mirror of
https://github.com/nod-ai/AMD-SHARK-Studio.git
synced 2026-02-19 11:56:43 -05:00
43 lines
1.2 KiB
Python
43 lines
1.2 KiB
Python
# RUN: %PYTHON %s
|
|
|
|
import absl.testing
|
|
import numpy
|
|
import test_util
|
|
import urllib.request
|
|
|
|
from PIL import Image
|
|
|
|
model_path = "https://tfhub.dev/google/lite-model/aiy/vision/classifier/birds_V1/3?lite-format=tflite"
|
|
|
|
|
|
class BirdClassifierTest(test_util.TFLiteModelTest):
|
|
def __init__(self, *args, **kwargs):
|
|
super(BirdClassifierTest, self).__init__(model_path, *args, **kwargs)
|
|
|
|
def compare_results(self, iree_results, tflite_results, details):
|
|
super(BirdClassifierTest, self).compare_results(
|
|
iree_results, tflite_results, details
|
|
)
|
|
self.assertTrue(
|
|
numpy.isclose(iree_results[0], tflite_results[0], atol=1e-3).all()
|
|
)
|
|
|
|
def generate_inputs(self, input_details):
|
|
img_path = (
|
|
"https://github.com/google-coral/test_data/raw/master/bird.bmp"
|
|
)
|
|
local_path = "/".join([self.workdir, "bird.bmp"])
|
|
urllib.request.urlretrieve(img_path, local_path)
|
|
|
|
shape = input_details[0]["shape"]
|
|
im = numpy.array(Image.open(local_path).resize((shape[1], shape[2])))
|
|
args = [im.reshape(shape)]
|
|
return args
|
|
|
|
def test_compile_tflite(self):
|
|
self.compile_and_execute()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
absl.testing.absltest.main()
|