tolerable. By premature, we mean prior to the phase where Bob is expected to reveal his input.

+

If Alice is malicious, she has the opportunity to prematurely leak bits of Bob's input with probability of it going undetected.

+

Aborts

+

We assume that it is acceptable for either party to cause the protocol to abort at any time, with the condition that no information of Alice's inputs are leaked from doing so.

+

Committed Oblivious Transfer

+

In the last phase of our protocol Bob must open all oblivious transfers he sent to Alice. To achieve this, we require a very relaxed flavor of committed oblivious transfer. For more detail on these relaxations see section 2 of Zero-Knowledge Using Garbled Circuits [JKO13].

+

Notation

+
    +
  • and are Alice and Bob's inputs, respectively.
  • +
  • denotes an encoding of chosen by Alice.
  • +
  • and are Alice and Bob's encoded active inputs, respectively, ie .
  • +
  • denotes a binding commitment to
  • +
  • denotes a garbled circuit for computing , where: +
      +
    • +
    • .
    • +
    +
  • +
  • denotes output decoding information where
  • +
  • denotes the global offset of a garbled circuit where
  • +
  • denotes a secure pseudo-random generator
  • +
  • denotes a secure hash function
  • +
+

Protocol

+

The protocol can be thought of as three distinct phases: The setup phase, execution, and equality-check.

+

Setup

+
    +
  1. Alice creates a garbled circuit with corresponding input labels , and output label commitment .
  2. +
  3. Bob creates a garbled circuit with corresponding input labels .
  4. +
  5. For committed OT, Bob picks a seed and uses it to generate all random-tape for his OTs with . Bob sends to Alice.
  6. +
  7. Alice retrieves her active input labels from Bob using OT.
  8. +
  9. Bob retrieves his active input labels from Alice using OT.
  10. +
  11. Alice sends , , and to Bob.
  12. +
  13. Bob sends , , and to Alice.
  14. +
+

Execution

+

Both Alice and Bob can execute this phase of the protocol in parallel as described below:

+

Alice

+
    +
  1. Evaluates using and to acquire .
  2. +
  3. Decodes to using which she received earlier. She computes which we will call .
  4. +
  5. Computes a commitment where is a key only known to Alice. She sends this commitment to Bob.
  6. +
  7. Waits to receive from Bob1.
  8. +
  9. Checks that is authentic, aborting if not, then decodes to using .
  10. +
+

At this stage, if Bob is malicious, Alice could detect that . However, Alice must not react in this case. She proceeds with the protocol regardless, having the authentic output .

+

Bob

+
    +
  1. Evaluates using and to acquire . He checks against the commitment which Alice sent earlier, aborting if it is invalid.
  2. +
  3. Decodes to using which he received earlier. He computes which we'll call , and stores it for the equality check later.
  4. +
  5. Sends to Alice1.
  6. +
  7. Receives from Alice and stores it for the equality check later.
  8. +
+

Bob, even if malicious, has learned nothing except the purported output and is not convinced it is correct. In the next phase Alice will attempt to convince Bob that it is.

+

Alice, if honest, has learned the correct output thanks to the authenticity property of garbled circuits. Alice, if malicious, has potentially learned Bob's entire input .

+
1 +

This is a significant deviation from standard DualEx protocols such as [HKE12]. Typically the output labels are not returned to the Generator, instead, output authenticity is established during a secure equality check at the end. See the section below for more detail.

+
+

Equality Check

+
    +
  1. Bob opens his garbled circuit and OT by sending , and to Alice.
  2. +
  3. Alice, can now derive the purported input labels to Bob's garbled circuit .
  4. +
  5. Alice uses to open all of Bob's OTs for and verifies that they were performed honestly. Otherwise she aborts.
  6. +
  7. Alice verifies that was garbled honestly by checking . Otherwise she aborts.
  8. +
  9. Alice now opens by sending and to Bob.
  10. +
  11. Bob verifies then asserts , aborting otherwise.
  12. +
+

Bob is now convinced that is correct, ie . Bob is also assured that Alice only learned up to k bits of his input prior to revealing, with a probability of of it being undetected.

+

Analysis

+

Malicious Alice

+

On the Leakage of Corrupted Garbled Circuits [DPB18] is recommended reading on this topic.

+

During the first execution, Alice has some degrees of freedom in how she garbles . According to [DPB18], when using a modern garbling scheme such as [ZRE15], these corruptions can be analyzed as two distinct classes: detectable and undetectable.

+

Recall that our scheme assumes Bob's input is an ephemeral secret which can be revealed at the end. For this reason, we are entirely unconcerned about the detectable variety. Simply providing Bob with the output labels commitment is sufficient to detect these types of corruptions. In this context, our primary concern is regarding the correctness of the output of .

+

[DPB18] shows that any undetectable corruption made to is constrained to the arbitrary insertion or removal of NOT gates in the circuit, such that computes instead of . Note that any corruption of has an equivalent effect. [DPB18] also shows that Alice's ability to exploit this is constrained by the topology of the circuit.

+

Recall that in the final stage of our protocol Bob checks that the output of matches the output of , or more specifically:

+

+

For the moment we'll assume Bob garbles honestly and provides the same inputs for both evaluations.

+

+

In the scenario where Bob reveals the output of prior to Alice committing to there is a trivial adaptive attack available to Alice. As an extreme example, assume Alice could choose such that . For most practical functions this is not possible to garble without detection, but for the sake of illustration we humor the possibility. In this case she could simply compute where in order to pass the equality check.

+

To address this, Alice is forced to choose , and prior to Bob revealing the output. In this case it is obvious that any valid combination of must satisfy all constraints on . Thus, for any non-trivial , choosing a valid combination would be equivalent to guessing correctly. In which case, any attack would be detected by the equality check with probability where k is the number of guessed bits of . This result is acceptable within our model as explained earlier.

+

Malicious Bob

+

Zero-Knowledge Using Garbled Circuits [JKO13] is recommended reading on this topic.

+

The last stage of our variant is functionally equivalent to the protocol described in [JKO13]. After Alice evaluates and commits to , Bob opens his garbled circuit and all OTs entirely. Following this, Alice performs a series of consistency checks to detect any malicious behavior. These consistency checks do not depend on any of Alice's inputs, so any attempted selective failure attack by Bob would be futile.

+

Bob's only options are to behave honestly, or cause Alice to abort without leaking any information.

+

Malicious Alice & Bob

+

They deserve whatever they get.

+
+

Computing MAC in 2PC

+
    +
  1. What is a MAC
  2. +
  3. How a MAC is computed in AES-GCM
  4. +
  5. Computing MAC using secure two-party computation (2PC)
  6. +
+

1. What is a MAC

+

When sending an encrypted ciphertext to the Webserver, the User attaches a +checksum to it. The Webserver uses this checksum to check whether the ciphertext +has been tampered with while in transit. This checksum is known as the +"authentication tag" and also as the "Message Authentication Code" (MAC).

+

In order to create a MAC for some ciphertext not only the ciphertext but also +some secret key is used as an input. This makes it impossible to forge some +ciphertext without knowing the secret key.

+

The first few paragraphs of this article +explain what would happen if there was no MAC: it would be possible for a +malicious actor to modify the plaintext by flipping certain bits of the +ciphertext.

+

2. How a MAC is computed in AES-GCM

+

In TLS the plaintext is split up into chunks called "TLS records". Each TLS +record is encrypted and a MAC is computed for the ciphertext. The MAC (in +AES-GCM) is obtained by XORing together the GHASH output and the GCTR output. Let's see how each of those outputs is computed:

+

2.1 GCTR output

+

The GCTR output is computed by simply AES-ECB encrypting a counter block with +the counter set to 1 (the iv, nonce and AES key are the same as for the rest of +the TLS record).

+

2.2 GHASH output

+

The GHASH output is the output of the GHASH function described in the +NIST publication +in section 6.4 in this way: "In effect, the GHASH function calculates ". +and are elements of the extension field .

+
    +
  • "•" is a special type of multiplication called multiplication in a finite field described in section 6.3 of the NIST publication.
  • +
  • ⊕ is addition in a finite field and it is defined as XOR.
  • +
+

In other words, GHASH splits up the ciphertext into 16-byte blocks, each block +is numbered etc. There's also +which is called the GHASH key, which just is the AES-encrypted zero-block. We +need to raise to as many powers as there are blocks, i.e. if +we have 5 blocks then we need 5 powers: . +Each block is multiplied by the corresponding power and all products are summed +together.

+

Below is the pseudocode for multiplying two 128-bit field elements x and y +in :

+
1. result = 0
+2. R = 0xE1000000000000000000000000000000
+3. bit_length = 128
+4. for i=0 upto bit_length-1
+5.    if y[i] == 1
+6.       result ^= x
+7. x = (x >> 1) ^ ((x & 1) * R)
+8. return result
+
+

Standard math properties hold in finite field math, viz. commutative: +and distributive: .

+

3. Computing MAC using secure two-party computation (2PC)

+

The goal of the protocol is to compute the MAC in such a way that neither party +would learn the other party's share of i.e. the GHASH key +share. At the start of the protocol each party has:

+
    +
  1. ciphertext blocks .
  2. +
  3. XOR share of : the User has +and the Notary has .
  4. +
  5. XOR share of the GCTR output: the User has +and the Notary has .
  6. +
+

Note that 2. and 3. were obtained at an earlier stage of the TLSNotary protocol.

+

3.1 Example with a single ciphertext block

+

To illustrate what we want to achieve, we consider the case of just having +a single ciphertext block . The GHASH_output will be:

+

+

The User and the Notary will compute locally the left and the right terms +respectively. Then each party will XOR their result to the GCTR output share +and will get their XOR share of the MAC:

+

User :

+

Notary:

+

Finally, the Notary sends to the User who obtains:

+

+

For longer ciphertexts, the problem is that higher powers of the hashkey + cannot be computed locally, because we deal with additive sharings, +i.e..

+

3.2 Computing ciphertexts with an arbitrary number of blocks

+

We now introduce our 2PC MAC protocol for computing ciphertexts with an +arbitrary number of blocks. Our protocol can be divided into the following +steps.

+
Steps
+
    +
  1. First, both parties convert their additive shares and into +multiplicative shares and .
  2. +
  3. This allows each party to locally compute the needed higher powers of these multiplicative +shares, i.e for blocks of ciphertext: +
      +
    • the user computes
    • +
    • the notary computes
    • +
    +
  4. +
  5. Then both parties convert each of these multiplicative shares back to additive shares +
      +
    • the user ends up with
    • +
    • the notary ends up with
    • +
    +
  6. +
  7. Each party can now locally compute their additive MAC share .
  8. +
+

The conversion steps (1 and 3) require communication between the user +and the notary. They will use A2M (Addition-to-Multiplication) and M2A +(Multiplication-to-Addition) protocols, which make use of oblivious +transfer, to convert the shares. The user will be the sender and the notary +the receiver.

+

2PC MAC Overview

+

3.2.1 (A2M) Convert additive shares of H into multiplicative share

+

At first (step 1) we have to get a multiplicative share of , +so that notary and user can locally compute the needed higher powers. For this +we use an adapted version of the A2M protocol in chapter 4 of Efficient Secure +Two-Party Exponentiation.

+

The user will decompose his share into individual oblivious transfers +, where

+
    +
  • is some random value used for all oblivious transfers
  • +
  • is a random mask used per oblivious transfer, with
  • +
  • depending on the receiver's choice.
  • +
+

The notary's choice in the i-th OT will depend on the bit value in the i-th +position of his additive share . In the end the multiplicative share of +the user will simply be the inverse of the +random value, and the notary will sum all his OT outputs, so that all the + will vanish and hence he gets his multiplicative share +.

+

+

3.2.2 (M2A) Convert multiplicative shares into additive shares

+

In step 3 of our protocol, we use the oblivious transfer method described +in chapter 4.1 of the Gilboa paper Two Party RSA Key +Generation +to convert all the multiplicative shares back into +additive shares . We only show how the method works for the share +, because it is the same for higher powers.

+

The user will be the OT sender and decompose his shares into individual +oblivious transfers , +where , depending on the receiver's choices. Each of these +OTs is masked with a random value . He will then obliviously send them to +the notary. Depending on the binary representation of his multiplicative share, +the notary will choose one of the choices and do this for all 128 oblivious +transfers.

+

After that the user will locally XOR all his and end up with his additive +share , and the notary will do the same for all the results of the +oblivious transfers and get .

+

+

3.3 Free Squaring

+

In the actual implementation of the protocol we only compute odd multiplicative +shares, i.e. , so that +we only need to share these odd shares in step 3. This is possible because +we can compute even additive shares from odd additive shares. We observe that +for even :

+

+

So we only need to convert odd multiplicative shares into odd additive shares, +which gives us a 50% reduction in cost. The remaining even additive shares can +then be computed locally.

+

3.3 Creating a robust protocol

+

Both the A2M and M2A protocols on their own only provide semi-honest security. +They are secure against a malicious receiver, but the sender has degrees of +freedom to cause leakage of the MAC keyshares. However, for our purposes this +does not present a problem as long as leakage is detected.

+

To detect a malicious sender, we require the sender to commit to the PRG seed +used to generate the random values in the share conversion protocols. After the +TLS session is closed the MAC keyshares are no longer secret, which allows the +sender to reveal this seed to the receiver. Subsequently, the receiver can +perform a consistency check to make sure the sender followed the protocol +honestly.

+

3.3.1 Malicious notary

+

The protocol is secure against a malicious notary, because he is the OT +receiver, which means that there is actually no input from him during the +protocol execution except for the final MAC output. He just receives the OT +input from the user, so the only thing he can do is to provide a wrong MAC +keyshare. This will cause the server to reject the MAC when the user sends the +request. The protocol simply aborts.

+

3.3.2 Malicious user

+

A malicious user could actually manipulate what he sends in the OT and +potentially endanger the security of the protocol by leaking the notary's +MAC key. To address this we force the user to reveal his MAC key after the +server response so that the notary can check for the correctness of the whole +MAC 2PC protocol. Then if the notary detects that the user cheated, he would +simply abort the protocol.

+

The only problem when doing this is, that we want the whole TLSNotary protocol +to work under the assumption that the notary can intercept the traffic between +the user and the server. This would allow the notary to trick the user into +thinking that the TLS session is already terminated, if he can force the server +to respond. The user would send his MAC key share too early and the notary +could, now having the complete MAC key, forge the ciphertext and create a valid +MAC for it. He would then send this forged request to the server and forward the +response of the server to the user.

+

To prevent this scenario we need to make sure that the TLS connection to the +server is terminated before the user sends his MAC key share to the notary. +Following the TLS RFC, +we leverage close_notify to ensure all messages sent to the server have been +processed and the connection is closed. Unfortunately, many server TLS +implementations do not support close_notify. In these cases we instead send an +invalid message to the server which forces it to respond with a fatal alert +message and close the connection.

+
+

Finite-Field Arithmetic

+

Some protocols used in TLSNotary need to convert two-party sharings of products +or sums of some field elements into each other. For this purpose we use share +conversion protocols which use oblivious transfer (OT) as a sub-protocol. Here +we want to have a closer look at the security guarantees these protocols offer.

+

Adding covert security

+

Our goal is to add covert security to our share conversion protocols. This +means that we want an honest party to be able to detect a malicious adversary, +who is then able to abort the protocol. Our main concern is that the adversary +might be able to leak private inputs of the honest party without being noticed. +For this reason we require that the adversary cannot do anything which would +give him a better chance than guessing the private input at random, which is
+guessing bits with a probability of for not being detected.

+

In the following we want to have a closer look at how the sender and receiver can +deviate from the protocol.

+

Malicious receiver

+

Note that in our protocol a malicious receiver cannot forge the protocol output, +since he does not send anything to the sender during protocol execution. Even +when this protocol is embedded into an outer protocol, where at some point the +receiver has to open his output or a computation involving it, then all he can +do is to open an output with , which is just equivalent to +changing his input from .

+

Malicious sender

+

In the case of a malicious sender the following things can happen:

+
    +
  1. The sender can impose an arbitrary field element as input onto the +receiver without him noticing. To do this he simply sends in +every OT, where is i-th bit of .
  2. +
  3. The sender can execute a selective-failure attack, which allows him to learn +any predicate about the receiver's input. For each OT round , the sender +alters one of the OT values to be , where . This will cause that in the end the equation + no longer holds but only if the forged OT value has +actually been picked by the receiver.
  4. +
  5. The sender does not use a random number generator with a seed to sample +the masks , instead he simply chooses them at will.
  6. +
+

M2A Protocol Review

+

Without loss of generality let us recall the Multiplication-To-Addition (M2A) +protocol, but our observations also apply to the Addition-To-Multiplication +(A2M) protocol, which is very similar. We start with a short review of the M2A +protocol.

+

Let there be a sender with some field element and some receiver with another +field element . After protocol execution the sender ends up with and the +receiver ends up with , so that .

+
    +
  • +
  • - rng seed
  • +
  • - bit-length of elements in
  • +
  • - bit-length of rng seed
  • +
+

OT Sender

+

with input

+
    +
  1. Sample some random masks:
  2. +
  3. For every compute: +
      +
    • +
    • +
    +
  4. +
  5. Compute new share:
  6. +
  7. Send OTs to receiver:
  8. +
+

OT Receiver

+

with input

+
    +
  1. Set (from OT)
  2. +
  3. Compute new share:
  4. +
+

Replay protocol

+

In order to mitigate the mentioned protocol deviations in the case of a malicious +sender we will introduce a replay protocol.

+

In this section we will use capital letters for values sent in the replay +protocol, which in the case of an honest sender are equal to their lowercase +counterparts.

+

The idea for the replay protocol is that at some point after the conversion +protocol, the sender has to reveal the rng seed and his input to the +receiver. In order to do this, he will send and to the receiver after +the conversion protocol has been executed. If the sender is honest then of +course and . The receiver can then check if the value he picked +during protocol execution does match what he can now reconstruct from and +, i.e. that .

+

Using this replay protocol the sender at some point reveals all his secrets +because he sends his rng seed and protocol input to the receiver. This means +that we can only use covertly secure share conversion with replay as a +sub-protocol if it is acceptable for the outer protocol, that the input to +share-conversion becomes public at some later point.

+

Now in practice we often want to execute several rounds of share-conversion, as we +need to convert several field elements. Because of this we let the sender use +the same rng seed to seed his rng once and then he uses this rng instance +for all protocol rounds. This means we have protocol executions , and all masks produced from this rng seed . +So the sender will write his seed and all the to some tape, which in +the end is sent to the receiver. As a security precaution we also let the sender +commit to his rng seed before the first protocol execution. In detail:

+
Sender
+
    +
  1. Sender has some inputs and picks some rng seed .
  2. +
  3. Sender commits to his rng seed and sends the commitment to the receiver.
  4. +
  5. Sender sends all his OTs for protocol executions.
  6. +
  7. Sender sends tape which contains the rng seed and all the .
  8. +
+
Receiver
+
    +
  1. Receiver checks that is indeed the committed rng seed.
  2. +
  3. For every protocol execution the receiver checks that .
  4. +
+

Having a look at the ways a malicious sender could cheat from earlier, we +notice:

+
    +
  1. The sender can no longer impose an arbitrary field element onto the +receiver, because the receiver would notice that during the replay.
  2. +
  3. The sender can still carry out a selective-failure attack, but this is +equivalent to guessing bits of at random with a probability of + for being undetected.
  4. +
  5. The sender is now forced to use an rng seed to produce the masks, because +during the replay, these masks are reproduced from and indirectly checked +via .
  6. +
+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + + +
+ + diff --git a/protocol/2pc/2pc-mac-overview.png b/protocol/2pc/2pc-mac-overview.png new file mode 100644 index 0000000..01a69e7 Binary files /dev/null and b/protocol/2pc/2pc-mac-overview.png differ diff --git a/protocol/2pc/deap.html b/protocol/2pc/deap.html new file mode 100644 index 0000000..4908d05 --- /dev/null +++ b/protocol/2pc/deap.html @@ -0,0 +1,317 @@ + + + + + + Dual Execution with Asymmetric Privacy - tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+ +

Dual Execution with Asymmetric Privacy

+

Introduction

+

Malicious secure 2-party computation with garbled circuits typically comes at the expense of dramatically lower efficiency compared to execution in the semi-honest model. One technique, called Dual Execution [MF06] [HKE12], achieves malicious security with a minimal 2x overhead. However, it comes with the concession that a malicious adversary may learn bits of the other's input with probability .

+

We present a variant of Dual Execution which provides different trade-offs. Our variant ensures complete privacy for one party, by sacrificing privacy entirely for the other. Hence the name, Dual Execution with Asymmetric Privacy (DEAP). During the execution phase of the protocol both parties have private inputs. The party with complete privacy learns the authentic output prior to the final stage of the protocol. In the final stage, prior to the equality check, one party reveals their private input. This allows a series of consistency checks to be performed which guarantees that the equality check can not cause leakage.

+

Similarly to standard DualEx, our variant ensures output correctness and detects leakage (of the revealing parties input) with probability where is the number of bits leaked.

+

Preliminary

+

The protocol takes place between Alice and Bob who want to compute where and are Alice and Bob's inputs respectively. The privacy of Alice's input is ensured, while Bob's input will be revealed in the final steps of the protocol.

+

Premature Leakage

+

Firstly, our protocol assumes a small amount of premature leakage of Bob's input is tolerable. By premature, we mean prior to the phase where Bob is expected to reveal his input.

+

If Alice is malicious, she has the opportunity to prematurely leak bits of Bob's input with probability of it going undetected.

+

Aborts

+

We assume that it is acceptable for either party to cause the protocol to abort at any time, with the condition that no information of Alice's inputs are leaked from doing so.

+

Committed Oblivious Transfer

+

In the last phase of our protocol Bob must open all oblivious transfers he sent to Alice. To achieve this, we require a very relaxed flavor of committed oblivious transfer. For more detail on these relaxations see section 2 of Zero-Knowledge Using Garbled Circuits [JKO13].

+

Notation

+
    +
  • and are Alice and Bob's inputs, respectively.
  • +
  • denotes an encoding of chosen by Alice.
  • +
  • and are Alice and Bob's encoded active inputs, respectively, ie .
  • +
  • denotes a binding commitment to
  • +
  • denotes a garbled circuit for computing , where: +
      +
    • +
    • .
    • +
    +
  • +
  • denotes output decoding information where
  • +
  • denotes the global offset of a garbled circuit where
  • +
  • denotes a secure pseudo-random generator
  • +
  • denotes a secure hash function
  • +
+

Protocol

+

The protocol can be thought of as three distinct phases: The setup phase, execution, and equality-check.

+

Setup

+
    +
  1. Alice creates a garbled circuit with corresponding input labels , and output label commitment .
  2. +
  3. Bob creates a garbled circuit with corresponding input labels .
  4. +
  5. For committed OT, Bob picks a seed and uses it to generate all random-tape for his OTs with . Bob sends to Alice.
  6. +
  7. Alice retrieves her active input labels from Bob using OT.
  8. +
  9. Bob retrieves his active input labels from Alice using OT.
  10. +
  11. Alice sends , , and to Bob.
  12. +
  13. Bob sends , , and to Alice.
  14. +
+

Execution

+

Both Alice and Bob can execute this phase of the protocol in parallel as described below:

+

Alice

+
    +
  1. Evaluates using and to acquire .
  2. +
  3. Decodes to using which she received earlier. She computes which we will call .
  4. +
  5. Computes a commitment where is a key only known to Alice. She sends this commitment to Bob.
  6. +
  7. Waits to receive from Bob1.
  8. +
  9. Checks that is authentic, aborting if not, then decodes to using .
  10. +
+

At this stage, if Bob is malicious, Alice could detect that . However, Alice must not react in this case. She proceeds with the protocol regardless, having the authentic output .

+

Bob

+
    +
  1. Evaluates using and to acquire . He checks against the commitment which Alice sent earlier, aborting if it is invalid.
  2. +
  3. Decodes to using which he received earlier. He computes which we'll call , and stores it for the equality check later.
  4. +
  5. Sends to Alice1.
  6. +
  7. Receives from Alice and stores it for the equality check later.
  8. +
+

Bob, even if malicious, has learned nothing except the purported output and is not convinced it is correct. In the next phase Alice will attempt to convince Bob that it is.

+

Alice, if honest, has learned the correct output thanks to the authenticity property of garbled circuits. Alice, if malicious, has potentially learned Bob's entire input .

+
1 +

This is a significant deviation from standard DualEx protocols such as [HKE12]. Typically the output labels are not returned to the Generator, instead, output authenticity is established during a secure equality check at the end. See the section below for more detail.

+
+

Equality Check

+
    +
  1. Bob opens his garbled circuit and OT by sending , and to Alice.
  2. +
  3. Alice, can now derive the purported input labels to Bob's garbled circuit .
  4. +
  5. Alice uses to open all of Bob's OTs for and verifies that they were performed honestly. Otherwise she aborts.
  6. +
  7. Alice verifies that was garbled honestly by checking . Otherwise she aborts.
  8. +
  9. Alice now opens by sending and to Bob.
  10. +
  11. Bob verifies then asserts , aborting otherwise.
  12. +
+

Bob is now convinced that is correct, ie . Bob is also assured that Alice only learned up to k bits of his input prior to revealing, with a probability of of it being undetected.

+

Analysis

+

Malicious Alice

+

On the Leakage of Corrupted Garbled Circuits [DPB18] is recommended reading on this topic.

+

During the first execution, Alice has some degrees of freedom in how she garbles . According to [DPB18], when using a modern garbling scheme such as [ZRE15], these corruptions can be analyzed as two distinct classes: detectable and undetectable.

+

Recall that our scheme assumes Bob's input is an ephemeral secret which can be revealed at the end. For this reason, we are entirely unconcerned about the detectable variety. Simply providing Bob with the output labels commitment is sufficient to detect these types of corruptions. In this context, our primary concern is regarding the correctness of the output of .

+

[DPB18] shows that any undetectable corruption made to is constrained to the arbitrary insertion or removal of NOT gates in the circuit, such that computes instead of . Note that any corruption of has an equivalent effect. [DPB18] also shows that Alice's ability to exploit this is constrained by the topology of the circuit.

+

Recall that in the final stage of our protocol Bob checks that the output of matches the output of , or more specifically:

+

+

For the moment we'll assume Bob garbles honestly and provides the same inputs for both evaluations.

+

+

In the scenario where Bob reveals the output of prior to Alice committing to there is a trivial adaptive attack available to Alice. As an extreme example, assume Alice could choose such that . For most practical functions this is not possible to garble without detection, but for the sake of illustration we humor the possibility. In this case she could simply compute where in order to pass the equality check.

+

To address this, Alice is forced to choose , and prior to Bob revealing the output. In this case it is obvious that any valid combination of must satisfy all constraints on . Thus, for any non-trivial , choosing a valid combination would be equivalent to guessing correctly. In which case, any attack would be detected by the equality check with probability where k is the number of guessed bits of . This result is acceptable within our model as explained earlier.

+

Malicious Bob

+

Zero-Knowledge Using Garbled Circuits [JKO13] is recommended reading on this topic.

+

The last stage of our variant is functionally equivalent to the protocol described in [JKO13]. After Alice evaluates and commits to , Bob opens his garbled circuit and all OTs entirely. Following this, Alice performs a series of consistency checks to detect any malicious behavior. These consistency checks do not depend on any of Alice's inputs, so any attempted selective failure attack by Bob would be futile.

+

Bob's only options are to behave honestly, or cause Alice to abort without leaking any information.

+

Malicious Alice & Bob

+

They deserve whatever they get.

+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + +
+ + diff --git a/protocol/2pc/ff-arithmetic.html b/protocol/2pc/ff-arithmetic.html new file mode 100644 index 0000000..9015f07 --- /dev/null +++ b/protocol/2pc/ff-arithmetic.html @@ -0,0 +1,335 @@ + + + + + + Finite-Field Arithmetic - tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+ +

Finite-Field Arithmetic

+

Some protocols used in TLSNotary need to convert two-party sharings of products +or sums of some field elements into each other. For this purpose we use share +conversion protocols which use oblivious transfer (OT) as a sub-protocol. Here +we want to have a closer look at the security guarantees these protocols offer.

+

Adding covert security

+

Our goal is to add covert security to our share conversion protocols. This +means that we want an honest party to be able to detect a malicious adversary, +who is then able to abort the protocol. Our main concern is that the adversary +might be able to leak private inputs of the honest party without being noticed. +For this reason we require that the adversary cannot do anything which would +give him a better chance than guessing the private input at random, which is
+guessing bits with a probability of for not being detected.

+

In the following we want to have a closer look at how the sender and receiver can +deviate from the protocol.

+

Malicious receiver

+

Note that in our protocol a malicious receiver cannot forge the protocol output, +since he does not send anything to the sender during protocol execution. Even +when this protocol is embedded into an outer protocol, where at some point the +receiver has to open his output or a computation involving it, then all he can +do is to open an output with , which is just equivalent to +changing his input from .

+

Malicious sender

+

In the case of a malicious sender the following things can happen:

+
    +
  1. The sender can impose an arbitrary field element as input onto the +receiver without him noticing. To do this he simply sends in +every OT, where is i-th bit of .
  2. +
  3. The sender can execute a selective-failure attack, which allows him to learn +any predicate about the receiver's input. For each OT round , the sender +alters one of the OT values to be , where . This will cause that in the end the equation + no longer holds but only if the forged OT value has +actually been picked by the receiver.
  4. +
  5. The sender does not use a random number generator with a seed to sample +the masks , instead he simply chooses them at will.
  6. +
+

M2A Protocol Review

+

Without loss of generality let us recall the Multiplication-To-Addition (M2A) +protocol, but our observations also apply to the Addition-To-Multiplication +(A2M) protocol, which is very similar. We start with a short review of the M2A +protocol.

+

Let there be a sender with some field element and some receiver with another +field element . After protocol execution the sender ends up with and the +receiver ends up with , so that .

+
    +
  • +
  • - rng seed
  • +
  • - bit-length of elements in
  • +
  • - bit-length of rng seed
  • +
+

OT Sender

+

with input

+
    +
  1. Sample some random masks:
  2. +
  3. For every compute: +
      +
    • +
    • +
    +
  4. +
  5. Compute new share:
  6. +
  7. Send OTs to receiver:
  8. +
+

OT Receiver

+

with input

+
    +
  1. Set (from OT)
  2. +
  3. Compute new share:
  4. +
+

Replay protocol

+

In order to mitigate the mentioned protocol deviations in the case of a malicious +sender we will introduce a replay protocol.

+

In this section we will use capital letters for values sent in the replay +protocol, which in the case of an honest sender are equal to their lowercase +counterparts.

+

The idea for the replay protocol is that at some point after the conversion +protocol, the sender has to reveal the rng seed and his input to the +receiver. In order to do this, he will send and to the receiver after +the conversion protocol has been executed. If the sender is honest then of +course and . The receiver can then check if the value he picked +during protocol execution does match what he can now reconstruct from and +, i.e. that .

+

Using this replay protocol the sender at some point reveals all his secrets +because he sends his rng seed and protocol input to the receiver. This means +that we can only use covertly secure share conversion with replay as a +sub-protocol if it is acceptable for the outer protocol, that the input to +share-conversion becomes public at some later point.

+

Now in practice we often want to execute several rounds of share-conversion, as we +need to convert several field elements. Because of this we let the sender use +the same rng seed to seed his rng once and then he uses this rng instance +for all protocol rounds. This means we have protocol executions , and all masks produced from this rng seed . +So the sender will write his seed and all the to some tape, which in +the end is sent to the receiver. As a security precaution we also let the sender +commit to his rng seed before the first protocol execution. In detail:

+
Sender
+
    +
  1. Sender has some inputs and picks some rng seed .
  2. +
  3. Sender commits to his rng seed and sends the commitment to the receiver.
  4. +
  5. Sender sends all his OTs for protocol executions.
  6. +
  7. Sender sends tape which contains the rng seed and all the .
  8. +
+
Receiver
+
    +
  1. Receiver checks that is indeed the committed rng seed.
  2. +
  3. For every protocol execution the receiver checks that .
  4. +
+

Having a look at the ways a malicious sender could cheat from earlier, we +notice:

+
    +
  1. The sender can no longer impose an arbitrary field element onto the +receiver, because the receiver would notice that during the replay.
  2. +
  3. The sender can still carry out a selective-failure attack, but this is +equivalent to guessing bits of at random with a probability of + for being undetected.
  4. +
  5. The sender is now forced to use an rng seed to produce the masks, because +during the replay, these masks are reproduced from and indirectly checked +via .
  6. +
+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + +
+ + diff --git a/protocol/2pc/garbled_circuits.html b/protocol/2pc/garbled_circuits.html new file mode 100644 index 0000000..cf55d88 --- /dev/null +++ b/protocol/2pc/garbled_circuits.html @@ -0,0 +1,224 @@ + + + + + + Secure 2-Party Computation - tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+ +

Secure 2-Party Computation

+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + +
+ + diff --git a/protocol/2pc/mac.html b/protocol/2pc/mac.html new file mode 100644 index 0000000..6824077 --- /dev/null +++ b/protocol/2pc/mac.html @@ -0,0 +1,421 @@ + + + + + + MAC - tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+ +

Computing MAC in 2PC

+
    +
  1. What is a MAC
  2. +
  3. How a MAC is computed in AES-GCM
  4. +
  5. Computing MAC using secure two-party computation (2PC)
  6. +
+

1. What is a MAC

+

When sending an encrypted ciphertext to the Webserver, the User attaches a +checksum to it. The Webserver uses this checksum to check whether the ciphertext +has been tampered with while in transit. This checksum is known as the +"authentication tag" and also as the "Message Authentication Code" (MAC).

+

In order to create a MAC for some ciphertext not only the ciphertext but also +some secret key is used as an input. This makes it impossible to forge some +ciphertext without knowing the secret key.

+

The first few paragraphs of this article +explain what would happen if there was no MAC: it would be possible for a +malicious actor to modify the plaintext by flipping certain bits of the +ciphertext.

+

2. How a MAC is computed in AES-GCM

+

In TLS the plaintext is split up into chunks called "TLS records". Each TLS +record is encrypted and a MAC is computed for the ciphertext. The MAC (in +AES-GCM) is obtained by XORing together the GHASH output and the GCTR output. Let's see how each of those outputs is computed:

+

2.1 GCTR output

+

The GCTR output is computed by simply AES-ECB encrypting a counter block with +the counter set to 1 (the iv, nonce and AES key are the same as for the rest of +the TLS record).

+

2.2 GHASH output

+

The GHASH output is the output of the GHASH function described in the +NIST publication +in section 6.4 in this way: "In effect, the GHASH function calculates ". +and are elements of the extension field .

+
    +
  • "•" is a special type of multiplication called multiplication in a finite field described in section 6.3 of the NIST publication.
  • +
  • ⊕ is addition in a finite field and it is defined as XOR.
  • +
+

In other words, GHASH splits up the ciphertext into 16-byte blocks, each block +is numbered etc. There's also +which is called the GHASH key, which just is the AES-encrypted zero-block. We +need to raise to as many powers as there are blocks, i.e. if +we have 5 blocks then we need 5 powers: . +Each block is multiplied by the corresponding power and all products are summed +together.

+

Below is the pseudocode for multiplying two 128-bit field elements x and y +in :

+
1. result = 0
+2. R = 0xE1000000000000000000000000000000
+3. bit_length = 128
+4. for i=0 upto bit_length-1
+5.    if y[i] == 1
+6.       result ^= x
+7. x = (x >> 1) ^ ((x & 1) * R)
+8. return result
+
+

Standard math properties hold in finite field math, viz. commutative: +and distributive: .

+

3. Computing MAC using secure two-party computation (2PC)

+

The goal of the protocol is to compute the MAC in such a way that neither party +would learn the other party's share of i.e. the GHASH key +share. At the start of the protocol each party has:

+
    +
  1. ciphertext blocks .
  2. +
  3. XOR share of : the User has +and the Notary has .
  4. +
  5. XOR share of the GCTR output: the User has +and the Notary has .
  6. +
+

Note that 2. and 3. were obtained at an earlier stage of the TLSNotary protocol.

+

3.1 Example with a single ciphertext block

+

To illustrate what we want to achieve, we consider the case of just having +a single ciphertext block . The GHASH_output will be:

+

+

The User and the Notary will compute locally the left and the right terms +respectively. Then each party will XOR their result to the GCTR output share +and will get their XOR share of the MAC:

+

User :

+

Notary:

+

Finally, the Notary sends to the User who obtains:

+

+

For longer ciphertexts, the problem is that higher powers of the hashkey + cannot be computed locally, because we deal with additive sharings, +i.e..

+

3.2 Computing ciphertexts with an arbitrary number of blocks

+

We now introduce our 2PC MAC protocol for computing ciphertexts with an +arbitrary number of blocks. Our protocol can be divided into the following +steps.

+
Steps
+
    +
  1. First, both parties convert their additive shares and into +multiplicative shares and .
  2. +
  3. This allows each party to locally compute the needed higher powers of these multiplicative +shares, i.e for blocks of ciphertext: +
      +
    • the user computes
    • +
    • the notary computes
    • +
    +
  4. +
  5. Then both parties convert each of these multiplicative shares back to additive shares +
      +
    • the user ends up with
    • +
    • the notary ends up with
    • +
    +
  6. +
  7. Each party can now locally compute their additive MAC share .
  8. +
+

The conversion steps (1 and 3) require communication between the user +and the notary. They will use A2M (Addition-to-Multiplication) and M2A +(Multiplication-to-Addition) protocols, which make use of oblivious +transfer, to convert the shares. The user will be the sender and the notary +the receiver.

+

2PC MAC Overview

+

3.2.1 (A2M) Convert additive shares of H into multiplicative share

+

At first (step 1) we have to get a multiplicative share of , +so that notary and user can locally compute the needed higher powers. For this +we use an adapted version of the A2M protocol in chapter 4 of Efficient Secure +Two-Party Exponentiation.

+

The user will decompose his share into individual oblivious transfers +, where

+
    +
  • is some random value used for all oblivious transfers
  • +
  • is a random mask used per oblivious transfer, with
  • +
  • depending on the receiver's choice.
  • +
+

The notary's choice in the i-th OT will depend on the bit value in the i-th +position of his additive share . In the end the multiplicative share of +the user will simply be the inverse of the +random value, and the notary will sum all his OT outputs, so that all the + will vanish and hence he gets his multiplicative share +.

+

+

3.2.2 (M2A) Convert multiplicative shares into additive shares

+

In step 3 of our protocol, we use the oblivious transfer method described +in chapter 4.1 of the Gilboa paper Two Party RSA Key +Generation +to convert all the multiplicative shares back into +additive shares . We only show how the method works for the share +, because it is the same for higher powers.

+

The user will be the OT sender and decompose his shares into individual +oblivious transfers , +where , depending on the receiver's choices. Each of these +OTs is masked with a random value . He will then obliviously send them to +the notary. Depending on the binary representation of his multiplicative share, +the notary will choose one of the choices and do this for all 128 oblivious +transfers.

+

After that the user will locally XOR all his and end up with his additive +share , and the notary will do the same for all the results of the +oblivious transfers and get .

+

+

3.3 Free Squaring

+

In the actual implementation of the protocol we only compute odd multiplicative +shares, i.e. , so that +we only need to share these odd shares in step 3. This is possible because +we can compute even additive shares from odd additive shares. We observe that +for even :

+

+

So we only need to convert odd multiplicative shares into odd additive shares, +which gives us a 50% reduction in cost. The remaining even additive shares can +then be computed locally.

+

3.3 Creating a robust protocol

+

Both the A2M and M2A protocols on their own only provide semi-honest security. +They are secure against a malicious receiver, but the sender has degrees of +freedom to cause leakage of the MAC keyshares. However, for our purposes this +does not present a problem as long as leakage is detected.

+

To detect a malicious sender, we require the sender to commit to the PRG seed +used to generate the random values in the share conversion protocols. After the +TLS session is closed the MAC keyshares are no longer secret, which allows the +sender to reveal this seed to the receiver. Subsequently, the receiver can +perform a consistency check to make sure the sender followed the protocol +honestly.

+

3.3.1 Malicious notary

+

The protocol is secure against a malicious notary, because he is the OT +receiver, which means that there is actually no input from him during the +protocol execution except for the final MAC output. He just receives the OT +input from the user, so the only thing he can do is to provide a wrong MAC +keyshare. This will cause the server to reject the MAC when the user sends the +request. The protocol simply aborts.

+

3.3.2 Malicious user

+

A malicious user could actually manipulate what he sends in the OT and +potentially endanger the security of the protocol by leaking the notary's +MAC key. To address this we force the user to reveal his MAC key after the +server response so that the notary can check for the correctness of the whole +MAC 2PC protocol. Then if the notary detects that the user cheated, he would +simply abort the protocol.

+

The only problem when doing this is, that we want the whole TLSNotary protocol +to work under the assumption that the notary can intercept the traffic between +the user and the server. This would allow the notary to trick the user into +thinking that the TLS session is already terminated, if he can force the server +to respond. The user would send his MAC key share too early and the notary +could, now having the complete MAC key, forge the ciphertext and create a valid +MAC for it. He would then send this forged request to the server and forward the +response of the server to the user.

+

To prevent this scenario we need to make sure that the TLS connection to the +server is terminated before the user sends his MAC key share to the notary. +Following the TLS RFC, +we leverage close_notify to ensure all messages sent to the server have been +processed and the connection is closed. Unfortunately, many server TLS +implementations do not support close_notify. In these cases we instead send an +invalid message to the server which forces it to respond with a fatal alert +message and close the connection.

+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + +
+ + diff --git a/protocol/index.html b/protocol/index.html new file mode 100644 index 0000000..be8e1c0 --- /dev/null +++ b/protocol/index.html @@ -0,0 +1,224 @@ + + + + + + Protocol - tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+ +

Protocol

+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + +
+ + diff --git a/protocol/notarization/commitment.html b/protocol/notarization/commitment.html new file mode 100644 index 0000000..5290fe0 --- /dev/null +++ b/protocol/notarization/commitment.html @@ -0,0 +1,228 @@ + + + + + + Commitment - tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+ +

Commitment

+

At the end of the TLSNotary protocol, the User has the authenticated AES ciphertext which can be thought of as a commitment to the plaintext. This form of commitment is not amenable to use cases when the User wants to make part of the plaintext public while keeping another part private. Naively, the User's option is to prove the decryption of the ciphertext in zero-knowledge which is computationally expensive.

+

We describe two less computationally heavy approaches for converting the AES ciphertext commitments.

+

The first approach is useful for commitments to the data which the User intends to make public. It is based on decrypting the ciphertext with Garbled Circuits and producing a hash commitment to the wire labels.

+

The second approach is useful for commitments to the private data which the User later intends to prove statements about in zero-knowledge. This approach produces a Poseidon hash over the private data.

+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + +
+ + diff --git a/protocol/notarization/encryption.html b/protocol/notarization/encryption.html new file mode 100644 index 0000000..68c0052 --- /dev/null +++ b/protocol/notarization/encryption.html @@ -0,0 +1,267 @@ + + + + + + Encryption - tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+ +

Encryption

+

Here we will explain our protocol for 2PC encryption using a block cipher in counter-mode.

+

Our documentation on Dual Execution with Asymmetric Privacy is recommended prior reading for this section.

+

Preliminary

+

Ephemeral Keyshare

+

It is important to recognise that the Notary's keyshare is an ephemeral secret. It is only private for the duration of the User's TLS session, after which the User is free to learn it without affecting the security of the protocol.

+

It is this fact which allows us to achieve malicious security for relatively low cost. More details on this here.

+

Premature Leakage

+

A small amount of undetected premature keyshare leakage is quite tolerable. For example, if the Notary leaks 3 bits of their keyshare, it gives the User no meaningful advantage in any attack, as she could have simply guessed the bits correctly with probability and mounted the same attack. Assuming a sufficiently long cipher key is used, eg. 128 bits, this is not a concern.

+

The equality check at the end of our protocol ensures that premature leakage is detected with a probability of where k is the number of leaked bits. The Notary is virtually guaranteed to detect significant leakage and can abort prior to notarization.

+

Plaintext Leakage

+

Our protocol assures no leakage of the plaintext to the Notary during both encryption and decryption. The Notary reveals their keyshare at the end of the protocol, which allows the Notary to open their garbled circuits and oblivious transfers completely to the User. The User can then perform a series of consistency checks to ensure that the Notary behaved honestly. Because these consistency checks do not depend on any inputs of the User, aborting does not reveal any sensitive information (in contrast to standard DualEx which does).

+

Integrity

+

During the entirety of the TLS session the User performs the role of the garbled circuit generator, thus ensuring that a malicious Notary can not corrupt or otherwise compromise the integrity of messages sent to/from the Server.

+

Notation

+
    +
  • is one block of plaintext
  • +
  • is the corresponding block of ciphertext, ie
  • +
  • is the cipher key
  • +
  • is the counter block
  • +
  • and denote the User and Notary cipher keyshares, respectively, where
  • +
  • is a mask randomly selected by the User
  • +
  • is the encrypted counter-block, ie
  • +
  • denotes the block cipher used by the TLS session
  • +
  • denotes a binding commitment to the value
  • +
  • denotes a garbled encoding of chosen by party
  • +
+

Encryption Protocol

+

The encryption protocol uses DEAP without any special variations. The User and Notary directly compute the ciphertext for each block of a message the User wishes to send to the Server:

+

+

The User creates a commitment to the plaintext active labels for the Notary's circuit where is a random key known only to the User. The User sends this commitment to the Notary to be used in the authdecode protocol later. It's critical that the User commits to prior to the Notary revealing in the final phase of DEAP. This ensures that if is a commitment to valid labels, then it must be a valid commitment to the plaintext . This is because learning the complementary wire label for any bit of prior to learning is virtually impossible.

+

Decryption Protocol

+

The protocol for decryption is very similar but has some key differences to encryption.

+

For decryption, DEAP is used for every block of the ciphertext to compute the masked encrypted counter-block:

+

+

This mask , chosen by the User, hides from the Notary and thus the plaintext too. Conversely, the User can simply remove this mask in order to compute the plaintext .

+

Following this, the User can retrieve the wire labels from the Notary using OT.

+

Similarly to the procedure for encryption, the User creates a commitment where is a random key known only to the User. The User sends this commitment to the Notary to be used in the authdecode protocol later.

+

Proving the validity of

+

In addition to computing the masked encrypted counter-block, the User must also prove that the labels they chose afterwards actually correspond to the ciphertext sent by the Server.

+

This is can be done efficiently in one execution using the zero-knowledge protocol described in [JKO13] the same as we do in the final phase of DEAP.

+

The Notary garbles a circuit which computes:

+

+

Notice that the User and Notary will already have computed when they computed earlier. Conveniently, the Notary can re-use the garbled labels as input labels for this circuit. For more details on the reuse of garbled labels see [AMR17].

+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + +
+ + diff --git a/protocol/notarization/index.html b/protocol/notarization/index.html new file mode 100644 index 0000000..5720dc9 --- /dev/null +++ b/protocol/notarization/index.html @@ -0,0 +1,243 @@ + + + + + + Notarization - tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+ +

Notarization Phase

+

During the Notarization Phase the Requester, otherwise referred to as the User, and the Notary work together to generate an authenticated Transcript of a TLS session with a Server.

+

Listed below are some key points regarding this process:

+
    +
  • The identity of the Server is not revealed to the Notary, but the Requester is capable of proving the Server identity to a Verifier later.
  • +
  • The Notary only ever sees the encrypted application data of the TLS session.
  • +
  • The protocol guarantees that the Requester is not solely capable of constructing requests, nor can they forge responses from the Server.
  • +
+

Requester

+

The Requester is the party which runs the TLS connection with the Server. The Requester constructs application payloads, eg. HTTP requests, and coordinates with the Notary to encrypt them with the TLS session keys prior to sending them. Subsequently, the Requester works with the Notary to decrypt responses from the Server. The plaintext of the application data is only ever revealed to the Requester.

+

Notary

+

The Notary is the party of which the authenticity of the Transcript relies on. During the session the Notary withholds its' shares of the TLS keys and participates in a series of secure 2-party computation protocols with the Requester to operate the TLS connection.

+

Server

+

The Server can be any server which supports TLS. The TLSNotary protocol is entirely transparent to the Server, thus it can not be censored nor does it have to support any additional functionality.

+ +

Transcript

+

The primary artifact generated from this phase is called the Transcript. It contains session meta-data, handshake data, and commitments to all the requests and responses. Typically the Transcript is signed by the Notary, however that is not necessary in the case where the Notary will also act as the Verifier in the selective disclosure phase.

+
+

Note that the server ephemeral key does not reveal the identity of the server to the Notary.

+
+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + +
+ + diff --git a/protocol/notarization/key_exchange.html b/protocol/notarization/key_exchange.html new file mode 100644 index 0000000..32538c8 --- /dev/null +++ b/protocol/notarization/key_exchange.html @@ -0,0 +1,254 @@ + + + + + + Key Exchange - tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+ +

Key Exchange

+

In TLS, the first step towards obtaining TLS session keys is to compute a shared secret between the client and the server by running the ECDH protocol. The resulting shared secret in TLS terms is called the pre-master secret PMS.

+ +

Using the notation from Wikipedia, below is the 3-party ECDH protocol between the Server the Requester and the Notary, enabling the Requester and the Notary to arrive at shares of PMS.

+
    +
  1. Server sends its public key to Requester, and Requester forwards it to Notary
  2. +
  3. Requester picks a random private key share and computes a public key share
  4. +
  5. Notary picks a random private key share and computes a public key share
  6. +
  7. Notary sends to Requester who computes and sends to Server
  8. +
  9. Requester computes an EC point
  10. +
  11. Notary computes an EC point
  12. +
  13. Addition of points and results in the coordinate , which is PMS. (The coordinate is not used in TLS)
  14. +
+

Using the notation from here, our goal is to compute + +in such a way that

+
    +
  1. Neither party learns the other party's value
  2. +
  3. Neither party learns , only their respective shares of .
  4. +
+

We will use two maliciously secure protocols described on p.25 in the paper Efficient Secure Two-Party Exponentiation:

+
    +
  • A2M protocol, which converts additive shares into multiplicative shares, i.e. given shares a and b such that a + b = c, it converts them into shares d and e such that d * e = c
  • +
  • M2A protocol, which converts multiplicative shares into additive shares
  • +
+

We apply A2M to to get and also we apply A2M to to get . Then the above can be rewritten as:

+

+

Then the first party locally computes the first factor and gets , the second party locally computes the second factor and gets . Then we can again rewrite as:

+

+

Now we apply M2A to to get , which leads us to two final terms each of which is the share of of the respective party:

+

+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + +
+ + diff --git a/protocol/notarization/prf.html b/protocol/notarization/prf.html new file mode 100644 index 0000000..7d8a5e4 --- /dev/null +++ b/protocol/notarization/prf.html @@ -0,0 +1,394 @@ + + + + + + Symmetric key derivation - tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+ +

Overview

+

The pre-master secret (PMS) must be put through a PRF (pseudo-random function) defined by the TLS spec in order to compute the symmetric TLS keys and also to compute the verify_data for the Client_Finished and the Server_Finished messages.

+

Below we describe how the parties (N stands for Notary and U stands for User) who have their shares of PMS can use 2PC to compute the PRF.

+
+

Since the TLSNotary protocol already uses Garbled Circuits and Oblivious Transfer which give 128-bit computational security for the parties against each other, we argue that it is acceptable to perform some PRF computations outside of 2PC as long as it is done with at least 128-bit security. +Performing some PRF computations outside of 2PC allows to save on computation and bandwidth.

+
+
+

Note that the User's TLS connection retains the standard TLS security guarantees against any third-party adversary.

+
+

To elaborate, recall how HMAC is computed (assuming |k| <= block size):

+
HMAC(k, m) = H((k ⊕ opad) | H((k ⊕ ipad) | m))
+
+

Notice that both H(k ⊕ opad) and H(k ⊕ ipad) can be computed separately prior to finalization. In this +document we name these units as such:

+
    +
  • outer hash state: H(k ⊕ opad)
  • +
  • inner hash state: H(k ⊕ ipad)
  • +
  • inner hash: H((k ⊕ ipad) | m)
  • +
+

In TLS, the master secret is computed like so:

+
seed = "master secret" | client_random | server_random
+a0 = seed
+a1 = HMAC(pms, a0)
+a2 = HMAC(pms, a1)
+p1 = HMAC(pms, a1 | seed)
+p2 = HMAC(pms, a2 | seed)
+ms = (p1 | p2)[:48]
+
+

Notice that in each step the key, in this case PMS, is constant. Thus both the outer and inner hash state can be reused for each step.

+

Below is the description of the all the steps to compute the PRF both inside and outside the 2PC circuit.

+

Computing the master secret

+

Inside the circuit

+
    +
  1. To evaluate the circuit, the parties input their PMS shares. The circuit outputs:
  2. +
+
    +
  • H(PMS ⊕ opad) called PMS outer hash state to N and
  • +
  • H(PMS ⊕ ipad) called PMS inner hash state to U
  • +
+

Outside the circuit

+
    +
  1. +

    U computes H((PMS ⊕ ipad) || a0) called inner hash of a1 and passes it to N.

    +
  2. +
  3. +

    N computes a1 and passes it to U.

    +
  4. +
  5. +

    U computes the inner hash of a2 and passes it to N.

    +
  6. +
  7. +

    N computes a2 and passes it to U.

    +
  8. +
  9. +

    U computes the inner hash of p2 and passes it to N.

    +
  10. +
  11. +

    N computes p2 and passes it to U. +>Note that now both parties know p2 which is the last 16 bytes of the master secret. They still don't know the other 32 bytes of the master secret, which ensures adequate security.

    +
  12. +
  13. +

    U computes the inner hash of p1.

    +
  14. +
+

Inside the circuit

+
    +
  1. To evaluate the circuit, N inputs the PMS outer hash state and U inputs p2 and the inner hash of p1. The circuit computes the master secret (MS).
  2. +
+

Computing the expanded keys

+

The parties proceed to compute the expanded keys. The corresponding python code is:

+
seed = str.encode("key expansion") + server_random + client_random
+a0 = seed
+a1 = hmac.new(ms , a0, hashlib.sha256).digest()
+a2 = hmac.new(ms , a1, hashlib.sha256).digest()
+p1 = hmac.new(ms, a1+seed, hashlib.sha256).digest()
+p2 = hmac.new(ms, a2+seed, hashlib.sha256).digest()
+ek = (p1 + p2)[:40]
+client_write_key = ek[:16]
+server_write_key = ek[16:32]
+client_write_IV = ek[32:36]
+server_write_IV = ek[36:40]
+
+

Inside the circuit

+
    +
  1. Having computed MS, the circuit outputs:
  2. +
+
    +
  • H(MS ⊕ opad) called the MS outer hash state to N and
  • +
  • H(MS ⊕ ipad) called the MS inner hash state to U
  • +
+

Outside the circuit

+
    +
  1. +

    U computes the inner hash of a1 and sends it to N.

    +
  2. +
  3. +

    N computes a1 and sends it to U.

    +
  4. +
  5. +

    U computes the inner hash of a2 and sends it to N.

    +
  6. +
  7. +

    N computes a2 and sends it to U.

    +
  8. +
  9. +

    U computes the inner hash state of p1 and the inner hash state of p2.

    +
  10. +
+

Inside the circuit

+
    +
  1. To evaluate the circuit, N inputs MS outer hash state (from Step 10) and U inputs inner hash state of p1 and inner hash state of p2. The circuit computes p1 and p2. The circuit outputs xor shares of the expanded keys to each party.
  2. +
+

Computing the encrypted Client_Finished

+

Inside the circuit

+
    +
  1. To evaluate the circuit, the parties input their shares of the expanded keys. The circuit outputs data needed to encrypt and authenticate the Client_Finished (CF) message.
  2. +
+

Outside the circuit

+

The parties proceed to compute verify_data for the CF message. The corresponding python code is:

+
# (handshake_hash) is a sha256 hash of all TLS handshake message up to this point
+seed = str.encode('client finished') + handshake_hash
+a0 = seed
+a1 = hmac.new(ms, a0, hashlib.sha256).digest()
+p1 = hmac.new(ms, a1+seed, hashlib.sha256).digest()
+verify_data = p1[:12]
+
+
    +
  1. +

    U computes inner hash of a1 and sends it to N.

    +
  2. +
  3. +

    N (who has MS outer hash state from Step 10) computes a1 and sends it to U.

    +
  4. +
  5. +

    U computes inner hash of p1 and sends it to N.

    +
  6. +
  7. +

    N computes p1 and gets verify_data and sends it to U.

    +
  8. +
+
+

Note that it is safe for N to know verify_data for CF.

+
+

Using the data from Step 17, U proceeds to encrypt and authenticate CF and sends it to the webserver.

+

Verifying the Server_Finished

+

Upon U's receiving the encrypted Server_Finished (SF) from the webserver, the parties proceed to compute verify_data for SF, to enable U to check that the received SF is correct. The corresponding python code is:

+
# (handshake_hash) is a sha256 hash of all TLS handshake message up to this point
+seed = str.encode('server finished') + handshake_hash
+a0 = seed
+a1 = hmac.new(ms, a0, hashlib.sha256).digest()
+p1 = hmac.new(ms, a1+seed, hashlib.sha256).digest()
+verify_data = p1[:12]
+
+

Outside the circuit

+
    +
  1. +

    U computes inner hash of a1 and sends it to N.

    +
  2. +
  3. +

    N (who has MS outer hash state from Step 10) computes a1 and sends it to U.

    +
  4. +
  5. +

    U computes inner hash of p1.

    +
  6. +
+

Inside the circuit

+
    +
  1. To evaluate the circuit, N inputs MS outer hash state (from Step 10) and U inputs inner hash of p1. The circuit outputs verify_data for SF to U.
  2. +
+

The parties proceed to decrypt and authenticate the SF in 2PC. U checks that verify_data from SF matches verify_data from Step 25.

+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + +
+ + diff --git a/protocol/notarization/public_data_commitment.html b/protocol/notarization/public_data_commitment.html new file mode 100644 index 0000000..50dce3d --- /dev/null +++ b/protocol/notarization/public_data_commitment.html @@ -0,0 +1,277 @@ + + + + + + Commitment to public data - tlsn-docs + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + + +
+
+ +

Commitment to public data

+

We describe an interactive protocol between the User U and the Notary N, whereby U can convert the authenticated AES ciphertext into a hash commitment to Garbled Circuits wire labels.

+

Creating the new commitment

+
    +
  1. +

    At the end of the TLSNotary session, both U and N know the authenticated AES ciphertext.

    +
  2. +
  3. +

    N reveals his TLS session key shares to U.

    +
  4. +
  5. +

    U decrypts the ciphertext in the clear and learns the plaintext p.

    +
  6. +
  7. +

    N picks a seed and uses it as the source of randomness to generate (in the semi-honest model) a privacy-free garbled circuit whose functionality is to accept the plaintext input, encrypt it, and output the ciphertext.

    +
  8. +
  9. +

    With p as her circuit input, U receives input wire labels IWLs via Oblivious Transfer and then evaluates the circuit on those IWLs. The result of the evaluation are output wire labels OWLs which U does not know the decoding for.

    +
  10. +
  11. +

    U sends two commitments: commitment to IWLs and commitment to OWLs to N.

    +
  12. +
  13. +

    N reveals the seed and U checks that the circuit (including its IWLs and OWLs) was generated correctly and, if successful, reveals her OWLs.

    +
  14. +
  15. +

    N verifies commitment to OWLs and then checks that decoded OWLs match the ciphertext (from Step 0) and, if successful, signs (seed + commitment to IWLs).

    +
  16. +
+
+

Now, (seed + commitment to IWLs) become U's new commitment to p.

+
+

Verifying the commitment

+

Verifier performs the following steps:

+
    +
  1. +

    Receives the following from U: plaintext p, signature for (seed + commitment to IWLs), seed, commitment to IWLs.

    +
  2. +
  3. +

    (using a trusted Ns pubkey) Verifies the signature.

    +
  4. +
  5. +

    Re-generates the IWLs from the seed.

    +
  6. +
  7. +

    Picks only those IWLs which correspond to p and checks that the commitment to those IWLs matches commitment to IWLs.

    +
  8. +
  9. +

    Accepts p as authentic.

    +
  10. +
+

Dynamic commitment using a Merkle tree

+

In situations where U does not know in advance which subset of the public data she will be revealing later to the Verifier, U can commit to the Merkle tree of all her input wire labels (from Step 4 above). +Later, U can reveal only those Merkle leaves which she wants to make public to the Verifier.

+ +
+ + +
+
+ + + +
+ + + + + + + + + + + + + + + + + + +
+ + diff --git a/searcher.js b/searcher.js new file mode 100644 index 0000000..d2b0aee --- /dev/null +++ b/searcher.js @@ -0,0 +1,483 @@ +"use strict"; +window.search = window.search || {}; +(function search(search) { + // Search functionality + // + // You can use !hasFocus() to prevent keyhandling in your key + // event handlers while the user is typing their search. + + if (!Mark || !elasticlunr) { + return; + } + + //IE 11 Compatibility from https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith + if (!String.prototype.startsWith) { + String.prototype.startsWith = function(search, pos) { + return this.substr(!pos || pos < 0 ? 0 : +pos, search.length) === search; + }; + } + + var search_wrap = document.getElementById('search-wrapper'), + searchbar = document.getElementById('searchbar'), + searchbar_outer = document.getElementById('searchbar-outer'), + searchresults = document.getElementById('searchresults'), + searchresults_outer = document.getElementById('searchresults-outer'), + searchresults_header = document.getElementById('searchresults-header'), + searchicon = document.getElementById('search-toggle'), + content = document.getElementById('content'), + + searchindex = null, + doc_urls = [], + results_options = { + teaser_word_count: 30, + limit_results: 30, + }, + search_options = { + bool: "AND", + expand: true, + fields: { + title: {boost: 1}, + body: {boost: 1}, + breadcrumbs: {boost: 0} + } + }, + mark_exclude = [], + marker = new Mark(content), + current_searchterm = "", + URL_SEARCH_PARAM = 'search', + URL_MARK_PARAM = 'highlight', + teaser_count = 0, + + SEARCH_HOTKEY_KEYCODE = 83, + ESCAPE_KEYCODE = 27, + DOWN_KEYCODE = 40, + UP_KEYCODE = 38, + SELECT_KEYCODE = 13; + + function hasFocus() { + return searchbar === document.activeElement; + } + + function removeChildren(elem) { + while (elem.firstChild) { + elem.removeChild(elem.firstChild); + } + } + + // Helper to parse a url into its building blocks. + function parseURL(url) { + var a = document.createElement('a'); + a.href = url; + return { + source: url, + protocol: a.protocol.replace(':',''), + host: a.hostname, + port: a.port, + params: (function(){ + var ret = {}; + var seg = a.search.replace(/^\?/,'').split('&'); + var len = seg.length, i = 0, s; + for (;i': '>', + '"': '"', + "'": ''' + }; + var repl = function(c) { return MAP[c]; }; + return function(s) { + return s.replace(/[&<>'"]/g, repl); + }; + })(); + + function formatSearchMetric(count, searchterm) { + if (count == 1) { + return count + " search result for '" + searchterm + "':"; + } else if (count == 0) { + return "No search results for '" + searchterm + "'."; + } else { + return count + " search results for '" + searchterm + "':"; + } + } + + function formatSearchResult(result, searchterms) { + var teaser = makeTeaser(escapeHTML(result.doc.body), searchterms); + teaser_count++; + + // The ?URL_MARK_PARAM= parameter belongs inbetween the page and the #heading-anchor + var url = doc_urls[result.ref].split("#"); + if (url.length == 1) { // no anchor found + url.push(""); + } + + // encodeURIComponent escapes all chars that could allow an XSS except + // for '. Due to that we also manually replace ' with its url-encoded + // representation (%27). + var searchterms = encodeURIComponent(searchterms.join(" ")).replace(/\'/g, "%27"); + + return '' + result.doc.breadcrumbs + '' + + '' + + teaser + ''; + } + + function makeTeaser(body, searchterms) { + // The strategy is as follows: + // First, assign a value to each word in the document: + // Words that correspond to search terms (stemmer aware): 40 + // Normal words: 2 + // First word in a sentence: 8 + // Then use a sliding window with a constant number of words and count the + // sum of the values of the words within the window. Then use the window that got the + // maximum sum. If there are multiple maximas, then get the last one. + // Enclose the terms in . + var stemmed_searchterms = searchterms.map(function(w) { + return elasticlunr.stemmer(w.toLowerCase()); + }); + var searchterm_weight = 40; + var weighted = []; // contains elements of ["word", weight, index_in_document] + // split in sentences, then words + var sentences = body.toLowerCase().split('. '); + var index = 0; + var value = 0; + var searchterm_found = false; + for (var sentenceindex in sentences) { + var words = sentences[sentenceindex].split(' '); + value = 8; + for (var wordindex in words) { + var word = words[wordindex]; + if (word.length > 0) { + for (var searchtermindex in stemmed_searchterms) { + if (elasticlunr.stemmer(word).startsWith(stemmed_searchterms[searchtermindex])) { + value = searchterm_weight; + searchterm_found = true; + } + }; + weighted.push([word, value, index]); + value = 2; + } + index += word.length; + index += 1; // ' ' or '.' if last word in sentence + }; + index += 1; // because we split at a two-char boundary '. ' + }; + + if (weighted.length == 0) { + return body; + } + + var window_weight = []; + var window_size = Math.min(weighted.length, results_options.teaser_word_count); + + var cur_sum = 0; + for (var wordindex = 0; wordindex < window_size; wordindex++) { + cur_sum += weighted[wordindex][1]; + }; + window_weight.push(cur_sum); + for (var wordindex = 0; wordindex < weighted.length - window_size; wordindex++) { + cur_sum -= weighted[wordindex][1]; + cur_sum += weighted[wordindex + window_size][1]; + window_weight.push(cur_sum); + }; + + if (searchterm_found) { + var max_sum = 0; + var max_sum_window_index = 0; + // backwards + for (var i = window_weight.length - 1; i >= 0; i--) { + if (window_weight[i] > max_sum) { + max_sum = window_weight[i]; + max_sum_window_index = i; + } + }; + } else { + max_sum_window_index = 0; + } + + // add around searchterms + var teaser_split = []; + var index = weighted[max_sum_window_index][2]; + for (var i = max_sum_window_index; i < max_sum_window_index+window_size; i++) { + var word = weighted[i]; + if (index < word[2]) { + // missing text from index to start of `word` + teaser_split.push(body.substring(index, word[2])); + index = word[2]; + } + if (word[1] == searchterm_weight) { + teaser_split.push("") + } + index = word[2] + word[0].length; + teaser_split.push(body.substring(word[2], index)); + if (word[1] == searchterm_weight) { + teaser_split.push("") + } + }; + + return teaser_split.join(''); + } + + function init(config) { + results_options = config.results_options; + search_options = config.search_options; + searchbar_outer = config.searchbar_outer; + doc_urls = config.doc_urls; + searchindex = elasticlunr.Index.load(config.index); + + // Set up events + searchicon.addEventListener('click', function(e) { searchIconClickHandler(); }, false); + searchbar.addEventListener('keyup', function(e) { searchbarKeyUpHandler(); }, false); + document.addEventListener('keydown', function(e) { globalKeyHandler(e); }, false); + // If the user uses the browser buttons, do the same as if a reload happened + window.onpopstate = function(e) { doSearchOrMarkFromUrl(); }; + // Suppress "submit" events so the page doesn't reload when the user presses Enter + document.addEventListener('submit', function(e) { e.preventDefault(); }, false); + + // If reloaded, do the search or mark again, depending on the current url parameters + doSearchOrMarkFromUrl(); + } + + function unfocusSearchbar() { + // hacky, but just focusing a div only works once + var tmp = document.createElement('input'); + tmp.setAttribute('style', 'position: absolute; opacity: 0;'); + searchicon.appendChild(tmp); + tmp.focus(); + tmp.remove(); + } + + // On reload or browser history backwards/forwards events, parse the url and do search or mark + function doSearchOrMarkFromUrl() { + // Check current URL for search request + var url = parseURL(window.location.href); + if (url.params.hasOwnProperty(URL_SEARCH_PARAM) + && url.params[URL_SEARCH_PARAM] != "") { + showSearch(true); + searchbar.value = decodeURIComponent( + (url.params[URL_SEARCH_PARAM]+'').replace(/\+/g, '%20')); + searchbarKeyUpHandler(); // -> doSearch() + } else { + showSearch(false); + } + + if (url.params.hasOwnProperty(URL_MARK_PARAM)) { + var words = decodeURIComponent(url.params[URL_MARK_PARAM]).split(' '); + marker.mark(words, { + exclude: mark_exclude + }); + + var markers = document.querySelectorAll("mark"); + function hide() { + for (var i = 0; i < markers.length; i++) { + markers[i].classList.add("fade-out"); + window.setTimeout(function(e) { marker.unmark(); }, 300); + } + } + for (var i = 0; i < markers.length; i++) { + markers[i].addEventListener('click', hide); + } + } + } + + // Eventhandler for keyevents on `document` + function globalKeyHandler(e) { + if (e.altKey || e.ctrlKey || e.metaKey || e.shiftKey || e.target.type === 'textarea' || e.target.type === 'text') { return; } + + if (e.keyCode === ESCAPE_KEYCODE) { + e.preventDefault(); + searchbar.classList.remove("active"); + setSearchUrlParameters("", + (searchbar.value.trim() !== "") ? "push" : "replace"); + if (hasFocus()) { + unfocusSearchbar(); + } + showSearch(false); + marker.unmark(); + } else if (!hasFocus() && e.keyCode === SEARCH_HOTKEY_KEYCODE) { + e.preventDefault(); + showSearch(true); + window.scrollTo(0, 0); + searchbar.select(); + } else if (hasFocus() && e.keyCode === DOWN_KEYCODE) { + e.preventDefault(); + unfocusSearchbar(); + searchresults.firstElementChild.classList.add("focus"); + } else if (!hasFocus() && (e.keyCode === DOWN_KEYCODE + || e.keyCode === UP_KEYCODE + || e.keyCode === SELECT_KEYCODE)) { + // not `:focus` because browser does annoying scrolling + var focused = searchresults.querySelector("li.focus"); + if (!focused) return; + e.preventDefault(); + if (e.keyCode === DOWN_KEYCODE) { + var next = focused.nextElementSibling; + if (next) { + focused.classList.remove("focus"); + next.classList.add("focus"); + } + } else if (e.keyCode === UP_KEYCODE) { + focused.classList.remove("focus"); + var prev = focused.previousElementSibling; + if (prev) { + prev.classList.add("focus"); + } else { + searchbar.select(); + } + } else { // SELECT_KEYCODE + window.location.assign(focused.querySelector('a')); + } + } + } + + function showSearch(yes) { + if (yes) { + search_wrap.classList.remove('hidden'); + searchicon.setAttribute('aria-expanded', 'true'); + } else { + search_wrap.classList.add('hidden'); + searchicon.setAttribute('aria-expanded', 'false'); + var results = searchresults.children; + for (var i = 0; i < results.length; i++) { + results[i].classList.remove("focus"); + } + } + } + + function showResults(yes) { + if (yes) { + searchresults_outer.classList.remove('hidden'); + } else { + searchresults_outer.classList.add('hidden'); + } + } + + // Eventhandler for search icon + function searchIconClickHandler() { + if (search_wrap.classList.contains('hidden')) { + showSearch(true); + window.scrollTo(0, 0); + searchbar.select(); + } else { + showSearch(false); + } + } + + // Eventhandler for keyevents while the searchbar is focused + function searchbarKeyUpHandler() { + var searchterm = searchbar.value.trim(); + if (searchterm != "") { + searchbar.classList.add("active"); + doSearch(searchterm); + } else { + searchbar.classList.remove("active"); + showResults(false); + removeChildren(searchresults); + } + + setSearchUrlParameters(searchterm, "push_if_new_search_else_replace"); + + // Remove marks + marker.unmark(); + } + + // Update current url with ?URL_SEARCH_PARAM= parameter, remove ?URL_MARK_PARAM and #heading-anchor . + // `action` can be one of "push", "replace", "push_if_new_search_else_replace" + // and replaces or pushes a new browser history item. + // "push_if_new_search_else_replace" pushes if there is no `?URL_SEARCH_PARAM=abc` yet. + function setSearchUrlParameters(searchterm, action) { + var url = parseURL(window.location.href); + var first_search = ! url.params.hasOwnProperty(URL_SEARCH_PARAM); + if (searchterm != "" || action == "push_if_new_search_else_replace") { + url.params[URL_SEARCH_PARAM] = searchterm; + delete url.params[URL_MARK_PARAM]; + url.hash = ""; + } else { + delete url.params[URL_MARK_PARAM]; + delete url.params[URL_SEARCH_PARAM]; + } + // A new search will also add a new history item, so the user can go back + // to the page prior to searching. A updated search term will only replace + // the url. + if (action == "push" || (action == "push_if_new_search_else_replace" && first_search) ) { + history.pushState({}, document.title, renderURL(url)); + } else if (action == "replace" || (action == "push_if_new_search_else_replace" && !first_search) ) { + history.replaceState({}, document.title, renderURL(url)); + } + } + + function doSearch(searchterm) { + + // Don't search the same twice + if (current_searchterm == searchterm) { return; } + else { current_searchterm = searchterm; } + + if (searchindex == null) { return; } + + // Do the actual search + var results = searchindex.search(searchterm, search_options); + var resultcount = Math.min(results.length, results_options.limit_results); + + // Display search metrics + searchresults_header.innerText = formatSearchMetric(resultcount, searchterm); + + // Clear and insert results + var searchterms = searchterm.split(' '); + removeChildren(searchresults); + for(var i = 0; i < resultcount ; i++){ + var resultElem = document.createElement('li'); + resultElem.innerHTML = formatSearchResult(results[i], searchterms); + searchresults.appendChild(resultElem); + } + + // Display results + showResults(true); + } + + fetch(path_to_root + 'searchindex.json') + .then(response => response.json()) + .then(json => init(json)) + .catch(error => { // Try to load searchindex.js if fetch failed + var script = document.createElement('script'); + script.src = path_to_root + 'searchindex.js'; + script.onload = () => init(window.search); + document.head.appendChild(script); + }); + + // Exported functions + search.hasFocus = hasFocus; +})(window.search); diff --git a/searchindex.js b/searchindex.js new file mode 100644 index 0000000..bfec0b4 --- /dev/null +++ b/searchindex.js @@ -0,0 +1 @@ +Object.assign(window.search, {"doc_urls":["intro.html#introduction","protocol/index.html#protocol","overview.html#overview","protocol/notarization/index.html#notarization-phase","protocol/notarization/index.html#requester","protocol/notarization/index.html#notary","protocol/notarization/index.html#server","protocol/notarization/index.html#transcript","protocol/notarization/key_exchange.html#key-exchange","protocol/notarization/prf.html#overview","protocol/notarization/prf.html#computing-the-master-secret","protocol/notarization/prf.html#inside-the-circuit","protocol/notarization/prf.html#outside-the-circuit","protocol/notarization/prf.html#inside-the-circuit-1","protocol/notarization/prf.html#computing-the-expanded-keys","protocol/notarization/prf.html#inside-the-circuit-2","protocol/notarization/prf.html#outside-the-circuit-1","protocol/notarization/prf.html#inside-the-circuit-3","protocol/notarization/prf.html#computing-the-encrypted-client_finished","protocol/notarization/prf.html#inside-the-circuit-4","protocol/notarization/prf.html#outside-the-circuit-2","protocol/notarization/prf.html#verifying-the-server_finished","protocol/notarization/prf.html#outside-the-circuit-3","protocol/notarization/prf.html#inside-the-circuit-5","protocol/notarization/encryption.html#encryption","protocol/notarization/encryption.html#preliminary","protocol/notarization/encryption.html#ephemeral-keyshare","protocol/notarization/encryption.html#premature-leakage","protocol/notarization/encryption.html#plaintext-leakage","protocol/notarization/encryption.html#integrity","protocol/notarization/encryption.html#notation","protocol/notarization/encryption.html#encryption-protocol","protocol/notarization/encryption.html#decryption-protocol","protocol/notarization/encryption.html#proving-the-validity-of-pn","protocol/notarization/commitment.html#commitment","protocol/notarization/public_data_commitment.html#commitment-to-public-data","protocol/notarization/public_data_commitment.html#creating-the-new-commitment","protocol/notarization/public_data_commitment.html#verifying-the-commitment","protocol/notarization/public_data_commitment.html#dynamic-commitment-using-a-merkle-tree","protocol/2pc/garbled_circuits.html#secure-2-party-computation","protocol/2pc/deap.html#dual-execution-with-asymmetric-privacy","protocol/2pc/deap.html#introduction","protocol/2pc/deap.html#preliminary","protocol/2pc/deap.html#premature-leakage","protocol/2pc/deap.html#aborts","protocol/2pc/deap.html#committed-oblivious-transfer","protocol/2pc/deap.html#notation","protocol/2pc/deap.html#protocol","protocol/2pc/deap.html#setup","protocol/2pc/deap.html#execution","protocol/2pc/deap.html#equality-check","protocol/2pc/deap.html#analysis","protocol/2pc/deap.html#malicious-alice","protocol/2pc/deap.html#malicious-bob","protocol/2pc/deap.html#malicious-alice--bob","protocol/2pc/mac.html#computing-mac-in-2pc","protocol/2pc/mac.html#1-what-is-a-mac","protocol/2pc/mac.html#2-how-a-mac-is-computed-in-aes-gcm","protocol/2pc/mac.html#21-gctr-output","protocol/2pc/mac.html#22-ghash-output","protocol/2pc/mac.html#3-computing-mac-using-secure-two-party-computation-2pc","protocol/2pc/mac.html#31-example-with-a-single-ciphertext-block","protocol/2pc/mac.html#32-computing-ciphertexts-with-an-arbitrary-number-of-blocks","protocol/2pc/mac.html#33-free-squaring","protocol/2pc/mac.html#33-creating-a-robust-protocol","protocol/2pc/ff-arithmetic.html#finite-field-arithmetic","protocol/2pc/ff-arithmetic.html#adding-covert-security","protocol/2pc/ff-arithmetic.html#m2a-protocol-review","protocol/2pc/ff-arithmetic.html#replay-protocol"],"index":{"documentStore":{"docInfo":{"0":{"body":158,"breadcrumbs":2,"title":1},"1":{"body":0,"breadcrumbs":2,"title":1},"10":{"body":0,"breadcrumbs":9,"title":3},"11":{"body":24,"breadcrumbs":8,"title":2},"12":{"body":66,"breadcrumbs":8,"title":2},"13":{"body":19,"breadcrumbs":8,"title":2},"14":{"body":42,"breadcrumbs":9,"title":3},"15":{"body":21,"breadcrumbs":8,"title":2},"16":{"body":34,"breadcrumbs":8,"title":2},"17":{"body":32,"breadcrumbs":8,"title":2},"18":{"body":0,"breadcrumbs":9,"title":3},"19":{"body":16,"breadcrumbs":8,"title":2},"2":{"body":12,"breadcrumbs":2,"title":1},"20":{"body":82,"breadcrumbs":8,"title":2},"21":{"body":45,"breadcrumbs":8,"title":2},"22":{"body":23,"breadcrumbs":8,"title":2},"23":{"body":34,"breadcrumbs":8,"title":2},"24":{"body":19,"breadcrumbs":3,"title":1},"25":{"body":0,"breadcrumbs":3,"title":1},"26":{"body":29,"breadcrumbs":4,"title":2},"27":{"body":61,"breadcrumbs":4,"title":2},"28":{"body":44,"breadcrumbs":4,"title":2},"29":{"body":22,"breadcrumbs":3,"title":1},"3":{"body":50,"breadcrumbs":3,"title":2},"30":{"body":56,"breadcrumbs":3,"title":1},"31":{"body":72,"breadcrumbs":4,"title":2},"32":{"body":65,"breadcrumbs":4,"title":2},"33":{"body":64,"breadcrumbs":5,"title":3},"34":{"body":83,"breadcrumbs":3,"title":1},"35":{"body":20,"breadcrumbs":8,"title":3},"36":{"body":119,"breadcrumbs":8,"title":3},"37":{"body":41,"breadcrumbs":7,"title":2},"38":{"body":29,"breadcrumbs":10,"title":5},"39":{"body":0,"breadcrumbs":8,"title":4},"4":{"body":33,"breadcrumbs":2,"title":1},"40":{"body":0,"breadcrumbs":14,"title":4},"41":{"body":122,"breadcrumbs":11,"title":1},"42":{"body":25,"breadcrumbs":11,"title":1},"43":{"body":31,"breadcrumbs":12,"title":2},"44":{"body":13,"breadcrumbs":11,"title":1},"45":{"body":29,"breadcrumbs":13,"title":3},"46":{"body":58,"breadcrumbs":11,"title":1},"47":{"body":10,"breadcrumbs":11,"title":1},"48":{"body":68,"breadcrumbs":11,"title":1},"49":{"body":175,"breadcrumbs":11,"title":1},"5":{"body":23,"breadcrumbs":2,"title":1},"50":{"body":75,"breadcrumbs":12,"title":2},"51":{"body":0,"breadcrumbs":11,"title":1},"52":{"body":209,"breadcrumbs":12,"title":2},"53":{"body":58,"breadcrumbs":12,"title":2},"54":{"body":2,"breadcrumbs":13,"title":3},"55":{"body":13,"breadcrumbs":8,"title":3},"56":{"body":56,"breadcrumbs":7,"title":2},"57":{"body":31,"breadcrumbs":10,"title":5},"58":{"body":20,"breadcrumbs":8,"title":3},"59":{"body":135,"breadcrumbs":8,"title":3},"6":{"body":14,"breadcrumbs":2,"title":1},"60":{"body":45,"breadcrumbs":14,"title":9},"61":{"body":54,"breadcrumbs":10,"title":5},"62":{"body":284,"breadcrumbs":11,"title":6},"63":{"body":44,"breadcrumbs":8,"title":3},"64":{"body":241,"breadcrumbs":9,"title":4},"65":{"body":32,"breadcrumbs":10,"title":3},"66":{"body":159,"breadcrumbs":10,"title":3},"67":{"body":85,"breadcrumbs":10,"title":3},"68":{"body":249,"breadcrumbs":9,"title":2},"7":{"body":35,"breadcrumbs":2,"title":1},"8":{"body":215,"breadcrumbs":7,"title":2},"9":{"body":186,"breadcrumbs":7,"title":1}},"docs":{"0":{"body":"TLSNotary is a protocol which allows users to export data from any website in a credible way. This way they can verify the authenticity of parts of a TLS-encrypted web session without compromising on privacy. It works by adding a third party, the Notary, to the usual TLS connection between the User and a web server. The User forwards the encrypted TLS traffic to the Notary which checks that it has not been tampered with and notarizes the whole TLS session by signing a transcript of it. The User can now use this transcript and disclose parts of it to another party, which we call the Verifier. The Verifier only needs to trust the Notary in order to accept proofs from many different users. This way, TLSNotary can be used for a variety of purposes. For example you can use TLSNotary to prove that you have received a money transfer using your online banking account, without revealing your login credentials or sensitive financial information. you have access to an account on a web platform. a website showed some specific content on a certain date. Overall, the TLSNotary protocol can be used in any scenario where you need to prove to a third party facts about the content of a TLS connection. Some interesting aspects of TLSNotary are: The protocol is transparent to the web server, because it is not aware of the notarization process. For the server it just looks like normal browsing. Data is kept private from the Notary. The Notary only sees the ciphertext and never has access to the plaintext. No modifications to the TLS protocol are needed. You can use it without any changes to web servers. The Notary and the Verifier can be the same entity. That means if you as a Verifier do not want to trust some Notary server, you can run one yourself.","breadcrumbs":"Introduction » Introduction","id":"0","title":"Introduction"},"1":{"body":"","breadcrumbs":"Protocol » Protocol","id":"1","title":"Protocol"},"10":{"body":"","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Computing the master secret","id":"10","title":"Computing the master secret"},"11":{"body":"To evaluate the circuit, the parties input their PMS shares. The circuit outputs: H(PMS ⊕ opad) called PMS outer hash state to N and H(PMS ⊕ ipad) called PMS inner hash state to U","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Inside the circuit","id":"11","title":"Inside the circuit"},"12":{"body":"U computes H((PMS ⊕ ipad) || a0) called inner hash of a1 and passes it to N. N computes a1 and passes it to U. U computes the inner hash of a2 and passes it to N. N computes a2 and passes it to U. U computes the inner hash of p2 and passes it to N. N computes p2 and passes it to U. >Note that now both parties know p2 which is the last 16 bytes of the master secret. They still don't know the other 32 bytes of the master secret, which ensures adequate security. U computes the inner hash of p1.","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Outside the circuit","id":"12","title":"Outside the circuit"},"13":{"body":"To evaluate the circuit, N inputs the PMS outer hash state and U inputs p2 and the inner hash of p1. The circuit computes the master secret (MS).","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Inside the circuit","id":"13","title":"Inside the circuit"},"14":{"body":"The parties proceed to compute the expanded keys. The corresponding python code is: seed = str.encode(\"key expansion\") + server_random + client_random\na0 = seed\na1 = hmac.new(ms , a0, hashlib.sha256).digest()\na2 = hmac.new(ms , a1, hashlib.sha256).digest()\np1 = hmac.new(ms, a1+seed, hashlib.sha256).digest()\np2 = hmac.new(ms, a2+seed, hashlib.sha256).digest()\nek = (p1 + p2)[:40]\nclient_write_key = ek[:16]\nserver_write_key = ek[16:32]\nclient_write_IV = ek[32:36]\nserver_write_IV = ek[36:40]","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Computing the expanded keys","id":"14","title":"Computing the expanded keys"},"15":{"body":"Having computed MS, the circuit outputs: H(MS ⊕ opad) called the MS outer hash state to N and H(MS ⊕ ipad) called the MS inner hash state to U","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Inside the circuit","id":"15","title":"Inside the circuit"},"16":{"body":"U computes the inner hash of a1 and sends it to N. N computes a1 and sends it to U. U computes the inner hash of a2 and sends it to N. N computes a2 and sends it to U. U computes the inner hash state of p1 and the inner hash state of p2.","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Outside the circuit","id":"16","title":"Outside the circuit"},"17":{"body":"To evaluate the circuit, N inputs MS outer hash state (from Step 10) and U inputs inner hash state of p1 and inner hash state of p2. The circuit computes p1 and p2. The circuit outputs xor shares of the expanded keys to each party.","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Inside the circuit","id":"17","title":"Inside the circuit"},"18":{"body":"","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Computing the encrypted Client_Finished","id":"18","title":"Computing the encrypted Client_Finished"},"19":{"body":"To evaluate the circuit, the parties input their shares of the expanded keys. The circuit outputs data needed to encrypt and authenticate the Client_Finished (CF) message.","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Inside the circuit","id":"19","title":"Inside the circuit"},"2":{"body":"The following diagram is a high-level protocol overview introducing the main components of TLSNotary. TLSNotary Overview","breadcrumbs":"Overview » Overview","id":"2","title":"Overview"},"20":{"body":"The parties proceed to compute verify_data for the CF message. The corresponding python code is: # (handshake_hash) is a sha256 hash of all TLS handshake message up to this point\nseed = str.encode('client finished') + handshake_hash\na0 = seed\na1 = hmac.new(ms, a0, hashlib.sha256).digest()\np1 = hmac.new(ms, a1+seed, hashlib.sha256).digest()\nverify_data = p1[:12] U computes inner hash of a1 and sends it to N. N (who has MS outer hash state from Step 10) computes a1 and sends it to U. U computes inner hash of p1 and sends it to N. N computes p1 and gets verify_data and sends it to U. Note that it is safe for N to know verify_data for CF. Using the data from Step 17, U proceeds to encrypt and authenticate CF and sends it to the webserver.","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Outside the circuit","id":"20","title":"Outside the circuit"},"21":{"body":"Upon U's receiving the encrypted Server_Finished (SF) from the webserver, the parties proceed to compute verify_data for SF, to enable U to check that the received SF is correct. The corresponding python code is: # (handshake_hash) is a sha256 hash of all TLS handshake message up to this point\nseed = str.encode('server finished') + handshake_hash\na0 = seed\na1 = hmac.new(ms, a0, hashlib.sha256).digest()\np1 = hmac.new(ms, a1+seed, hashlib.sha256).digest()\nverify_data = p1[:12]","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Verifying the Server_Finished","id":"21","title":"Verifying the Server_Finished"},"22":{"body":"U computes inner hash of a1 and sends it to N. N (who has MS outer hash state from Step 10) computes a1 and sends it to U. U computes inner hash of p1.","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Outside the circuit","id":"22","title":"Outside the circuit"},"23":{"body":"To evaluate the circuit, N inputs MS outer hash state (from Step 10) and U inputs inner hash of p1. The circuit outputs verify_data for SF to U. The parties proceed to decrypt and authenticate the SF in 2PC. U checks that verify_data from SF matches verify_data from Step 25.","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Inside the circuit","id":"23","title":"Inside the circuit"},"24":{"body":"Here we will explain our protocol for 2PC encryption using a block cipher in counter-mode. Our documentation on Dual Execution with Asymmetric Privacy is recommended prior reading for this section.","breadcrumbs":"Notarization » Encryption » Encryption","id":"24","title":"Encryption"},"25":{"body":"","breadcrumbs":"Notarization » Encryption » Preliminary","id":"25","title":"Preliminary"},"26":{"body":"It is important to recognise that the Notary's keyshare is an ephemeral secret . It is only private for the duration of the User's TLS session, after which the User is free to learn it without affecting the security of the protocol. It is this fact which allows us to achieve malicious security for relatively low cost. More details on this here .","breadcrumbs":"Notarization » Encryption » Ephemeral Keyshare","id":"26","title":"Ephemeral Keyshare"},"27":{"body":"A small amount of undetected premature keyshare leakage is quite tolerable. For example, if the Notary leaks 3 bits of their keyshare, it gives the User no meaningful advantage in any attack, as she could have simply guessed the bits correctly with 2−3=12.5% probability and mounted the same attack. Assuming a sufficiently long cipher key is used, eg. 128 bits, this is not a concern. The equality check at the end of our protocol ensures that premature leakage is detected with a probability of 1−2−k where k is the number of leaked bits. The Notary is virtually guaranteed to detect significant leakage and can abort prior to notarization.","breadcrumbs":"Notarization » Encryption » Premature Leakage","id":"27","title":"Premature Leakage"},"28":{"body":"Our protocol assures no leakage of the plaintext to the Notary during both encryption and decryption. The Notary reveals their keyshare at the end of the protocol, which allows the Notary to open their garbled circuits and oblivious transfers completely to the User. The User can then perform a series of consistency checks to ensure that the Notary behaved honestly. Because these consistency checks do not depend on any inputs of the User, aborting does not reveal any sensitive information (in contrast to standard DualEx which does).","breadcrumbs":"Notarization » Encryption » Plaintext Leakage","id":"28","title":"Plaintext Leakage"},"29":{"body":"During the entirety of the TLS session the User performs the role of the garbled circuit generator, thus ensuring that a malicious Notary can not corrupt or otherwise compromise the integrity of messages sent to/from the Server.","breadcrumbs":"Notarization » Encryption » Integrity","id":"29","title":"Integrity"},"3":{"body":"During the Notarization Phase the Requester, otherwise referred to as the User, and the Notary work together to generate an authenticated Transcript of a TLS session with a Server. Listed below are some key points regarding this process: The identity of the Server is not revealed to the Notary, but the Requester is capable of proving the Server identity to a Verifier later. The Notary only ever sees the encrypted application data of the TLS session. The protocol guarantees that the Requester is not solely capable of constructing requests, nor can they forge responses from the Server.","breadcrumbs":"Notarization » Notarization Phase","id":"3","title":"Notarization Phase"},"30":{"body":"p is one block of plaintext c is the corresponding block of ciphertext, ie c=Enc(k,ctr)⊕p k is the cipher key ctr is the counter block kU​ and kN​ denote the User and Notary cipher keyshares, respectively, where k=kU​⊕kN​ z is a mask randomly selected by the User ectr is the encrypted counter-block, ie ectr=Enc(k,ctr) Enc denotes the block cipher used by the TLS session comx​ denotes a binding commitment to the value x [x]A​ denotes a garbled encoding of x chosen by party A","breadcrumbs":"Notarization » Encryption » Notation","id":"30","title":"Notation"},"31":{"body":"The encryption protocol uses DEAP without any special variations. The User and Notary directly compute the ciphertext for each block of a message the User wishes to send to the Server: f(kU​,kN​,ctr,p)=Enc(kU​⊕kN​,ctr)⊕p=c The User creates a commitment to the plaintext active labels for the Notary's circuit Com([p]N​,r)=com[p]N​​ where r is a random key known only to the User. The User sends this commitment to the Notary to be used in the authdecode protocol later. It's critical that the User commits to [p]N​ prior to the Notary revealing Δ in the final phase of DEAP. This ensures that if com[p]N​​ is a commitment to valid labels, then it must be a valid commitment to the plaintext p. This is because learning the complementary wire label for any bit of p prior to learning Δ is virtually impossible.","breadcrumbs":"Notarization » Encryption » Encryption Protocol","id":"31","title":"Encryption Protocol"},"32":{"body":"The protocol for decryption is very similar but has some key differences to encryption. For decryption, DEAP is used for every block of the ciphertext to compute the masked encrypted counter-block : f(kU​,kN​,ctr,z)=Enc(kU​⊕kN​,ctr)⊕z=ectrz​ This mask z, chosen by the User, hides ectr from the Notary and thus the plaintext too. Conversely, the User can simply remove this mask in order to compute the plaintext p=c⊕ectrz​⊕z. Following this, the User can retrieve the wire labels [p]N​ from the Notary using OT. Similarly to the procedure for encryption, the User creates a commitment Com([p]N​,r)=com[p]N​​ where r is a random key known only to the User. The User sends this commitment to the Notary to be used in the authdecode protocol later.","breadcrumbs":"Notarization » Encryption » Decryption Protocol","id":"32","title":"Decryption Protocol"},"33":{"body":"In addition to computing the masked encrypted counter-block, the User must also prove that the labels [p]N​ they chose afterwards actually correspond to the ciphertext c sent by the Server. This is can be done efficiently in one execution using the zero-knowledge protocol described in [JKO13] the same as we do in the final phase of DEAP. The Notary garbles a circuit GN​ which computes: p⊕ectr=c Notice that the User and Notary will already have computed ectr when they computed ectrz​ earlier. Conveniently, the Notary can re-use the garbled labels [ectr]N​ as input labels for this circuit. For more details on the reuse of garbled labels see [AMR17] .","breadcrumbs":"Notarization » Encryption » Proving the validity of [p]N​","id":"33","title":"Proving the validity of [p]N​"},"34":{"body":"At the end of the TLSNotary protocol, the User has the authenticated AES ciphertext which can be thought of as a commitment to the plaintext. This form of commitment is not amenable to use cases when the User wants to make part of the plaintext public while keeping another part private. Naively, the User's option is to prove the decryption of the ciphertext in zero-knowledge which is computationally expensive. We describe two less computationally heavy approaches for converting the AES ciphertext commitments. The first approach is useful for commitments to the data which the User intends to make public. It is based on decrypting the ciphertext with Garbled Circuits and producing a hash commitment to the wire labels. The second approach is useful for commitments to the private data which the User later intends to prove statements about in zero-knowledge. This approach produces a Poseidon hash over the private data.","breadcrumbs":"Notarization » Commitment » Commitment","id":"34","title":"Commitment"},"35":{"body":"We describe an interactive protocol between the User U and the Notary N, whereby U can convert the authenticated AES ciphertext into a hash commitment to Garbled Circuits wire labels.","breadcrumbs":"Notarization » Commitment » Commitment to public data » Commitment to public data","id":"35","title":"Commitment to public data"},"36":{"body":"At the end of the TLSNotary session, both U and N know the authenticated AES ciphertext. N reveals his TLS session key shares to U. U decrypts the ciphertext in the clear and learns the plaintext p. N picks a seed and uses it as the source of randomness to generate (in the semi-honest model) a privacy-free garbled circuit whose functionality is to accept the plaintext input, encrypt it, and output the ciphertext. With p as her circuit input, U receives input wire labels IWLs via Oblivious Transfer and then evaluates the circuit on those IWLs. The result of the evaluation are output wire labels OWLs which U does not know the decoding for. U sends two commitments: commitment to IWLs and commitment to OWLs to N. N reveals the seed and U checks that the circuit (including its IWLs and OWLs) was generated correctly and, if successful, reveals her OWLs. N verifies commitment to OWLs and then checks that decoded OWLs match the ciphertext (from Step 0) and, if successful, signs (seed + commitment to IWLs). Now, (seed + commitment to IWLs) become U's new commitment to p.","breadcrumbs":"Notarization » Commitment » Commitment to public data » Creating the new commitment","id":"36","title":"Creating the new commitment"},"37":{"body":"Verifier performs the following steps: Receives the following from U: plaintext p, signature for (seed + commitment to IWLs), seed, commitment to IWLs. (using a trusted Ns pubkey) Verifies the signature. Re-generates the IWLs from the seed. Picks only those IWLs which correspond to p and checks that the commitment to those IWLs matches commitment to IWLs. Accepts p as authentic.","breadcrumbs":"Notarization » Commitment » Commitment to public data » Verifying the commitment","id":"37","title":"Verifying the commitment"},"38":{"body":"In situations where U does not know in advance which subset of the public data she will be revealing later to the Verifier, U can commit to the Merkle tree of all her input wire labels (from Step 4 above). Later, U can reveal only those Merkle leaves which she wants to make public to the Verifier.","breadcrumbs":"Notarization » Commitment » Commitment to public data » Dynamic commitment using a Merkle tree","id":"38","title":"Dynamic commitment using a Merkle tree"},"39":{"body":"","breadcrumbs":"Secure 2-Party Computation » Secure 2-Party Computation","id":"39","title":"Secure 2-Party Computation"},"4":{"body":"The Requester is the party which runs the TLS connection with the Server. The Requester constructs application payloads, eg. HTTP requests, and coordinates with the Notary to encrypt them with the TLS session keys prior to sending them. Subsequently, the Requester works with the Notary to decrypt responses from the Server. The plaintext of the application data is only ever revealed to the Requester.","breadcrumbs":"Notarization » Requester","id":"4","title":"Requester"},"40":{"body":"","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Dual Execution with Asymmetric Privacy","id":"40","title":"Dual Execution with Asymmetric Privacy"},"41":{"body":"Malicious secure 2-party computation with garbled circuits typically comes at the expense of dramatically lower efficiency compared to execution in the semi-honest model. One technique, called Dual Execution [MF06] [HKE12] , achieves malicious security with a minimal 2x overhead. However, it comes with the concession that a malicious adversary may learn k bits of the other's input with probability 2−k. We present a variant of Dual Execution which provides different trade-offs. Our variant ensures complete privacy for one party , by sacrificing privacy entirely for the other. Hence the name, Dual Execution with Asymmetric Privacy (DEAP). During the execution phase of the protocol both parties have private inputs. The party with complete privacy learns the authentic output prior to the final stage of the protocol. In the final stage, prior to the equality check, one party reveals their private input. This allows a series of consistency checks to be performed which guarantees that the equality check can not cause leakage. Similarly to standard DualEx, our variant ensures output correctness and detects leakage (of the revealing parties input) with probability 1−2−k where k is the number of bits leaked.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Introduction","id":"41","title":"Introduction"},"42":{"body":"The protocol takes place between Alice and Bob who want to compute f(x,y) where x and y are Alice and Bob's inputs respectively. The privacy of Alice's input is ensured, while Bob's input will be revealed in the final steps of the protocol.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Preliminary","id":"42","title":"Preliminary"},"43":{"body":"Firstly, our protocol assumes a small amount of premature leakage of Bob's input is tolerable. By premature, we mean prior to the phase where Bob is expected to reveal his input. If Alice is malicious, she has the opportunity to prematurely leak k bits of Bob's input with 2−k probability of it going undetected.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Premature Leakage","id":"43","title":"Premature Leakage"},"44":{"body":"We assume that it is acceptable for either party to cause the protocol to abort at any time, with the condition that no information of Alice's inputs are leaked from doing so.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Aborts","id":"44","title":"Aborts"},"45":{"body":"In the last phase of our protocol Bob must open all oblivious transfers he sent to Alice. To achieve this, we require a very relaxed flavor of committed oblivious transfer. For more detail on these relaxations see section 2 of Zero-Knowledge Using Garbled Circuits [JKO13] .","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Committed Oblivious Transfer","id":"45","title":"Committed Oblivious Transfer"},"46":{"body":"x and y are Alice and Bob's inputs, respectively. [X]A​ denotes an encoding of x chosen by Alice. [x] and [y] are Alice and Bob's encoded active inputs, respectively, ie Enc(x,[X])=[x]. comx​ denotes a binding commitment to x G denotes a garbled circuit for computing f(x,y)=v, where: Gb([X],[Y])=G Ev(G,[x],[y])=[v]. d denotes output decoding information where De(d,[v])=v Δ denotes the global offset of a garbled circuit where ∀i:[x]i1​=[x]i0​⊕Δ PRG denotes a secure pseudo-random generator H denotes a secure hash function","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Notation","id":"46","title":"Notation"},"47":{"body":"The protocol can be thought of as three distinct phases: The setup phase, execution, and equality-check.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Protocol","id":"47","title":"Protocol"},"48":{"body":"Alice creates a garbled circuit GA​ with corresponding input labels ([X]A​,[Y]A​), and output label commitment com[V]A​​. Bob creates a garbled circuit GB​ with corresponding input labels ([X]B​,[Y]B​). For committed OT, Bob picks a seed ρ and uses it to generate all random-tape for his OTs with PRG(ρ). Bob sends comρ​ to Alice. Alice retrieves her active input labels [x]B​ from Bob using OT. Bob retrieves his active input labels [y]A​ from Alice using OT. Alice sends GA​, [x]A​, dA​ and com[V]A​​ to Bob. Bob sends GB​, [y]B​, and dB​ to Alice.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Setup","id":"48","title":"Setup"},"49":{"body":"Both Alice and Bob can execute this phase of the protocol in parallel as described below: Alice Evaluates GB​ using [x]B​ and [y]B​ to acquire [v]B​. Decodes [v]B​ to vB using dB​ which she received earlier. She computes H([vB]A​,[v]B​) which we will call checkA​. Computes a commitment Com(checkA​,r)=comcheckA​​ where r is a key only known to Alice. She sends this commitment to Bob. Waits to receive [v]A​ from Bob [1] . Checks that [v]A​ is authentic, aborting if not, then decodes [v]A​ to vA using dA​. At this stage, if Bob is malicious, Alice could detect that vA=vB. However, Alice must not react in this case. She proceeds with the protocol regardless, having the authentic output vA. Bob Evaluates GA​ using [x]A​ and [y]A​ to acquire [v]A​. He checks [v]A​ against the commitment com[V]A​​ which Alice sent earlier, aborting if it is invalid. Decodes [v]A​ to vA using dA​ which he received earlier. He computes H([v]A​,[vA]B​) which we'll call checkB​, and stores it for the equality check later. Sends [v]A​ to Alice [1] . Receives comcheckA​​ from Alice and stores it for the equality check later. Bob, even if malicious, has learned nothing except the purported output vA and is not convinced it is correct. In the next phase Alice will attempt to convince Bob that it is. Alice, if honest, has learned the correct output v thanks to the authenticity property of garbled circuits. Alice, if malicious, has potentially learned Bob's entire input y. This is a significant deviation from standard DualEx protocols such as [HKE12] . Typically the output labels are not returned to the Generator, instead, output authenticity is established during a secure equality check at the end. See the section below for more detail.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Execution","id":"49","title":"Execution"},"5":{"body":"The Notary is the party of which the authenticity of the Transcript relies on. During the session the Notary withholds its' shares of the TLS keys and participates in a series of secure 2-party computation protocols with the Requester to operate the TLS connection.","breadcrumbs":"Notarization » Notary","id":"5","title":"Notary"},"50":{"body":"Bob opens his garbled circuit and OT by sending ΔB​, y and ρ to Alice. Alice, can now derive the purported input labels to Bob's garbled circuit ([X]B∗​,[Y]B∗​). Alice uses ρ to open all of Bob's OTs for [x]B​ and verifies that they were performed honestly. Otherwise she aborts. Alice verifies that GB​ was garbled honestly by checking Gb([X]B∗​,[Y]B∗​)==GB​. Otherwise she aborts. Alice now opens comcheckA​​ by sending checkA​ and r to Bob. Bob verifies comcheckA​​ then asserts checkA​==checkB​, aborting otherwise. Bob is now convinced that vA is correct, ie f(x,y)=vA. Bob is also assured that Alice only learned up to k bits of his input prior to revealing, with a probability of 2−k of it being undetected.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Equality Check","id":"50","title":"Equality Check"},"51":{"body":"","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Analysis","id":"51","title":"Analysis"},"52":{"body":"On the Leakage of Corrupted Garbled Circuits [DPB18] is recommended reading on this topic. During the first execution, Alice has some degrees of freedom in how she garbles GA​. According to [DPB18], when using a modern garbling scheme such as [ZRE15], these corruptions can be analyzed as two distinct classes: detectable and undetectable. Recall that our scheme assumes Bob's input is an ephemeral secret which can be revealed at the end. For this reason, we are entirely unconcerned about the detectable variety. Simply providing Bob with the output labels commitment com[V]A​​ is sufficient to detect these types of corruptions. In this context, our primary concern is regarding the correctness of the output of GA​. [DPB18] shows that any undetectable corruption made to GA​ is constrained to the arbitrary insertion or removal of NOT gates in the circuit, such that GA​ computes fA​ instead of f. Note that any corruption of dA​ has an equivalent effect. [DPB18] also shows that Alice's ability to exploit this is constrained by the topology of the circuit. Recall that in the final stage of our protocol Bob checks that the output of GA​ matches the output of GB​, or more specifically: fA​(x1​,y1​)==fB​(x2​,y2​) For the moment we'll assume Bob garbles honestly and provides the same inputs for both evaluations. fA​(x1​,y)==f(x2​,y) In the scenario where Bob reveals the output of fA​(x1​,y) prior to Alice committing to x2​ there is a trivial adaptive attack available to Alice. As an extreme example, assume Alice could choose fA​ such that fA​(x1​,y)=y. For most practical functions this is not possible to garble without detection, but for the sake of illustration we humor the possibility. In this case she could simply compute x2​ where f(x2​,y)=y in order to pass the equality check. To address this, Alice is forced to choose fA​, x1​ and x2​ prior to Bob revealing the output. In this case it is obvious that any valid combination of (fA​,x1​,x2​) must satisfy all constraints on y. Thus, for any non-trivial f, choosing a valid combination would be equivalent to guessing y correctly. In which case, any attack would be detected by the equality check with probability 1−2−k where k is the number of guessed bits of y. This result is acceptable within our model as explained earlier .","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Malicious Alice","id":"52","title":"Malicious Alice"},"53":{"body":"Zero-Knowledge Using Garbled Circuits [JKO13] is recommended reading on this topic. The last stage of our variant is functionally equivalent to the protocol described in [JKO13]. After Alice evaluates GB​ and commits to [v]B​, Bob opens his garbled circuit and all OTs entirely. Following this, Alice performs a series of consistency checks to detect any malicious behavior. These consistency checks do not depend on any of Alice's inputs, so any attempted selective failure attack by Bob would be futile. Bob's only options are to behave honestly, or cause Alice to abort without leaking any information.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Malicious Bob","id":"53","title":"Malicious Bob"},"54":{"body":"They deserve whatever they get.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Malicious Alice & Bob","id":"54","title":"Malicious Alice & Bob"},"55":{"body":"What is a MAC How a MAC is computed in AES-GCM Computing MAC using secure two-party computation (2PC)","breadcrumbs":"Secure 2-Party Computation » MAC » Computing MAC in 2PC","id":"55","title":"Computing MAC in 2PC"},"56":{"body":"When sending an encrypted ciphertext to the Webserver, the User attaches a checksum to it. The Webserver uses this checksum to check whether the ciphertext has been tampered with while in transit. This checksum is known as the \"authentication tag\" and also as the \"Message Authentication Code\" (MAC). In order to create a MAC for some ciphertext not only the ciphertext but also some secret key is used as an input. This makes it impossible to forge some ciphertext without knowing the secret key. The first few paragraphs of this article explain what would happen if there was no MAC: it would be possible for a malicious actor to modify the plaintext by flipping certain bits of the ciphertext .","breadcrumbs":"Secure 2-Party Computation » MAC » 1. What is a MAC","id":"56","title":"1. What is a MAC"},"57":{"body":"In TLS the plaintext is split up into chunks called \"TLS records\". Each TLS record is encrypted and a MAC is computed for the ciphertext. The MAC (in AES-GCM) is obtained by XORing together the GHASH output and the GCTR output. Let's see how each of those outputs is computed:","breadcrumbs":"Secure 2-Party Computation » MAC » 2. How a MAC is computed in AES-GCM","id":"57","title":"2. How a MAC is computed in AES-GCM"},"58":{"body":"The GCTR output is computed by simply AES-ECB encrypting a counter block with the counter set to 1 (the iv, nonce and AES key are the same as for the rest of the TLS record).","breadcrumbs":"Secure 2-Party Computation » MAC » 2.1 GCTR output","id":"58","title":"2.1 GCTR output"},"59":{"body":"The GHASH output is the output of the GHASH function described in the NIST publication in section 6.4 in this way: \"In effect, the GHASH function calculates X1​•Hm⊕X2​•Hm−1⊕...⊕Xm−1​•H2⊕Xm​•H\". H and X are elements of the extension field GF(2128). \"•\" is a special type of multiplication called multiplication in a finite field described in section 6.3 of the NIST publication. ⊕ is addition in a finite field and it is defined as XOR. In other words, GHASH splits up the ciphertext into 16-byte blocks, each block is numbered X1​,X2​,... etc. There's also H which is called the GHASH key, which just is the AES-encrypted zero-block. We need to raise H to as many powers as there are blocks, i.e. if we have 5 blocks then we need 5 powers: H,H2,H3,H4,H5. Each block is multiplied by the corresponding power and all products are summed together. Below is the pseudocode for multiplying two 128-bit field elements x and y in GF(2128): 1. result = 0\n2. R = 0xE1000000000000000000000000000000\n3. bit_length = 128\n4. for i=0 upto bit_length-1\n5. if y[i] == 1\n6. result ^= x\n7. x = (x >> 1) ^ ((x & 1) * R)\n8. return result Standard math properties hold in finite field math, viz. commutative: a+b=b+a and distributive: a(b+c)=ab+ac.","breadcrumbs":"Secure 2-Party Computation » MAC » 2.2 GHASH output","id":"59","title":"2.2 GHASH output"},"6":{"body":"The Server can be any server which supports TLS. The TLSNotary protocol is entirely transparent to the Server, thus it can not be censored nor does it have to support any additional functionality.","breadcrumbs":"Notarization » Server","id":"6","title":"Server"},"60":{"body":"The goal of the protocol is to compute the MAC in such a way that neither party would learn the other party's share of H i.e. the GHASH key share. At the start of the protocol each party has: ciphertext blocks X1​,X2​,...,Xm​. XOR share of H: the User has Hu​ and the Notary has Hn​. XOR share of the GCTR output: the User has GCTRu​ and the Notary has GCTRn​. Note that 2. and 3. were obtained at an earlier stage of the TLSNotary protocol.","breadcrumbs":"Secure 2-Party Computation » MAC » 3. Computing MAC using secure two-party computation (2PC)","id":"60","title":"3. Computing MAC using secure two-party computation (2PC)"},"61":{"body":"To illustrate what we want to achieve, we consider the case of just having a single ciphertext block X1​. The GHASH_output will be: X1​•H=X1​•(Hu​⊕Hn​)=X1​•Hu​⊕X1​•Hn​ The User and the Notary will compute locally the left and the right terms respectively. Then each party will XOR their result to the GCTR output share and will get their XOR share of the MAC: User : X1​•Hu​⊕GCTRu​=MACu​ Notary: X1​•Hn​⊕GCTRn​=MACn​ Finally, the Notary sends MACn​ to the User who obtains: MAC=MACn​⊕MACu​ For longer ciphertexts, the problem is that higher powers of the hashkey Hk cannot be computed locally, because we deal with additive sharings, i.e.(Hu​)k⊕(Hn​)k=Hk.","breadcrumbs":"Secure 2-Party Computation » MAC » 3.1 Example with a single ciphertext block","id":"61","title":"3.1 Example with a single ciphertext block"},"62":{"body":"We now introduce our 2PC MAC protocol for computing ciphertexts with an arbitrary number of blocks. Our protocol can be divided into the following steps. Steps First, both parties convert their additive shares Hu​ and Hn​ into multiplicative shares Hu​ and Hn​. This allows each party to locally compute the needed higher powers of these multiplicative shares, i.e for m blocks of ciphertext: the user computes Hu​​2,Hu​​3,...Hu​​m the notary computes Hn​​2,Hn​​3,...Hn​​m Then both parties convert each of these multiplicative shares back to additive shares the user ends up with Hu​,Hu2​,...Hum​ the notary ends up with Hn​,Hn2​,...Hnm​ Each party can now locally compute their additive MAC share MACn/u​. The conversion steps ( 1 and 3 ) require communication between the user and the notary. They will use A2M (Addition-to-Multiplication) and M2A (Multiplication-to-Addition) protocols, which make use of oblivious transfer , to convert the shares. The user will be the sender and the notary the receiver. 2PC MAC Overview 3.2.1 (A2M) Convert additive shares of H into multiplicative share At first (step 1 ) we have to get a multiplicative share of Hn/u​, so that notary and user can locally compute the needed higher powers. For this we use an adapted version of the A2M protocol in chapter 4 of Efficient Secure Two-Party Exponentiation . The user will decompose his share into i individual oblivious transfers tu,ik​=R⋅(k⋅2i+Hu,i​⋅2i⊕si​), where R is some random value used for all oblivious transfers si​ is a random mask used per oblivious transfer, with ∑i​si​=0 k∈0,1 depending on the receiver's choice. The notary's choice in the i-th OT will depend on the bit value in the i-th position of his additive share Hn​. In the end the multiplicative share of the user Hu​​ will simply be the inverse R−1 of the random value, and the notary will sum all his OT outputs, so that all the si​ will vanish and hence he gets his multiplicative share Hn​​. H​=Hu​⊕Hn​=R−1⋅R⋅i∑​(Hu,i​⊕Hn,i​)⋅2i⊕si​=R−1⋅i∑​tu,iHn,i​​⊕R⋅i∑​si​=Hu​​⋅Hn​​​​ 3.2.2 (M2A) Convert multiplicative shares Hk into additive shares In step 3 of our protocol, we use the oblivious transfer method described in chapter 4.1 of the Gilboa paper Two Party RSA Key Generation to convert all the multiplicative shares Hn/uk​​ back into additive shares Hn/uk​. We only show how the method works for the share Hn/u1​​, because it is the same for higher powers. The user will be the OT sender and decompose his shares into i individual oblivious transfers tu,ik​=k⋅Hu​​⋅2i+si​, where k∈0,1, depending on the receiver's choices. Each of these OTs is masked with a random value si​. He will then obliviously send them to the notary. Depending on the binary representation of his multiplicative share, the notary will choose one of the choices and do this for all 128 oblivious transfers. After that the user will locally XOR all his si​ and end up with his additive share Hu​, and the notary will do the same for all the results of the oblivious transfers and get Hn​. H​=Hu​​⋅Hn​​=Hu​​⋅i∑​Hn,i​​⋅2i=i∑​(Hn,i​​⋅Hu​​⋅2i⊕si​)⊕i∑​si​=i∑​tu,iHn,i​​​⊕i∑​si​≡Hn​⊕Hu​​","breadcrumbs":"Secure 2-Party Computation » MAC » 3.2 Computing ciphertexts with an arbitrary number of blocks","id":"62","title":"3.2 Computing ciphertexts with an arbitrary number of blocks"},"63":{"body":"In the actual implementation of the protocol we only compute odd multiplicative shares, i.e. H,H3,H5,…, so that we only need to share these odd shares in step 3 . This is possible because we can compute even additive shares from odd additive shares. We observe that for even k: Hk​=(Hnk/2​⊕Huk/2​)2=(Hnk/2​)2⊕Hnk/2​Huk/2​⊕Huk/2​Hnk/2​⊕(Huk/2​)2=(Hnk/2​)2⊕(Huk/2​)2=Hnk​⊕Huk​​​ So we only need to convert odd multiplicative shares into odd additive shares, which gives us a 50% reduction in cost. The remaining even additive shares can then be computed locally.","breadcrumbs":"Secure 2-Party Computation » MAC » 3.3 Free Squaring","id":"63","title":"3.3 Free Squaring"},"64":{"body":"Both the A2M and M2A protocols on their own only provide semi-honest security. They are secure against a malicious receiver, but the sender has degrees of freedom to cause leakage of the MAC keyshares. However, for our purposes this does not present a problem as long as leakage is detected. To detect a malicious sender, we require the sender to commit to the PRG seed used to generate the random values in the share conversion protocols. After the TLS session is closed the MAC keyshares are no longer secret, which allows the sender to reveal this seed to the receiver. Subsequently, the receiver can perform a consistency check to make sure the sender followed the protocol honestly. 3.3.1 Malicious notary The protocol is secure against a malicious notary, because he is the OT receiver, which means that there is actually no input from him during the protocol execution except for the final MAC output. He just receives the OT input from the user, so the only thing he can do is to provide a wrong MAC keyshare. This will cause the server to reject the MAC when the user sends the request. The protocol simply aborts. 3.3.2 Malicious user A malicious user could actually manipulate what he sends in the OT and potentially endanger the security of the protocol by leaking the notary's MAC key. To address this we force the user to reveal his MAC key after the server response so that the notary can check for the correctness of the whole MAC 2PC protocol. Then if the notary detects that the user cheated, he would simply abort the protocol. The only problem when doing this is, that we want the whole TLSNotary protocol to work under the assumption that the notary can intercept the traffic between the user and the server. This would allow the notary to trick the user into thinking that the TLS session is already terminated, if he can force the server to respond. The user would send his MAC key share too early and the notary could, now having the complete MAC key, forge the ciphertext and create a valid MAC for it. He would then send this forged request to the server and forward the response of the server to the user. To prevent this scenario we need to make sure that the TLS connection to the server is terminated before the user sends his MAC key share to the notary. Following the TLS RFC , we leverage close_notify to ensure all messages sent to the server have been processed and the connection is closed. Unfortunately, many server TLS implementations do not support close_notify. In these cases we instead send an invalid message to the server which forces it to respond with a fatal alert message and close the connection.","breadcrumbs":"Secure 2-Party Computation » MAC » 3.3 Creating a robust protocol","id":"64","title":"3.3 Creating a robust protocol"},"65":{"body":"Some protocols used in TLSNotary need to convert two-party sharings of products or sums of some field elements into each other. For this purpose we use share conversion protocols which use oblivious transfer (OT) as a sub-protocol. Here we want to have a closer look at the security guarantees these protocols offer.","breadcrumbs":"Secure 2-Party Computation » Finite-Field Arithmetic » Finite-Field Arithmetic","id":"65","title":"Finite-Field Arithmetic"},"66":{"body":"Our goal is to add covert security to our share conversion protocols. This means that we want an honest party to be able to detect a malicious adversary, who is then able to abort the protocol. Our main concern is that the adversary might be able to leak private inputs of the honest party without being noticed. For this reason we require that the adversary cannot do anything which would give him a better chance than guessing the private input at random, which is guessing k bits with a probability of 2−k for not being detected. In the following we want to have a closer look at how the sender and receiver can deviate from the protocol. Malicious receiver Note that in our protocol a malicious receiver cannot forge the protocol output, since he does not send anything to the sender during protocol execution. Even when this protocol is embedded into an outer protocol, where at some point the receiver has to open his output or a computation involving it, then all he can do is to open an output y′ with y′=y, which is just equivalent to changing his input from b→b′. Malicious sender In the case of a malicious sender the following things can happen: The sender can impose an arbitrary field element b′ as input onto the receiver without him noticing. To do this he simply sends (tik​,tik​) in every OT, where k is i-th bit of b′. The sender can execute a selective-failure attack, which allows him to learn any predicate about the receiver's input. For each OT round i, the sender alters one of the OT values to be Tik​=tik​+ci​, where ci​∈F,k∈{0,1}. This will cause that in the end the equation a⋅b=x+y no longer holds but only if the forged OT value has actually been picked by the receiver. The sender does not use a random number generator with a seed r to sample the masks si​, instead he simply chooses them at will.","breadcrumbs":"Secure 2-Party Computation » Finite-Field Arithmetic » Adding covert security","id":"66","title":"Adding covert security"},"67":{"body":"Without loss of generality let us recall the Multiplication-To-Addition (M2A) protocol, but our observations also apply to the Addition-To-Multiplication (A2M) protocol, which is very similar. We start with a short review of the M2A protocol. Let there be a sender with some field element a and some receiver with another field element b. After protocol execution the sender ends up with x and the receiver ends up with y, so that a⋅b=x+y. a,b,x,y∈F r - rng seed m - bit-length of elements in F n - bit-length of rng seed OT Sender with input a∈F,r←{0,1}n Sample some random masks: si​=rng(r,i),0≤iNote that now both parties know p2 which is the last 16 bytes of the master secret. They still don't know the other 32 bytes of the master secret, which ensures adequate security. U computes the inner hash of p1.","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Outside the circuit","id":"12","title":"Outside the circuit"},"13":{"body":"To evaluate the circuit, N inputs the PMS outer hash state and U inputs p2 and the inner hash of p1. The circuit computes the master secret (MS).","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Inside the circuit","id":"13","title":"Inside the circuit"},"14":{"body":"The parties proceed to compute the expanded keys. The corresponding python code is: seed = str.encode(\"key expansion\") + server_random + client_random\na0 = seed\na1 = hmac.new(ms , a0, hashlib.sha256).digest()\na2 = hmac.new(ms , a1, hashlib.sha256).digest()\np1 = hmac.new(ms, a1+seed, hashlib.sha256).digest()\np2 = hmac.new(ms, a2+seed, hashlib.sha256).digest()\nek = (p1 + p2)[:40]\nclient_write_key = ek[:16]\nserver_write_key = ek[16:32]\nclient_write_IV = ek[32:36]\nserver_write_IV = ek[36:40]","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Computing the expanded keys","id":"14","title":"Computing the expanded keys"},"15":{"body":"Having computed MS, the circuit outputs: H(MS ⊕ opad) called the MS outer hash state to N and H(MS ⊕ ipad) called the MS inner hash state to U","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Inside the circuit","id":"15","title":"Inside the circuit"},"16":{"body":"U computes the inner hash of a1 and sends it to N. N computes a1 and sends it to U. U computes the inner hash of a2 and sends it to N. N computes a2 and sends it to U. U computes the inner hash state of p1 and the inner hash state of p2.","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Outside the circuit","id":"16","title":"Outside the circuit"},"17":{"body":"To evaluate the circuit, N inputs MS outer hash state (from Step 10) and U inputs inner hash state of p1 and inner hash state of p2. The circuit computes p1 and p2. The circuit outputs xor shares of the expanded keys to each party.","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Inside the circuit","id":"17","title":"Inside the circuit"},"18":{"body":"","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Computing the encrypted Client_Finished","id":"18","title":"Computing the encrypted Client_Finished"},"19":{"body":"To evaluate the circuit, the parties input their shares of the expanded keys. The circuit outputs data needed to encrypt and authenticate the Client_Finished (CF) message.","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Inside the circuit","id":"19","title":"Inside the circuit"},"2":{"body":"The following diagram is a high-level protocol overview introducing the main components of TLSNotary. TLSNotary Overview","breadcrumbs":"Overview » Overview","id":"2","title":"Overview"},"20":{"body":"The parties proceed to compute verify_data for the CF message. The corresponding python code is: # (handshake_hash) is a sha256 hash of all TLS handshake message up to this point\nseed = str.encode('client finished') + handshake_hash\na0 = seed\na1 = hmac.new(ms, a0, hashlib.sha256).digest()\np1 = hmac.new(ms, a1+seed, hashlib.sha256).digest()\nverify_data = p1[:12] U computes inner hash of a1 and sends it to N. N (who has MS outer hash state from Step 10) computes a1 and sends it to U. U computes inner hash of p1 and sends it to N. N computes p1 and gets verify_data and sends it to U. Note that it is safe for N to know verify_data for CF. Using the data from Step 17, U proceeds to encrypt and authenticate CF and sends it to the webserver.","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Outside the circuit","id":"20","title":"Outside the circuit"},"21":{"body":"Upon U's receiving the encrypted Server_Finished (SF) from the webserver, the parties proceed to compute verify_data for SF, to enable U to check that the received SF is correct. The corresponding python code is: # (handshake_hash) is a sha256 hash of all TLS handshake message up to this point\nseed = str.encode('server finished') + handshake_hash\na0 = seed\na1 = hmac.new(ms, a0, hashlib.sha256).digest()\np1 = hmac.new(ms, a1+seed, hashlib.sha256).digest()\nverify_data = p1[:12]","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Verifying the Server_Finished","id":"21","title":"Verifying the Server_Finished"},"22":{"body":"U computes inner hash of a1 and sends it to N. N (who has MS outer hash state from Step 10) computes a1 and sends it to U. U computes inner hash of p1.","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Outside the circuit","id":"22","title":"Outside the circuit"},"23":{"body":"To evaluate the circuit, N inputs MS outer hash state (from Step 10) and U inputs inner hash of p1. The circuit outputs verify_data for SF to U. The parties proceed to decrypt and authenticate the SF in 2PC. U checks that verify_data from SF matches verify_data from Step 25.","breadcrumbs":"Notarization » TLS Handshake » Symmetric key derivation » Inside the circuit","id":"23","title":"Inside the circuit"},"24":{"body":"Here we will explain our protocol for 2PC encryption using a block cipher in counter-mode. Our documentation on Dual Execution with Asymmetric Privacy is recommended prior reading for this section.","breadcrumbs":"Notarization » Encryption » Encryption","id":"24","title":"Encryption"},"25":{"body":"","breadcrumbs":"Notarization » Encryption » Preliminary","id":"25","title":"Preliminary"},"26":{"body":"It is important to recognise that the Notary's keyshare is an ephemeral secret . It is only private for the duration of the User's TLS session, after which the User is free to learn it without affecting the security of the protocol. It is this fact which allows us to achieve malicious security for relatively low cost. More details on this here .","breadcrumbs":"Notarization » Encryption » Ephemeral Keyshare","id":"26","title":"Ephemeral Keyshare"},"27":{"body":"A small amount of undetected premature keyshare leakage is quite tolerable. For example, if the Notary leaks 3 bits of their keyshare, it gives the User no meaningful advantage in any attack, as she could have simply guessed the bits correctly with 2−3=12.5% probability and mounted the same attack. Assuming a sufficiently long cipher key is used, eg. 128 bits, this is not a concern. The equality check at the end of our protocol ensures that premature leakage is detected with a probability of 1−2−k where k is the number of leaked bits. The Notary is virtually guaranteed to detect significant leakage and can abort prior to notarization.","breadcrumbs":"Notarization » Encryption » Premature Leakage","id":"27","title":"Premature Leakage"},"28":{"body":"Our protocol assures no leakage of the plaintext to the Notary during both encryption and decryption. The Notary reveals their keyshare at the end of the protocol, which allows the Notary to open their garbled circuits and oblivious transfers completely to the User. The User can then perform a series of consistency checks to ensure that the Notary behaved honestly. Because these consistency checks do not depend on any inputs of the User, aborting does not reveal any sensitive information (in contrast to standard DualEx which does).","breadcrumbs":"Notarization » Encryption » Plaintext Leakage","id":"28","title":"Plaintext Leakage"},"29":{"body":"During the entirety of the TLS session the User performs the role of the garbled circuit generator, thus ensuring that a malicious Notary can not corrupt or otherwise compromise the integrity of messages sent to/from the Server.","breadcrumbs":"Notarization » Encryption » Integrity","id":"29","title":"Integrity"},"3":{"body":"During the Notarization Phase the Requester, otherwise referred to as the User, and the Notary work together to generate an authenticated Transcript of a TLS session with a Server. Listed below are some key points regarding this process: The identity of the Server is not revealed to the Notary, but the Requester is capable of proving the Server identity to a Verifier later. The Notary only ever sees the encrypted application data of the TLS session. The protocol guarantees that the Requester is not solely capable of constructing requests, nor can they forge responses from the Server.","breadcrumbs":"Notarization » Notarization Phase","id":"3","title":"Notarization Phase"},"30":{"body":"p is one block of plaintext c is the corresponding block of ciphertext, ie c=Enc(k,ctr)⊕p k is the cipher key ctr is the counter block kU​ and kN​ denote the User and Notary cipher keyshares, respectively, where k=kU​⊕kN​ z is a mask randomly selected by the User ectr is the encrypted counter-block, ie ectr=Enc(k,ctr) Enc denotes the block cipher used by the TLS session comx​ denotes a binding commitment to the value x [x]A​ denotes a garbled encoding of x chosen by party A","breadcrumbs":"Notarization » Encryption » Notation","id":"30","title":"Notation"},"31":{"body":"The encryption protocol uses DEAP without any special variations. The User and Notary directly compute the ciphertext for each block of a message the User wishes to send to the Server: f(kU​,kN​,ctr,p)=Enc(kU​⊕kN​,ctr)⊕p=c The User creates a commitment to the plaintext active labels for the Notary's circuit Com([p]N​,r)=com[p]N​​ where r is a random key known only to the User. The User sends this commitment to the Notary to be used in the authdecode protocol later. It's critical that the User commits to [p]N​ prior to the Notary revealing Δ in the final phase of DEAP. This ensures that if com[p]N​​ is a commitment to valid labels, then it must be a valid commitment to the plaintext p. This is because learning the complementary wire label for any bit of p prior to learning Δ is virtually impossible.","breadcrumbs":"Notarization » Encryption » Encryption Protocol","id":"31","title":"Encryption Protocol"},"32":{"body":"The protocol for decryption is very similar but has some key differences to encryption. For decryption, DEAP is used for every block of the ciphertext to compute the masked encrypted counter-block : f(kU​,kN​,ctr,z)=Enc(kU​⊕kN​,ctr)⊕z=ectrz​ This mask z, chosen by the User, hides ectr from the Notary and thus the plaintext too. Conversely, the User can simply remove this mask in order to compute the plaintext p=c⊕ectrz​⊕z. Following this, the User can retrieve the wire labels [p]N​ from the Notary using OT. Similarly to the procedure for encryption, the User creates a commitment Com([p]N​,r)=com[p]N​​ where r is a random key known only to the User. The User sends this commitment to the Notary to be used in the authdecode protocol later.","breadcrumbs":"Notarization » Encryption » Decryption Protocol","id":"32","title":"Decryption Protocol"},"33":{"body":"In addition to computing the masked encrypted counter-block, the User must also prove that the labels [p]N​ they chose afterwards actually correspond to the ciphertext c sent by the Server. This is can be done efficiently in one execution using the zero-knowledge protocol described in [JKO13] the same as we do in the final phase of DEAP. The Notary garbles a circuit GN​ which computes: p⊕ectr=c Notice that the User and Notary will already have computed ectr when they computed ectrz​ earlier. Conveniently, the Notary can re-use the garbled labels [ectr]N​ as input labels for this circuit. For more details on the reuse of garbled labels see [AMR17] .","breadcrumbs":"Notarization » Encryption » Proving the validity of [p]N​","id":"33","title":"Proving the validity of [p]N​"},"34":{"body":"At the end of the TLSNotary protocol, the User has the authenticated AES ciphertext which can be thought of as a commitment to the plaintext. This form of commitment is not amenable to use cases when the User wants to make part of the plaintext public while keeping another part private. Naively, the User's option is to prove the decryption of the ciphertext in zero-knowledge which is computationally expensive. We describe two less computationally heavy approaches for converting the AES ciphertext commitments. The first approach is useful for commitments to the data which the User intends to make public. It is based on decrypting the ciphertext with Garbled Circuits and producing a hash commitment to the wire labels. The second approach is useful for commitments to the private data which the User later intends to prove statements about in zero-knowledge. This approach produces a Poseidon hash over the private data.","breadcrumbs":"Notarization » Commitment » Commitment","id":"34","title":"Commitment"},"35":{"body":"We describe an interactive protocol between the User U and the Notary N, whereby U can convert the authenticated AES ciphertext into a hash commitment to Garbled Circuits wire labels.","breadcrumbs":"Notarization » Commitment » Commitment to public data » Commitment to public data","id":"35","title":"Commitment to public data"},"36":{"body":"At the end of the TLSNotary session, both U and N know the authenticated AES ciphertext. N reveals his TLS session key shares to U. U decrypts the ciphertext in the clear and learns the plaintext p. N picks a seed and uses it as the source of randomness to generate (in the semi-honest model) a privacy-free garbled circuit whose functionality is to accept the plaintext input, encrypt it, and output the ciphertext. With p as her circuit input, U receives input wire labels IWLs via Oblivious Transfer and then evaluates the circuit on those IWLs. The result of the evaluation are output wire labels OWLs which U does not know the decoding for. U sends two commitments: commitment to IWLs and commitment to OWLs to N. N reveals the seed and U checks that the circuit (including its IWLs and OWLs) was generated correctly and, if successful, reveals her OWLs. N verifies commitment to OWLs and then checks that decoded OWLs match the ciphertext (from Step 0) and, if successful, signs (seed + commitment to IWLs). Now, (seed + commitment to IWLs) become U's new commitment to p.","breadcrumbs":"Notarization » Commitment » Commitment to public data » Creating the new commitment","id":"36","title":"Creating the new commitment"},"37":{"body":"Verifier performs the following steps: Receives the following from U: plaintext p, signature for (seed + commitment to IWLs), seed, commitment to IWLs. (using a trusted Ns pubkey) Verifies the signature. Re-generates the IWLs from the seed. Picks only those IWLs which correspond to p and checks that the commitment to those IWLs matches commitment to IWLs. Accepts p as authentic.","breadcrumbs":"Notarization » Commitment » Commitment to public data » Verifying the commitment","id":"37","title":"Verifying the commitment"},"38":{"body":"In situations where U does not know in advance which subset of the public data she will be revealing later to the Verifier, U can commit to the Merkle tree of all her input wire labels (from Step 4 above). Later, U can reveal only those Merkle leaves which she wants to make public to the Verifier.","breadcrumbs":"Notarization » Commitment » Commitment to public data » Dynamic commitment using a Merkle tree","id":"38","title":"Dynamic commitment using a Merkle tree"},"39":{"body":"","breadcrumbs":"Secure 2-Party Computation » Secure 2-Party Computation","id":"39","title":"Secure 2-Party Computation"},"4":{"body":"The Requester is the party which runs the TLS connection with the Server. The Requester constructs application payloads, eg. HTTP requests, and coordinates with the Notary to encrypt them with the TLS session keys prior to sending them. Subsequently, the Requester works with the Notary to decrypt responses from the Server. The plaintext of the application data is only ever revealed to the Requester.","breadcrumbs":"Notarization » Requester","id":"4","title":"Requester"},"40":{"body":"","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Dual Execution with Asymmetric Privacy","id":"40","title":"Dual Execution with Asymmetric Privacy"},"41":{"body":"Malicious secure 2-party computation with garbled circuits typically comes at the expense of dramatically lower efficiency compared to execution in the semi-honest model. One technique, called Dual Execution [MF06] [HKE12] , achieves malicious security with a minimal 2x overhead. However, it comes with the concession that a malicious adversary may learn k bits of the other's input with probability 2−k. We present a variant of Dual Execution which provides different trade-offs. Our variant ensures complete privacy for one party , by sacrificing privacy entirely for the other. Hence the name, Dual Execution with Asymmetric Privacy (DEAP). During the execution phase of the protocol both parties have private inputs. The party with complete privacy learns the authentic output prior to the final stage of the protocol. In the final stage, prior to the equality check, one party reveals their private input. This allows a series of consistency checks to be performed which guarantees that the equality check can not cause leakage. Similarly to standard DualEx, our variant ensures output correctness and detects leakage (of the revealing parties input) with probability 1−2−k where k is the number of bits leaked.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Introduction","id":"41","title":"Introduction"},"42":{"body":"The protocol takes place between Alice and Bob who want to compute f(x,y) where x and y are Alice and Bob's inputs respectively. The privacy of Alice's input is ensured, while Bob's input will be revealed in the final steps of the protocol.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Preliminary","id":"42","title":"Preliminary"},"43":{"body":"Firstly, our protocol assumes a small amount of premature leakage of Bob's input is tolerable. By premature, we mean prior to the phase where Bob is expected to reveal his input. If Alice is malicious, she has the opportunity to prematurely leak k bits of Bob's input with 2−k probability of it going undetected.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Premature Leakage","id":"43","title":"Premature Leakage"},"44":{"body":"We assume that it is acceptable for either party to cause the protocol to abort at any time, with the condition that no information of Alice's inputs are leaked from doing so.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Aborts","id":"44","title":"Aborts"},"45":{"body":"In the last phase of our protocol Bob must open all oblivious transfers he sent to Alice. To achieve this, we require a very relaxed flavor of committed oblivious transfer. For more detail on these relaxations see section 2 of Zero-Knowledge Using Garbled Circuits [JKO13] .","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Committed Oblivious Transfer","id":"45","title":"Committed Oblivious Transfer"},"46":{"body":"x and y are Alice and Bob's inputs, respectively. [X]A​ denotes an encoding of x chosen by Alice. [x] and [y] are Alice and Bob's encoded active inputs, respectively, ie Enc(x,[X])=[x]. comx​ denotes a binding commitment to x G denotes a garbled circuit for computing f(x,y)=v, where: Gb([X],[Y])=G Ev(G,[x],[y])=[v]. d denotes output decoding information where De(d,[v])=v Δ denotes the global offset of a garbled circuit where ∀i:[x]i1​=[x]i0​⊕Δ PRG denotes a secure pseudo-random generator H denotes a secure hash function","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Notation","id":"46","title":"Notation"},"47":{"body":"The protocol can be thought of as three distinct phases: The setup phase, execution, and equality-check.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Protocol","id":"47","title":"Protocol"},"48":{"body":"Alice creates a garbled circuit GA​ with corresponding input labels ([X]A​,[Y]A​), and output label commitment com[V]A​​. Bob creates a garbled circuit GB​ with corresponding input labels ([X]B​,[Y]B​). For committed OT, Bob picks a seed ρ and uses it to generate all random-tape for his OTs with PRG(ρ). Bob sends comρ​ to Alice. Alice retrieves her active input labels [x]B​ from Bob using OT. Bob retrieves his active input labels [y]A​ from Alice using OT. Alice sends GA​, [x]A​, dA​ and com[V]A​​ to Bob. Bob sends GB​, [y]B​, and dB​ to Alice.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Setup","id":"48","title":"Setup"},"49":{"body":"Both Alice and Bob can execute this phase of the protocol in parallel as described below: Alice Evaluates GB​ using [x]B​ and [y]B​ to acquire [v]B​. Decodes [v]B​ to vB using dB​ which she received earlier. She computes H([vB]A​,[v]B​) which we will call checkA​. Computes a commitment Com(checkA​,r)=comcheckA​​ where r is a key only known to Alice. She sends this commitment to Bob. Waits to receive [v]A​ from Bob [1] . Checks that [v]A​ is authentic, aborting if not, then decodes [v]A​ to vA using dA​. At this stage, if Bob is malicious, Alice could detect that vA=vB. However, Alice must not react in this case. She proceeds with the protocol regardless, having the authentic output vA. Bob Evaluates GA​ using [x]A​ and [y]A​ to acquire [v]A​. He checks [v]A​ against the commitment com[V]A​​ which Alice sent earlier, aborting if it is invalid. Decodes [v]A​ to vA using dA​ which he received earlier. He computes H([v]A​,[vA]B​) which we'll call checkB​, and stores it for the equality check later. Sends [v]A​ to Alice [1] . Receives comcheckA​​ from Alice and stores it for the equality check later. Bob, even if malicious, has learned nothing except the purported output vA and is not convinced it is correct. In the next phase Alice will attempt to convince Bob that it is. Alice, if honest, has learned the correct output v thanks to the authenticity property of garbled circuits. Alice, if malicious, has potentially learned Bob's entire input y. This is a significant deviation from standard DualEx protocols such as [HKE12] . Typically the output labels are not returned to the Generator, instead, output authenticity is established during a secure equality check at the end. See the section below for more detail.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Execution","id":"49","title":"Execution"},"5":{"body":"The Notary is the party of which the authenticity of the Transcript relies on. During the session the Notary withholds its' shares of the TLS keys and participates in a series of secure 2-party computation protocols with the Requester to operate the TLS connection.","breadcrumbs":"Notarization » Notary","id":"5","title":"Notary"},"50":{"body":"Bob opens his garbled circuit and OT by sending ΔB​, y and ρ to Alice. Alice, can now derive the purported input labels to Bob's garbled circuit ([X]B∗​,[Y]B∗​). Alice uses ρ to open all of Bob's OTs for [x]B​ and verifies that they were performed honestly. Otherwise she aborts. Alice verifies that GB​ was garbled honestly by checking Gb([X]B∗​,[Y]B∗​)==GB​. Otherwise she aborts. Alice now opens comcheckA​​ by sending checkA​ and r to Bob. Bob verifies comcheckA​​ then asserts checkA​==checkB​, aborting otherwise. Bob is now convinced that vA is correct, ie f(x,y)=vA. Bob is also assured that Alice only learned up to k bits of his input prior to revealing, with a probability of 2−k of it being undetected.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Equality Check","id":"50","title":"Equality Check"},"51":{"body":"","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Analysis","id":"51","title":"Analysis"},"52":{"body":"On the Leakage of Corrupted Garbled Circuits [DPB18] is recommended reading on this topic. During the first execution, Alice has some degrees of freedom in how she garbles GA​. According to [DPB18], when using a modern garbling scheme such as [ZRE15], these corruptions can be analyzed as two distinct classes: detectable and undetectable. Recall that our scheme assumes Bob's input is an ephemeral secret which can be revealed at the end. For this reason, we are entirely unconcerned about the detectable variety. Simply providing Bob with the output labels commitment com[V]A​​ is sufficient to detect these types of corruptions. In this context, our primary concern is regarding the correctness of the output of GA​. [DPB18] shows that any undetectable corruption made to GA​ is constrained to the arbitrary insertion or removal of NOT gates in the circuit, such that GA​ computes fA​ instead of f. Note that any corruption of dA​ has an equivalent effect. [DPB18] also shows that Alice's ability to exploit this is constrained by the topology of the circuit. Recall that in the final stage of our protocol Bob checks that the output of GA​ matches the output of GB​, or more specifically: fA​(x1​,y1​)==fB​(x2​,y2​) For the moment we'll assume Bob garbles honestly and provides the same inputs for both evaluations. fA​(x1​,y)==f(x2​,y) In the scenario where Bob reveals the output of fA​(x1​,y) prior to Alice committing to x2​ there is a trivial adaptive attack available to Alice. As an extreme example, assume Alice could choose fA​ such that fA​(x1​,y)=y. For most practical functions this is not possible to garble without detection, but for the sake of illustration we humor the possibility. In this case she could simply compute x2​ where f(x2​,y)=y in order to pass the equality check. To address this, Alice is forced to choose fA​, x1​ and x2​ prior to Bob revealing the output. In this case it is obvious that any valid combination of (fA​,x1​,x2​) must satisfy all constraints on y. Thus, for any non-trivial f, choosing a valid combination would be equivalent to guessing y correctly. In which case, any attack would be detected by the equality check with probability 1−2−k where k is the number of guessed bits of y. This result is acceptable within our model as explained earlier .","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Malicious Alice","id":"52","title":"Malicious Alice"},"53":{"body":"Zero-Knowledge Using Garbled Circuits [JKO13] is recommended reading on this topic. The last stage of our variant is functionally equivalent to the protocol described in [JKO13]. After Alice evaluates GB​ and commits to [v]B​, Bob opens his garbled circuit and all OTs entirely. Following this, Alice performs a series of consistency checks to detect any malicious behavior. These consistency checks do not depend on any of Alice's inputs, so any attempted selective failure attack by Bob would be futile. Bob's only options are to behave honestly, or cause Alice to abort without leaking any information.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Malicious Bob","id":"53","title":"Malicious Bob"},"54":{"body":"They deserve whatever they get.","breadcrumbs":"Secure 2-Party Computation » Garbled Circuits » Dual Execution with Asymmetric Privacy » Malicious Alice & Bob","id":"54","title":"Malicious Alice & Bob"},"55":{"body":"What is a MAC How a MAC is computed in AES-GCM Computing MAC using secure two-party computation (2PC)","breadcrumbs":"Secure 2-Party Computation » MAC » Computing MAC in 2PC","id":"55","title":"Computing MAC in 2PC"},"56":{"body":"When sending an encrypted ciphertext to the Webserver, the User attaches a checksum to it. The Webserver uses this checksum to check whether the ciphertext has been tampered with while in transit. This checksum is known as the \"authentication tag\" and also as the \"Message Authentication Code\" (MAC). In order to create a MAC for some ciphertext not only the ciphertext but also some secret key is used as an input. This makes it impossible to forge some ciphertext without knowing the secret key. The first few paragraphs of this article explain what would happen if there was no MAC: it would be possible for a malicious actor to modify the plaintext by flipping certain bits of the ciphertext .","breadcrumbs":"Secure 2-Party Computation » MAC » 1. What is a MAC","id":"56","title":"1. What is a MAC"},"57":{"body":"In TLS the plaintext is split up into chunks called \"TLS records\". Each TLS record is encrypted and a MAC is computed for the ciphertext. The MAC (in AES-GCM) is obtained by XORing together the GHASH output and the GCTR output. Let's see how each of those outputs is computed:","breadcrumbs":"Secure 2-Party Computation » MAC » 2. How a MAC is computed in AES-GCM","id":"57","title":"2. How a MAC is computed in AES-GCM"},"58":{"body":"The GCTR output is computed by simply AES-ECB encrypting a counter block with the counter set to 1 (the iv, nonce and AES key are the same as for the rest of the TLS record).","breadcrumbs":"Secure 2-Party Computation » MAC » 2.1 GCTR output","id":"58","title":"2.1 GCTR output"},"59":{"body":"The GHASH output is the output of the GHASH function described in the NIST publication in section 6.4 in this way: \"In effect, the GHASH function calculates X1​•Hm⊕X2​•Hm−1⊕...⊕Xm−1​•H2⊕Xm​•H\". H and X are elements of the extension field GF(2128). \"•\" is a special type of multiplication called multiplication in a finite field described in section 6.3 of the NIST publication. ⊕ is addition in a finite field and it is defined as XOR. In other words, GHASH splits up the ciphertext into 16-byte blocks, each block is numbered X1​,X2​,... etc. There's also H which is called the GHASH key, which just is the AES-encrypted zero-block. We need to raise H to as many powers as there are blocks, i.e. if we have 5 blocks then we need 5 powers: H,H2,H3,H4,H5. Each block is multiplied by the corresponding power and all products are summed together. Below is the pseudocode for multiplying two 128-bit field elements x and y in GF(2128): 1. result = 0\n2. R = 0xE1000000000000000000000000000000\n3. bit_length = 128\n4. for i=0 upto bit_length-1\n5. if y[i] == 1\n6. result ^= x\n7. x = (x >> 1) ^ ((x & 1) * R)\n8. return result Standard math properties hold in finite field math, viz. commutative: a+b=b+a and distributive: a(b+c)=ab+ac.","breadcrumbs":"Secure 2-Party Computation » MAC » 2.2 GHASH output","id":"59","title":"2.2 GHASH output"},"6":{"body":"The Server can be any server which supports TLS. The TLSNotary protocol is entirely transparent to the Server, thus it can not be censored nor does it have to support any additional functionality.","breadcrumbs":"Notarization » Server","id":"6","title":"Server"},"60":{"body":"The goal of the protocol is to compute the MAC in such a way that neither party would learn the other party's share of H i.e. the GHASH key share. At the start of the protocol each party has: ciphertext blocks X1​,X2​,...,Xm​. XOR share of H: the User has Hu​ and the Notary has Hn​. XOR share of the GCTR output: the User has GCTRu​ and the Notary has GCTRn​. Note that 2. and 3. were obtained at an earlier stage of the TLSNotary protocol.","breadcrumbs":"Secure 2-Party Computation » MAC » 3. Computing MAC using secure two-party computation (2PC)","id":"60","title":"3. Computing MAC using secure two-party computation (2PC)"},"61":{"body":"To illustrate what we want to achieve, we consider the case of just having a single ciphertext block X1​. The GHASH_output will be: X1​•H=X1​•(Hu​⊕Hn​)=X1​•Hu​⊕X1​•Hn​ The User and the Notary will compute locally the left and the right terms respectively. Then each party will XOR their result to the GCTR output share and will get their XOR share of the MAC: User : X1​•Hu​⊕GCTRu​=MACu​ Notary: X1​•Hn​⊕GCTRn​=MACn​ Finally, the Notary sends MACn​ to the User who obtains: MAC=MACn​⊕MACu​ For longer ciphertexts, the problem is that higher powers of the hashkey Hk cannot be computed locally, because we deal with additive sharings, i.e.(Hu​)k⊕(Hn​)k=Hk.","breadcrumbs":"Secure 2-Party Computation » MAC » 3.1 Example with a single ciphertext block","id":"61","title":"3.1 Example with a single ciphertext block"},"62":{"body":"We now introduce our 2PC MAC protocol for computing ciphertexts with an arbitrary number of blocks. Our protocol can be divided into the following steps. Steps First, both parties convert their additive shares Hu​ and Hn​ into multiplicative shares Hu​ and Hn​. This allows each party to locally compute the needed higher powers of these multiplicative shares, i.e for m blocks of ciphertext: the user computes Hu​​2,Hu​​3,...Hu​​m the notary computes Hn​​2,Hn​​3,...Hn​​m Then both parties convert each of these multiplicative shares back to additive shares the user ends up with Hu​,Hu2​,...Hum​ the notary ends up with Hn​,Hn2​,...Hnm​ Each party can now locally compute their additive MAC share MACn/u​. The conversion steps ( 1 and 3 ) require communication between the user and the notary. They will use A2M (Addition-to-Multiplication) and M2A (Multiplication-to-Addition) protocols, which make use of oblivious transfer , to convert the shares. The user will be the sender and the notary the receiver. 2PC MAC Overview 3.2.1 (A2M) Convert additive shares of H into multiplicative share At first (step 1 ) we have to get a multiplicative share of Hn/u​, so that notary and user can locally compute the needed higher powers. For this we use an adapted version of the A2M protocol in chapter 4 of Efficient Secure Two-Party Exponentiation . The user will decompose his share into i individual oblivious transfers tu,ik​=R⋅(k⋅2i+Hu,i​⋅2i⊕si​), where R is some random value used for all oblivious transfers si​ is a random mask used per oblivious transfer, with ∑i​si​=0 k∈0,1 depending on the receiver's choice. The notary's choice in the i-th OT will depend on the bit value in the i-th position of his additive share Hn​. In the end the multiplicative share of the user Hu​​ will simply be the inverse R−1 of the random value, and the notary will sum all his OT outputs, so that all the si​ will vanish and hence he gets his multiplicative share Hn​​. H​=Hu​⊕Hn​=R−1⋅R⋅i∑​(Hu,i​⊕Hn,i​)⋅2i⊕si​=R−1⋅i∑​tu,iHn,i​​⊕R⋅i∑​si​=Hu​​⋅Hn​​​​ 3.2.2 (M2A) Convert multiplicative shares Hk into additive shares In step 3 of our protocol, we use the oblivious transfer method described in chapter 4.1 of the Gilboa paper Two Party RSA Key Generation to convert all the multiplicative shares Hn/uk​​ back into additive shares Hn/uk​. We only show how the method works for the share Hn/u1​​, because it is the same for higher powers. The user will be the OT sender and decompose his shares into i individual oblivious transfers tu,ik​=k⋅Hu​​⋅2i+si​, where k∈0,1, depending on the receiver's choices. Each of these OTs is masked with a random value si​. He will then obliviously send them to the notary. Depending on the binary representation of his multiplicative share, the notary will choose one of the choices and do this for all 128 oblivious transfers. After that the user will locally XOR all his si​ and end up with his additive share Hu​, and the notary will do the same for all the results of the oblivious transfers and get Hn​. H​=Hu​​⋅Hn​​=Hu​​⋅i∑​Hn,i​​⋅2i=i∑​(Hn,i​​⋅Hu​​⋅2i⊕si​)⊕i∑​si​=i∑​tu,iHn,i​​​⊕i∑​si​≡Hn​⊕Hu​​","breadcrumbs":"Secure 2-Party Computation » MAC » 3.2 Computing ciphertexts with an arbitrary number of blocks","id":"62","title":"3.2 Computing ciphertexts with an arbitrary number of blocks"},"63":{"body":"In the actual implementation of the protocol we only compute odd multiplicative shares, i.e. H,H3,H5,…, so that we only need to share these odd shares in step 3 . This is possible because we can compute even additive shares from odd additive shares. We observe that for even k: Hk​=(Hnk/2​⊕Huk/2​)2=(Hnk/2​)2⊕Hnk/2​Huk/2​⊕Huk/2​Hnk/2​⊕(Huk/2​)2=(Hnk/2​)2⊕(Huk/2​)2=Hnk​⊕Huk​​​ So we only need to convert odd multiplicative shares into odd additive shares, which gives us a 50% reduction in cost. The remaining even additive shares can then be computed locally.","breadcrumbs":"Secure 2-Party Computation » MAC » 3.3 Free Squaring","id":"63","title":"3.3 Free Squaring"},"64":{"body":"Both the A2M and M2A protocols on their own only provide semi-honest security. They are secure against a malicious receiver, but the sender has degrees of freedom to cause leakage of the MAC keyshares. However, for our purposes this does not present a problem as long as leakage is detected. To detect a malicious sender, we require the sender to commit to the PRG seed used to generate the random values in the share conversion protocols. After the TLS session is closed the MAC keyshares are no longer secret, which allows the sender to reveal this seed to the receiver. Subsequently, the receiver can perform a consistency check to make sure the sender followed the protocol honestly. 3.3.1 Malicious notary The protocol is secure against a malicious notary, because he is the OT receiver, which means that there is actually no input from him during the protocol execution except for the final MAC output. He just receives the OT input from the user, so the only thing he can do is to provide a wrong MAC keyshare. This will cause the server to reject the MAC when the user sends the request. The protocol simply aborts. 3.3.2 Malicious user A malicious user could actually manipulate what he sends in the OT and potentially endanger the security of the protocol by leaking the notary's MAC key. To address this we force the user to reveal his MAC key after the server response so that the notary can check for the correctness of the whole MAC 2PC protocol. Then if the notary detects that the user cheated, he would simply abort the protocol. The only problem when doing this is, that we want the whole TLSNotary protocol to work under the assumption that the notary can intercept the traffic between the user and the server. This would allow the notary to trick the user into thinking that the TLS session is already terminated, if he can force the server to respond. The user would send his MAC key share too early and the notary could, now having the complete MAC key, forge the ciphertext and create a valid MAC for it. He would then send this forged request to the server and forward the response of the server to the user. To prevent this scenario we need to make sure that the TLS connection to the server is terminated before the user sends his MAC key share to the notary. Following the TLS RFC , we leverage close_notify to ensure all messages sent to the server have been processed and the connection is closed. Unfortunately, many server TLS implementations do not support close_notify. In these cases we instead send an invalid message to the server which forces it to respond with a fatal alert message and close the connection.","breadcrumbs":"Secure 2-Party Computation » MAC » 3.3 Creating a robust protocol","id":"64","title":"3.3 Creating a robust protocol"},"65":{"body":"Some protocols used in TLSNotary need to convert two-party sharings of products or sums of some field elements into each other. For this purpose we use share conversion protocols which use oblivious transfer (OT) as a sub-protocol. Here we want to have a closer look at the security guarantees these protocols offer.","breadcrumbs":"Secure 2-Party Computation » Finite-Field Arithmetic » Finite-Field Arithmetic","id":"65","title":"Finite-Field Arithmetic"},"66":{"body":"Our goal is to add covert security to our share conversion protocols. This means that we want an honest party to be able to detect a malicious adversary, who is then able to abort the protocol. Our main concern is that the adversary might be able to leak private inputs of the honest party without being noticed. For this reason we require that the adversary cannot do anything which would give him a better chance than guessing the private input at random, which is guessing k bits with a probability of 2−k for not being detected. In the following we want to have a closer look at how the sender and receiver can deviate from the protocol. Malicious receiver Note that in our protocol a malicious receiver cannot forge the protocol output, since he does not send anything to the sender during protocol execution. Even when this protocol is embedded into an outer protocol, where at some point the receiver has to open his output or a computation involving it, then all he can do is to open an output y′ with y′=y, which is just equivalent to changing his input from b→b′. Malicious sender In the case of a malicious sender the following things can happen: The sender can impose an arbitrary field element b′ as input onto the receiver without him noticing. To do this he simply sends (tik​,tik​) in every OT, where k is i-th bit of b′. The sender can execute a selective-failure attack, which allows him to learn any predicate about the receiver's input. For each OT round i, the sender alters one of the OT values to be Tik​=tik​+ci​, where ci​∈F,k∈{0,1}. This will cause that in the end the equation a⋅b=x+y no longer holds but only if the forged OT value has actually been picked by the receiver. The sender does not use a random number generator with a seed r to sample the masks si​, instead he simply chooses them at will.","breadcrumbs":"Secure 2-Party Computation » Finite-Field Arithmetic » Adding covert security","id":"66","title":"Adding covert security"},"67":{"body":"Without loss of generality let us recall the Multiplication-To-Addition (M2A) protocol, but our observations also apply to the Addition-To-Multiplication (A2M) protocol, which is very similar. We start with a short review of the M2A protocol. Let there be a sender with some field element a and some receiver with another field element b. After protocol execution the sender ends up with x and the receiver ends up with y, so that a⋅b=x+y. a,b,x,y∈F r - rng seed m - bit-length of elements in F n - bit-length of rng seed OT Sender with input a∈F,r←{0,1}n Sample some random masks: si​=rng(r,i),0≤i