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who am 1? — maddie stone

* reverse engineer and embedded developer at Johns Hopkins Applied
Physics Lab

* mostly embedded devices
* merge of hardware and firmware reverse engineering
* lead of reverse engineering working group at JHU/APL
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reduce time required to analyze
firmware of embedded devices
using 1da python
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ida python embedded toolkit

https:/ /github.com/maddiestone /IDAPythonEmbeddedToolkit
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ida python

* “IDAPython is an IDA Pro plugin that integrates the Python
programming language, allowing scripts to run in IDA Pro”

* https://github.com/idapython/src/
* Docs: https://www.hex-rays.com/products/ida/support/idapython docs/

* idc contains 98% of the functions we use
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why do you care?

* current resources for ida python

* mostly x86 or ARM based (PC applications or malware)

* Palo Alto Networks:
http://researchcenter.paloaltonetworks.com/2015/12 /using-idapython-to-make-
your-life-easier-part-1/

* “The Beginner’s Guide to IDAPython” by Alexander Hanel

* more embedded devices (hello, Internet of Things!)
* microcontroller/microprocessor architectures
* different goals of analysis than malware/application RE
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important differences for embedded firmware
images
* purpose of analysis

e entire firmware image vs. application

* memory structure

* many different architectures
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scripting the reverse engineering process

triage

annotate
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(ZFunct'ons window O & X ’ IDA view-A £ I (O] Hex view-1 1% | (2] structures (%] I (] Enums (%) I @Imporls (%) l @Exports %) ‘
Function name ROM:6AB8 D9 byte 809 ; + R
ROM:6A61 FF byte OFF
ROM:6A02 12 byte 12 2 %l El S
ROM:6A03 86 byte 5} : [@ 'Bﬂ'ﬁ
ROM:6AB4 D9 byte 809 ; + I 20209090
ROM:6A65 CF byte OCF ; -
ROM:6AB6 E6 byte OE6 ; jt — —
ROM:6A07 FF hgte OFF nports [ | (8] Exports [ |
ROM:6AB8 E1 byte BE1 ; B e G
ROM:6A89 CF byte OCF ; - |‘1
ROM:6ABA D9 byte 6D9 ; + B R
ROM:6ABB FF byte OFF 48
ROM:6ABC B4 byte 4 *2
ROM:6ABD OF byte OF s
PIC18 ROM:6ABE E1 byte BE1 ; b
ROM:6ABF 26 byte 26 ; & )
ROM:6A18 DE byte ODE ; | LR
ROM:6A11 6A byte 6A ; j o
ROM:6A12 DD byte 6DD ; | 3
ROM:6A13 6A byte 6A ; j 7
ROM:6A14 B2 byte 2
ROM:6A15 BE byte BE
ROM:6A16 DB byte 6DB ; !
ROM:6A17 6A byte 6A ; j
ROM:6A18 83 byte 3
ROM:6A19 BE byte BE
ROM:6A1A DB byte 6DB ; |
ROM:6A1B 6A byte 6A ; j
ROM:6A1C DE byte ODE ; | # o+
ROM:6A1D CF byte 6CF ; -
ROM:6A1E 14 byte 14
ROM:6A1F FO byte 6FO ; =
ROM:6A28 DD byte 6DD ; | # ;
ROM:6A21 CF byte OCF ; -
ROM:6A22 15 byte 15
ROM:6A23 FO byte OF8 ; =
ROM:6A24 E9 byte BE9 ; T # !
ROM:6A25 BE byte BE #
ROM:6A26 14 byte 14 #p
ROM:6A27 5C byte 5C ; %
ROM:6A28 B8 byte © 0l
< | | ’ 00006A00 00006AR00: ROM:6R00 (Synchronized with Hex View-1) -
< | 1
1) <

Output window
IDAPython v1.7.08 final (serial @) (c) The IDAPython Team <idapython@googlegroups.com>

The initial autoanalysis has been finished.
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how 1da python helps -- triage

* define_data_as_types.py

* mass assign bytes as instructions, data, offsets

* define_code_functions.py

* auto-assign ~unexplored” bytes as code and attempt to define functions

* make_strings.py

* searches an address range for series of ASCII characters to define as strings
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(] 15 s
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; Segment type:
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0xCOAY
8xCOA3
8xCoA2
8xCoeA1
8xConov
8xCO9F
8xCH9E
8xCe9D
8xCe9cC
0x616E
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#HtHHA A USER DEFINED VALUES ########AHHHHHEHHHHH
Enter a regular expression for how this architecture usually
begins and ends functions. If the architecture does not
dictate how to start or end a function use r".*" to allow
for any instruction.

-PY

#
#
#
#
#
#

8051 Architecture Prologue and Epilogue
smart_prolog = re.compile(r".*")
smart_epilog = re.compile(r"reti{@,1}")

# PIC18 Architecture Prologue and Epilogue
#smart_prolog = re.compile(r".*")
#smart_epilog = re.compile(r"return 0")

# Mitsubishi M32R Architecutre Prologue and Epilogue
#smart_prolog = re.compile(r"push +1r")
#smart_epilog re.compile(r"jmp +1lr.*")

# Texas Instruments TMS320C28x
#smart_prolog = re.compile(r".*")
#smart_epilog = re.compile(r"lretr")

# AVR

#smart_prolog = re.compile(r"push +r")

#smart_epilog re.compile(r"reti{0,1}")

HHHH A

define code functions
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* find_mem_accesses.py

how 1da python helps -- analysis

* 1dentifies all memory accesses for architectures such as 8051 which use a variable

to access memory (DPTR)

* data_offset_calc.py
* find the memory address accesses and

* 1) create a data cross-reference to the memory address

* 2) write the value at the memory address as a comment at the instructions

* 3) create a file with all of the accesses memory address and the instructions accessing them

1d
add3

R1, @(0x4114, fp)
R10, fp, 0x4147

1d R1, @[0x80C114]
add3 R10, fp, 0x4147

; @[0x80C147]
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Library function |l Data B Reqular function Unexplored Instruction External symbol
E Functions window O & X ’ IDA View-A ’ @ Hex View-1 l @ Structures | LE Enums l lﬁ Imports | @ Exports @ Output window
Blaiilat ot - ROM_:0808080839BC 60 FF 1di8 RO, #-1 ;yuluu)
i ROM_:8000839BE 50 10 srli RO, #0210 ython>
(7] sub_2F38 ROM_:000039C0 A1 CD 41 14 1d R1, @(0xu11%4, £p) Python>
] sub_2F80 - ROM_:B800039C4 A2 CD 41 18 1d R2, @(0x4118, £p) Python>
| 7] sub_3054 ROM_:08608039C8 01 22 sub R1, R2 Python>
| 7] sub_3008 ROM_:08000839CA 12 80 ny R2, RO Python>
| 7] sub_30B0 ROM_:08006839CC 61 52 cmpu R1, R2 ::yg:on;
(7] sub_3308 ~- ROM_:8880839CE 7D 03 bnc.s  loc_39D8 ython
" 1 ROM_:08060039D6 10 81 ny RO, R1 Python>
| 7] sub_3548 | —" i Python>
—— ROM_:0800039D2 7F 02 bra.s loc_39D8 y
\ZI sub_3678 ROM -086039D4 RIS GNP Ll M SR S SRS Python>
(7] sub 3710 ROM_:880839D4 Python>
7] sub_3754 ROM_:800839D4 loc_39D4: ; CODE XREF: sub_396 Python>
(7] sub_3774 ROM_:000039D4 66 00 FO 00 1dis RO, #0 || nop Python>
| 7] sub_37C8 ROM_:000039D8 Python>
(7] sub_3804 ROM_:800039D8 loc_39D8: ; CODE XREF: sub_39¢  Python>
i : - 13 Python>
E sub_38F8 N ROM_:000039D8 ; sub_396C+66Tj PLEhom
7] sub_396¢ ROM_:006080839D8 81 C8 FF FF and3 R1, RS, #-1 Yy
nife ROM_:08000839DC 80 CO FF FF and3 R8, RO, #-1 Python>
L£] sub_3D34 ROM_:000839E0 00 51 cmpu RO, R1 Python>
7] sub_3D54 ROM_:008039E2 7D 06 bnc.s  loc_39F8 Python>
7] sub_3D64 ROM_:000039E4 Python>
[f] sub_3DB0 ROM_: 000039E4 loc_39E4: ; CODE XREF: sub_396 Python>
| 7] sub_3FCC ROM_:8080839E4 84 AF 060 2B add3 R4, sp, #0x2B Python>
7] sub_4008 ROM_:B800039E8 60 05 1dis8 RO, #5 ll:y::on;
7 sub 409C ROM_:000039EA 20 B4 stb RO, @RY4 Pyth22>
7] sub4118 ROM_:08808039EC 61 FF FO 00 1dis R1, #-1 || nop Yy
7 sub_ ROM_:B800839F8 A1 4D 41 18 st R1, @(0x4118, £p) Python>
7] sub 4268 ROM_:880839F4 FF 08 08 BC bra.l  loc_3CE4 Python>
7] sub_4310 ROM_:000039F8 . B Python>
7] sub_431C ROM_:000039F8 Python>
7] sub_4350 ROM_:088039F8 loc_39F8: ; CODE XREF: sub_39¢ Python>
7] sub_44A0 ROM_:0000839F8 ABG CD 41 18 1d RO, @(0x4110, fp) Python> .
7] sub_4590 ROM_:868080839FC A1 CD 41 18 1d R1, @(0x4118, £p) Start Addr: 81920 End Addr: 733680
- ROM_:00003A008 06 A1 FO 09 add R8, R1 || nop [make_code_functions] Running script on 8x140800
7] mullsub 1 ROM_:00003A04 AO 4F 00 24 st RO, R(0x2%, Sp) to 6xb31£0
\z nullsub_2 ROM :00083A88 8A AD 41 71 add3 R18, Fp, #0x4171 [deFlne_data_as_types.py] STARTING. Start_addr:
] sub_4694 ROM :-080683A6C 19 88 FO 066 nu R9, RS || nop 0xB31F0, end_addr: BxBFFFF, data.l_size: 4
7] sub_4780 ROM_:00003A18 A8 2F 00 22 sth R8, @(0:22, sp) [define_data_as_types.py] Undefined all data
| 7] sub_4B78 ROM_:000883A14 A1 BD 41 22 1duh R1, B(0x4122, fp) between 0xB31F@ and 6xBFFFF
E sub_4C8C ROM_:060003A18 62 61 FO 06 1di8 R2, #1 || nop ‘_[;(ilgglze_data_as_types.py] Defining all data as
[F1 cuilh AESR M )
4 ol ’ 000039D8 000039D8: sub_396C:loc_39D8 (Synchronized with Hex View-1) . [define_data_as_types.py] FINISHED.
Line 84 of 2679 < | 0 | ;
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data_o ffs et_calc.py index of operand to get
operand = GetOpnd(curr_addr,

change how the operand

1t (offset): is displayed
1f '-'" 1n operand :
1new_opnd = offset_var_value - int(offset[0], 16)
else:
new_opnd = offset_var_value + int(offset[0@], 16)
OpAlt(Ccurr_addr, 1, new_opnd_display % new_opnd)
result = add_dref(curr_addr, new_opnd, dr_T)

MakeComm(curr_addr, '@x%08x' % new_opnd)

create a data cross-

dr T: text reference
curr_addr = NextHead(curr_addr) e s el

dr W: write

1d R1, @(0x4114, fp) 1d dr_O: offset
add3 R10, fp, 0x4147 add3 R10, fp, 0x4147 ; @[0x80C147]
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how 1da python helps -- annotate

* lable_funcs_with_no_xrefs.py
e check for functions with no cross-references to them and annotate their function
name with a “noXrefs” prefix
* identity_port_use_locations.py

* searches all code for pin/port operations based on the defined regex for the
architecture and lists all references in a text file and optionally labels each
function
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ida python functions used

AskAddr MakeByte
AskFile MakeCode
AskLong MaigeComm
ASkYN MaigeDwor.d

. MakeFunction
GetDisasm MakeName
GetFunction Attr MakeStr
GetFunctionName MakeUnkn
GetOperandValue MakeWord
GetOpnd Warning

OpAlt

add dref*
NextFunction
NextHead
PrevHead
FindUnexplored
XrefsTo*
isCode(GetFlags())
Byte

Word

all can be found in the idc module except (*)
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what’s next?

* ida python embedded toolkit:
https:/ /github.com/maddiestone/IDAPythonEmbeddedToolkit

* other script ideas

* architecture independent CAN or serial identifiers

* integrate and automate more of the triage processes
* segment creation

* automate architecture selection for scripts

* other manners to display information

* more robust examples and docs
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thank you

maddie stone
madeline.stone(@jhuapl edu
(@maddiestone
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