from shark.shark_inference import SharkInference from shark.parser import shark_args import torch import numpy as np import sys torch.manual_seed(0) vision_models = [ "alexnet", "resnet101", "resnet18", "resnet50", "squeezenet1_0", "wide_resnet50_2", "mobilenet_v3_small", ] def get_torch_model(modelname): if modelname in vision_models: return get_vision_model(modelname) else: return get_hf_model(modelname) ##################### Hugging Face LM Models ################################### class HuggingFaceLanguage(torch.nn.Module): def __init__(self, hf_model_name): super().__init__() from transformers import AutoModelForSequenceClassification import transformers as trf transformers_path = trf.__path__[0] hf_model_path = f"{transformers_path}/models/{hf_model_name}" self.model = AutoModelForSequenceClassification.from_pretrained( hf_model_name, # The pretrained model. num_labels=2, # The number of output labels--2 for binary classification. output_attentions=False, # Whether the model returns attentions weights. output_hidden_states=False, # Whether the model returns all hidden-states. torchscript=True, ) def forward(self, tokens): return self.model.forward(tokens)[0] def get_hf_model(name): from transformers import ( BertTokenizer, TFBertModel, ) model = HuggingFaceLanguage(name) # TODO: Currently the test input is set to (1,128) test_input = torch.randint(2, (1, 128)) actual_out = model(test_input) return model, test_input, actual_out ################################################################################ ##################### Torch Vision Models ################################### class VisionModule(torch.nn.Module): def __init__(self, model): super().__init__() self.model = model self.train(False) def forward(self, input): return self.model.forward(input) def get_vision_model(torch_model): import torchvision.models as models vision_models_dict = { "alexnet": models.alexnet(pretrained=True), "resnet18": models.resnet18(pretrained=True), "resnet50": models.resnet50(pretrained=True), "resnet101": models.resnet101(pretrained=True), "squeezenet1_0": models.squeezenet1_0(pretrained=True), "wide_resnet50_2": models.wide_resnet50_2(pretrained=True), "mobilenet_v3_small": models.mobilenet_v3_small(pretrained=True), } if isinstance(torch_model, str): torch_model = vision_models_dict[torch_model] model = VisionModule(torch_model) test_input = torch.randn(1, 3, 224, 224) actual_out = model(test_input) return model, test_input, actual_out ################################################################################ # Utility function for comparing two tensors (torch). def compare_tensors(torch_tensor, numpy_tensor, rtol=1e-02, atol=1e-03): # torch_to_numpy = torch_tensor.detach().numpy() return np.allclose(torch_tensor, numpy_tensor, rtol, atol)