Files
AMD-SHARK-Studio/tank/model_metadata.csv
2022-09-20 07:06:38 -07:00

3.0 KiB

1model_nameuse_tracingdynamicparam_counttagsnotes
2microsoft/MiniLM-L12-H384-uncasedTrueTrue66Mnlp;bert-variant;transformer-encoderLarge version has 12 layers; 384 hidden size; Smaller than BERTbase (66M params vs 109M params)
3albert-base-v2TrueTrue11Mnlp;bert-variant;transformer-encoder12 layers; 128 embedding dim; 768 hidden dim; 12 attention heads; Smaller than BERTbase (11M params vs 109M params); Uses weight sharing to reduce # params but computational cost is similar to BERT.
4bert-base-uncasedTrueTrue109Mnlp;bert-variant;transformer-encoder12 layers; 768 hidden; 12 attention heads
5bert-base-casedTrueTrue109Mnlp;bert-variant;transformer-encoder12 layers; 768 hidden; 12 attention heads
6distilbert-base-uncasedTrueTrue66Mnlp;bert-variant;transformer-encoderSmaller and faster than BERT with 97percent retained accuracy.
7google/mobilebert-uncasedTrueTrue25Mnlp,bert-variant,transformer-encoder,mobile24 layers, 512 hidden size, 128 embedding
8alexnetFalseTrue61Mcnn,parallel-layersThe CNN that revolutionized computer vision (move away from hand-crafted features to neural networks),10 years old now and probably no longer used in prod.
9resnet18FalseTrue11Mcnn,image-classification,residuals,resnet-variant1 7x7 conv2d and the rest are 3x3 conv2d
10resnet50FalseTrue23Mcnn,image-classification,residuals,resnet-variantBottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)
11resnet101FalseTrue29Mcnn,image-classification,residuals,resnet-variantBottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)
12squeezenet1_0FalseTrue1.25Mcnn,image-classification,mobile,parallel-layersParallel conv2d (1x1 conv to compress -> (3x3 expand | 1x1 expand) -> concat)
13wide_resnet50_2FalseTrue69Mcnn,image-classification,residuals,resnet-variantResnet variant where model depth is decreased and width is increased.
14mobilenet_v3_smallFalseTrue2.5Mimage-classification,cnn,mobileN/A
15google/vit-base-patch16-224TrueFalse86Mimage-classification,vision-transformer,transformer-encoderN/A
16microsoft/resnet-50TrueFalse23Mimage-classification,cnn,residuals,resnet-variantBottlenecks with only conv2d (1x1 conv -> 3x3 conv -> 1x1 conv blocks)
17facebook/deit-small-distilled-patch16-224TrueFalse22Mimage-classification,vision-transformer,cnnN/A
18microsoft/beit-base-patch16-224-pt22k-ft22kTrueFalse86Mimage-classification,transformer-encoder,bert-variant,vision-transformerN/A
19nvidia/mit-b0TrueFalse3.7Mimage-classification,transformer-encoderSegFormer
20camembert-baseFalseFalse---
21dbmdz/convbert-base-turkish-casedFalseFalse---
22google/electra-small-discriminatorFalseFalse---
23hf-internal-testing/tiny-random-flaubertFalseFalse---
24funnel-transformer/smallFalseFalse---
25microsoft/layoutlm-base-uncasedFalseFalse---
26microsoft/mpnet-baseFalseFalse---
27roberta-baseFalseFalse---
28xlm-roberta-baseFalseFalse---
29facebook/convnext-tiny-224FalseFalse---