import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import tensorflow as tf import numpy as np BATCH_SIZE = 1 ################################## MHLO/TF models ######################################### # TODO : Generate these lists or fetch model source from tank/tf/tf_model_list.csv keras_models = [ "resnet50", "efficientnet_b0", "efficientnet_b7", "efficientnet-v2-s", ] maskedlm_models = [ "albert-base-v2", "bert-base-uncased", "bert-large-uncased", "camembert-base", "dbmdz/convbert-base-turkish-cased", "deberta-base", "distilbert-base-uncased", "google/electra-small-discriminator", "funnel-transformer/small", "microsoft/layoutlm-base-uncased", "longformer-base-4096", "google/mobilebert-uncased", "microsoft/mpnet-base", "google/rembert", "roberta-base", "tapas-base", "hf-internal-testing/tiny-random-flaubert", "xlm-roberta", ] causallm_models = [ "gpt2", ] tfhf_models = [ "microsoft/MiniLM-L12-H384-uncased", ] tfhf_seq2seq_models = [ "t5-base", "t5-large", ] img_models = [ "google/vit-base-patch16-224", "facebook/convnext-tiny-224", ] def get_tf_model(name, import_args): if name in keras_models: return get_keras_model(name, import_args) elif name in maskedlm_models: return get_masked_lm_model(name, import_args) elif name in causallm_models: return get_causal_lm_model(name, import_args) elif name in tfhf_models: return get_TFhf_model(name, import_args) elif name in img_models: return get_causal_image_model(name, import_args) elif name in tfhf_seq2seq_models: return get_tfhf_seq2seq_model(name, import_args) else: raise Exception( "TF model not found! Please check that the modelname has been input correctly." ) ##################### Tensorflow Hugging Face Bert Models ################################### from transformers import ( AutoModelForSequenceClassification, BertTokenizer, TFBertModel, ) BERT_MAX_SEQUENCE_LENGTH = 128 # Create a set of 2-dimensional inputs tf_bert_input = [ tf.TensorSpec( shape=[BATCH_SIZE, BERT_MAX_SEQUENCE_LENGTH], dtype=tf.int32 ), tf.TensorSpec( shape=[BATCH_SIZE, BERT_MAX_SEQUENCE_LENGTH], dtype=tf.int32 ), tf.TensorSpec( shape=[BATCH_SIZE, BERT_MAX_SEQUENCE_LENGTH], dtype=tf.int32 ), ] class TFHuggingFaceLanguage(tf.Module): def __init__(self, hf_model_name): super(TFHuggingFaceLanguage, self).__init__() # Create a BERT trainer with the created network. self.m = TFBertModel.from_pretrained(hf_model_name, from_pt=True) # Invoke the trainer model on the inputs. This causes the layer to be built. self.m.predict = lambda x, y, z: self.m.call( input_ids=x, attention_mask=y, token_type_ids=z, training=False ) @tf.function(input_signature=tf_bert_input, jit_compile=True) def forward(self, input_ids, attention_mask, token_type_ids): return self.m.predict(input_ids, attention_mask, token_type_ids) def get_TFhf_model(name, import_args): model = TFHuggingFaceLanguage(name) tokenizer = BertTokenizer.from_pretrained( "microsoft/MiniLM-L12-H384-uncased" ) text = "Replace me by any text you'd like." text = [text] * BATCH_SIZE encoded_input = tokenizer( text, padding="max_length", truncation=True, max_length=BERT_MAX_SEQUENCE_LENGTH, ) test_input = [ tf.reshape( tf.convert_to_tensor(encoded_input["input_ids"], dtype=tf.int32), [BATCH_SIZE, BERT_MAX_SEQUENCE_LENGTH], ), tf.reshape( tf.convert_to_tensor( encoded_input["attention_mask"], dtype=tf.int32 ), [BATCH_SIZE, BERT_MAX_SEQUENCE_LENGTH], ), tf.reshape( tf.convert_to_tensor( encoded_input["token_type_ids"], dtype=tf.int32 ), [BATCH_SIZE, BERT_MAX_SEQUENCE_LENGTH], ), ] actual_out = model.forward(*test_input) return model, test_input, actual_out # Utility function for comparing two tensors (tensorflow). def compare_tensors_tf(tf_tensor, numpy_tensor): # setting the absolute and relative tolerance rtol = 1e-02 atol = 1e-03 tf_to_numpy = tf_tensor.numpy() return np.allclose(tf_to_numpy, numpy_tensor, rtol, atol) # Tokenizer for language models def preprocess_input( model_name, max_length, text="This is just used to compile the model" ): tokenizer = AutoTokenizer.from_pretrained(model_name) text = [text] * BATCH_SIZE inputs = tokenizer( text, return_tensors="tf", padding="max_length", truncation=True, max_length=max_length, ) return inputs ##################### Tensorflow Hugging Face Masked LM Models ################################### from transformers import TFAutoModelForMaskedLM, AutoTokenizer MASKED_LM_MAX_SEQUENCE_LENGTH = 128 # Create a set of input signature. input_signature_maskedlm = [ tf.TensorSpec( shape=[BATCH_SIZE, MASKED_LM_MAX_SEQUENCE_LENGTH], dtype=tf.int32 ), tf.TensorSpec( shape=[BATCH_SIZE, MASKED_LM_MAX_SEQUENCE_LENGTH], dtype=tf.int32 ), ] # For supported models please see here: # https://huggingface.co/docs/transformers/model_doc/auto#transformers.TFAutoModelForMaskedLM class MaskedLM(tf.Module): def __init__(self, model_name): super(MaskedLM, self).__init__() self.m = TFAutoModelForMaskedLM.from_pretrained( model_name, output_attentions=False, num_labels=2 ) self.m.predict = lambda x, y: self.m(input_ids=x, attention_mask=y)[0] @tf.function(input_signature=input_signature_maskedlm, jit_compile=True) def forward(self, input_ids, attention_mask): return self.m.predict(input_ids, attention_mask) def get_masked_lm_model( hf_name, import_args, text="Hello, this is the default text." ): model = MaskedLM(hf_name) encoded_input = preprocess_input( hf_name, MASKED_LM_MAX_SEQUENCE_LENGTH, text ) test_input = (encoded_input["input_ids"], encoded_input["attention_mask"]) actual_out = model.forward(*test_input) return model, test_input, actual_out ##################### Tensorflow Hugging Face Causal LM Models ################################### from transformers import AutoConfig, TFAutoModelForCausalLM, TFGPT2Model CAUSAL_LM_MAX_SEQUENCE_LENGTH = 1024 input_signature_causallm = [ tf.TensorSpec( shape=[BATCH_SIZE, CAUSAL_LM_MAX_SEQUENCE_LENGTH], dtype=tf.int32 ), tf.TensorSpec( shape=[BATCH_SIZE, CAUSAL_LM_MAX_SEQUENCE_LENGTH], dtype=tf.int32 ), ] # For supported models please see here: # https://huggingface.co/docs/transformers/model_doc/auto#transformers.TFAutoModelForCausalLM # For more background, see: # https://huggingface.co/blog/tf-xla-generate class CausalLM(tf.Module): def __init__(self, model_name): super(CausalLM, self).__init__() # Decoder-only models need left padding. self.tokenizer = AutoTokenizer.from_pretrained( model_name, padding_side="left", pad_token="" ) self.tokenization_kwargs = { "pad_to_multiple_of": CAUSAL_LM_MAX_SEQUENCE_LENGTH, "padding": True, "return_tensors": "tf", } self.model = TFGPT2Model.from_pretrained(model_name, return_dict=True) self.model.predict = lambda x, y: self.model( input_ids=x, attention_mask=y )[0] def preprocess_input(self, text): return self.tokenizer(text, **self.tokenization_kwargs) @tf.function(input_signature=input_signature_causallm, jit_compile=True) def forward(self, input_ids, attention_mask): return self.model.predict(input_ids, attention_mask) def get_causal_lm_model( hf_name, import_args, text="Hello, this is the default text." ): model = CausalLM(hf_name) batched_text = [text] * BATCH_SIZE encoded_input = model.preprocess_input(batched_text) test_input = (encoded_input["input_ids"], encoded_input["attention_mask"]) actual_out = model.forward(*test_input) return model, test_input, actual_out ##################### TensorflowHugging Face Seq2SeqLM Models ################################### # We use a maximum sequence length of 512 since this is the default used in the T5 config. T5_MAX_SEQUENCE_LENGTH = 512 input_signature_t5 = [ tf.TensorSpec( shape=[BATCH_SIZE, T5_MAX_SEQUENCE_LENGTH], dtype=tf.int32, name="input_ids", ), tf.TensorSpec( shape=[BATCH_SIZE, T5_MAX_SEQUENCE_LENGTH], dtype=tf.int32, name="attention_mask", ), ] class TFHFSeq2SeqLanguageModel(tf.Module): def __init__(self, model_name): super(TFHFSeq2SeqLanguageModel, self).__init__() from transformers import ( AutoTokenizer, AutoConfig, TFAutoModelForSeq2SeqLM, TFT5Model, ) self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.tokenization_kwargs = { "pad_to_multiple_of": T5_MAX_SEQUENCE_LENGTH, "padding": True, "return_tensors": "tf", } self.model = TFT5Model.from_pretrained(model_name, return_dict=True) self.model.predict = lambda x, y: self.model(x, decoder_input_ids=y)[0] def preprocess_input(self, text): return self.tokenizer(text, **self.tokenization_kwargs) @tf.function(input_signature=input_signature_t5, jit_compile=True) def forward(self, input_ids, decoder_input_ids): return self.model.predict(input_ids, decoder_input_ids) def get_tfhf_seq2seq_model(name, import_args): m = TFHFSeq2SeqLanguageModel(name) text = "Studies have been shown that owning a dog is good for you" batched_text = [text] * BATCH_SIZE encoded_input_ids = m.preprocess_input(batched_text).input_ids text = "Studies show that" batched_text = [text] * BATCH_SIZE decoder_input_ids = m.preprocess_input(batched_text).input_ids decoder_input_ids = m.model._shift_right(decoder_input_ids) test_input = (encoded_input_ids, decoder_input_ids) actual_out = m.forward(*test_input) return m, test_input, actual_out ##################### TensorFlow Keras Resnet Models ######################################################### # Static shape, including batch size (1). # Can be dynamic once dynamic shape support is ready. RESNET_INPUT_SHAPE = [BATCH_SIZE, 224, 224, 3] EFFICIENTNET_V2_S_INPUT_SHAPE = [BATCH_SIZE, 384, 384, 3] EFFICIENTNET_B0_INPUT_SHAPE = [BATCH_SIZE, 224, 224, 3] EFFICIENTNET_B7_INPUT_SHAPE = [BATCH_SIZE, 600, 600, 3] class ResNetModule(tf.Module): def __init__(self): super(ResNetModule, self).__init__() self.m = tf.keras.applications.resnet50.ResNet50( weights="imagenet", include_top=True, input_shape=tuple(RESNET_INPUT_SHAPE[1:]), ) self.m.predict = lambda x: self.m.call(x, training=False) @tf.function( input_signature=[tf.TensorSpec(RESNET_INPUT_SHAPE, tf.float32)], jit_compile=True, ) def forward(self, inputs): return self.m.predict(inputs) def input_shape(self): return RESNET_INPUT_SHAPE def preprocess_input(self, image): return tf.keras.applications.resnet50.preprocess_input(image) class EfficientNetB0Module(tf.Module): def __init__(self): super(EfficientNetB0Module, self).__init__() self.m = tf.keras.applications.efficientnet.EfficientNetB0( weights="imagenet", include_top=True, input_shape=tuple(EFFICIENTNET_B0_INPUT_SHAPE[1:]), ) self.m.predict = lambda x: self.m.call(x, training=False) @tf.function( input_signature=[ tf.TensorSpec(EFFICIENTNET_B0_INPUT_SHAPE, tf.float32) ], jit_compile=True, ) def forward(self, inputs): return self.m.predict(inputs) def input_shape(self): return EFFICIENTNET_B0_INPUT_SHAPE def preprocess_input(self, image): return tf.keras.applications.efficientnet.preprocess_input(image) class EfficientNetB7Module(tf.Module): def __init__(self): super(EfficientNetB7Module, self).__init__() self.m = tf.keras.applications.efficientnet.EfficientNetB7( weights="imagenet", include_top=True, input_shape=tuple(EFFICIENTNET_B7_INPUT_SHAPE[1:]), ) self.m.predict = lambda x: self.m.call(x, training=False) @tf.function( input_signature=[ tf.TensorSpec(EFFICIENTNET_B7_INPUT_SHAPE, tf.float32) ], jit_compile=True, ) def forward(self, inputs): return self.m.predict(inputs) def input_shape(self): return EFFICIENTNET_B7_INPUT_SHAPE def preprocess_input(self, image): return tf.keras.applications.efficientnet.preprocess_input(image) class EfficientNetV2SModule(tf.Module): def __init__(self): super(EfficientNetV2SModule, self).__init__() self.m = tf.keras.applications.efficientnet_v2.EfficientNetV2S( weights="imagenet", include_top=True, input_shape=tuple(EFFICIENTNET_V2_S_INPUT_SHAPE[1:]), ) self.m.predict = lambda x: self.m.call(x, training=False) @tf.function( input_signature=[ tf.TensorSpec(EFFICIENTNET_V2_S_INPUT_SHAPE, tf.float32) ], jit_compile=True, ) def forward(self, inputs): return self.m.predict(inputs) def input_shape(self): return EFFICIENTNET_V2_S_INPUT_SHAPE def preprocess_input(self, image): return tf.keras.applications.efficientnet_v2.preprocess_input(image) def load_image(path_to_image, width, height, channels): image = tf.io.read_file(path_to_image) image = tf.image.decode_image(image, channels=channels) image = tf.image.resize(image, (width, height)) image = image[tf.newaxis, :] image = tf.tile(image, [BATCH_SIZE, 1, 1, 1]) return image def get_keras_model(modelname, import_args): if modelname == "efficientnet-v2-s": model = EfficientNetV2SModule() elif modelname == "efficientnet_b0": model = EfficientNetB0Module() elif modelname == "efficientnet_b7": model = EfficientNetB7Module() else: model = ResNetModule() content_path = tf.keras.utils.get_file( "YellowLabradorLooking_new.jpg", "https://storage.googleapis.com/download.tensorflow.org/example_images/YellowLabradorLooking_new.jpg", ) input_shape = model.input_shape() content_image = load_image( content_path, input_shape[1], input_shape[2], input_shape[3] ) input_tensor = model.preprocess_input(content_image) input_data = tf.expand_dims(input_tensor, 0) actual_out = model.forward(*input_data) return model, input_data, actual_out ##################### Tensorflow Hugging Face Image Classification Models ################################### from transformers import TFAutoModelForImageClassification from transformers import ConvNextFeatureExtractor, ViTFeatureExtractor from transformers import BeitFeatureExtractor, AutoFeatureExtractor from PIL import Image import requests # Create a set of input signature. input_signature_img_cls = [ tf.TensorSpec(shape=[BATCH_SIZE, 3, 224, 224], dtype=tf.float32), ] class AutoModelImageClassfication(tf.Module): def __init__(self, model_name): super(AutoModelImageClassfication, self).__init__() self.m = TFAutoModelForImageClassification.from_pretrained( model_name, output_attentions=False ) self.m.predict = lambda x: self.m(x) @tf.function(input_signature=input_signature_img_cls, jit_compile=True) def forward(self, inputs): return self.m.predict(inputs) fail_models = [ "facebook/data2vec-vision-base-ft1k", "microsoft/swin-tiny-patch4-window7-224", ] supported_models = [ "facebook/convnext-tiny-224", "google/vit-base-patch16-224", ] img_models_fe_dict = { "facebook/convnext-tiny-224": ConvNextFeatureExtractor, "facebook/data2vec-vision-base-ft1k": BeitFeatureExtractor, "microsoft/swin-tiny-patch4-window7-224": AutoFeatureExtractor, "google/vit-base-patch16-224": ViTFeatureExtractor, } def preprocess_input_image(model_name): # from datasets import load_dataset # dataset = load_dataset("huggingface/cats-image") # image1 = dataset["test"]["image"][0] # # print("image1: ", image1) # url = "http://images.cocodataset.org/val2017/000000039769.jpg" # image = Image.open(requests.get(url, stream=True).raw) feature_extractor = img_models_fe_dict[model_name].from_pretrained( model_name ) # inputs: {'pixel_values': } inputs = feature_extractor(images=image, return_tensors="tf") inputs["pixel_values"] = tf.tile( inputs["pixel_values"], [BATCH_SIZE, 1, 1, 1] ) return [inputs[str(*inputs)]] def get_causal_image_model(hf_name, import_args): model = AutoModelImageClassfication(hf_name) test_input = preprocess_input_image(hf_name) # TFSequenceClassifierOutput(loss=None, logits=, hidden_states=None, attentions=None) actual_out = model.forward(*test_input) return model, test_input, actual_out