the life-changing magic of ida python
embedded device edition

maddie stone
madeline.stone@jhuapl.edu
(@maddiestone

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

who am 1? — maddie stone

* reverse engineer and embedded developer at Johns Hopkins Applied
Physics Lab

* mostly embedded devices
* merge of hardware and firmware reverse engineering
* lead of reverse engineering working group at JHU/APL

4

JOHNS HOPKINS

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. APPLIED PHYSICS LABORATORY

reduce time required to analyze
firmware of embedded devices
using 1da python

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

ida python embedded toolkit

https:/ /github.com/maddiestone /IDAPythonEmbeddedToolkit

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

ida python

* “IDAPython is an IDA Pro plugin that integrates the Python
programming language, allowing scripts to run in IDA Pro”

* https://github.com/idapython/src/
* Docs: https://www.hex-rays.com/products/ida/support/idapython docs/

* idc contains 98% of the functions we use

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

why do you care?

* current resources for ida python

* mostly x86 or ARM based (PC applications or malware)

* Palo Alto Networks:
http://researchcenter.paloaltonetworks.com/2015/12 /using-idapython-to-make-
your-life-easier-part-1/

* “The Beginner’s Guide to IDAPython” by Alexander Hanel

* more embedded devices (hello, Internet of Things!)
* microcontroller/microprocessor architectures
* different goals of analysis than malware/application RE

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

important differences for embedded firmware
images
* purpose of analysis

e entire firmware image vs. application

* memory structure

* many different architectures

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

scripting the reverse engineering process

triage

annotate

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

avo v

™

>

LTI

Library function |l Data Il Regular funct

Flru. O & x ’ (= A view-a B3 |

ROM:@
ROM: 8
ROM:@
ROM: @
ROM: 8
ROM: 8
ROM: 8
ROM: 8
ROM: 8
ROM: 8
ROM:@
ROM: @
ROM: @
ROM: 8
ROM: 8
ROM: 8
ROM: 8
ROM: 8
ROM: 8
ROM: @
ROM: @
ROM: @
ROM: 8
ROM: 8
ROM: 8
ROM: 8
ROM: 8
ROM: @
ROM: @

Function name

< [»

00000¢

Output window

Python 2.7.12 (v2.7.12:d33e6cf
IDAPython v1.7.08 fipal {serial

The initial autoanalysis has b

AU: idle Down Disk: 160887

© 201/ I'he Johns Hopkins L

File

Edit

Jump Search View Options

BHEie>- B 3 o @O cdadtS-#aX PpODO[L -] WF @EFE

. I =)
Library function |l Data [l Regular function Unexplored Instruction External symbol VR
(ZFunct'ons window O & X ’ IDA view-A £ I (O] Hex view-1 1% | (2] structures (%] I (] Enums (%) I @Imporls (%) l @Exports %) ‘
Function name ROM:6AB8 D9 byte 809 ; + R
ROM:6A61 FF byte OFF
ROM:6A02 12 byte 12 2 %l El S
ROM:6A03 86 byte 5} : [@ 'Bﬂ'ﬁ
ROM:6AB4 D9 byte 809 ; + I 20209090
ROM:6A65 CF byte OCF ; -
ROM:6AB6 E6 byte OE6 ; jt — —
ROM:6A07 FF hgte OFF nports [| (8] Exports [|
ROM:6AB8 E1 byte BE1 ; B e G
ROM:6A89 CF byte OCF ; - |‘1
ROM:6ABA D9 byte 6D9 ; + B R
ROM:6ABB FF byte OFF 48
ROM:6ABC B4 byte 4 *2
ROM:6ABD OF byte OF s
PIC18 ROM:6ABE E1 byte BE1 ; b
ROM:6ABF 26 byte 26 ; &)
ROM:6A18 DE byte ODE ; | LR
ROM:6A11 6A byte 6A ; j o
ROM:6A12 DD byte 6DD ; | 3
ROM:6A13 6A byte 6A ; j 7
ROM:6A14 B2 byte 2
ROM:6A15 BE byte BE
ROM:6A16 DB byte 6DB ; !
ROM:6A17 6A byte 6A ; j
ROM:6A18 83 byte 3
ROM:6A19 BE byte BE
ROM:6A1A DB byte 6DB ; |
ROM:6A1B 6A byte 6A ; j
ROM:6A1C DE byte ODE ; | # o+
ROM:6A1D CF byte 6CF ; -
ROM:6A1E 14 byte 14
ROM:6A1F FO byte 6FO ; =
ROM:6A28 DD byte 6DD ; | # ;
ROM:6A21 CF byte OCF ; -
ROM:6A22 15 byte 15
ROM:6A23 FO byte OF8 ; =
ROM:6A24 E9 byte BE9 ; T # !
ROM:6A25 BE byte BE #
ROM:6A26 14 byte 14 #p
ROM:6A27 5C byte 5C ; %
ROM:6A28 B8 byte © 0l
< | | ’ 00006A00 00006AR00: ROM:6R00 (Synchronized with Hex View-1) -
< | 1
1) <

Output window
IDAPython v1.7.08 final (serial @) (c) The IDAPython Team <idapython@googlegroups.com>

The initial autoanalysis has been finished.

AU:

idle

Down

Disk: 1608670GB

Windows Help

how 1da python helps -- triage

* define_data_as_types.py

* mass assign bytes as instructions, data, offsets

* define_code_functions.py

* auto-assign ~unexplored” bytes as code and attempt to define functions

* make_strings.py

* searches an address range for series of ASCII characters to define as strings

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

File Edit Jump Search View Options

BH e B 8) o DO At F-FEX P00 WD @

v

Library function [l Data M Regular function

7] Functions wind.. O & X ’ [ma view-a B3 '7Hex\f|ew-1 x| I (A Structures | I i | Enums [I %] Imports || | (2] Exports | ‘

Windows

Help

Unexplored

Function name

4l

AU: idle

Down

Disk: 6GB

ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:
ROM:

Instruction

External symbol

SJS 1515
5151515
5151515
5151515
gee1
(] 15 s
80863
0064
a865
80866
g8e67
0068
80869
8086a
006B
geec
geap
886E
886F
ge18
8811
ge12
80813
ae14
8815
8816
ae17
ge818
8819
8e1nA
881B
ge1c
ae1D
881E
ae1F
gez2e

ca9a
COB4
COB3
ceB2
CoB1
cCoB@
COAF
CHAE
COAD
COAc
COAB
CHOAA
COA9
cCoAs
COA7
COAb
COAS
CoAL
CHA3
con2
cea1
coan
CO9F
CH9E
ca9D
ceoc
616E
B86E
6E6D
8866
L4086
167A
SAF3

; Segment type:

-CSEG

; ROH

Pure code

.duw
.duw
.du
-.duw
.duw
.du
-du
-.duw
.duw
.duw
-du
-duw
-duw
.duw
-.duw
.duw
.duw
-du
.duw
-duw
.duw
-du
.duw
.duw
.du
-duw
.duw
.duw
.du
-duw
.duw
.duw
-du

8xCo9a
0xCOB4
8xCeB3
8xCceB2
8xCBB1
8xCoBo
8xCOAF
8xCOAE
8xCOAD
8xCOAcC
8xCOAB
8xCoAA
0xCOA9
8xCOA8
BxCon7
0xCOA6
8xCOAS
0xCOAY
8xCOA3
8xCoA2
8xCoeA1
8xConov
8xCO9F
8xCH9E
8xCe9D
8xCe9cC
0x616E

8x6E
Bx26EG69

8x66
0x4000
8x167A
Bx5AF3

00000000 00000000: ROM:0000 (Synchronized with Hex View-1)

< |

+ o+ o+

-

+ +

ot T =
+ e

M omw
+ o+ o+ o+ o+

na

-

I |

Output window

O & X

The ipitial autoanalysis has been finished.
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>
Python>

Python>
Puthnn®»

e

m

#HtHHA A USER DEFINED VALUES ########AHHHHHEHHHHH
Enter a regular expression for how this architecture usually
begins and ends functions. If the architecture does not
dictate how to start or end a function use r".*" to allow
for any instruction.

-PY

#
#
#
#
#
#

8051 Architecture Prologue and Epilogue
smart_prolog = re.compile(r".*")
smart_epilog = re.compile(r"reti{@,1}")

PIC18 Architecture Prologue and Epilogue
#smart_prolog = re.compile(r".*")
#smart_epilog = re.compile(r"return 0")

Mitsubishi M32R Architecutre Prologue and Epilogue
#smart_prolog = re.compile(r"push +1r")
#smart_epilog re.compile(r"jmp +1lr.*")

Texas Instruments TMS320C28x
#smart_prolog = re.compile(r".*")
#smart_epilog = re.compile(r"lretr")

AVR

#smart_prolog = re.compile(r"push +r")

#smart_epilog re.compile(r"reti{0,1}")

HHHH A

define code functions

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

* find_mem_accesses.py

how 1da python helps -- analysis

* 1dentifies all memory accesses for architectures such as 8051 which use a variable

to access memory (DPTR)

* data_offset_calc.py
* find the memory address accesses and

* 1) create a data cross-reference to the memory address

* 2) write the value at the memory address as a comment at the instructions

* 3) create a file with all of the accesses memory address and the instructions accessing them

1d
add3

R1, @(0x4114, fp)
R10, fp, 0x4147

1d R1, @[0x80C114]
add3 R10, fp, 0x4147

; @[0x80C147]

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

File Edit Jump Search View Options

=T B 3w DO dadadtF-FEX OO)@ @

»

Windows Help

il il Y ~ T I ([S I

m

Library function |l Data B Reqular function Unexplored Instruction External symbol
E Functions window O & X ’ IDA View-A ’ @ Hex View-1 l @ Structures | LE Enums l lﬁ Imports | @ Exports @ Output window
Blaiilat ot - ROM_:0808080839BC 60 FF 1di8 RO, #-1 ;yuluu)
i ROM_:8000839BE 50 10 srli RO, #0210 ython>
(7] sub_2F38 ROM_:000039C0 A1 CD 41 14 1d R1, @(0xu11%4, £p) Python>
] sub_2F80 - ROM_:B800039C4 A2 CD 41 18 1d R2, @(0x4118, £p) Python>
| 7] sub_3054 ROM_:08608039C8 01 22 sub R1, R2 Python>
| 7] sub_3008 ROM_:08000839CA 12 80 ny R2, RO Python>
| 7] sub_30B0 ROM_:08006839CC 61 52 cmpu R1, R2 ::yg:on;
(7] sub_3308 ~- ROM_:8880839CE 7D 03 bnc.s loc_39D8 ython
" 1 ROM_:08060039D6 10 81 ny RO, R1 Python>
| 7] sub_3548 | —" i Python>
—— ROM_:0800039D2 7F 02 bra.s loc_39D8 y
\ZI sub_3678 ROM -086039D4 RIS GNP Ll M SR S SRS Python>
(7] sub 3710 ROM_:880839D4 Python>
7] sub_3754 ROM_:800839D4 loc_39D4: ; CODE XREF: sub_396 Python>
(7] sub_3774 ROM_:000039D4 66 00 FO 00 1dis RO, #0 || nop Python>
| 7] sub_37C8 ROM_:000039D8 Python>
(7] sub_3804 ROM_:800039D8 loc_39D8: ; CODE XREF: sub_39¢ Python>
i : - 13 Python>
E sub_38F8 N ROM_:000039D8 ; sub_396C+66Tj PLEhom
7] sub_396¢ ROM_:006080839D8 81 C8 FF FF and3 R1, RS, #-1 Yy
nife ROM_:08000839DC 80 CO FF FF and3 R8, RO, #-1 Python>
L£] sub_3D34 ROM_:000839E0 00 51 cmpu RO, R1 Python>
7] sub_3D54 ROM_:008039E2 7D 06 bnc.s loc_39F8 Python>
7] sub_3D64 ROM_:000039E4 Python>
[f] sub_3DB0 ROM_: 000039E4 loc_39E4: ; CODE XREF: sub_396 Python>
| 7] sub_3FCC ROM_:8080839E4 84 AF 060 2B add3 R4, sp, #0x2B Python>
7] sub_4008 ROM_:B800039E8 60 05 1dis8 RO, #5 ll:y::on;
7 sub 409C ROM_:000039EA 20 B4 stb RO, @RY4 Pyth22>
7] sub4118 ROM_:08808039EC 61 FF FO 00 1dis R1, #-1 || nop Yy
7 sub_ ROM_:B800839F8 A1 4D 41 18 st R1, @(0x4118, £p) Python>
7] sub 4268 ROM_:880839F4 FF 08 08 BC bra.l loc_3CE4 Python>
7] sub_4310 ROM_:000039F8 . B Python>
7] sub_431C ROM_:000039F8 Python>
7] sub_4350 ROM_:088039F8 loc_39F8: ; CODE XREF: sub_39¢ Python>
7] sub_44A0 ROM_:0000839F8 ABG CD 41 18 1d RO, @(0x4110, fp) Python> .
7] sub_4590 ROM_:868080839FC A1 CD 41 18 1d R1, @(0x4118, £p) Start Addr: 81920 End Addr: 733680
- ROM_:00003A008 06 A1 FO 09 add R8, R1 || nop [make_code_functions] Running script on 8x140800
7] mullsub 1 ROM_:00003A04 AO 4F 00 24 st RO, R(0x2%, Sp) to 6xb31£0
\z nullsub_2 ROM :00083A88 8A AD 41 71 add3 R18, Fp, #0x4171 [deFlne_data_as_types.py] STARTING. Start_addr:
] sub_4694 ROM :-080683A6C 19 88 FO 066 nu R9, RS || nop 0xB31F0, end_addr: BxBFFFF, data.l_size: 4
7] sub_4780 ROM_:00003A18 A8 2F 00 22 sth R8, @(0:22, sp) [define_data_as_types.py] Undefined all data
| 7] sub_4B78 ROM_:000883A14 A1 BD 41 22 1duh R1, B(0x4122, fp) between 0xB31F@ and 6xBFFFF
E sub_4C8C ROM_:060003A18 62 61 FO 06 1di8 R2, #1 || nop ‘_[;(ilgglze_data_as_types.py] Defining all data as
[F1 cuilh AESR M)
4 ol ’ 000039D8 000039D8: sub_396C:loc_39D8 (Synchronized with Hex View-1) . [define_data_as_types.py] FINISHED.
Line 84 of 2679 < | 0 | ;

AU: idle Down Disk: 6GB

data_o ffs et_calc.py index of operand to get
operand = GetOpnd(curr_addr,

change how the operand

1t (offset): is displayed
1f '-'" 1n operand :
1new_opnd = offset_var_value - int(offset[0], 16)
else:
new_opnd = offset_var_value + int(offset[0@], 16)
OpAlt(Ccurr_addr, 1, new_opnd_display % new_opnd)
result = add_dref(curr_addr, new_opnd, dr_T)

MakeComm(curr_addr, '@x%08x' % new_opnd)

create a data cross-

dr T: text reference
curr_addr = NextHead(curr_addr) e s el

dr W: write

1d R1, @(0x4114, fp) 1d dr_O: offset
add3 R10, fp, 0x4147 add3 R10, fp, 0x4147 ; @[0x80C147]

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

how 1da python helps -- annotate

* lable_funcs_with_no_xrefs.py
e check for functions with no cross-references to them and annotate their function
name with a “noXrefs” prefix
* identity_port_use_locations.py

* searches all code for pin/port operations based on the defined regex for the
architecture and lists all references in a text file and optionally labels each
function

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

ida python functions used

AskAddr MakeByte
AskFile MakeCode
AskLong MaigeComm
ASkYN MaigeDwor.d

. MakeFunction
GetDisasm MakeName
GetFunction Attr MakeStr
GetFunctionName MakeUnkn
GetOperandValue MakeWord
GetOpnd Warning

OpAlt

add dref*
NextFunction
NextHead
PrevHead
FindUnexplored
XrefsTo*
isCode(GetFlags())
Byte

Word

all can be found in the idc module except (*)

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

what’s next?

* ida python embedded toolkit:
https:/ /github.com/maddiestone/IDAPythonEmbeddedToolkit

* other script ideas

* architecture independent CAN or serial identifiers

* integrate and automate more of the triage processes
* segment creation

* automate architecture selection for scripts

* other manners to display information

* more robust examples and docs

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

thank you

maddie stone
madeline.stone(@jhuapl edu
(@maddiestone

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

