Files

73 lines
2.0 KiB
Python

import torch
import torch_mlir
from shark.shark_inference import SharkInference
from shark.shark_compile import shark_compile_through_fx
from MEGABYTE_pytorch import MEGABYTE
import os
class MegaModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = MEGABYTE(
num_tokens=16000, # number of tokens
dim=(
512,
256,
), # transformer model dimension (512 for coarsest, 256 for fine in this example)
max_seq_len=(
1024,
4,
), # sequence length for global and then local. this can be more than 2
depth=(
6,
4,
), # number of layers for global and then local. this can be more than 2, but length must match the max_seq_len's
dim_head=64, # dimension per head
heads=8, # number of attention heads
flash_attn=True, # use flash attention
)
def forward(self, input):
return self.model(input)
megaModel = MegaModel()
inputs = [torch.randint(0, 16000, (1, 1024, 4))]
# CURRENTLY IT BAILS OUT HERE BECAUSE OF MISSING OP LOWERINGS :-
# 1. aten.alias
shark_module, _ = shark_compile_through_fx(
model=megaModel,
inputs=inputs,
extended_model_name="mega_shark",
is_f16=False,
f16_input_mask=None,
save_dir=os.getcwd(),
debug=False,
generate_or_load_vmfb=True,
extra_args=[],
device="cuda",
mlir_dialect="tm_tensor",
)
# logits = model(x)
def print_output_info(output, msg):
print("\n", msg)
print("\n\t", output.shape)
ans = shark_module("forward", inputs)
print_output_info(torch.from_numpy(ans), "SHARK's output")
ans = megaModel.forward(*inputs)
print_output_info(ans, "ORIGINAL Model's output")
# and sample from the logits accordingly
# or you can use the generate function
# NEED TO LOOK AT THIS LATER IF REQUIRED IN SHARK.
# sampled = model.generate(temperature = 0.9, filter_thres = 0.9) # (1, 1024, 4)