From 6eb2ab4f4644627a41d6f85c7b700a8677cd790f Mon Sep 17 00:00:00 2001 From: Cofson Date: Tue, 23 Dec 2025 10:10:22 +0100 Subject: [PATCH] Fix mathematical variable definitions consistency Standardize LaTeX notation for subscripts and superscripts: - Use consistent braces for subscripts: K^{n}_{i} instead of K^{n}_i - Fix malformed proof notation: pi^{K^{n}_{i}}_{Q} - Use braces around mathbf arguments: \mathbf{K} instead of \mathbf K - Add missing semicolons before "it also contains" --- nomos/raw/nomos-message-formatting.md | 36 +++++++++++++-------------- 1 file changed, 18 insertions(+), 18 deletions(-) diff --git a/nomos/raw/nomos-message-formatting.md b/nomos/raw/nomos-message-formatting.md index 2e5eb7c..b7fe9b3 100644 --- a/nomos/raw/nomos-message-formatting.md +++ b/nomos/raw/nomos-message-formatting.md @@ -90,16 +90,16 @@ class PublicHeader: **Fields:** - version=0x01 is version of the protocol. -- public_key is $K^{n}_i$, - a public key from the set $\mathbf K^n_h$ +- public_key is $K^{n}_{i}$, + a public key from the set $\mathbf{K}^{n}_{h}$ as defined in the Message Encapsulation spec. -- proof_of_quota is $\pi^{K^{n}i}{Q}$, - a corresponding proof of quota for the key $K^{n}_i$ from the $\mathbf K^n_h$ +- proof_of_quota is $\pi^{K^{n}_{i}}_{Q}$, + a corresponding proof of quota for the key $K^{n}_{i}$ from the $\mathbf{K}^{n}_{h}$; it also contains the key nullifier. -- signature is $\sigma_{K^{n}_{i}}(\mathbf {h|P}i)$, +- signature is $\sigma_{K^{n}_{i}}(\mathbf{h|P}_{i})$, a signature of the concatenation of the $i$-th encapsulation - of the payload $\mathbf P$ and the private header $\mathbf h$, - that can be verified by the public key $K^{n}{i}$. + of the payload $\mathbf{P}$ and the private header $\mathbf{h}$, + that can be verified by the public key $K^{n}_{i}$. #### Private Header @@ -107,7 +107,7 @@ The private_header must be generated as the outcome of the Message Encapsulation Mechanism. The private header contains a set of encrypted blending headers -$\mathbf h = (\mathbf b_1,...,\mathbf b_{h_{max}})$. +$\mathbf{h} = (\mathbf{b}_{1},...,\mathbf{b}_{h_{max}})$. ```python private_header: list[BlendingHeader] @@ -118,7 +118,7 @@ as defined in the Global Parameters. **Blending Header:** -The BlendingHeader ($\mathbf b_l$) is defined as follows: +The BlendingHeader ($\mathbf{b}_{l}$) is defined as follows: ```python class BlendingHeader: @@ -132,17 +132,17 @@ class BlendingHeader: **Fields:** - public_key is $K^{n}_{l}$, - a public key from the set $\mathbf K^n_h$. -- proof_of_quota is $\pi^{K^{n}l}{Q}$, - a corresponding proof of quota for the key $K^{n}_l$ from the $\mathbf K^n_h$ + a public key from the set $\mathbf{K}^{n}_{h}$. +- proof_of_quota is $\pi^{K^{n}_{l}}_{Q}$, + a corresponding proof of quota for the key $K^{n}_{l}$ from the $\mathbf{K}^{n}_{h}$; it also contains the key nullifier. -- signature is $\sigma_{K^{n}_{l}}(\mathbf {h|P}l)$, +- signature is $\sigma_{K^{n}_{l}}(\mathbf{h|P}_{l})$, a signature of the concatenation of $l$-th encapsulation - of the payload $\mathbf P$ and the private header $\mathbf h$, - that can be verified by public key $K^{n}{l}$. -- proof_of_selection is $\pi^{K^{n}{l+1},m{l+1}}{S}$, - a proof of selection of the node index $m{l+1}$ - assuming valid proof of quota $\pi^{K^{n}{l}}{Q}$. + of the payload $\mathbf{P}$ and the private header $\mathbf{h}$, + that can be verified by public key $K^{n}_{l}$. +- proof_of_selection is $\pi^{K^{n}_{l+1},m_{l+1}}_{S}$, + a proof of selection of the node index $m_{l+1}$ + assuming valid proof of quota $\pi^{K^{n}_{l}}_{Q}$. - is_last is $\Omega$, a flag that indicates that this is the last encapsulation.