Files
AMD-SHARK-Studio/tank/torch_model_list.csv
2023-01-10 16:31:11 -08:00

2.7 KiB

1model_nameuse_tracingmodel_typedynamicparam_counttagsnotes
2microsoft/MiniLM-L12-H384-uncasedTruehfTrue66Mnlp;bert-variant;transformer-encoderLarge version has 12 layers; 384 hidden size; Smaller than BERTbase (66M params vs 109M params)
3bert-base-uncasedTruehfTrue109Mnlp;bert-variant;transformer-encoder12 layers; 768 hidden; 12 attention heads
4bert-base-casedTruehfTrue109Mnlp;bert-variant;transformer-encoder12 layers; 768 hidden; 12 attention heads
5google/mobilebert-uncasedTruehfTrue25Mnlp,bert-variant,transformer-encoder,mobile24 layers, 512 hidden size, 128 embedding
6alexnetFalsevisionTrue61Mcnn,parallel-layersThe CNN that revolutionized computer vision (move away from hand-crafted features to neural networks),10 years old now and probably no longer used in prod.
7resnet18FalsevisionTrue11Mcnn,image-classification,residuals,resnet-variant1 7x7 conv2d and the rest are 3x3 conv2d
8resnet50FalsevisionTrue23Mcnn,image-classification,residuals,resnet-variantBottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)
9resnet101FalsevisionTrue29Mcnn,image-classification,residuals,resnet-variantBottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)
10squeezenet1_0FalsevisionTrue1.25Mcnn,image-classification,mobile,parallel-layersParallel conv2d (1x1 conv to compress -> (3x3 expand | 1x1 expand) -> concat)
11wide_resnet50_2FalsevisionTrue69Mcnn,image-classification,residuals,resnet-variantResnet variant where model depth is decreased and width is increased.
12mobilenet_v3_smallFalsevisionTrue2.5Mimage-classification,cnn,mobileN/A
13google/vit-base-patch16-224Truehf_img_clsFalse86Mimage-classification,vision-transformer,transformer-encoderN/A
14microsoft/resnet-50Truehf_img_clsFalse23Mimage-classification,cnn,residuals,resnet-variantBottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)
15facebook/deit-small-distilled-patch16-224Truehf_img_clsFalse22Mimage-classification,vision-transformer,cnnN/A
16microsoft/beit-base-patch16-224-pt22k-ft22kTruehf_img_clsFalse86Mimage-classification,transformer-encoder,bert-variant,vision-transformerN/A
17nvidia/mit-b0Truehf_img_clsFalse3.7Mimage-classification,transformer-encoderSegFormer
18mnasnet1_0FalsevisionTrue-cnn, torchvision, mobile, architecture-searchOutperforms other mobile CNNs on Accuracy vs. Latency
19resnet50_fp16FalsevisionTrue23Mcnn,image-classification,residuals,resnet-variantBottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)
20bert-base-uncased_fp16Truefp16False109Mnlp;bert-variant;transformer-encoder12 layers; 768 hidden; 12 attention heads