Files
AMD-SHARK-Studio/tank/tflite/efficientnet_test.py
Prashant Kumar 0dcf387089 Add shark_importer for torch_models. (#183)
All the torch_models are imported to gs::shark_tank.
Scripts have been updated.
2022-07-12 20:38:19 -07:00

37 lines
1.1 KiB
Python

# RUN: %PYTHON %s
# XFAIL: *
import absl.testing
import imagenet_test_data
import numpy
import test_util
# Source https://tfhub.dev/sayannath/lite-model/image-scene/1
model_path = "https://storage.googleapis.com/iree-model-artifacts/efficientnet_224_fp32.tflite"
class EfficientnetTest(test_util.TFLiteModelTest):
def __init__(self, *args, **kwargs):
super(EfficientnetTest, self).__init__(model_path, *args, **kwargs)
def compare_results(self, iree_results, tflite_results, details):
super(EfficientnetTest, self).compare_results(
iree_results, tflite_results, details
)
self.assertTrue(
numpy.isclose(iree_results, tflite_results, atol=1e-4).all()
)
def generate_inputs(self, input_details):
inputs = imagenet_test_data.generate_input(self.workdir, input_details)
# Normalize inputs to [-1, 1].
inputs = (inputs.astype("float32") / 127.5) - 1
return [inputs]
def test_compile_tflite(self):
self.compile_and_execute()
if __name__ == "__main__":
absl.testing.absltest.main()