
© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

the life-changing magic of ida python
embedded device edition

maddie stone
madeline.stone@jhuapl.edu
@maddiestone

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

who am i? – maddie stone
• reverse engineer and embedded developer at Johns Hopkins Applied

Physics Lab
• mostly embedded devices
• merge of hardware and firmware reverse engineering
• lead of reverse engineering working group at JHU/APL

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

reduce time required to analyze
firmware of embedded devices
using ida python

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

ida python embedded toolkit

https://github.com/maddiestone/IDAPythonEmbeddedToolkit

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

ida python

• “IDAPython is an IDA Pro plugin that integrates the Python
programming language, allowing scripts to run in IDA Pro”
• https://github.com/idapython/src/
• Docs: https://www.hex-rays.com/products/ida/support/idapython_docs/

• idc contains 98% of the functions we use

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

why do you care?

• current resources for ida python
• mostly x86 or ARM based (PC applications or malware)
• Palo Alto Networks:

http://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-
your-life-easier-part-1/
• “The Beginner’s Guide to IDAPython” by Alexander Hanel

• more embedded devices (hello, Internet of Things!)
• microcontroller/microprocessor architectures
• different goals of analysis than malware/application RE

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

important differences for embedded firmware
images
• purpose of analysis
• entire firmware image vs. application
• memory structure
• many different architectures

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

scripting the reverse engineering process

triage

analysisannotate

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

triage?

Atmel AVR

MIPS

PIC18

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

how ida python helps -- triage

• define_data_as_types.py
• mass assign bytes as instructions, data, offsets

• define_code_functions.py
• auto-assign ”unexplored” bytes as code and attempt to define functions

• make_strings.py
• searches an address range for series of ASCII characters to define as strings

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

de
fin

e_
co

de
_f

un
ct

io
ns

.p
y

################### USER DEFINED VALUES ###################
Enter a regular expression for how this architecture usually
begins and ends functions. If the architecture does not
dictate how to start or end a function use r".*" to allow
for any instruction.
#
8051 Architecture Prologue and Epilogue
smart_prolog = re.compile(r".*")
smart_epilog = re.compile(r"reti{0,1}")

PIC18 Architecture Prologue and Epilogue
#smart_prolog = re.compile(r".*")
#smart_epilog = re.compile(r"return 0")

Mitsubishi M32R Architecutre Prologue and Epilogue
#smart_prolog = re.compile(r"push +lr")
#smart_epilog = re.compile(r"jmp +lr.*")

Texas Instruments TMS320C28x
#smart_prolog = re.compile(r".*")
#smart_epilog = re.compile(r"lretr")

AVR
#smart_prolog = re.compile(r"push +r")
#smart_epilog = re.compile(r"reti{0,1}")
##

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

how ida python helps -- analysis

• find_mem_accesses.py
• identifies all memory accesses for architectures such as 8051 which use a variable

to access memory (DPTR)
• data_offset_calc.py
• find the memory address accesses and

• 1) create a data cross-reference to the memory address
• 2) write the value at the memory address as a comment at the instructions
• 3) create a file with all of the accesses memory address and the instructions accessing them

ld R1, @[0x80C114]
add3 R10, fp, 0x4147 ; @[0x80C147]

ld R1, @(0x4114, fp)
add3 R10, fp, 0x4147

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

analysis script demo

• <<< MOVIE HERE >>>>

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

data_offset_calc.py
operand = GetOpnd(curr_addr, 1)

if (offset):

if '-' in operand :
new_opnd = offset_var_value - int(offset[0], 16)

else:
new_opnd = offset_var_value + int(offset[0], 16)

OpAlt(curr_addr, 1, new_opnd_display % new_opnd)
result = add_dref(curr_addr, new_opnd, dr_T)

MakeComm(curr_addr, '0x%08x' % new_opnd)

curr_addr = NextHead(curr_addr)

index of operand to get

change how the operand
is displayed

create a data cross-
reference

ld R1, @[0x80C114]
add3 R10, fp, 0x4147 ; @[0x80C147]

ld R1, @(0x4114, fp)
add3 R10, fp, 0x4147

dr_T: text
dr_R: read
dr_W: write
dr_O: offset

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

how ida python helps -- annotate

• lable_funcs_with_no_xrefs.py
• check for functions with no cross-references to them and annotate their function

name with a “noXrefs” prefix

• identify_port_use_locations.py
• searches all code for pin/port operations based on the defined regex for the

architecture and lists all references in a text file and optionally labels each
function

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

ida python functions used
AskAddr
AskFile
AskLong
AskYN
GetDisasm
GetFunctionAttr
GetFunctionName
GetOperandValue
GetOpnd

MakeByte
MakeCode
MakeComm
MakeDword
MakeFunction
MakeName
MakeStr
MakeUnkn
MakeWord
Warning

OpAlt
add_dref*
NextFunction
NextHead
PrevHead
FindUnexplored
XrefsTo*
isCode(GetFlags())
Byte
Word

all can be found in the idc module except (*)

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

what’s next?

• ida python embedded toolkit:
https://github.com/maddiestone/IDAPythonEmbeddedToolkit
• other script ideas
• architecture independent CAN or serial identifiers
• integrate and automate more of the triage processes
• segment creation
• automate architecture selection for scripts
• other manners to display information
• more robust examples and docs

© 2017 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

thank you

maddie stone
madeline.stone@jhuapl edu
@maddiestone

