Files
dragion/doc/sphinx/build/html/examples/relaxation_sphere.html

209 lines
9.8 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
<title>Unipolar relaxation &#8212; dragion documentation</title>
<link rel="stylesheet" type="text/css" href="../_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="../_static/alabaster.css" />
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
<script src="../_static/underscore.js"></script>
<script src="../_static/doctools.js"></script>
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="prev" title="Unipolar ions: uniform source and loss" href="unipolar_source_loss.html" />
<link rel="stylesheet" href="../_static/custom.css" type="text/css" />
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
</head><body>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<section id="unipolar-relaxation">
<h1>Unipolar relaxation<a class="headerlink" href="#unipolar-relaxation" title="Permalink to this headline"></a></h1>
<section id="problem-statement">
<h2>Problem Statement<a class="headerlink" href="#problem-statement" title="Permalink to this headline"></a></h2>
<p>Consider an initially uncharged conducting sphere placed in a uniform, cold, unipolar ion bath.
After a while we bias the sphere to a polarity opposite that of the ions, and then immediately disconnect it, leaving the sphere electrically floating at a nonzero potential.
The resulting unipolar current can be derived from the electric field</p>
<div class="math notranslate nohighlight">
\begin{eqnarray}
E_r=\frac{Q}{4 \pi \varepsilon_0 r^2}
\end{eqnarray}</div><p>and the definition of mobility</p>
<div class="math notranslate nohighlight">
\begin{eqnarray}
\vec{v} = \mu \vec{E}
\end{eqnarray}</div><p>to get</p>
<div class="math notranslate nohighlight">
\begin{eqnarray}
I = n q v_r A = n q \cdot \mu E_r \cdot 4 \pi R^2
\end{eqnarray}</div><p>where <span class="math notranslate nohighlight">\(n\)</span> is ion concentration, <span class="math notranslate nohighlight">\(q\)</span> is ion charge, and <span class="math notranslate nohighlight">\(R\)</span> is radius of the sphere. This yields the differential equation for charge on the sphere</p>
<div class="math notranslate nohighlight">
\begin{eqnarray}
\dot{Q}=n q \mu \cdot \frac{Q}{4 \pi \varepsilon_0 R^2} \cdot 4 \pi R^2=Q \frac{n q \mu}{\varepsilon_0}
\end{eqnarray}</div><p>Converting <span class="math notranslate nohighlight">\(Q\)</span> to <span class="math notranslate nohighlight">\(V\)</span> using the definition of capacitance</p>
<div class="math notranslate nohighlight">
\begin{eqnarray}
C V = Q
\end{eqnarray}</div><p>and noting that</p>
<div class="math notranslate nohighlight">
\begin{eqnarray}
\sigma = n |q| \mu
\end{eqnarray}</div><p>the solution is</p>
<div class="math notranslate nohighlight">
\begin{eqnarray}
V(t) = V_0 \exp\left(-\frac{t}{\varepsilon_0/\sigma}\right)
\end{eqnarray}</div><p>The negative sign in the exponential comes from the sign of <span class="math notranslate nohighlight">\(q\)</span> relative to <span class="math notranslate nohighlight">\(V_0\)</span>.</p>
</section>
<section id="numerical-validation">
<h2>Numerical Validation<a class="headerlink" href="#numerical-validation" title="Permalink to this headline"></a></h2>
<p>Runs simulating the relaxation phenomenon for a conducting sphere can be found in <code class="docutils literal notranslate"><span class="pre">dragion/runs/sphere</span></code>.</p>
<p>Initially, positive unipolar ions are loaded uniformly into the domain, with concentration <span class="math notranslate nohighlight">\(n=\sqrt{\frac{q}{\alpha}}=2\times10^9 \: \mathrm{m}^{-3}\)</span> [Lorenz, MMRTG], and a sphere of radius <span class="math notranslate nohighlight">\(R=0.5 \mathrm{m}\)</span> is biased to <span class="math notranslate nohighlight">\(-10 \mathrm{V}\)</span> then left floating.
Note: this simulation does not include a uniform background source or collisional sink.</p>
<p>The resulting time-progression is illustrated by a sequence of 3D screenshots:</p>
<ul class="simple">
<li><p><span class="math notranslate nohighlight">\(t=0 \mathrm{s}\)</span></p></li>
</ul>
<img alt="../_images/relaxation-sphere-3d_0.png" src="../_images/relaxation-sphere-3d_0.png" />
<ul class="simple">
<li><p><span class="math notranslate nohighlight">\(t=500 \mathrm{s}\)</span></p></li>
</ul>
<img alt="../_images/relaxation-sphere-3d_1.png" src="../_images/relaxation-sphere-3d_1.png" />
<ul class="simple">
<li><p><span class="math notranslate nohighlight">\(t=1000 \mathrm{s}\)</span></p></li>
</ul>
<img alt="../_images/relaxation-sphere-3d_2.png" src="../_images/relaxation-sphere-3d_2.png" />
<p>As the sphere collects nearby ions its (negative) charge level and electric field strength diminish.
The voltage drop is exponential, and its slope (in log-voltage) can be used to back out an estimate of atmospheric conductivity, <span class="math notranslate nohighlight">\(\sigma = \mathrm{slope} \cdot \varepsilon_0\)</span>.</p>
<p>Here is a plot of (log10) voltage over time:</p>
<img alt="../_images/relaxation-sphere.png" src="../_images/relaxation-sphere.png" />
<p>Notice that overall the <strong>dragion</strong> sphere relaxes more slowly than predicted by theory.
However, there is a slight inflection in the simulated voltage at <span class="math notranslate nohighlight">\(t=1200 \mathrm{s}\)</span>.
A comparison of slopes before and after this knee, and the full end-to-end slope provide estimates for conductivity, using <span class="math notranslate nohighlight">\(\sigma = \mathrm{slope} \cdot \varepsilon_0\)</span>:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 27%" />
<col style="width: 37%" />
<col style="width: 36%" />
</colgroup>
<thead>
<tr class="row-odd"><th class="head"><p>Fit</p></th>
<th class="head"><p>Slope (relaxation rate) <span class="math notranslate nohighlight">\([\mathrm{s}^{-1}]\)</span></p></th>
<th class="head"><p><span class="math notranslate nohighlight">\(\sigma [\mathrm{S}/\mathrm{m}]\)</span></p></th>
</tr>
</thead>
<tbody>
<tr class="row-even"><td><p>End-to-end</p>
<p>Before <span class="math notranslate nohighlight">\(t=1200 \: \mathrm{s}\)</span></p>
<p>After <span class="math notranslate nohighlight">\(t=1200 \:\mathrm{s}\)</span></p>
</td>
<td><p>-0.0011</p>
<p>-0.0009</p>
<p>-0.0013</p>
</td>
<td><p><span class="math notranslate nohighlight">\(0.95\times10^{-14}\)</span></p>
<p><span class="math notranslate nohighlight">\(0.79\times10^{-14}\)</span></p>
<p><span class="math notranslate nohighlight">\(1.2\times10^{-14}\)</span></p>
</td>
</tr>
<tr class="row-odd"><td><p>Theoretical</p></td>
<td><p>-0.0016</p></td>
<td><p><span class="math notranslate nohighlight">\(1.4\times10^{-14}\)</span></p></td>
</tr>
</tbody>
</table>
<p><em>More discussion is needed. Why is there an inflection point? It is probably related to domain shape and size. Why is the late-time estimate the best?</em></p>
<p>At very late times the near-surface ion concentration will be depleted, so without a background source charging will eventually halt. In this regime the assumption of steady near-surface concentration would be violated and the theoretical model breaks down.</p>
</section>
</section>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<h1 class="logo"><a href="../index.html">dragion</a></h1>
<h3>Navigation</h3>
<p class="caption" role="heading"><span class="caption-text">Contents:</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../getstarted.html">Getting started</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../physvalid.html">Physics validation</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="unipolar_source_loss.html">Unipolar ions: uniform source and loss</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Unipolar relaxation</a></li>
</ul>
</li>
</ul>
<div class="relations">
<h3>Related Topics</h3>
<ul>
<li><a href="../index.html">Documentation overview</a><ul>
<li><a href="../physvalid.html">Physics validation</a><ul>
<li>Previous: <a href="unipolar_source_loss.html" title="previous chapter">Unipolar ions: uniform source and loss</a></li>
</ul></li>
</ul></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="../search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="footer">
&copy;2022, zimmemi1.
|
Powered by <a href="http://sphinx-doc.org/">Sphinx 4.5.0</a>
&amp; <a href="https://github.com/bitprophet/alabaster">Alabaster 0.7.12</a>
|
<a href="../_sources/examples/relaxation_sphere.rst.txt"
rel="nofollow">Page source</a>
</div>
</body>
</html>