mirror of
https://github.com/nod-ai/AMD-SHARK-Studio.git
synced 2026-02-19 11:56:43 -05:00
37 lines
1.1 KiB
Python
37 lines
1.1 KiB
Python
# RUN: %PYTHON %s
|
|
# XFAIL: *
|
|
|
|
import absl.testing
|
|
import imagenet_test_data
|
|
import numpy
|
|
import test_util
|
|
|
|
# Source https://tfhub.dev/sayannath/lite-model/image-scene/1
|
|
model_path = "https://storage.googleapis.com/iree-model-artifacts/efficientnet_224_fp32.tflite"
|
|
|
|
|
|
class EfficientnetTest(test_util.TFLiteModelTest):
|
|
def __init__(self, *args, **kwargs):
|
|
super(EfficientnetTest, self).__init__(model_path, *args, **kwargs)
|
|
|
|
def compare_results(self, iree_results, tflite_results, details):
|
|
super(EfficientnetTest, self).compare_results(
|
|
iree_results, tflite_results, details
|
|
)
|
|
self.assertTrue(
|
|
numpy.isclose(iree_results, tflite_results, atol=1e-4).all()
|
|
)
|
|
|
|
def generate_inputs(self, input_details):
|
|
inputs = imagenet_test_data.generate_input(self.workdir, input_details)
|
|
# Normalize inputs to [-1, 1].
|
|
inputs = (inputs.astype("float32") / 127.5) - 1
|
|
return [inputs]
|
|
|
|
def test_compile_tflite(self):
|
|
self.compile_and_execute()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
absl.testing.absltest.main()
|