Files
nonam3e 8e62bde16d bit reverse (#528)
This PR adds bit reverse operation support to icicle
2024-06-02 16:37:58 +07:00

161 lines
4.6 KiB
Plaintext

#include <iostream>
#include <iomanip>
#include <chrono>
#include <cassert>
#include <nvml.h>
#include "api/bn254.h"
#include "msm/msm.cuh"
using namespace bn254;
typedef point_field_t T;
// modular power
T modPow(T base, T exp)
{
T r = T::one();
T b = base;
T e = exp;
while (e != T::zero()) {
// If exp is odd, multiply the base with result
if (T::is_odd(e)) { r = r * b; }
// Now exp must be even, divide it by 2
e = T::div2(e);
b = b * b;
}
return r;
}
// Check if y2 is a quadratic residue using Euler's Criterion
bool quadratic_residue(T y2) { return modPow(y2, T::div2(T::zero() - T::one())) == T::one(); }
// modular square root adapted from:
// https://github.com/ShahjalalShohag/code-library/blob/main/Number%20Theory/Tonelli%20Shanks%20Algorithm.cpp
bool mySQRT(T a, T* result)
{
if (a == T::zero()) {
*result = T::zero();
return true;
}
if (modPow(a, T::div2(T::zero() - T::one())) != T::one()) {
return false; // solution does not exist
}
// TODO: consider special cases
// if (p % 4 == 3) return power(a, (p + 1) / 4, p);
T s = T::zero() - T::one(); // p - 1,
T n = T::one() + T::one(); // 2;
T r = T::zero();
T m;
while (T::is_even(s)) {
r = r + T::one();
s = T::div2(s); // s /= 2;
}
// find a non-square mod p
while (modPow(n, T::div2((T::zero() - T::one()))) != T::zero() - T::one()) {
n = n + T::one();
}
T x = modPow(a, T::div2(s + T::one()));
T b = modPow(a, s);
T g = modPow(n, s);
for (;; r = m) {
T t = b;
for (m = T::zero(); T::lt(m, r) /* m < r*/ && t != T::one(); m = m + T::one())
t = t * t;
if (m == T::zero()) {
*result = x;
return true;
}
T gs = modPow(g, modPow(T::one() + T::one(), r - m - T::one()));
g = gs * gs;
x = x * gs;
b = b * g;
}
}
void point_near_x(T x, affine_t* point)
{
const T wb = T{weierstrass_b};
T y2;
while (y2 = x * x * x + wb, quadratic_residue(y2) == false) {
x = x + T::one();
};
T y;
bool found = mySQRT(y2, &y);
assert(y * y == y2);
point->x = x;
point->y = y;
}
static int seed = 0;
static HOST_INLINE T rand_host_seed()
{
std::mt19937_64 generator(seed++);
std::uniform_int_distribution<unsigned> distribution;
T value;
for (unsigned i = 0; i < T::TLC - 1; i++)
// TODO: use the full range of limbs: for (unsigned i = 0; i < T::TLC ; i++)
value.limbs_storage.limbs[i] = distribution(generator);
// while (lt(Field{get_modulus()}, value))
// value = value - Field{get_modulus()};
return value;
}
using FpMilliseconds = std::chrono::duration<float, std::chrono::milliseconds::period>;
#define START_TIMER(timer) auto timer##_start = std::chrono::high_resolution_clock::now();
#define END_TIMER(timer, msg) \
printf("%s: %.0f ms\n", msg, FpMilliseconds(std::chrono::high_resolution_clock::now() - timer##_start).count());
int main(int argc, char** argv)
{
const unsigned N = pow(2, 10);
std::cout << "Commitment vector size: " << N << "+1 for salt (a.k.a blinding factor)" << std::endl;
T* xs = new T[N + 1];
std::cout << "Generating random points transparently using publicly chosen seed" << std::endl;
std::cout << "Public seed prevents committer from knowing the discrete logs of points used in the commitment"
<< std::endl;
seed = 1234;
std::cout << "Using seed: " << seed << std::endl;
std::cout << "Generating random field values" << std::endl;
START_TIMER(gen);
for (unsigned i = 0; i < N; i++) {
xs[i] = rand_host_seed();
}
END_TIMER(gen, "Time to generate field values");
std::cout << "xs[0]: " << xs[0] << std::endl;
std::cout << "xs[1]: " << xs[1] << std::endl;
// affine_t points[N];
affine_t* points = new affine_t[N + 1];
std::cout << "Generating point about random field values" << std::endl;
START_TIMER(points);
for (unsigned i = 0; i < N + 1; i++) {
point_near_x(xs[i], &points[i]);
}
END_TIMER(points, "Time to generate points");
std::cout << "Generating commitment vector" << std::endl;
projective_t result;
scalar_t* scalars = new scalar_t[N + 1];
scalar_t::rand_host_many(scalars, N);
std::cout << "Generating salt" << std::endl;
scalars[N] = scalar_t::rand_host();
std::cout << "Executing MSM" << std::endl;
auto config = msm::default_msm_config();
START_TIMER(msm);
bn254_msm_cuda(scalars, points, N + 1, config, &result);
END_TIMER(msm, "Time to execute MSM");
std::cout << "Computed commitment: " << result << std::endl;
std::cout << "Cleaning up..." << std::endl;
delete[] xs;
delete[] scalars;
delete[] points;
return 0;
}