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who am i? – maddie stone
• reverse engineer and embedded developer at Johns Hopkins Applied 

Physics Lab
• mostly embedded devices
• merge of  hardware and firmware reverse engineering
• lead of  reverse engineering working group at JHU/APL
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reduce time required to analyze 
firmware of  embedded devices 
using ida python
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ida python embedded toolkit

https://github.com/maddiestone/IDAPythonEmbeddedToolkit
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ida python

• “IDAPython is an IDA Pro plugin that integrates the Python 
programming language, allowing scripts to run in IDA Pro”
• https://github.com/idapython/src/
• Docs: https://www.hex-rays.com/products/ida/support/idapython_docs/

• idc contains 98% of  the functions we use
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why do you care?

• current resources for ida python
• mostly x86 or ARM based (PC applications or malware)
• Palo Alto Networks: 

http://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-
your-life-easier-part-1/
• “The Beginner’s Guide to IDAPython” by Alexander Hanel

• more embedded devices (hello, Internet of  Things!)
• microcontroller/microprocessor architectures 
• different goals of  analysis than malware/application RE
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important differences for embedded firmware 
images
• purpose of  analysis
• entire firmware image vs. application
• memory structure
• many different architectures
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scripting the reverse engineering process

triage

analysisannotate
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triage?

Atmel AVR 

MIPS

PIC18
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how ida python helps -- triage

• define_data_as_types.py
• mass assign bytes as instructions, data, offsets

• define_code_functions.py
• auto-assign ”unexplored” bytes as code and attempt to define functions

• make_strings.py
• searches an address range for series of  ASCII characters to define as strings
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################### USER DEFINED VALUES ###################
# Enter a regular expression for how this architecture usually 
# begins and ends functions. If the architecture does not 
# dictate how to start or end a function use r".*" to allow
# for any instruction.
#
# 8051 Architecture Prologue and Epilogue
smart_prolog = re.compile(r".*")
smart_epilog = re.compile(r"reti{0,1}")

# PIC18 Architecture Prologue and Epilogue
#smart_prolog = re.compile(r".*")
#smart_epilog = re.compile(r"return 0")

# Mitsubishi M32R Architecutre Prologue and Epilogue
#smart_prolog = re.compile(r"push +lr")
#smart_epilog = re.compile(r"jmp +lr.*")

# Texas Instruments TMS320C28x
#smart_prolog = re.compile(r".*")
#smart_epilog = re.compile(r"lretr")

# AVR
#smart_prolog = re.compile(r"push +r")
#smart_epilog = re.compile(r"reti{0,1}")
############################################################
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how ida python helps -- analysis

• find_mem_accesses.py
• identifies all memory accesses for architectures such as 8051 which use a variable 

to access memory (DPTR)
• data_offset_calc.py
• find the memory address accesses and 

• 1) create a data cross-reference to the memory address
• 2) write the value at the memory address as a comment at the instructions
• 3) create a file with all of  the accesses memory address and the instructions accessing them

ld R1, @[0x80C114]
add3    R10, fp, 0x4147 ; @[0x80C147]

ld R1, @(0x4114, fp)
add3    R10, fp, 0x4147
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analysis script demo

• <<< MOVIE HERE >>>>
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data_offset_calc.py
operand = GetOpnd(curr_addr, 1)
-----------------------
if (offset):

if '-' in operand :
new_opnd = offset_var_value - int(offset[0], 16)

else:
new_opnd = offset_var_value + int(offset[0], 16)

OpAlt(curr_addr, 1, new_opnd_display % new_opnd)
result = add_dref(curr_addr, new_opnd, dr_T)

-----------------------
MakeComm(curr_addr, '0x%08x' % new_opnd)
----------------------------
curr_addr = NextHead(curr_addr)   

index of  operand to get

change how the operand 
is displayed

create a data cross-
reference

ld R1, @[0x80C114]
add3    R10, fp, 0x4147 ; @[0x80C147]

ld R1, @(0x4114, fp)
add3    R10, fp, 0x4147

dr_T: text
dr_R: read
dr_W: write
dr_O: offset
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how ida python helps -- annotate

• lable_funcs_with_no_xrefs.py
• check for functions with no cross-references to them and annotate their function 

name with a “noXrefs” prefix

• identify_port_use_locations.py
• searches all code for pin/port operations based on the defined regex for the 

architecture and lists all references in a text file and optionally labels each 
function
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ida python functions used
AskAddr
AskFile
AskLong
AskYN
GetDisasm
GetFunctionAttr
GetFunctionName
GetOperandValue
GetOpnd

MakeByte
MakeCode
MakeComm
MakeDword
MakeFunction
MakeName
MakeStr
MakeUnkn
MakeWord
Warning

OpAlt
add_dref*
NextFunction
NextHead
PrevHead
FindUnexplored
XrefsTo*
isCode(GetFlags())
Byte
Word

all can be found in the idc module except (*)
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what’s next?

• ida python embedded toolkit: 
https://github.com/maddiestone/IDAPythonEmbeddedToolkit
• other script ideas
• architecture independent CAN or serial identifiers
• integrate and automate more of  the triage processes
• segment creation
• automate architecture selection for scripts
• other manners to display information
• more robust examples and docs
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thank you

maddie stone
madeline.stone@jhuapl edu
@maddiestone


