mirror of
https://github.com/MAGICGrants/Monero-Dataset-Pipeline.git
synced 2026-01-09 13:37:57 -05:00
reduced runs from 10 to 5
This commit is contained in:
@@ -112,12 +112,14 @@ def gradient_boosted(X_train, X_test, y_train, y_test, RANDOM_STATE, X_Validatio
|
||||
|
||||
NUM_PROCESSES = cpu_count()
|
||||
|
||||
if NUM_PROCESSES > 10:
|
||||
NUM_PROCESSES = 10
|
||||
Num_Iterations = 5
|
||||
|
||||
if NUM_PROCESSES > Num_Iterations:
|
||||
NUM_PROCESSES = Num_Iterations
|
||||
|
||||
with Manager() as manager:
|
||||
with manager.Pool(processes=NUM_PROCESSES) as pool:
|
||||
for returned_data in tqdm(pool.imap_unordered(func=run_model_wrapper, iterable=zip(repeat(X_train,10), repeat(X_test,10), repeat(y_train,10), repeat(y_test,10), list(range(10)), repeat(X_Validation,10), repeat(y_Validation,10))), desc="(Multiprocessing) Training GBC", total=10, colour='blue'):
|
||||
for returned_data in tqdm(pool.imap_unordered(func=run_model_wrapper, iterable=zip(repeat(X_train,Num_Iterations), repeat(X_test,Num_Iterations), repeat(y_train,Num_Iterations), repeat(y_test,Num_Iterations), list(range(Num_Iterations)), repeat(X_Validation,Num_Iterations), repeat(y_Validation,Num_Iterations))), desc="(Multiprocessing) Training GBC", total=Num_Iterations, colour='blue'):
|
||||
weighted_f1, weighted_f1_mainnet = returned_data
|
||||
out_of_sample_f1.append(weighted_f1)
|
||||
mainnet_f1.append(weighted_f1_mainnet)
|
||||
|
||||
@@ -89,7 +89,7 @@ def MLP(X_train, X_test, y_train, y_test, X_Validation, y_Validation, stagenet=T
|
||||
scaler = StandardScaler().fit(X_Validation)
|
||||
X_Validation = scaler.transform(X_Validation)
|
||||
|
||||
for i in range(10):
|
||||
for i in range(5):
|
||||
from keras_visualizer import visualizer
|
||||
model = Sequential()
|
||||
model.add(Dense(11, input_shape=(X_train.shape[1],), activation='relu'))
|
||||
@@ -153,7 +153,7 @@ def MLP(X_train, X_test, y_train, y_test, X_Validation, y_Validation, stagenet=T
|
||||
mainnet_f1.append(weighted_f1_mainnet)
|
||||
|
||||
if stagenet:
|
||||
cm = confusion_matrix(y_test, y_pred)
|
||||
cm = confusion_matrix(y_test_copy, y_pred)
|
||||
# Heat map
|
||||
plt.figure(figsize=(10, 7))
|
||||
sn.heatmap(cm, annot=True)
|
||||
@@ -161,7 +161,7 @@ def MLP(X_train, X_test, y_train, y_test, X_Validation, y_Validation, stagenet=T
|
||||
plt.ylabel('Truth')
|
||||
plt.savefig("./models/GBC/stagenet/CM_epochs_" + str(EPOCHS) + "_batch_size_" + str(BATCH_SIZE) + "_i_" + str(i) + "_accuracy_" + str(weighted_f1_mainnet) + ".png")
|
||||
else:
|
||||
cm = confusion_matrix(y_test, y_pred)
|
||||
cm = confusion_matrix(y_test_copy, y_pred)
|
||||
# Heat map
|
||||
plt.figure(figsize=(10, 7))
|
||||
sn.heatmap(cm, annot=True)
|
||||
|
||||
@@ -19,7 +19,7 @@ LR = .25
|
||||
N_ESTIMATORS = 700
|
||||
|
||||
|
||||
def run_model(X_train, X_test, y_train, y_test, RANDOM_STATE, X_Validation, y_Validation):
|
||||
def run_model_rf(X_train, X_test, y_train, y_test, RANDOM_STATE, X_Validation, y_Validation):
|
||||
global stagenet
|
||||
model = AdaBoostClassifier(n_estimators=N_ESTIMATORS, random_state=RANDOM_STATE, learning_rate=LR)
|
||||
# Train the model
|
||||
@@ -77,8 +77,8 @@ def run_model(X_train, X_test, y_train, y_test, RANDOM_STATE, X_Validation, y_Va
|
||||
return weighted_f1, weighted_f1_mainnet
|
||||
|
||||
|
||||
def run_model_wrapper(data):
|
||||
return run_model(*data)
|
||||
def run_model_wrapper_rf(data):
|
||||
return run_model_rf(*data)
|
||||
|
||||
|
||||
def random_forest(X_train, X_test, y_train, y_test, N_ESTIMATORS, MAX_DEPTH, RANDOM_STATE, X_Validation, y_Validation, stagenet_val=True):
|
||||
@@ -88,13 +88,14 @@ def random_forest(X_train, X_test, y_train, y_test, N_ESTIMATORS, MAX_DEPTH, RAN
|
||||
mainnet_f1 = []
|
||||
|
||||
NUM_PROCESSES = cpu_count()
|
||||
Num_Iterations = 5
|
||||
|
||||
if NUM_PROCESSES > 10:
|
||||
NUM_PROCESSES = 10
|
||||
if NUM_PROCESSES > Num_Iterations:
|
||||
NUM_PROCESSES = Num_Iterations
|
||||
|
||||
with Manager() as manager:
|
||||
with manager.Pool(processes=NUM_PROCESSES) as pool:
|
||||
for returned_data in tqdm(pool.imap_unordered(func=run_model_wrapper, iterable=zip(repeat(X_train, 10), repeat(X_test, 10), repeat(y_train, 10), repeat(y_test, 10), list(range(10)), repeat(X_Validation, 10), repeat(y_Validation, 10))), desc="(Multiprocessing) Training RF", total=10, colour='blue'):
|
||||
for returned_data in tqdm(pool.imap_unordered(func=run_model_wrapper_rf, iterable=zip(repeat(X_train, Num_Iterations), repeat(X_test, Num_Iterations), repeat(y_train, Num_Iterations), repeat(y_test, Num_Iterations), list(range(Num_Iterations)), repeat(X_Validation, Num_Iterations), repeat(y_Validation, Num_Iterations))), desc="(Multiprocessing) Training RF", total=Num_Iterations, colour='blue'):
|
||||
weighted_f1, weighted_f1_mainnet = returned_data
|
||||
out_of_sample_f1.append(weighted_f1)
|
||||
mainnet_f1.append(weighted_f1_mainnet)
|
||||
|
||||
@@ -10,3 +10,4 @@ xgboost
|
||||
graphviz
|
||||
colorama
|
||||
psycopg2-binaray
|
||||
keras
|
||||
Reference in New Issue
Block a user