TLSnotary - a mechanism for independently
audited https sessions

September 10, 2014

1 Abstract

‘TLSnotary’ allows a client to provide evidence to a third party auditor that
certain web traffic occurred between himself and a server. The evidence is
irrefutable as long as the auditor trusts the server’s public key.

The remainder of this paper describes how TLSnotary allows the auditee to
conduct an https session normally with a web server such that the auditor can
verify some part of that session (e.g. a single HTML page), by temporarily
withholding a small part of the secret data used to set up the https session.
The auditee does not at any time reveal any of the session keys to the auditor
or anyone else, nor does he render or decrypt any data without authentication.
Thus the full security model of the TLS 1.0 session is maintained, modulo some
reduction in the entropy of the secrets used to protect it.

Notes to the reader:

As of this writing, TLSnotary is only compatible with TLS 1.0 and 1.1, not TLS
1.2

In order to fully understand the algorithm described below, it is advisable to
have a basic familiarity with the steps of the TLS 1.0 protocol, in particular how
the master secret, used to derive encryption keys and MAC secrets, is shared
between client and server during the SSL Handshake.

2 Algorithm

2.1 Splitting the secret data into two parts

The basis of the idea of this section is found in the definition of the pseudorandom
function or ‘PRF’ used in the TLS 1.0 RFC 2246 [1]:

PRF(secret,label,seed) = P_MD5(S1,label + seed) P
P_SHA-1(82, label + seed)

Here, for each hashing algorithm MD5 and SHA-1, P__hash refers to an HMAC
construction repeated as many times as necessary to provide sufficient random
bytes of data. See Section 5 of [1] for further details. The most interesting
aspect of this construction is the use of @. Note the following fact:

If two different parties 1 and 2 hold, respectively, (S1,label,
seed) and (S2, label, seed), then they can give to each other any
particular bytes of the result of P_hash(secret,label+seed), allow-
ing the other party to apply the & (XOR) operation to recover
those particular bytes of PRF (secret,label, seed).

This allows us to follow these steps to allow the auditor and the auditee to
possess separately, without ever sharing, the (client and server encryption keys
and client mac secret) and (the server mac secret) respectively:

1. Both auditee and auditor independently generate 24 bytes of random data,
called here S and Sy respectively (note: in Section 2.2 we will see that
not all of these bytes are actually random).

2. The auditee applies P_MD5 to Sy, generating 48 bytes: H; = Hy1||H1o

The auditor applies P_ SHA-1 to Sy, generating 48 bytes: Ho = Ha||Ha2

- oW

The auditor gives to the auditee Hoy
5. The auditee gives to the auditor His
6. The auditor constructs My = Hyo® Hao (the first half of the master secret)

7. The auditee constructs M; = Hay @ Hip (the second half of the master
secret)

These steps are illustrated in Fig 1.

‘ Auditor's secret S2 (24 bytes)‘ CL)
{ =
| H_2 = P_MD5(52) (48 bytes) =
v <
| H_22 (24 bytes) |
) 4
‘master_secret 2 4@
A
| H_12 (24 bytes) |
F N
v
| H_21(24 bytes) |
v
@—> master_secret 1
V3
| H_11 (24 bytes) |
Q
1 v
H 1 = P SHA-1(S1) (48 bytes) s
o
5
<

‘ Auditee's secret S1 (24 bytes) ‘

Figure 1: Illustration of steps 1-7; the process by which secrets S1 and S2 are converted into
two disjoint halves of the master secret for the TLS session. Data below the red dotted line
is known to the auditee, that above the line is known to the auditor.

8.

9.

10.

11.

12.

The auditee now calculates 140 bytes: X = P_ MD5(M;)
The auditor now calculates 140 bytes: Y = P_ SHA-1(M>)

The auditor now gives to the auditee approximately 120 bytes of Y (the
exact number of bytes required is a function of the cipher suite used),
allowing the auditee to immediately compute the I'Vs, the encryption keys
and the client mac key (or ‘client write mac secret’). The auditee is now
able to send the request to the server.

The server response is received but not decrypted (or even passed into
a browser). The network traffic is logged and a hash of this traffic is
computed and sent to the auditor as a commitment.

Only when the auditor receives this commitment does he send the remain-
ing 20 bytes of Y to the auditee, allowing the calculation of the server mac
key. The auditee can then safely execute a normal TLS decryption step
(with authentication).

These steps are illustrated in Fig 2.

master_secret_2 (24 bytes)

v

P_MD5(master_secret 2) (140 bytes)

20 bytes ~ 120 bytes (not all used)

Calculated after
auditee commits hash
of network trace

@ ‘‘‘‘‘ server mac key

Calculated at start
of audit

fv\ »/1Vs, client mac key
\“j and encryption keys
20 bytes ~ 120 bytes (not all used)

P_SHA-1(master secret 1) (140 bytes)

?

master_secret_1 (24 bytes)

Auditee

Figure 2: Steps 8-12. Conversion of 2 master secret halves into the expanded key block as
described in Section 6.3 of the RFC. The server mac key (‘server write mac secret’ in the
RFC) is withheld from the auditee until the server response is retrieved over the wire (but
not known to the auditor). The red dotted line has the same meaning as in Fig 1.

In summary, the purpose of this rather complex sequence of steps is: the auditor
withholds some of the secret data from the auditee (acting as client), so that
the auditee cannot fabricate traffic from the server (since at the time of making
his request, he does not have the server mac write secret). Once the auditee
has a made a commitment to the encrypted content of the server’s response to
his request, the auditor can provide the auditee with the required secret data
in order to construct the server mac write secret. Then, the auditee can safely
complete the decryption and authentication steps of the TLS protocol, since at
that point he has the full master secret. In this way, the auditee maintains the
full TLS security model, although he was prevented from creating a fake version
of the post-handshake traffic from the server - something he is always able to
do if he has the full master secret in advance.

While this process does allow the auditor to withhold part of the final key block
from the auditee until he has already received a server response, it leaves a
huge problem unsolved: how can the encrypted premaster secret be sent to the
server, if neither auditor nor auditee knows the full premaster secret?

Section 2.2 describes the solution to this problem.

2.2 Constructing the encryption of the premaster secret

In order to allow each party on the client side (‘auditee’ and ‘auditor’ as above)
to possess a different part of the secrets used in TLS, we make use of the
homomorphic property of RSA encryption:

(RSA(z1) x RSA(z2)) mod n = RSA(x1 X z3)

with n = pg being the RSA modulus, usually a 2048 bit number (the rest of the
numbers in Section 2 assume a 2048 bit modulus; the modifications for larger
moduli are fairly elementary).

The RSA Encryption RFC 2313 [2] specifies that a random padding string
should be prepended to the message to be encrypted (RSA encryption is not
secure without padding). In particular, the message to be encrypted here is
referred to as the premaster secret, a string of 46 bytes of random data with 2
bytes of version number prepended.

The exact data to be passed to the RSA encryption algorithm, in the step of
encrypting the premaster secret, therefore looks like this:

00]|02|| . .. 205 bytes of padding. .. ||00||S1]]S2 (1)

where the terms S; and S are the 24 byte strings referred to in point 1 of
the algorithm described in Section 2.1. Note that the first two bytes of S; are
required to be 03 01, since this is a fixed version number.

Two points are worthy of note about this structure:

e The length of padding is fixed at 205 bytes because the data to be en-
crypted is fixed at 48 bytes.

« Since this is a public key operation, the padding is not allowed to contain
any zero bytes (see RFC 2313 Section 8.1).

At this point it should be clear that we are trying to construct two or more
multiplicative factors so that, multiplying them together produces the exact
structure shown in (1), thereby allowing the auditor to provide the auditee with
one or more such factor in encrypted form. The auditee will then be able to
multiply this by the RSA encryption of his own similar factor or factors, and
then send on the result of that multiplication, confident that he is actually
sending the encrypted premaster secret as required by the TLS protocol.

We begin by observing that, if we take S; and Sy to be 12 byte strings rather
than 24 byte as described above, then the structure (28*365; + 1)(28*125, + 1)
has the desirable property of including

28%36G, 4+ 284125, 1 1 = §1||(12 zero bytes)||Sa||(11 zero bytes)||01

inside it (consider multiplication of (12000000 + 1) x (3400 + 1) in decimal).
However this is clearly insufficient as the term 28*4%S;S, is not large enough
to act as the (02| 205 byte padding) mentioned above. So we must introduce
a padding term. There is more than one way to do this; however, for reasons
explained later, it is desirable that both multiplicative factors contain a padding
term. We therefore propose this structure:

(2kP Py 4-2M8) +1)(287 Py + 2728, + 1) = 2%%r P P, 4 2k TR py G,
+ 2k tha PGy 4+ 2FP (P + Py)
2Rt G 8 +2M s 428, 4+ 1
(2)

We proceed in two stages, first describing a naive version which gives the right
overall structure without meeting all the requirements of the protocol, before
refining it.

2.2.1 Naive form

Here P, and P, denote padding strings of length 80 bytes, S; and S are as
defined above, and the final three terms are exactly the 48 byte premaster
secret as required by the protocol (note that they will contain 12 zero byte
strings each, so that each of (auditor, auditee) protects their secrets with 12
bytes of entropy each. The values of k1,ke and kp are (8 x 36),(8 x 12) and
(8 x 48) respectively. It can be seen that in this way we can construct a 256
byte number for which the last (lowest-order) 48 bytes are unaffected by the
padding, and more specifically, bytes 13-24 are known only to the auditor, while
bytes 37-48 are known only to the auditee.

2.2.2 Detailed form

To completely meet the specifications of (1), we must do a bit more: the first
two bytes of the entire string must be 0002 (which effectively means constructing
a 255 byte string starting with 02), the last byte of the padding string must be
00 and the two bytes succeeding it must be 0301. This is achieved with some
very slight modifications to the above structure. First, S; must start with the
two bytes 0301, while P; should start with 01 and P, should start with 02. To
provide additional security to the auditee, we give 12 bytes of entropy to the
auditee and only 9 bytes to the auditor. Thus the entire factor for the auditee
becomes of this format:

[39 bytes P; || 00 || 03 01 || 12 random bytes || 33 bytes 00 || 01] (3)
while that for the auditor is of this format:

[119 bytes P> || 25 bytes 00 || 9 random bytes || 14 bytes 00 || 01] (4)

, the exact formats of P, and P» being discussed in the next section.

Obviously these are restrictions to the entropy of the secrets; instead of a single
client sharing a 46 byte secret with the server, the client is now split into two
parties holding 12 and 9 byte secrets respectively. This security implications
are discussed in Section 3.

2.2.3 Randomized padding for armoring

Remembering that we intend the auditor to pass the RSA encryption of his
multiplicative factor (287 P, + 2¥18) + 1) to the auditee, and that further the
auditee will pass the encryption of the product of both multiplicative factors
to the server, thus exposing his own encrypted factor RSA (27 Py + 2F25, 4 1)
to the auditor, it’s clearly necessary that both factors are encrypted safely. For
this reason the padding numbers P; and P, contain randomness. This can be
achieved without altering any of the above structure, as long as the first byte
in the 255 byte string constructed is 02. We therefore make the first bytes of
P, and P, be 0201 and 0101 respectively, ensuring that their product starts
with 02. For reasons that will become clear in the next section, it is preferable
not to make the entirety of the remainder of the padding strings random. The
formats described below are therefore somewhat of a compromise, but contain
substantial randomness:

Auditee - Pi:
[02 || 23 bytes 01 || 15 random bytes] (5)

Auditor - Py:
[01 || 103 bytes 01 || 15 random bytes] (6)

After applying all these modifications, (2) will yield a string of 255 bytes in line
with the requirements of (1), and it will also be safe for the auditor to send his
factor the auditee, and the auditee to the server, without the possibility of the
other party decrypting it.

2.2.4 Zero bytes in the padding

The auditee, not being in possession of the secrets P» or So by design, cannot
know most of the terms listed on the RHS of (2). It is therefore possible that the
encrypted premaster secret be rejected if any of the bytes created in the PKCS
padding region are zero, and the auditee cannot know this in advance. This is
partly ameliorated by the use of the repeated byte 01 in the padding factors.
The larger the amount of armoring randomised padding is used, the larger will
be the probability of zeros arising randomly in the padding - it’s for this reason
that only 15 bytes of armoring padding is used, which is considered to be more
than sufficient. A detailed analysis of all this, including creating an asymmetry
in the size of the padding terms between the auditee and the auditor to handle
variable modulus sizes, is beyond the scope of this paper, but the probability of
one or more bytes in this padding region being zero, under the current scheme,
is around 1 in 3.

An invalid input to encryption will result in a connection reset. Note, however,
that the possibility of connection failure can be removed entirely by testing any

negotiated premaster secret by attempting to complete a full handshake with
an ‘oracle’, which in this case can be one or many highly reliable websites which
allows TLS connections.

3 Security Considerations

By restarting TLS sessions at will, the client can isolate the single web page
he or she would like to present to the auditor and keep the remaining pages
(including login pages) private.

This will restrict the amount of data, the sensitivity of the data and the length
of time for which TLSnotary is operating. All of this greatly reduces the danger
of any attack being effective.

3.1 Preservation of the TLS security model

The reader’s attention is drawn to Steps 11-12 in Section 2.1; due to these steps,
the auditee, acting as client in the TLS session, is not exposed to unauthenti-
cated data, since at the time of decryption, he has the full master secret and
session keys. Thus the level of security from the auditee’s point of view is un-
changed from a normal TLS session in as much as his trust is based on (a)the
server certificate/public key and (b)the MAC used to authenticate.

The auditor, on the other hand, has proof that the auditee did not fake the
traffic since he has (a) the certificate/public key of the server and (b) the hash
of the network trace, which includes MACs for the records generated by the
server, before the auditee had knowledge of the actual server mac secret/key (a
20 byte secret).

However, the entropy of the secrets used to protect the connection is reduced
compared to vanilla TLS 1.0. This is discussed in the next section.

3.2 Possible Attacks

We consider three distinct threats: the auditor gaining control of the session,
an external attacker attempting the same, and the auditee taking control of the
auditor’s secret in advance of the connection. We do not consider the possibility
of the auditor tampering with the data, since the auditor must be trusted not
to tamper with evidence in order to carry out his function.

3.2.1 Auditor gaining control of live session

The auditee’s secret S is, from the auditor’s perspective, protected by 12 bytes
of entropy. When the encrypted premaster secret, which is a complicated version
of RSA(Sy * Sg) is sent to the web server, the auditor could in principle be
sniffing the traffic and gain access to this data immediately. However, since
the encrypted message is padded according to the standard [2], and the auditor
has no knowledge of most of that padding, there is no plausible way for him
to gain access to the auditee’s secret. The client is not expected to be using
the session for timeframes greater than a few minutes. Considering this set of

circumstances, we claim that an attack on the TLS session by the auditor is
infeasible.

An attempt to attack by decrypting after the session has been terminated makes
no sense, as it would only decrypt exactly what the auditee has already provided
to the auditor (remembering that the auditee uses a completely separate TLS
session for the one page he has chosen to be audited).

3.2.2 External attacker gaining control of live session

From an external attacker’s perspective, the traffic between auditee and server
is defended against MITM and similar attacks in the same way as a normal TLS
1.0 session using an RSA ciphersuite, the only differences being;:

e the total number of bytes of entropy defending the master secret is now 21
instead of 46. This is more than necessary to defend a secret, but even if
the attacker were able to decrypt traffic long after a session is complete, he
can only gain access to information that the auditee has already decided
is safe to give to an auditor (e.g. it does not contain credentials).

o the attacker may (depending on the messaging architecture) be able to
access the message RSA(Sz) sent from auditor to auditee during session
set up, as well as the auditee’s message containing the encrypted premas-
ter secret. However as has been previously discussed, these message are
armoured with 39 bytes of random padding, and so are protected from
decryption in largely the same way as a scheme like PKCS 1 v1.5. In
particular, note that there is no possibility of padding oracle attacks in
this usage scenario.

3.2.3 Auditee gaining control of auditor secret

This attack is of a different, somewhat lower level of concern as it involves the
auditee violating the rules of auditing/arbitration rather than the loss of security
in a live TLS session. However, in order to achieve this the auditee would need to
crack an 9 byte secret within a period of minutes, which is considered infeasible.
However the auditor should be aware that his level of protection is only about
72 bits.

References

[1] "The TLS Protocol Version 1.0" http://www.ietf.org/rfc/rfc2246.txt

[2] "PKCS #1: RSA Encryption Version 1.5"
http://www.ietf.org/rfc/rfc2313.txt

10

