Merge branch 'master' of https://github.com/Significant-Gravitas/Auto-GPT into plugin-support

This commit is contained in:
BillSchumacher
2023-04-15 21:37:27 -05:00
128 changed files with 6846 additions and 2522 deletions

View File

@@ -1,72 +0,0 @@
from llm_utils import create_chat_completion
next_key = 0
agents = {} # key, (task, full_message_history, model)
# Create new GPT agent
# TODO: Centralise use of create_chat_completion() to globally enforce token limit
def create_agent(task, prompt, model):
"""Create a new agent and return its key"""
global next_key
global agents
messages = [{"role": "user", "content": prompt}, ]
# Start GTP3 instance
agent_reply = create_chat_completion(
model=model,
messages=messages,
)
# Update full message history
messages.append({"role": "assistant", "content": agent_reply})
key = next_key
# This is done instead of len(agents) to make keys unique even if agents
# are deleted
next_key += 1
agents[key] = (task, messages, model)
return key, agent_reply
def message_agent(key, message):
"""Send a message to an agent and return its response"""
global agents
task, messages, model = agents[int(key)]
# Add user message to message history before sending to agent
messages.append({"role": "user", "content": message})
# Start GTP3 instance
agent_reply = create_chat_completion(
model=model,
messages=messages,
)
# Update full message history
messages.append({"role": "assistant", "content": agent_reply})
return agent_reply
def list_agents():
"""Return a list of all agents"""
global agents
# Return a list of agent keys and their tasks
return [(key, task) for key, (task, _, _) in agents.items()]
def delete_agent(key):
"""Delete an agent and return True if successful, False otherwise"""
global agents
try:
del agents[int(key)]
return True
except KeyError:
return False

View File

@@ -1,95 +0,0 @@
import yaml
import data
import os
class AIConfig:
"""
A class object that contains the configuration information for the AI
Attributes:
ai_name (str): The name of the AI.
ai_role (str): The description of the AI's role.
ai_goals (list): The list of objectives the AI is supposed to complete.
"""
def __init__(self, ai_name: str="", ai_role: str="", ai_goals: list=[]) -> None:
"""
Initialize a class instance
Parameters:
ai_name (str): The name of the AI.
ai_role (str): The description of the AI's role.
ai_goals (list): The list of objectives the AI is supposed to complete.
Returns:
None
"""
self.ai_name = ai_name
self.ai_role = ai_role
self.ai_goals = ai_goals
# Soon this will go in a folder where it remembers more stuff about the run(s)
SAVE_FILE = os.path.join(os.path.dirname(__file__), '..', 'ai_settings.yaml')
@classmethod
def load(cls: object, config_file: str=SAVE_FILE) -> object:
"""
Returns class object with parameters (ai_name, ai_role, ai_goals) loaded from yaml file if yaml file exists,
else returns class with no parameters.
Parameters:
cls (class object): An AIConfig Class object.
config_file (int): The path to the config yaml file. DEFAULT: "../ai_settings.yaml"
Returns:
cls (object): A instance of given cls object
"""
try:
with open(config_file) as file:
config_params = yaml.load(file, Loader=yaml.FullLoader)
except FileNotFoundError:
config_params = {}
ai_name = config_params.get("ai_name", "")
ai_role = config_params.get("ai_role", "")
ai_goals = config_params.get("ai_goals", [])
return cls(ai_name, ai_role, ai_goals)
def save(self, config_file: str=SAVE_FILE) -> None:
"""
Saves the class parameters to the specified file yaml file path as a yaml file.
Parameters:
config_file(str): The path to the config yaml file. DEFAULT: "../ai_settings.yaml"
Returns:
None
"""
config = {"ai_name": self.ai_name, "ai_role": self.ai_role, "ai_goals": self.ai_goals}
with open(config_file, "w") as file:
yaml.dump(config, file)
def construct_full_prompt(self) -> str:
"""
Returns a prompt to the user with the class information in an organized fashion.
Parameters:
None
Returns:
full_prompt (str): A string containing the intitial prompt for the user including the ai_name, ai_role and ai_goals.
"""
prompt_start = """Your decisions must always be made independently without seeking user assistance. Play to your strengths as an LLM and pursue simple strategies with no legal complications."""
# Construct full prompt
full_prompt = f"You are {self.ai_name}, {self.ai_role}\n{prompt_start}\n\nGOALS:\n\n"
for i, goal in enumerate(self.ai_goals):
full_prompt += f"{i+1}. {goal}\n"
full_prompt += f"\n\n{data.load_prompt()}"
return full_prompt

View File

@@ -1,68 +0,0 @@
from typing import List, Optional
import json
from config import Config
from call_ai_function import call_ai_function
from json_parser import fix_and_parse_json
cfg = Config()
def evaluate_code(code: str) -> List[str]:
"""
A function that takes in a string and returns a response from create chat completion api call.
Parameters:
code (str): Code to be evaluated.
Returns:
A result string from create chat completion. A list of suggestions to improve the code.
"""
function_string = "def analyze_code(code: str) -> List[str]:"
args = [code]
description_string = """Analyzes the given code and returns a list of suggestions for improvements."""
result_string = call_ai_function(function_string, args, description_string)
return result_string
def improve_code(suggestions: List[str], code: str) -> str:
"""
A function that takes in code and suggestions and returns a response from create chat completion api call.
Parameters:
suggestions (List): A list of suggestions around what needs to be improved.
code (str): Code to be improved.
Returns:
A result string from create chat completion. Improved code in response.
"""
function_string = (
"def generate_improved_code(suggestions: List[str], code: str) -> str:"
)
args = [json.dumps(suggestions), code]
description_string = """Improves the provided code based on the suggestions provided, making no other changes."""
result_string = call_ai_function(function_string, args, description_string)
return result_string
def write_tests(code: str, focus: List[str]) -> str:
"""
A function that takes in code and focus topics and returns a response from create chat completion api call.
Parameters:
focus (List): A list of suggestions around what needs to be improved.
code (str): Code for test cases to be generated against.
Returns:
A result string from create chat completion. Test cases for the submitted code in response.
"""
function_string = (
"def create_test_cases(code: str, focus: Optional[str] = None) -> str:"
)
args = [code, json.dumps(focus)]
description_string = """Generates test cases for the existing code, focusing on specific areas if required."""
result_string = call_ai_function(function_string, args, description_string)
return result_string

View File

@@ -1,138 +0,0 @@
import requests
from bs4 import BeautifulSoup
from config import Config
from llm_utils import create_chat_completion
cfg = Config()
# Define and check for local file address prefixes
def check_local_file_access(url):
local_prefixes = ['file:///', 'file://localhost', 'http://localhost', 'https://localhost']
return any(url.startswith(prefix) for prefix in local_prefixes)
def scrape_text(url):
"""Scrape text from a webpage"""
# Most basic check if the URL is valid:
if not url.startswith('http'):
return "Error: Invalid URL"
# Restrict access to local files
if check_local_file_access(url):
return "Error: Access to local files is restricted"
try:
response = requests.get(url, headers=cfg.user_agent_header)
except requests.exceptions.RequestException as e:
return "Error: " + str(e)
# Check if the response contains an HTTP error
if response.status_code >= 400:
return "Error: HTTP " + str(response.status_code) + " error"
soup = BeautifulSoup(response.text, "html.parser")
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = '\n'.join(chunk for chunk in chunks if chunk)
return text
def extract_hyperlinks(soup):
"""Extract hyperlinks from a BeautifulSoup object"""
hyperlinks = []
for link in soup.find_all('a', href=True):
hyperlinks.append((link.text, link['href']))
return hyperlinks
def format_hyperlinks(hyperlinks):
"""Format hyperlinks into a list of strings"""
formatted_links = []
for link_text, link_url in hyperlinks:
formatted_links.append(f"{link_text} ({link_url})")
return formatted_links
def scrape_links(url):
"""Scrape links from a webpage"""
response = requests.get(url, headers=cfg.user_agent_header)
# Check if the response contains an HTTP error
if response.status_code >= 400:
return "error"
soup = BeautifulSoup(response.text, "html.parser")
for script in soup(["script", "style"]):
script.extract()
hyperlinks = extract_hyperlinks(soup)
return format_hyperlinks(hyperlinks)
def split_text(text, max_length=8192):
"""Split text into chunks of a maximum length"""
paragraphs = text.split("\n")
current_length = 0
current_chunk = []
for paragraph in paragraphs:
if current_length + len(paragraph) + 1 <= max_length:
current_chunk.append(paragraph)
current_length += len(paragraph) + 1
else:
yield "\n".join(current_chunk)
current_chunk = [paragraph]
current_length = len(paragraph) + 1
if current_chunk:
yield "\n".join(current_chunk)
def create_message(chunk, question):
"""Create a message for the user to summarize a chunk of text"""
return {
"role": "user",
"content": f"\"\"\"{chunk}\"\"\" Using the above text, please answer the following question: \"{question}\" -- if the question cannot be answered using the text, please summarize the text."
}
def summarize_text(text, question):
"""Summarize text using the LLM model"""
if not text:
return "Error: No text to summarize"
text_length = len(text)
print(f"Text length: {text_length} characters")
summaries = []
chunks = list(split_text(text))
for i, chunk in enumerate(chunks):
print(f"Summarizing chunk {i + 1} / {len(chunks)}")
messages = [create_message(chunk, question)]
summary = create_chat_completion(
model=cfg.fast_llm_model,
messages=messages,
max_tokens=300,
)
summaries.append(summary)
print(f"Summarized {len(chunks)} chunks.")
combined_summary = "\n".join(summaries)
messages = [create_message(combined_summary, question)]
final_summary = create_chat_completion(
model=cfg.fast_llm_model,
messages=messages,
max_tokens=300,
)
return final_summary

View File

@@ -1,28 +0,0 @@
from config import Config
cfg = Config()
from llm_utils import create_chat_completion
# This is a magic function that can do anything with no-code. See
# https://github.com/Torantulino/AI-Functions for more info.
def call_ai_function(function, args, description, model=None):
"""Call an AI function"""
if model is None:
model = cfg.smart_llm_model
# For each arg, if any are None, convert to "None":
args = [str(arg) if arg is not None else "None" for arg in args]
# parse args to comma seperated string
args = ", ".join(args)
messages = [
{
"role": "system",
"content": f"You are now the following python function: ```# {description}\n{function}```\n\nOnly respond with your `return` value.",
},
{"role": "user", "content": args},
]
response = create_chat_completion(
model=model, messages=messages, temperature=0
)
return response

View File

@@ -1,146 +0,0 @@
import time
import openai
from dotenv import load_dotenv
from config import Config
import token_counter
from llm_utils import create_chat_completion
cfg = Config()
def create_chat_message(role, content):
"""
Create a chat message with the given role and content.
Args:
role (str): The role of the message sender, e.g., "system", "user", or "assistant".
content (str): The content of the message.
Returns:
dict: A dictionary containing the role and content of the message.
"""
return {"role": role, "content": content}
def generate_context(prompt, relevant_memory, full_message_history, model):
current_context = [
create_chat_message(
"system", prompt),
create_chat_message(
"system", f"The current time and date is {time.strftime('%c')}"),
create_chat_message(
"system", f"This reminds you of these events from your past:\n{relevant_memory}\n\n")]
# Add messages from the full message history until we reach the token limit
next_message_to_add_index = len(full_message_history) - 1
insertion_index = len(current_context)
# Count the currently used tokens
current_tokens_used = token_counter.count_message_tokens(current_context, model)
return next_message_to_add_index, current_tokens_used, insertion_index, current_context
# TODO: Change debug from hardcode to argument
def chat_with_ai(
prompt,
user_input,
full_message_history,
permanent_memory,
token_limit):
"""Interact with the OpenAI API, sending the prompt, user input, message history, and permanent memory."""
while True:
try:
"""
Interact with the OpenAI API, sending the prompt, user input, message history, and permanent memory.
Args:
prompt (str): The prompt explaining the rules to the AI.
user_input (str): The input from the user.
full_message_history (list): The list of all messages sent between the user and the AI.
permanent_memory (Obj): The memory object containing the permanent memory.
token_limit (int): The maximum number of tokens allowed in the API call.
Returns:
str: The AI's response.
"""
model = cfg.fast_llm_model # TODO: Change model from hardcode to argument
# Reserve 1000 tokens for the response
if cfg.debug:
print(f"Token limit: {token_limit}")
send_token_limit = token_limit - 1000
relevant_memory = permanent_memory.get_relevant(str(full_message_history[-5:]), 10)
if cfg.debug:
print('Memory Stats: ', permanent_memory.get_stats())
next_message_to_add_index, current_tokens_used, insertion_index, current_context = generate_context(
prompt, relevant_memory, full_message_history, model)
while current_tokens_used > 2500:
# remove memories until we are under 2500 tokens
relevant_memory = relevant_memory[1:]
next_message_to_add_index, current_tokens_used, insertion_index, current_context = generate_context(
prompt, relevant_memory, full_message_history, model)
current_tokens_used += token_counter.count_message_tokens([create_chat_message("user", user_input)], model) # Account for user input (appended later)
while next_message_to_add_index >= 0:
# print (f"CURRENT TOKENS USED: {current_tokens_used}")
message_to_add = full_message_history[next_message_to_add_index]
tokens_to_add = token_counter.count_message_tokens([message_to_add], model)
if current_tokens_used + tokens_to_add > send_token_limit:
break
# Add the most recent message to the start of the current context, after the two system prompts.
current_context.insert(insertion_index, full_message_history[next_message_to_add_index])
# Count the currently used tokens
current_tokens_used += tokens_to_add
# Move to the next most recent message in the full message history
next_message_to_add_index -= 1
# Append user input, the length of this is accounted for above
current_context.extend([create_chat_message("user", user_input)])
# Calculate remaining tokens
tokens_remaining = token_limit - current_tokens_used
# assert tokens_remaining >= 0, "Tokens remaining is negative. This should never happen, please submit a bug report at https://www.github.com/Torantulino/Auto-GPT"
# Debug print the current context
if cfg.debug:
print(f"Token limit: {token_limit}")
print(f"Send Token Count: {current_tokens_used}")
print(f"Tokens remaining for response: {tokens_remaining}")
print("------------ CONTEXT SENT TO AI ---------------")
for message in current_context:
# Skip printing the prompt
if message["role"] == "system" and message["content"] == prompt:
continue
print(
f"{message['role'].capitalize()}: {message['content']}")
print()
print("----------- END OF CONTEXT ----------------")
# TODO: use a model defined elsewhere, so that model can contain temperature and other settings we care about
assistant_reply = create_chat_completion(
model=model,
messages=current_context,
max_tokens=tokens_remaining,
)
# Update full message history
full_message_history.append(
create_chat_message(
"user", user_input))
full_message_history.append(
create_chat_message(
"assistant", assistant_reply))
return assistant_reply
except openai.error.RateLimitError:
# TODO: WHen we switch to langchain, this is built in
print("Error: ", "API Rate Limit Reached. Waiting 10 seconds...")
time.sleep(10)

View File

@@ -0,0 +1,31 @@
import pkg_resources
import sys
def main():
requirements_file = sys.argv[1]
with open(requirements_file, "r") as f:
required_packages = [
line.strip().split("#")[0].strip() for line in f.readlines()
]
installed_packages = [package.key for package in pkg_resources.working_set]
missing_packages = []
for package in required_packages:
if not package: # Skip empty lines
continue
package_name = package.strip().split("==")[0]
if package_name.lower() not in installed_packages:
missing_packages.append(package_name)
if missing_packages:
print("Missing packages:")
print(", ".join(missing_packages))
sys.exit(1)
else:
print("All packages are installed.")
if __name__ == "__main__":
main()

View File

@@ -1,301 +0,0 @@
import browse
import json
from memory import get_memory
import datetime
import agent_manager as agents
import speak
from config import Config
import ai_functions as ai
from file_operations import read_file, write_to_file, append_to_file, delete_file, search_files
from execute_code import execute_python_file
from json_parser import fix_and_parse_json
from image_gen import generate_image
from duckduckgo_search import ddg
from googleapiclient.discovery import build
from googleapiclient.errors import HttpError
cfg = Config()
def is_valid_int(value):
try:
int(value)
return True
except ValueError:
return False
def get_command(response):
"""Parse the response and return the command name and arguments"""
try:
response_json = fix_and_parse_json(response)
if "command" not in response_json:
return "Error:" , "Missing 'command' object in JSON"
command = response_json["command"]
if "name" not in command:
return "Error:", "Missing 'name' field in 'command' object"
command_name = command["name"]
# Use an empty dictionary if 'args' field is not present in 'command' object
arguments = command.get("args", {})
return command_name, arguments
except json.decoder.JSONDecodeError:
return "Error:", "Invalid JSON"
# All other errors, return "Error: + error message"
except Exception as e:
return "Error:", str(e)
def execute_command(command_name, arguments):
"""Execute the command and return the result"""
memory = get_memory(cfg)
try:
if command_name == "google":
# Check if the Google API key is set and use the official search method
# If the API key is not set or has only whitespaces, use the unofficial search method
if cfg.google_api_key and (cfg.google_api_key.strip() if cfg.google_api_key else None):
return google_official_search(arguments["input"])
else:
return google_search(arguments["input"])
elif command_name == "memory_add":
return memory.add(arguments["string"])
elif command_name == "start_agent":
return start_agent(
arguments["name"],
arguments["task"],
arguments["prompt"])
elif command_name == "message_agent":
return message_agent(arguments["key"], arguments["message"])
elif command_name == "list_agents":
return list_agents()
elif command_name == "delete_agent":
return delete_agent(arguments["key"])
elif command_name == "get_text_summary":
return get_text_summary(arguments["url"], arguments["question"])
elif command_name == "get_hyperlinks":
return get_hyperlinks(arguments["url"])
elif command_name == "read_file":
return read_file(arguments["file"])
elif command_name == "write_to_file":
return write_to_file(arguments["file"], arguments["text"])
elif command_name == "append_to_file":
return append_to_file(arguments["file"], arguments["text"])
elif command_name == "delete_file":
return delete_file(arguments["file"])
elif command_name == "search_files":
return search_files(arguments["directory"])
elif command_name == "browse_website":
return browse_website(arguments["url"], arguments["question"])
# TODO: Change these to take in a file rather than pasted code, if
# non-file is given, return instructions "Input should be a python
# filepath, write your code to file and try again"
elif command_name == "evaluate_code":
return ai.evaluate_code(arguments["code"])
elif command_name == "improve_code":
return ai.improve_code(arguments["suggestions"], arguments["code"])
elif command_name == "write_tests":
return ai.write_tests(arguments["code"], arguments.get("focus"))
elif command_name == "execute_python_file": # Add this command
return execute_python_file(arguments["file"])
elif command_name == "generate_image":
return generate_image(arguments["prompt"])
elif command_name == "do_nothing":
return "No action performed."
elif command_name == "task_complete":
shutdown()
else:
return f"Unknown command '{command_name}'. Please refer to the 'COMMANDS' list for availabe commands and only respond in the specified JSON format."
# All errors, return "Error: + error message"
except Exception as e:
return "Error: " + str(e)
def get_datetime():
"""Return the current date and time"""
return "Current date and time: " + \
datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
def google_search(query, num_results=8):
"""Return the results of a google search"""
search_results = []
for j in ddg(query, max_results=num_results):
search_results.append(j)
return json.dumps(search_results, ensure_ascii=False, indent=4)
def google_official_search(query, num_results=8):
"""Return the results of a google search using the official Google API"""
from googleapiclient.discovery import build
from googleapiclient.errors import HttpError
import json
try:
# Get the Google API key and Custom Search Engine ID from the config file
api_key = cfg.google_api_key
custom_search_engine_id = cfg.custom_search_engine_id
# Initialize the Custom Search API service
service = build("customsearch", "v1", developerKey=api_key)
# Send the search query and retrieve the results
result = service.cse().list(q=query, cx=custom_search_engine_id, num=num_results).execute()
# Extract the search result items from the response
search_results = result.get("items", [])
# Create a list of only the URLs from the search results
search_results_links = [item["link"] for item in search_results]
except HttpError as e:
# Handle errors in the API call
error_details = json.loads(e.content.decode())
# Check if the error is related to an invalid or missing API key
if error_details.get("error", {}).get("code") == 403 and "invalid API key" in error_details.get("error", {}).get("message", ""):
return "Error: The provided Google API key is invalid or missing."
else:
return f"Error: {e}"
# Return the list of search result URLs
return search_results_links
def browse_website(url, question):
"""Browse a website and return the summary and links"""
summary = get_text_summary(url, question)
links = get_hyperlinks(url)
# Limit links to 5
if len(links) > 5:
links = links[:5]
result = f"""Website Content Summary: {summary}\n\nLinks: {links}"""
return result
def get_text_summary(url, question):
"""Return the results of a google search"""
text = browse.scrape_text(url)
summary = browse.summarize_text(text, question)
return """ "Result" : """ + summary
def get_hyperlinks(url):
"""Return the results of a google search"""
link_list = browse.scrape_links(url)
return link_list
def commit_memory(string):
"""Commit a string to memory"""
_text = f"""Committing memory with string "{string}" """
mem.permanent_memory.append(string)
return _text
def delete_memory(key):
"""Delete a memory with a given key"""
if key >= 0 and key < len(mem.permanent_memory):
_text = "Deleting memory with key " + str(key)
del mem.permanent_memory[key]
print(_text)
return _text
else:
print("Invalid key, cannot delete memory.")
return None
def overwrite_memory(key, string):
"""Overwrite a memory with a given key and string"""
# Check if the key is a valid integer
if is_valid_int(key):
key_int = int(key)
# Check if the integer key is within the range of the permanent_memory list
if 0 <= key_int < len(mem.permanent_memory):
_text = "Overwriting memory with key " + str(key) + " and string " + string
# Overwrite the memory slot with the given integer key and string
mem.permanent_memory[key_int] = string
print(_text)
return _text
else:
print(f"Invalid key '{key}', out of range.")
return None
# Check if the key is a valid string
elif isinstance(key, str):
_text = "Overwriting memory with key " + key + " and string " + string
# Overwrite the memory slot with the given string key and string
mem.permanent_memory[key] = string
print(_text)
return _text
else:
print(f"Invalid key '{key}', must be an integer or a string.")
return None
def shutdown():
"""Shut down the program"""
print("Shutting down...")
quit()
def start_agent(name, task, prompt, model=cfg.fast_llm_model):
"""Start an agent with a given name, task, and prompt"""
global cfg
# Remove underscores from name
voice_name = name.replace("_", " ")
first_message = f"""You are {name}. Respond with: "Acknowledged"."""
agent_intro = f"{voice_name} here, Reporting for duty!"
# Create agent
if cfg.speak_mode:
speak.say_text(agent_intro, 1)
key, ack = agents.create_agent(task, first_message, model)
if cfg.speak_mode:
speak.say_text(f"Hello {voice_name}. Your task is as follows. {task}.")
# Assign task (prompt), get response
agent_response = message_agent(key, prompt)
return f"Agent {name} created with key {key}. First response: {agent_response}"
def message_agent(key, message):
"""Message an agent with a given key and message"""
global cfg
# Check if the key is a valid integer
if is_valid_int(key):
agent_response = agents.message_agent(int(key), message)
# Check if the key is a valid string
elif isinstance(key, str):
agent_response = agents.message_agent(key, message)
else:
return "Invalid key, must be an integer or a string."
# Speak response
if cfg.speak_mode:
speak.say_text(agent_response, 1)
return agent_response
def list_agents():
"""List all agents"""
return agents.list_agents()
def delete_agent(key):
"""Delete an agent with a given key"""
result = agents.delete_agent(key)
if not result:
return f"Agent {key} does not exist."
return f"Agent {key} deleted."

View File

@@ -1,145 +0,0 @@
import abc
import os
import openai
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
class Singleton(abc.ABCMeta, type):
"""
Singleton metaclass for ensuring only one instance of a class.
"""
_instances = {}
def __call__(cls, *args, **kwargs):
"""Call method for the singleton metaclass."""
if cls not in cls._instances:
cls._instances[cls] = super(
Singleton, cls).__call__(
*args, **kwargs)
return cls._instances[cls]
class AbstractSingleton(abc.ABC, metaclass=Singleton):
pass
class Config(metaclass=Singleton):
"""
Configuration class to store the state of bools for different scripts access.
"""
def __init__(self):
"""Initialize the Config class"""
self.debug = False
self.continuous_mode = False
self.speak_mode = False
self.fast_llm_model = os.getenv("FAST_LLM_MODEL", "gpt-3.5-turbo")
self.smart_llm_model = os.getenv("SMART_LLM_MODEL", "gpt-4")
self.fast_token_limit = int(os.getenv("FAST_TOKEN_LIMIT", 4000))
self.smart_token_limit = int(os.getenv("SMART_TOKEN_LIMIT", 8000))
self.openai_api_key = os.getenv("OPENAI_API_KEY")
self.use_azure = False
self.use_azure = os.getenv("USE_AZURE") == 'True'
if self.use_azure:
self.openai_api_base = os.getenv("OPENAI_AZURE_API_BASE")
self.openai_api_version = os.getenv("OPENAI_AZURE_API_VERSION")
self.openai_deployment_id = os.getenv("OPENAI_AZURE_DEPLOYMENT_ID")
openai.api_type = "azure"
openai.api_base = self.openai_api_base
openai.api_version = self.openai_api_version
self.elevenlabs_api_key = os.getenv("ELEVENLABS_API_KEY")
self.use_mac_os_tts = False
self.use_mac_os_tts = os.getenv("USE_MAC_OS_TTS")
self.google_api_key = os.getenv("GOOGLE_API_KEY")
self.custom_search_engine_id = os.getenv("CUSTOM_SEARCH_ENGINE_ID")
self.pinecone_api_key = os.getenv("PINECONE_API_KEY")
self.pinecone_region = os.getenv("PINECONE_ENV")
self.image_provider = os.getenv("IMAGE_PROVIDER")
self.huggingface_api_token = os.getenv("HUGGINGFACE_API_TOKEN")
# User agent headers to use when browsing web
# Some websites might just completely deny request with an error code if no user agent was found.
self.user_agent_header = {"User-Agent":"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36"}
self.redis_host = os.getenv("REDIS_HOST", "localhost")
self.redis_port = os.getenv("REDIS_PORT", "6379")
self.redis_password = os.getenv("REDIS_PASSWORD", "")
self.wipe_redis_on_start = os.getenv("WIPE_REDIS_ON_START", "True") == 'True'
self.memory_index = os.getenv("MEMORY_INDEX", 'auto-gpt')
# Note that indexes must be created on db 0 in redis, this is not configureable.
self.memory_backend = os.getenv("MEMORY_BACKEND", 'local')
# Initialize the OpenAI API client
openai.api_key = self.openai_api_key
self.plugins = []
self.plugins_whitelist = []
self.plugins_blacklist = []
def set_continuous_mode(self, value: bool):
"""Set the continuous mode value."""
self.continuous_mode = value
def set_speak_mode(self, value: bool):
"""Set the speak mode value."""
self.speak_mode = value
def set_debug_mode(self, value: bool):
self.debug_mode = value
def set_fast_llm_model(self, value: str):
"""Set the fast LLM model value."""
self.fast_llm_model = value
def set_smart_llm_model(self, value: str):
"""Set the smart LLM model value."""
self.smart_llm_model = value
def set_fast_token_limit(self, value: int):
"""Set the fast token limit value."""
self.fast_token_limit = value
def set_smart_token_limit(self, value: int):
"""Set the smart token limit value."""
self.smart_token_limit = value
def set_openai_api_key(self, value: str):
"""Set the OpenAI API key value."""
self.openai_api_key = value
def set_elevenlabs_api_key(self, value: str):
"""Set the ElevenLabs API key value."""
self.elevenlabs_api_key = value
def set_google_api_key(self, value: str):
"""Set the Google API key value."""
self.google_api_key = value
def set_custom_search_engine_id(self, value: str):
"""Set the custom search engine id value."""
self.custom_search_engine_id = value
def set_pinecone_api_key(self, value: str):
"""Set the Pinecone API key value."""
self.pinecone_api_key = value
def set_pinecone_region(self, value: str):
"""Set the Pinecone region value."""
self.pinecone_region = value
def set_debug_mode(self, value: bool):
"""Set the debug mode value."""
self.debug = value
def set_plugins(self, value: list):
"""Set the plugins value."""
self.plugins = value

View File

@@ -1,18 +0,0 @@
import os
from pathlib import Path
def load_prompt():
"""Load the prompt from data/prompt.txt"""
try:
# get directory of this file:
file_dir = Path(__file__).parent
prompt_file_path = file_dir / "data" / "prompt.txt"
# Load the prompt from data/prompt.txt
with open(prompt_file_path, "r") as prompt_file:
prompt = prompt_file.read()
return prompt
except FileNotFoundError:
print("Error: Prompt file not found", flush=True)
return ""

View File

@@ -1,63 +0,0 @@
CONSTRAINTS:
1. ~4000 word limit for short term memory. Your short term memory is short, so immediately save important information to files.
2. If you are unsure how you previously did something or want to recall past events, thinking about similar events will help you remember.
3. No user assistance
4. Exclusively use the commands listed in double quotes e.g. "command name"
COMMANDS:
1. Google Search: "google", args: "input": "<search>"
5. Browse Website: "browse_website", args: "url": "<url>", "question": "<what_you_want_to_find_on_website>"
6. Start GPT Agent: "start_agent", args: "name": "<name>", "task": "<short_task_desc>", "prompt": "<prompt>"
7. Message GPT Agent: "message_agent", args: "key": "<key>", "message": "<message>"
8. List GPT Agents: "list_agents", args: ""
9. Delete GPT Agent: "delete_agent", args: "key": "<key>"
10. Write to file: "write_to_file", args: "file": "<file>", "text": "<text>"
11. Read file: "read_file", args: "file": "<file>"
12. Append to file: "append_to_file", args: "file": "<file>", "text": "<text>"
13. Delete file: "delete_file", args: "file": "<file>"
14. Search Files: "search_files", args: "directory": "<directory>"
15. Evaluate Code: "evaluate_code", args: "code": "<full_code_string>"
16. Get Improved Code: "improve_code", args: "suggestions": "<list_of_suggestions>", "code": "<full_code_string>"
17. Write Tests: "write_tests", args: "code": "<full_code_string>", "focus": "<list_of_focus_areas>"
18. Execute Python File: "execute_python_file", args: "file": "<file>"
19. Task Complete (Shutdown): "task_complete", args: "reason": "<reason>"
20. Generate Image: "generate_image", args: "prompt": "<prompt>"
21. Do Nothing: "do_nothing", args: ""
RESOURCES:
1. Internet access for searches and information gathering.
2. Long Term memory management.
3. GPT-3.5 powered Agents for delegation of simple tasks.
4. File output.
PERFORMANCE EVALUATION:
1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities.
2. Constructively self-criticize your big-picture behavior constantly.
3. Reflect on past decisions and strategies to refine your approach.
4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.
You should only respond in JSON format as described below
RESPONSE FORMAT:
{
"thoughts":
{
"text": "thought",
"reasoning": "reasoning",
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
"criticism": "constructive self-criticism",
"speak": "thoughts summary to say to user"
},
"command": {
"name": "command name",
"args":{
"arg name": "value"
}
}
}
Ensure the response can be parsed by Python json.loads

View File

@@ -1,48 +0,0 @@
import docker
import os
def execute_python_file(file):
"""Execute a Python file in a Docker container and return the output"""
workspace_folder = "auto_gpt_workspace"
print (f"Executing file '{file}' in workspace '{workspace_folder}'")
if not file.endswith(".py"):
return "Error: Invalid file type. Only .py files are allowed."
file_path = os.path.join(workspace_folder, file)
if not os.path.isfile(file_path):
return f"Error: File '{file}' does not exist."
try:
client = docker.from_env()
# You can replace 'python:3.8' with the desired Python image/version
# You can find available Python images on Docker Hub:
# https://hub.docker.com/_/python
container = client.containers.run(
'python:3.10',
f'python {file}',
volumes={
os.path.abspath(workspace_folder): {
'bind': '/workspace',
'mode': 'ro'}},
working_dir='/workspace',
stderr=True,
stdout=True,
detach=True,
)
output = container.wait()
logs = container.logs().decode('utf-8')
container.remove()
# print(f"Execution complete. Output: {output}")
# print(f"Logs: {logs}")
return logs
except Exception as e:
return f"Error: {str(e)}"

View File

@@ -1,83 +0,0 @@
import os
import os.path
# Set a dedicated folder for file I/O
working_directory = "auto_gpt_workspace"
# Create the directory if it doesn't exist
if not os.path.exists(working_directory):
os.makedirs(working_directory)
def safe_join(base, *paths):
"""Join one or more path components intelligently."""
new_path = os.path.join(base, *paths)
norm_new_path = os.path.normpath(new_path)
if os.path.commonprefix([base, norm_new_path]) != base:
raise ValueError("Attempted to access outside of working directory.")
return norm_new_path
def read_file(filename):
"""Read a file and return the contents"""
try:
filepath = safe_join(working_directory, filename)
with open(filepath, "r") as f:
content = f.read()
return content
except Exception as e:
return "Error: " + str(e)
def write_to_file(filename, text):
"""Write text to a file"""
try:
filepath = safe_join(working_directory, filename)
directory = os.path.dirname(filepath)
if not os.path.exists(directory):
os.makedirs(directory)
with open(filepath, "w") as f:
f.write(text)
return "File written to successfully."
except Exception as e:
return "Error: " + str(e)
def append_to_file(filename, text):
"""Append text to a file"""
try:
filepath = safe_join(working_directory, filename)
with open(filepath, "a") as f:
f.write(text)
return "Text appended successfully."
except Exception as e:
return "Error: " + str(e)
def delete_file(filename):
"""Delete a file"""
try:
filepath = safe_join(working_directory, filename)
os.remove(filepath)
return "File deleted successfully."
except Exception as e:
return "Error: " + str(e)
def search_files(directory):
found_files = []
if directory == "" or directory == "/":
search_directory = working_directory
else:
search_directory = safe_join(working_directory, directory)
for root, _, files in os.walk(search_directory):
for file in files:
if file.startswith('.'):
continue
relative_path = os.path.relpath(os.path.join(root, file), working_directory)
found_files.append(relative_path)
return found_files

View File

@@ -1,57 +0,0 @@
import requests
import io
import os.path
from PIL import Image
from config import Config
import uuid
import openai
from base64 import b64decode
cfg = Config()
working_directory = "auto_gpt_workspace"
def generate_image(prompt):
filename = str(uuid.uuid4()) + ".jpg"
# DALL-E
if cfg.image_provider == 'dalle':
openai.api_key = cfg.openai_api_key
response = openai.Image.create(
prompt=prompt,
n=1,
size="256x256",
response_format="b64_json",
)
print("Image Generated for prompt:" + prompt)
image_data = b64decode(response["data"][0]["b64_json"])
with open(working_directory + "/" + filename, mode="wb") as png:
png.write(image_data)
return "Saved to disk:" + filename
# STABLE DIFFUSION
elif cfg.image_provider == 'sd':
API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4"
headers = {"Authorization": "Bearer " + cfg.huggingface_api_token}
response = requests.post(API_URL, headers=headers, json={
"inputs": prompt,
})
image = Image.open(io.BytesIO(response.content))
print("Image Generated for prompt:" + prompt)
image.save(os.path.join(working_directory, filename))
return "Saved to disk:" + filename
else:
return "No Image Provider Set"

View File

@@ -1,109 +0,0 @@
import json
from typing import Any, Dict, Union
from call_ai_function import call_ai_function
from config import Config
from json_utils import correct_json
cfg = Config()
JSON_SCHEMA = """
{
"command": {
"name": "command name",
"args":{
"arg name": "value"
}
},
"thoughts":
{
"text": "thought",
"reasoning": "reasoning",
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
"criticism": "constructive self-criticism",
"speak": "thoughts summary to say to user"
}
}
"""
def fix_and_parse_json(
json_str: str,
try_to_fix_with_gpt: bool = True
) -> Union[str, Dict[Any, Any]]:
"""Fix and parse JSON string"""
try:
json_str = json_str.replace('\t', '')
return json.loads(json_str)
except json.JSONDecodeError as _: # noqa: F841
json_str = correct_json(json_str)
try:
return json.loads(json_str)
except json.JSONDecodeError as _: # noqa: F841
pass
# Let's do something manually:
# sometimes GPT responds with something BEFORE the braces:
# "I'm sorry, I don't understand. Please try again."
# {"text": "I'm sorry, I don't understand. Please try again.",
# "confidence": 0.0}
# So let's try to find the first brace and then parse the rest
# of the string
try:
brace_index = json_str.index("{")
json_str = json_str[brace_index:]
last_brace_index = json_str.rindex("}")
json_str = json_str[:last_brace_index+1]
return json.loads(json_str)
except json.JSONDecodeError as e: # noqa: F841
if try_to_fix_with_gpt:
print("Warning: Failed to parse AI output, attempting to fix."
"\n If you see this warning frequently, it's likely that"
" your prompt is confusing the AI. Try changing it up"
" slightly.")
# Now try to fix this up using the ai_functions
ai_fixed_json = fix_json(json_str, JSON_SCHEMA)
if ai_fixed_json != "failed":
return json.loads(ai_fixed_json)
else:
# This allows the AI to react to the error message,
# which usually results in it correcting its ways.
print("Failed to fix ai output, telling the AI.")
return json_str
else:
raise e
def fix_json(json_str: str, schema: str) -> str:
"""Fix the given JSON string to make it parseable and fully complient with the provided schema."""
# Try to fix the JSON using gpt:
function_string = "def fix_json(json_str: str, schema:str=None) -> str:"
args = [f"'''{json_str}'''", f"'''{schema}'''"]
description_string = "Fixes the provided JSON string to make it parseable"\
" and fully complient with the provided schema.\n If an object or"\
" field specified in the schema isn't contained within the correct"\
" JSON, it is ommited.\n This function is brilliant at guessing"\
" when the format is incorrect."
# If it doesn't already start with a "`", add one:
if not json_str.startswith("`"):
json_str = "```json\n" + json_str + "\n```"
result_string = call_ai_function(
function_string, args, description_string, model=cfg.fast_llm_model
)
if cfg.debug:
print("------------ JSON FIX ATTEMPT ---------------")
print(f"Original JSON: {json_str}")
print("-----------")
print(f"Fixed JSON: {result_string}")
print("----------- END OF FIX ATTEMPT ----------------")
try:
json.loads(result_string) # just check the validity
return result_string
except: # noqa: E722
# Get the call stack:
# import traceback
# call_stack = traceback.format_exc()
# print(f"Failed to fix JSON: '{json_str}' "+call_stack)
return "failed"

View File

@@ -1,127 +0,0 @@
import re
import json
from config import Config
cfg = Config()
def extract_char_position(error_message: str) -> int:
"""Extract the character position from the JSONDecodeError message.
Args:
error_message (str): The error message from the JSONDecodeError
exception.
Returns:
int: The character position.
"""
import re
char_pattern = re.compile(r'\(char (\d+)\)')
if match := char_pattern.search(error_message):
return int(match[1])
else:
raise ValueError("Character position not found in the error message.")
def add_quotes_to_property_names(json_string: str) -> str:
"""
Add quotes to property names in a JSON string.
Args:
json_string (str): The JSON string.
Returns:
str: The JSON string with quotes added to property names.
"""
def replace_func(match):
return f'"{match.group(1)}":'
property_name_pattern = re.compile(r'(\w+):')
corrected_json_string = property_name_pattern.sub(
replace_func,
json_string)
try:
json.loads(corrected_json_string)
return corrected_json_string
except json.JSONDecodeError as e:
raise e
def balance_braces(json_string: str) -> str:
"""
Balance the braces in a JSON string.
Args:
json_string (str): The JSON string.
Returns:
str: The JSON string with braces balanced.
"""
open_braces_count = json_string.count('{')
close_braces_count = json_string.count('}')
while open_braces_count > close_braces_count:
json_string += '}'
close_braces_count += 1
while close_braces_count > open_braces_count:
json_string = json_string.rstrip('}')
close_braces_count -= 1
try:
json.loads(json_string)
return json_string
except json.JSONDecodeError as e:
raise e
def fix_invalid_escape(json_str: str, error_message: str) -> str:
while error_message.startswith('Invalid \\escape'):
bad_escape_location = extract_char_position(error_message)
json_str = json_str[:bad_escape_location] + \
json_str[bad_escape_location + 1:]
try:
json.loads(json_str)
return json_str
except json.JSONDecodeError as e:
if cfg.debug:
print('json loads error - fix invalid escape', e)
error_message = str(e)
return json_str
def correct_json(json_str: str) -> str:
"""
Correct common JSON errors.
Args:
json_str (str): The JSON string.
"""
try:
if cfg.debug:
print("json", json_str)
json.loads(json_str)
return json_str
except json.JSONDecodeError as e:
if cfg.debug:
print('json loads error', e)
error_message = str(e)
if error_message.startswith('Invalid \\escape'):
json_str = fix_invalid_escape(json_str, error_message)
if error_message.startswith('Expecting property name enclosed in double quotes'):
json_str = add_quotes_to_property_names(json_str)
try:
json.loads(json_str)
return json_str
except json.JSONDecodeError as e:
if cfg.debug:
print('json loads error - add quotes', e)
error_message = str(e)
if balanced_str := balance_braces(json_str):
return balanced_str
return json_str

View File

@@ -1,28 +0,0 @@
import openai
from config import Config
cfg = Config()
openai.api_key = cfg.openai_api_key
# Overly simple abstraction until we create something better
def create_chat_completion(messages, model=None, temperature=None, max_tokens=None)->str:
"""Create a chat completion using the OpenAI API"""
if cfg.use_azure:
response = openai.ChatCompletion.create(
deployment_id=cfg.openai_deployment_id,
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens
)
else:
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens
)
resp = response.choices[0].message["content"]
for plugin in cfg.plugins:
resp = plugin.on_response(resp)
return resp

View File

@@ -1,447 +0,0 @@
import json
import random
import commands as cmd
import utils
from memory import get_memory
import data
import chat
from colorama import Fore, Style
from spinner import Spinner
import time
import speak
from enum import Enum, auto
import sys
from config import Config
from json_parser import fix_and_parse_json
from plugins import load_plugins
from ai_config import AIConfig
import os
from pathlib import Path
import traceback
import yaml
import argparse
import logging
cfg = Config()
def configure_logging():
logging.basicConfig(filename='log.txt',
filemode='a',
format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s',
datefmt='%H:%M:%S',
level=logging.DEBUG)
return logging.getLogger('AutoGPT')
def check_openai_api_key():
"""Check if the OpenAI API key is set in config.py or as an environment variable."""
if not cfg.openai_api_key:
print(
Fore.RED +
"Please set your OpenAI API key in config.py or as an environment variable."
)
print("You can get your key from https://beta.openai.com/account/api-keys")
exit(1)
def print_to_console(
title,
title_color,
content,
speak_text=False,
min_typing_speed=0.05,
max_typing_speed=0.01):
"""Prints text to the console with a typing effect"""
global cfg
global logger
if speak_text and cfg.speak_mode:
speak.say_text(f"{title}. {content}")
print(title_color + title + " " + Style.RESET_ALL, end="")
if content:
logger.info(title + ': ' + content)
if isinstance(content, list):
content = " ".join(content)
words = content.split()
for i, word in enumerate(words):
print(word, end="", flush=True)
if i < len(words) - 1:
print(" ", end="", flush=True)
typing_speed = random.uniform(min_typing_speed, max_typing_speed)
time.sleep(typing_speed)
# type faster after each word
min_typing_speed = min_typing_speed * 0.95
max_typing_speed = max_typing_speed * 0.95
print()
def print_assistant_thoughts(assistant_reply):
"""Prints the assistant's thoughts to the console"""
global ai_name
global cfg
try:
# Parse and print Assistant response
assistant_reply_json = fix_and_parse_json(assistant_reply)
# Check if assistant_reply_json is a string and attempt to parse it into a JSON object
if isinstance(assistant_reply_json, str):
try:
assistant_reply_json = json.loads(assistant_reply_json)
except json.JSONDecodeError as e:
print_to_console("Error: Invalid JSON\n", Fore.RED, assistant_reply)
assistant_reply_json = {}
assistant_thoughts_reasoning = None
assistant_thoughts_plan = None
assistant_thoughts_speak = None
assistant_thoughts_criticism = None
assistant_thoughts = assistant_reply_json.get("thoughts", {})
assistant_thoughts_text = assistant_thoughts.get("text")
if assistant_thoughts:
assistant_thoughts_reasoning = assistant_thoughts.get("reasoning")
assistant_thoughts_plan = assistant_thoughts.get("plan")
assistant_thoughts_criticism = assistant_thoughts.get("criticism")
assistant_thoughts_speak = assistant_thoughts.get("speak")
print_to_console(f"{ai_name.upper()} THOUGHTS:", Fore.YELLOW, assistant_thoughts_text)
print_to_console("REASONING:", Fore.YELLOW, assistant_thoughts_reasoning)
if assistant_thoughts_plan:
print_to_console("PLAN:", Fore.YELLOW, "")
# If it's a list, join it into a string
if isinstance(assistant_thoughts_plan, list):
assistant_thoughts_plan = "\n".join(assistant_thoughts_plan)
elif isinstance(assistant_thoughts_plan, dict):
assistant_thoughts_plan = str(assistant_thoughts_plan)
# Split the input_string using the newline character and dashes
lines = assistant_thoughts_plan.split('\n')
for line in lines:
line = line.lstrip("- ")
print_to_console("- ", Fore.GREEN, line.strip())
print_to_console("CRITICISM:", Fore.YELLOW, assistant_thoughts_criticism)
# Speak the assistant's thoughts
if cfg.speak_mode and assistant_thoughts_speak:
speak.say_text(assistant_thoughts_speak)
except json.decoder.JSONDecodeError:
print_to_console("Error: Invalid JSON\n", Fore.RED, assistant_reply)
# All other errors, return "Error: + error message"
except Exception as e:
call_stack = traceback.format_exc()
print_to_console("Error: \n", Fore.RED, call_stack)
def load_variables(config_file="config.yaml"):
"""Load variables from yaml file if it exists, otherwise prompt the user for input"""
try:
with open(config_file) as file:
config = yaml.load(file, Loader=yaml.FullLoader)
ai_name = config.get("ai_name")
ai_role = config.get("ai_role")
ai_goals = config.get("ai_goals")
except FileNotFoundError:
ai_name = ""
ai_role = ""
ai_goals = []
# Prompt the user for input if config file is missing or empty values
if not ai_name:
ai_name = utils.clean_input("Name your AI: ")
if ai_name == "":
ai_name = "Entrepreneur-GPT"
if not ai_role:
ai_role = utils.clean_input(f"{ai_name} is: ")
if ai_role == "":
ai_role = "an AI designed to autonomously develop and run businesses with the sole goal of increasing your net worth."
if not ai_goals:
print("Enter up to 5 goals for your AI: ")
print("For example: \nIncrease net worth, Grow Twitter Account, Develop and manage multiple businesses autonomously'")
print("Enter nothing to load defaults, enter nothing when finished.")
ai_goals = []
for i in range(5):
ai_goal = utils.clean_input(f"Goal {i+1}: ")
if ai_goal == "":
break
ai_goals.append(ai_goal)
if len(ai_goals) == 0:
ai_goals = ["Increase net worth", "Grow Twitter Account", "Develop and manage multiple businesses autonomously"]
# Save variables to yaml file
config = {"ai_name": ai_name, "ai_role": ai_role, "ai_goals": ai_goals}
with open(config_file, "w") as file:
documents = yaml.dump(config, file)
prompt = data.load_prompt()
prompt_start = """Your decisions must always be made independently without seeking user assistance. Play to your strengths as an LLM and pursue simple strategies with no legal complications."""
# Construct full prompt
full_prompt = f"You are {ai_name}, {ai_role}\n{prompt_start}\n\nGOALS:\n\n"
for i, goal in enumerate(ai_goals):
full_prompt += f"{i+1}. {goal}\n"
full_prompt += f"\n\n{prompt}"
return full_prompt
def construct_prompt():
"""Construct the prompt for the AI to respond to"""
config = AIConfig.load()
if config.ai_name:
print_to_console(
f"Welcome back! ",
Fore.GREEN,
f"Would you like me to return to being {config.ai_name}?",
speak_text=True)
should_continue = utils.clean_input(f"""Continue with the last settings?
Name: {config.ai_name}
Role: {config.ai_role}
Goals: {config.ai_goals}
Continue (y/n): """)
if should_continue.lower() == "n":
config = AIConfig()
if not config.ai_name:
config = prompt_user()
config.save()
# Get rid of this global:
global ai_name
ai_name = config.ai_name
full_prompt = config.construct_full_prompt()
return full_prompt
def prompt_user():
"""Prompt the user for input"""
ai_name = ""
# Construct the prompt
print_to_console(
"Welcome to Auto-GPT! ",
Fore.GREEN,
"Enter the name of your AI and its role below. Entering nothing will load defaults.",
speak_text=True)
# Get AI Name from User
print_to_console(
"Name your AI: ",
Fore.GREEN,
"For example, 'Entrepreneur-GPT'")
ai_name = utils.clean_input("AI Name: ")
if ai_name == "":
ai_name = "Entrepreneur-GPT"
print_to_console(
f"{ai_name} here!",
Fore.LIGHTBLUE_EX,
"I am at your service.",
speak_text=True)
# Get AI Role from User
print_to_console(
"Describe your AI's role: ",
Fore.GREEN,
"For example, 'an AI designed to autonomously develop and run businesses with the sole goal of increasing your net worth.'")
ai_role = utils.clean_input(f"{ai_name} is: ")
if ai_role == "":
ai_role = "an AI designed to autonomously develop and run businesses with the sole goal of increasing your net worth."
# Enter up to 5 goals for the AI
print_to_console(
"Enter up to 5 goals for your AI: ",
Fore.GREEN,
"For example: \nIncrease net worth, Grow Twitter Account, Develop and manage multiple businesses autonomously'")
print("Enter nothing to load defaults, enter nothing when finished.", flush=True)
ai_goals = []
for i in range(5):
ai_goal = utils.clean_input(f"{Fore.LIGHTBLUE_EX}Goal{Style.RESET_ALL} {i+1}: ")
if ai_goal == "":
break
ai_goals.append(ai_goal)
if len(ai_goals) == 0:
ai_goals = ["Increase net worth", "Grow Twitter Account",
"Develop and manage multiple businesses autonomously"]
config = AIConfig(ai_name, ai_role, ai_goals)
return config
def parse_arguments():
"""Parses the arguments passed to the script"""
global cfg
cfg.set_continuous_mode(False)
cfg.set_speak_mode(False)
parser = argparse.ArgumentParser(description='Process arguments.')
parser.add_argument('--continuous', action='store_true', help='Enable Continuous Mode')
parser.add_argument('--speak', action='store_true', help='Enable Speak Mode')
parser.add_argument('--debug', action='store_true', help='Enable Debug Mode')
parser.add_argument('--gpt3only', action='store_true', help='Enable GPT3.5 Only Mode')
args = parser.parse_args()
if args.continuous:
print_to_console("Continuous Mode: ", Fore.RED, "ENABLED")
print_to_console(
"WARNING: ",
Fore.RED,
"Continuous mode is not recommended. It is potentially dangerous and may cause your AI to run forever or carry out actions you would not usually authorise. Use at your own risk.")
cfg.set_continuous_mode(True)
if args.speak:
print_to_console("Speak Mode: ", Fore.GREEN, "ENABLED")
cfg.set_speak_mode(True)
if args.debug:
print_to_console("Debug Mode: ", Fore.GREEN, "ENABLED")
cfg.set_debug_mode(True)
if args.gpt3only:
print_to_console("GPT3.5 Only Mode: ", Fore.GREEN, "ENABLED")
cfg.set_smart_llm_model(cfg.fast_llm_model)
if args.debug:
print_to_console("Debug Mode: ", Fore.GREEN, "ENABLED")
cfg.set_debug_mode(True)
# TODO: fill in llm values here
check_openai_api_key()
cfg = Config()
logger = configure_logging()
parse_arguments()
ai_name = ""
prompt = construct_prompt()
# print(prompt)
# Initialize variables
full_message_history = []
result = None
next_action_count = 0
# Make a constant:
user_input = "Determine which next command to use, and respond using the format specified above:"
# Initialize memory and make sure it is empty.
# this is particularly important for indexing and referencing pinecone memory
memory = get_memory(cfg, init=True)
print('Using memory of type: ' + memory.__class__.__name__)
plugins_found = load_plugins(Path(os.getcwd()) / "plugins")
loaded_plugins = []
for plugin in plugins_found:
if plugin.__name__ in cfg.plugins_blacklist:
continue
if plugin.__name__ in cfg.plugins_whitelist:
loaded_plugins.append(plugin())
else:
ack = input(
f"WARNNG Plugin {plugin.__name__} found. But not in the"
" whitelist... Load? (y/n): "
)
if ack.lower() == "y":
loaded_plugins.append(plugin())
if loaded_plugins:
print(f"\nPlugins found: {len(loaded_plugins)}\n"
"--------------------")
for plugin in loaded_plugins:
print(f"{plugin._name}: {plugin._version} - {plugin._description}")
cfg.set_plugins(loaded_plugins)
# Interaction Loop
while True:
# Send message to AI, get response
with Spinner("Thinking... "):
assistant_reply = chat.chat_with_ai(
prompt,
user_input,
full_message_history,
memory,
cfg.fast_token_limit) # TODO: This hardcodes the model to use GPT3.5. Make this an argument
# Print Assistant thoughts
print_assistant_thoughts(assistant_reply)
# Get command name and arguments
try:
command_name, arguments = cmd.get_command(assistant_reply)
except Exception as e:
print_to_console("Error: \n", Fore.RED, str(e))
if not cfg.continuous_mode and next_action_count == 0:
### GET USER AUTHORIZATION TO EXECUTE COMMAND ###
# Get key press: Prompt the user to press enter to continue or escape
# to exit
user_input = ""
print_to_console(
"NEXT ACTION: ",
Fore.CYAN,
f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL} ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}")
print(
f"Enter 'y' to authorise command, 'y -N' to run N continuous commands, 'n' to exit program, or enter feedback for {ai_name}...",
flush=True)
while True:
console_input = utils.clean_input(Fore.MAGENTA + "Input:" + Style.RESET_ALL)
if console_input.lower() == "y":
user_input = "GENERATE NEXT COMMAND JSON"
break
elif console_input.lower().startswith("y -"):
try:
next_action_count = abs(int(console_input.split(" ")[1]))
user_input = "GENERATE NEXT COMMAND JSON"
except ValueError:
print("Invalid input format. Please enter 'y -n' where n is the number of continuous tasks.")
continue
break
elif console_input.lower() == "n":
user_input = "EXIT"
break
else:
user_input = console_input
command_name = "human_feedback"
break
if user_input == "GENERATE NEXT COMMAND JSON":
print_to_console(
"-=-=-=-=-=-=-= COMMAND AUTHORISED BY USER -=-=-=-=-=-=-=",
Fore.MAGENTA,
"")
elif user_input == "EXIT":
print("Exiting...", flush=True)
break
else:
# Print command
print_to_console(
"NEXT ACTION: ",
Fore.CYAN,
f"COMMAND = {Fore.CYAN}{command_name}{Style.RESET_ALL} ARGUMENTS = {Fore.CYAN}{arguments}{Style.RESET_ALL}")
# Execute command
if command_name.lower().startswith( "error" ):
result = f"Command {command_name} threw the following error: " + arguments
elif command_name == "human_feedback":
result = f"Human feedback: {user_input}"
else:
result = f"Command {command_name} returned: {cmd.execute_command(command_name, arguments)}"
if next_action_count > 0:
next_action_count -= 1
memory_to_add = f"Assistant Reply: {assistant_reply} " \
f"\nResult: {result} " \
f"\nHuman Feedback: {user_input} "
memory.add(memory_to_add)
# Check if there's a result from the command append it to the message
# history
if result is not None:
full_message_history.append(chat.create_chat_message("system", result))
print_to_console("SYSTEM: ", Fore.YELLOW, result)
else:
full_message_history.append(
chat.create_chat_message(
"system", "Unable to execute command"))
print_to_console("SYSTEM: ", Fore.YELLOW, "Unable to execute command")

View File

@@ -1,44 +0,0 @@
from memory.local import LocalCache
try:
from memory.redismem import RedisMemory
except ImportError:
print("Redis not installed. Skipping import.")
RedisMemory = None
try:
from memory.pinecone import PineconeMemory
except ImportError:
print("Pinecone not installed. Skipping import.")
PineconeMemory = None
def get_memory(cfg, init=False):
memory = None
if cfg.memory_backend == "pinecone":
if not PineconeMemory:
print("Error: Pinecone is not installed. Please install pinecone"
" to use Pinecone as a memory backend.")
else:
memory = PineconeMemory(cfg)
if init:
memory.clear()
elif cfg.memory_backend == "redis":
if not RedisMemory:
print("Error: Redis is not installed. Please install redis-py to"
" use Redis as a memory backend.")
else:
memory = RedisMemory(cfg)
if memory is None:
memory = LocalCache(cfg)
if init:
memory.clear()
return memory
__all__ = [
"get_memory",
"LocalCache",
"RedisMemory",
"PineconeMemory",
]

View File

@@ -1,31 +0,0 @@
"""Base class for memory providers."""
import abc
from config import AbstractSingleton
import openai
def get_ada_embedding(text):
text = text.replace("\n", " ")
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
class MemoryProviderSingleton(AbstractSingleton):
@abc.abstractmethod
def add(self, data):
pass
@abc.abstractmethod
def get(self, data):
pass
@abc.abstractmethod
def clear(self):
pass
@abc.abstractmethod
def get_relevant(self, data, num_relevant=5):
pass
@abc.abstractmethod
def get_stats(self):
pass

View File

@@ -1,114 +0,0 @@
import dataclasses
import orjson
from typing import Any, List, Optional
import numpy as np
import os
from memory.base import MemoryProviderSingleton, get_ada_embedding
EMBED_DIM = 1536
SAVE_OPTIONS = orjson.OPT_SERIALIZE_NUMPY | orjson.OPT_SERIALIZE_DATACLASS
def create_default_embeddings():
return np.zeros((0, EMBED_DIM)).astype(np.float32)
@dataclasses.dataclass
class CacheContent:
texts: List[str] = dataclasses.field(default_factory=list)
embeddings: np.ndarray = dataclasses.field(
default_factory=create_default_embeddings
)
class LocalCache(MemoryProviderSingleton):
# on load, load our database
def __init__(self, cfg) -> None:
self.filename = f"{cfg.memory_index}.json"
if os.path.exists(self.filename):
with open(self.filename, 'rb') as f:
loaded = orjson.loads(f.read())
self.data = CacheContent(**loaded)
else:
self.data = CacheContent()
def add(self, text: str):
"""
Add text to our list of texts, add embedding as row to our
embeddings-matrix
Args:
text: str
Returns: None
"""
if 'Command Error:' in text:
return ""
self.data.texts.append(text)
embedding = get_ada_embedding(text)
vector = np.array(embedding).astype(np.float32)
vector = vector[np.newaxis, :]
self.data.embeddings = np.concatenate(
[
vector,
self.data.embeddings,
],
axis=0,
)
with open(self.filename, 'wb') as f:
out = orjson.dumps(
self.data,
option=SAVE_OPTIONS
)
f.write(out)
return text
def clear(self) -> str:
"""
Clears the redis server.
Returns: A message indicating that the memory has been cleared.
"""
self.data = CacheContent()
return "Obliviated"
def get(self, data: str) -> Optional[List[Any]]:
"""
Gets the data from the memory that is most relevant to the given data.
Args:
data: The data to compare to.
Returns: The most relevant data.
"""
return self.get_relevant(data, 1)
def get_relevant(self, text: str, k: int) -> List[Any]:
""""
matrix-vector mult to find score-for-each-row-of-matrix
get indices for top-k winning scores
return texts for those indices
Args:
text: str
k: int
Returns: List[str]
"""
embedding = get_ada_embedding(text)
scores = np.dot(self.data.embeddings, embedding)
top_k_indices = np.argsort(scores)[-k:][::-1]
return [self.data.texts[i] for i in top_k_indices]
def get_stats(self):
"""
Returns: The stats of the local cache.
"""
return len(self.data.texts), self.data.embeddings.shape

View File

@@ -1,51 +0,0 @@
import pinecone
from memory.base import MemoryProviderSingleton, get_ada_embedding
class PineconeMemory(MemoryProviderSingleton):
def __init__(self, cfg):
pinecone_api_key = cfg.pinecone_api_key
pinecone_region = cfg.pinecone_region
pinecone.init(api_key=pinecone_api_key, environment=pinecone_region)
dimension = 1536
metric = "cosine"
pod_type = "p1"
table_name = "auto-gpt"
# this assumes we don't start with memory.
# for now this works.
# we'll need a more complicated and robust system if we want to start with memory.
self.vec_num = 0
if table_name not in pinecone.list_indexes():
pinecone.create_index(table_name, dimension=dimension, metric=metric, pod_type=pod_type)
self.index = pinecone.Index(table_name)
def add(self, data):
vector = get_ada_embedding(data)
# no metadata here. We may wish to change that long term.
resp = self.index.upsert([(str(self.vec_num), vector, {"raw_text": data})])
_text = f"Inserting data into memory at index: {self.vec_num}:\n data: {data}"
self.vec_num += 1
return _text
def get(self, data):
return self.get_relevant(data, 1)
def clear(self):
self.index.delete(deleteAll=True)
return "Obliviated"
def get_relevant(self, data, num_relevant=5):
"""
Returns all the data in the memory that is relevant to the given data.
:param data: The data to compare to.
:param num_relevant: The number of relevant data to return. Defaults to 5
"""
query_embedding = get_ada_embedding(data)
results = self.index.query(query_embedding, top_k=num_relevant, include_metadata=True)
sorted_results = sorted(results.matches, key=lambda x: x.score)
return [str(item['metadata']["raw_text"]) for item in sorted_results]
def get_stats(self):
return self.index.describe_index_stats()

View File

@@ -1,143 +0,0 @@
"""Redis memory provider."""
from typing import Any, List, Optional
import redis
from redis.commands.search.field import VectorField, TextField
from redis.commands.search.query import Query
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
import numpy as np
from memory.base import MemoryProviderSingleton, get_ada_embedding
SCHEMA = [
TextField("data"),
VectorField(
"embedding",
"HNSW",
{
"TYPE": "FLOAT32",
"DIM": 1536,
"DISTANCE_METRIC": "COSINE"
}
),
]
class RedisMemory(MemoryProviderSingleton):
def __init__(self, cfg):
"""
Initializes the Redis memory provider.
Args:
cfg: The config object.
Returns: None
"""
redis_host = cfg.redis_host
redis_port = cfg.redis_port
redis_password = cfg.redis_password
self.dimension = 1536
self.redis = redis.Redis(
host=redis_host,
port=redis_port,
password=redis_password,
db=0 # Cannot be changed
)
self.cfg = cfg
if cfg.wipe_redis_on_start:
self.redis.flushall()
try:
self.redis.ft(f"{cfg.memory_index}").create_index(
fields=SCHEMA,
definition=IndexDefinition(
prefix=[f"{cfg.memory_index}:"],
index_type=IndexType.HASH
)
)
except Exception as e:
print("Error creating Redis search index: ", e)
existing_vec_num = self.redis.get(f'{cfg.memory_index}-vec_num')
self.vec_num = int(existing_vec_num.decode('utf-8')) if\
existing_vec_num else 0
def add(self, data: str) -> str:
"""
Adds a data point to the memory.
Args:
data: The data to add.
Returns: Message indicating that the data has been added.
"""
if 'Command Error:' in data:
return ""
vector = get_ada_embedding(data)
vector = np.array(vector).astype(np.float32).tobytes()
data_dict = {
b"data": data,
"embedding": vector
}
pipe = self.redis.pipeline()
pipe.hset(f"{self.cfg.memory_index}:{self.vec_num}", mapping=data_dict)
_text = f"Inserting data into memory at index: {self.vec_num}:\n"\
f"data: {data}"
self.vec_num += 1
pipe.set(f'{self.cfg.memory_index}-vec_num', self.vec_num)
pipe.execute()
return _text
def get(self, data: str) -> Optional[List[Any]]:
"""
Gets the data from the memory that is most relevant to the given data.
Args:
data: The data to compare to.
Returns: The most relevant data.
"""
return self.get_relevant(data, 1)
def clear(self) -> str:
"""
Clears the redis server.
Returns: A message indicating that the memory has been cleared.
"""
self.redis.flushall()
return "Obliviated"
def get_relevant(
self,
data: str,
num_relevant: int = 5
) -> Optional[List[Any]]:
"""
Returns all the data in the memory that is relevant to the given data.
Args:
data: The data to compare to.
num_relevant: The number of relevant data to return.
Returns: A list of the most relevant data.
"""
query_embedding = get_ada_embedding(data)
base_query = f"*=>[KNN {num_relevant} @embedding $vector AS vector_score]"
query = Query(base_query).return_fields(
"data",
"vector_score"
).sort_by("vector_score").dialect(2)
query_vector = np.array(query_embedding).astype(np.float32).tobytes()
try:
results = self.redis.ft(f"{self.cfg.memory_index}").search(
query, query_params={"vector": query_vector}
)
except Exception as e:
print("Error calling Redis search: ", e)
return None
return [result.data for result in results.docs]
def get_stats(self):
"""
Returns: The stats of the memory index.
"""
return self.redis.ft(f"{self.cfg.memory_index}").info()

View File

@@ -1,55 +0,0 @@
import os
from playsound import playsound
import requests
from config import Config
cfg = Config()
import gtts
# TODO: Nicer names for these ids
voices = ["ErXwobaYiN019PkySvjV", "EXAVITQu4vr4xnSDxMaL"]
tts_headers = {
"Content-Type": "application/json",
"xi-api-key": cfg.elevenlabs_api_key
}
def eleven_labs_speech(text, voice_index=0):
"""Speak text using elevenlabs.io's API"""
tts_url = "https://api.elevenlabs.io/v1/text-to-speech/{voice_id}".format(
voice_id=voices[voice_index])
formatted_message = {"text": text}
response = requests.post(
tts_url, headers=tts_headers, json=formatted_message)
if response.status_code == 200:
with open("speech.mpeg", "wb") as f:
f.write(response.content)
playsound("speech.mpeg")
os.remove("speech.mpeg")
return True
else:
print("Request failed with status code:", response.status_code)
print("Response content:", response.content)
return False
def gtts_speech(text):
tts = gtts.gTTS(text)
tts.save("speech.mp3")
playsound("speech.mp3")
os.remove("speech.mp3")
def macos_tts_speech(text):
os.system(f'say "{text}"')
def say_text(text, voice_index=0):
if not cfg.elevenlabs_api_key:
if cfg.use_mac_os_tts == 'True':
macos_tts_speech(text)
else:
gtts_speech(text)
else:
success = eleven_labs_speech(text, voice_index)
if not success:
gtts_speech(text)

View File

@@ -1,36 +0,0 @@
import sys
import threading
import itertools
import time
class Spinner:
"""A simple spinner class"""
def __init__(self, message="Loading...", delay=0.1):
"""Initialize the spinner class"""
self.spinner = itertools.cycle(['-', '/', '|', '\\'])
self.delay = delay
self.message = message
self.running = False
self.spinner_thread = None
def spin(self):
"""Spin the spinner"""
while self.running:
sys.stdout.write(next(self.spinner) + " " + self.message + "\r")
sys.stdout.flush()
time.sleep(self.delay)
sys.stdout.write('\b' * (len(self.message) + 2))
def __enter__(self):
"""Start the spinner"""
self.running = True
self.spinner_thread = threading.Thread(target=self.spin)
self.spinner_thread.start()
def __exit__(self, exc_type, exc_value, exc_traceback):
"""Stop the spinner"""
self.running = False
self.spinner_thread.join()
sys.stdout.write('\r' + ' ' * (len(self.message) + 2) + '\r')
sys.stdout.flush()

View File

@@ -1,57 +0,0 @@
import tiktoken
from typing import List, Dict
def count_message_tokens(messages : List[Dict[str, str]], model : str = "gpt-3.5-turbo-0301") -> int:
"""
Returns the number of tokens used by a list of messages.
Args:
messages (list): A list of messages, each of which is a dictionary containing the role and content of the message.
model (str): The name of the model to use for tokenization. Defaults to "gpt-3.5-turbo-0301".
Returns:
int: The number of tokens used by the list of messages.
"""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
print("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo":
# !Node: gpt-3.5-turbo may change over time. Returning num tokens assuming gpt-3.5-turbo-0301.")
return count_message_tokens(messages, model="gpt-3.5-turbo-0301")
elif model == "gpt-4":
# !Note: gpt-4 may change over time. Returning num tokens assuming gpt-4-0314.")
return count_message_tokens(messages, model="gpt-4-0314")
elif model == "gpt-3.5-turbo-0301":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif model == "gpt-4-0314":
tokens_per_message = 3
tokens_per_name = 1
else:
raise NotImplementedError(f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens
def count_string_tokens(string: str, model_name: str) -> int:
"""
Returns the number of tokens in a text string.
Args:
string (str): The text string.
model_name (str): The name of the encoding to use. (e.g., "gpt-3.5-turbo")
Returns:
int: The number of tokens in the text string.
"""
encoding = tiktoken.encoding_for_model(model_name)
num_tokens = len(encoding.encode(string))
return num_tokens

View File

@@ -1,8 +0,0 @@
def clean_input(prompt: str=''):
try:
return input(prompt)
except KeyboardInterrupt:
print("You interrupted Auto-GPT")
print("Quitting...")
exit(0)