diff --git a/.branchlet.json b/.branchlet.json index cc13ff9f74..d02cd60e20 100644 --- a/.branchlet.json +++ b/.branchlet.json @@ -29,8 +29,7 @@ "postCreateCmd": [ "cd autogpt_platform/autogpt_libs && poetry install", "cd autogpt_platform/backend && poetry install && poetry run prisma generate", - "cd autogpt_platform/frontend && pnpm install", - "cd docs && pip install -r requirements.txt" + "cd autogpt_platform/frontend && pnpm install" ], "terminalCommand": "code .", "deleteBranchWithWorktree": false diff --git a/.github/copilot-instructions.md b/.github/copilot-instructions.md index 870e6b4b0a..3c72eaae18 100644 --- a/.github/copilot-instructions.md +++ b/.github/copilot-instructions.md @@ -160,7 +160,7 @@ pnpm storybook # Start component development server **Backend Entry Points:** -- `backend/backend/server/server.py` - FastAPI application setup +- `backend/backend/api/rest_api.py` - FastAPI application setup - `backend/backend/data/` - Database models and user management - `backend/blocks/` - Agent execution blocks and logic @@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s ### API Development -1. Update routes in `/backend/backend/server/routers/` +1. Update routes in `/backend/backend/api/features/` 2. Add/update Pydantic models in same directory 3. Write tests alongside route files 4. For `data/*.py` changes, validate user ID checks @@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s ### Security Guidelines -**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`): +**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`): - Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private` - Uses allow list approach for cacheable paths (static assets, health checks, public pages) diff --git a/.gitignore b/.gitignore index dfce8ba810..1a2291b516 100644 --- a/.gitignore +++ b/.gitignore @@ -178,4 +178,5 @@ autogpt_platform/backend/settings.py *.ign.* .test-contents .claude/settings.local.json +CLAUDE.local.md /autogpt_platform/backend/logs diff --git a/AGENTS.md b/AGENTS.md index cd176f8a2d..202c4c6e02 100644 --- a/AGENTS.md +++ b/AGENTS.md @@ -16,7 +16,6 @@ See `docs/content/platform/getting-started.md` for setup instructions. - Format Python code with `poetry run format`. - Format frontend code using `pnpm format`. - ## Frontend guidelines: See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference: @@ -33,14 +32,17 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference: 4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only 5. **Testing**: Add Storybook stories for new components, Playwright for E2E 6. **Code conventions**: Function declarations (not arrow functions) for components/handlers + - Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component - Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts) - Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible - Avoid large hooks, abstract logic into `helpers.ts` files when sensible - Use function declarations for components, arrow functions only for callbacks - No barrel files or `index.ts` re-exports -- Do not use `useCallback` or `useMemo` unless strictly needed - Avoid comments at all times unless the code is very complex +- Do not use `useCallback` or `useMemo` unless asked to optimise a given function +- Do not type hook returns, let Typescript infer as much as possible +- Never type with `any`, if not types available use `unknown` ## Testing @@ -49,22 +51,8 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference: Always run the relevant linters and tests before committing. Use conventional commit messages for all commits (e.g. `feat(backend): add API`). - Types: - - feat - - fix - - refactor - - ci - - dx (developer experience) - Scopes: - - platform - - platform/library - - platform/marketplace - - backend - - backend/executor - - frontend - - frontend/library - - frontend/marketplace - - blocks +Types: - feat - fix - refactor - ci - dx (developer experience) +Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks ## Pull requests diff --git a/README.md b/README.md index 3572fe318b..349d8818ef 100644 --- a/README.md +++ b/README.md @@ -54,7 +54,7 @@ Before proceeding with the installation, ensure your system meets the following ### Updated Setup Instructions: We've moved to a fully maintained and regularly updated documentation site. -👉 [Follow the official self-hosting guide here](https://docs.agpt.co/platform/getting-started/) +👉 [Follow the official self-hosting guide here](https://agpt.co/docs/platform/getting-started/getting-started) This tutorial assumes you have Docker, VSCode, git and npm installed. diff --git a/autogpt_platform/CLAUDE.md b/autogpt_platform/CLAUDE.md index 2c76e7db80..62adbdaefa 100644 --- a/autogpt_platform/CLAUDE.md +++ b/autogpt_platform/CLAUDE.md @@ -6,152 +6,30 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co AutoGPT Platform is a monorepo containing: -- **Backend** (`/backend`): Python FastAPI server with async support -- **Frontend** (`/frontend`): Next.js React application -- **Shared Libraries** (`/autogpt_libs`): Common Python utilities +- **Backend** (`backend`): Python FastAPI server with async support +- **Frontend** (`frontend`): Next.js React application +- **Shared Libraries** (`autogpt_libs`): Common Python utilities -## Essential Commands +## Component Documentation -### Backend Development +- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks +- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns -```bash -# Install dependencies -cd backend && poetry install - -# Run database migrations -poetry run prisma migrate dev - -# Start all services (database, redis, rabbitmq, clamav) -docker compose up -d - -# Run the backend server -poetry run serve - -# Run tests -poetry run test - -# Run specific test -poetry run pytest path/to/test_file.py::test_function_name - -# Run block tests (tests that validate all blocks work correctly) -poetry run pytest backend/blocks/test/test_block.py -xvs - -# Run tests for a specific block (e.g., GetCurrentTimeBlock) -poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs - -# Lint and format -# prefer format if you want to just "fix" it and only get the errors that can't be autofixed -poetry run format # Black + isort -poetry run lint # ruff -``` - -More details can be found in TESTING.md - -#### Creating/Updating Snapshots - -When you first write a test or when the expected output changes: - -```bash -poetry run pytest path/to/test.py --snapshot-update -``` - -⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected. - -### Frontend Development - -```bash -# Install dependencies -cd frontend && pnpm i - -# Generate API client from OpenAPI spec -pnpm generate:api - -# Start development server -pnpm dev - -# Run E2E tests -pnpm test - -# Run Storybook for component development -pnpm storybook - -# Build production -pnpm build - -# Format and lint -pnpm format - -# Type checking -pnpm types -``` - -**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns. - -**Key Frontend Conventions:** - -- Separate render logic from data/behavior in components -- Use generated API hooks from `@/app/api/__generated__/endpoints/` -- Use function declarations (not arrow functions) for components/handlers -- Use design system components from `src/components/` (atoms, molecules, organisms) -- Only use Phosphor Icons -- Never use `src/components/__legacy__/*` or deprecated `BackendAPI` - -## Architecture Overview - -### Backend Architecture - -- **API Layer**: FastAPI with REST and WebSocket endpoints -- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings -- **Queue System**: RabbitMQ for async task processing -- **Execution Engine**: Separate executor service processes agent workflows -- **Authentication**: JWT-based with Supabase integration -- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies - -### Frontend Architecture - -- **Framework**: Next.js 15 App Router (client-first approach) -- **Data Fetching**: Type-safe generated API hooks via Orval + React Query -- **State Management**: React Query for server state, co-located UI state in components/hooks -- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks) -- **Workflow Builder**: Visual graph editor using @xyflow/react -- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling -- **Icons**: Phosphor Icons only -- **Feature Flags**: LaunchDarkly integration -- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions -- **Testing**: Playwright for E2E, Storybook for component development - -### Key Concepts +## Key Concepts 1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend -2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks +2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks 3. **Integrations**: OAuth and API connections stored per user 4. **Store**: Marketplace for sharing agent templates 5. **Virus Scanning**: ClamAV integration for file upload security -### Testing Approach - -- Backend uses pytest with snapshot testing for API responses -- Test files are colocated with source files (`*_test.py`) -- Frontend uses Playwright for E2E tests -- Component testing via Storybook - -### Database Schema - -Key models (defined in `/backend/schema.prisma`): - -- `User`: Authentication and profile data -- `AgentGraph`: Workflow definitions with version control -- `AgentGraphExecution`: Execution history and results -- `AgentNode`: Individual nodes in a workflow -- `StoreListing`: Marketplace listings for sharing agents - ### Environment Configuration #### Configuration Files -- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides) -- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides) -- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides) +- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides) +- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides) +- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides) #### Docker Environment Loading Order @@ -167,83 +45,12 @@ Key models (defined in `/backend/schema.prisma`): - Backend/Frontend services use YAML anchors for consistent configuration - Supabase services (`db/docker/docker-compose.yml`) follow the same pattern -### Common Development Tasks - -**Adding a new block:** - -Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers: - -- Provider configuration with `ProviderBuilder` -- Block schema definition -- Authentication (API keys, OAuth, webhooks) -- Testing and validation -- File organization - -Quick steps: - -1. Create new file in `/backend/backend/blocks/` -2. Configure provider using `ProviderBuilder` in `_config.py` -3. Inherit from `Block` base class -4. Define input/output schemas using `BlockSchema` -5. Implement async `run` method -6. Generate unique block ID using `uuid.uuid4()` -7. Test with `poetry run pytest backend/blocks/test/test_block.py` - -Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively? -ex: do the inputs and outputs tie well together? - -If you get any pushback or hit complex block conditions check the new_blocks guide in the docs. - -**Modifying the API:** - -1. Update route in `/backend/backend/server/routers/` -2. Add/update Pydantic models in same directory -3. Write tests alongside the route file -4. Run `poetry run test` to verify - -### Frontend guidelines: - -See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference: - -1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx` - - Add `usePageName.ts` hook for logic - - Put sub-components in local `components/` folder -2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts` - - Use design system components from `src/components/` (atoms, molecules, organisms) - - Never use `src/components/__legacy__/*` -3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/` - - Regenerate with `pnpm generate:api` - - Pattern: `use{Method}{Version}{OperationName}` -4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only -5. **Testing**: Add Storybook stories for new components, Playwright for E2E -6. **Code conventions**: Function declarations (not arrow functions) for components/handlers -- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component -- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts) -- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible -- Avoid large hooks, abstract logic into `helpers.ts` files when sensible -- Use function declarations for components, arrow functions only for callbacks -- No barrel files or `index.ts` re-exports -- Do not use `useCallback` or `useMemo` unless strictly needed -- Avoid comments at all times unless the code is very complex - -### Security Implementation - -**Cache Protection Middleware:** - -- Located in `/backend/backend/server/middleware/security.py` -- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private` -- Uses an allow list approach - only explicitly permitted paths can be cached -- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation -- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies -- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware -- Applied to both main API server and external API applications - ### Creating Pull Requests -- Create the PR aginst the `dev` branch of the repository. -- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/ -- Use conventional commit messages (see below)/ -- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/ +- Create the PR against the `dev` branch of the repository. +- Ensure the branch name is descriptive (e.g., `feature/add-new-block`) +- Use conventional commit messages (see below) +- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description - Run the github pre-commit hooks to ensure code quality. ### Reviewing/Revising Pull Requests diff --git a/autogpt_platform/backend/CLAUDE.md b/autogpt_platform/backend/CLAUDE.md new file mode 100644 index 0000000000..53d52bb4d3 --- /dev/null +++ b/autogpt_platform/backend/CLAUDE.md @@ -0,0 +1,170 @@ +# CLAUDE.md - Backend + +This file provides guidance to Claude Code when working with the backend. + +## Essential Commands + +To run something with Python package dependencies you MUST use `poetry run ...`. + +```bash +# Install dependencies +poetry install + +# Run database migrations +poetry run prisma migrate dev + +# Start all services (database, redis, rabbitmq, clamav) +docker compose up -d + +# Run the backend as a whole +poetry run app + +# Run tests +poetry run test + +# Run specific test +poetry run pytest path/to/test_file.py::test_function_name + +# Run block tests (tests that validate all blocks work correctly) +poetry run pytest backend/blocks/test/test_block.py -xvs + +# Run tests for a specific block (e.g., GetCurrentTimeBlock) +poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs + +# Lint and format +# prefer format if you want to just "fix" it and only get the errors that can't be autofixed +poetry run format # Black + isort +poetry run lint # ruff +``` + +More details can be found in @TESTING.md + +### Creating/Updating Snapshots + +When you first write a test or when the expected output changes: + +```bash +poetry run pytest path/to/test.py --snapshot-update +``` + +⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected. + +## Architecture + +- **API Layer**: FastAPI with REST and WebSocket endpoints +- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings +- **Queue System**: RabbitMQ for async task processing +- **Execution Engine**: Separate executor service processes agent workflows +- **Authentication**: JWT-based with Supabase integration +- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies + +## Testing Approach + +- Uses pytest with snapshot testing for API responses +- Test files are colocated with source files (`*_test.py`) + +## Database Schema + +Key models (defined in `schema.prisma`): + +- `User`: Authentication and profile data +- `AgentGraph`: Workflow definitions with version control +- `AgentGraphExecution`: Execution history and results +- `AgentNode`: Individual nodes in a workflow +- `StoreListing`: Marketplace listings for sharing agents + +## Environment Configuration + +- **Backend**: `.env.default` (defaults) → `.env` (user overrides) + +## Common Development Tasks + +### Adding a new block + +Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers: + +- Provider configuration with `ProviderBuilder` +- Block schema definition +- Authentication (API keys, OAuth, webhooks) +- Testing and validation +- File organization + +Quick steps: + +1. Create new file in `backend/blocks/` +2. Configure provider using `ProviderBuilder` in `_config.py` +3. Inherit from `Block` base class +4. Define input/output schemas using `BlockSchema` +5. Implement async `run` method +6. Generate unique block ID using `uuid.uuid4()` +7. Test with `poetry run pytest backend/blocks/test/test_block.py` + +Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively? +ex: do the inputs and outputs tie well together? + +If you get any pushback or hit complex block conditions check the new_blocks guide in the docs. + +#### Handling files in blocks with `store_media_file()` + +When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back: + +| Format | Use When | Returns | +|--------|----------|---------| +| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) | +| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) | +| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs | + +**Examples:** + +```python +# INPUT: Need to process file locally with ffmpeg +local_path = await store_media_file( + file=input_data.video, + execution_context=execution_context, + return_format="for_local_processing", +) +# local_path = "video.mp4" - use with Path/ffmpeg/etc + +# INPUT: Need to send to external API like Replicate +image_b64 = await store_media_file( + file=input_data.image, + execution_context=execution_context, + return_format="for_external_api", +) +# image_b64 = "..." - send to API + +# OUTPUT: Returning result from block +result_url = await store_media_file( + file=generated_image_url, + execution_context=execution_context, + return_format="for_block_output", +) +yield "image_url", result_url +# In CoPilot: result_url = "workspace://abc123" +# In graphs: result_url = "data:image/png;base64,..." +``` + +**Key points:** + +- `for_block_output` is the ONLY format that auto-adapts to execution context +- Always use `for_block_output` for block outputs unless you have a specific reason not to +- Never hardcode workspace checks - let `for_block_output` handle it + +### Modifying the API + +1. Update route in `backend/api/features/` +2. Add/update Pydantic models in same directory +3. Write tests alongside the route file +4. Run `poetry run test` to verify + +## Security Implementation + +### Cache Protection Middleware + +- Located in `backend/api/middleware/security.py` +- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private` +- Uses an allow list approach - only explicitly permitted paths can be cached +- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation +- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies +- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware +- Applied to both main API server and external API applications diff --git a/autogpt_platform/backend/TESTING.md b/autogpt_platform/backend/TESTING.md index a3a5db68ef..2e09144485 100644 --- a/autogpt_platform/backend/TESTING.md +++ b/autogpt_platform/backend/TESTING.md @@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as #### Using Global Auth Fixtures -Two global auth fixtures are provided by `backend/server/conftest.py`: +Two global auth fixtures are provided by `backend/api/conftest.py`: - `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id") - `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id") diff --git a/autogpt_platform/backend/backend/api/features/builder/routes.py b/autogpt_platform/backend/backend/api/features/builder/routes.py index 7fe9cab189..15b922178d 100644 --- a/autogpt_platform/backend/backend/api/features/builder/routes.py +++ b/autogpt_platform/backend/backend/api/features/builder/routes.py @@ -17,7 +17,7 @@ router = fastapi.APIRouter( ) -# Taken from backend/server/v2/store/db.py +# Taken from backend/api/features/store/db.py def sanitize_query(query: str | None) -> str | None: if query is None: return query diff --git a/autogpt_platform/backend/backend/api/features/chat/config.py b/autogpt_platform/backend/backend/api/features/chat/config.py index 95aef7f2ed..dba7934877 100644 --- a/autogpt_platform/backend/backend/api/features/chat/config.py +++ b/autogpt_platform/backend/backend/api/features/chat/config.py @@ -33,9 +33,15 @@ class ChatConfig(BaseSettings): stream_timeout: int = Field(default=300, description="Stream timeout in seconds") max_retries: int = Field(default=3, description="Maximum number of retries") - max_agent_runs: int = Field(default=3, description="Maximum number of agent runs") + max_agent_runs: int = Field(default=30, description="Maximum number of agent runs") max_agent_schedules: int = Field( - default=3, description="Maximum number of agent schedules" + default=30, description="Maximum number of agent schedules" + ) + + # Long-running operation configuration + long_running_operation_ttl: int = Field( + default=600, + description="TTL in seconds for long-running operation tracking in Redis (safety net if pod dies)", ) # Langfuse Prompt Management Configuration diff --git a/autogpt_platform/backend/backend/api/features/chat/db.py b/autogpt_platform/backend/backend/api/features/chat/db.py index 05a3553cc8..d34b4e5b07 100644 --- a/autogpt_platform/backend/backend/api/features/chat/db.py +++ b/autogpt_platform/backend/backend/api/features/chat/db.py @@ -247,3 +247,45 @@ async def get_chat_session_message_count(session_id: str) -> int: """Get the number of messages in a chat session.""" count = await PrismaChatMessage.prisma().count(where={"sessionId": session_id}) return count + + +async def update_tool_message_content( + session_id: str, + tool_call_id: str, + new_content: str, +) -> bool: + """Update the content of a tool message in chat history. + + Used by background tasks to update pending operation messages with final results. + + Args: + session_id: The chat session ID. + tool_call_id: The tool call ID to find the message. + new_content: The new content to set. + + Returns: + True if a message was updated, False otherwise. + """ + try: + result = await PrismaChatMessage.prisma().update_many( + where={ + "sessionId": session_id, + "toolCallId": tool_call_id, + }, + data={ + "content": new_content, + }, + ) + if result == 0: + logger.warning( + f"No message found to update for session {session_id}, " + f"tool_call_id {tool_call_id}" + ) + return False + return True + except Exception as e: + logger.error( + f"Failed to update tool message for session {session_id}, " + f"tool_call_id {tool_call_id}: {e}" + ) + return False diff --git a/autogpt_platform/backend/backend/api/features/chat/model.py b/autogpt_platform/backend/backend/api/features/chat/model.py index 75bda11127..7318ef88d7 100644 --- a/autogpt_platform/backend/backend/api/features/chat/model.py +++ b/autogpt_platform/backend/backend/api/features/chat/model.py @@ -295,6 +295,21 @@ async def cache_chat_session(session: ChatSession) -> None: await _cache_session(session) +async def invalidate_session_cache(session_id: str) -> None: + """Invalidate a chat session from Redis cache. + + Used by background tasks to ensure fresh data is loaded on next access. + This is best-effort - Redis failures are logged but don't fail the operation. + """ + try: + redis_key = _get_session_cache_key(session_id) + async_redis = await get_redis_async() + await async_redis.delete(redis_key) + except Exception as e: + # Best-effort: log but don't fail - cache will expire naturally + logger.warning(f"Failed to invalidate session cache for {session_id}: {e}") + + async def _get_session_from_db(session_id: str) -> ChatSession | None: """Get a chat session from the database.""" prisma_session = await chat_db.get_chat_session(session_id) diff --git a/autogpt_platform/backend/backend/api/features/chat/service.py b/autogpt_platform/backend/backend/api/features/chat/service.py index 386b37784d..bcd6856503 100644 --- a/autogpt_platform/backend/backend/api/features/chat/service.py +++ b/autogpt_platform/backend/backend/api/features/chat/service.py @@ -17,6 +17,7 @@ from openai import ( ) from openai.types.chat import ChatCompletionChunk, ChatCompletionToolParam +from backend.data.redis_client import get_redis_async from backend.data.understanding import ( format_understanding_for_prompt, get_business_understanding, @@ -24,6 +25,7 @@ from backend.data.understanding import ( from backend.util.exceptions import NotFoundError from backend.util.settings import Settings +from . import db as chat_db from .config import ChatConfig from .model import ( ChatMessage, @@ -31,6 +33,7 @@ from .model import ( Usage, cache_chat_session, get_chat_session, + invalidate_session_cache, update_session_title, upsert_chat_session, ) @@ -48,8 +51,13 @@ from .response_model import ( StreamToolOutputAvailable, StreamUsage, ) -from .tools import execute_tool, tools -from .tools.models import ErrorResponse +from .tools import execute_tool, get_tool, tools +from .tools.models import ( + ErrorResponse, + OperationInProgressResponse, + OperationPendingResponse, + OperationStartedResponse, +) from .tracking import track_user_message logger = logging.getLogger(__name__) @@ -61,11 +69,126 @@ client = openai.AsyncOpenAI(api_key=config.api_key, base_url=config.base_url) langfuse = get_client() +# Redis key prefix for tracking running long-running operations +# Used for idempotency across Kubernetes pods - prevents duplicate executions on browser refresh +RUNNING_OPERATION_PREFIX = "chat:running_operation:" -class LangfuseNotConfiguredError(Exception): - """Raised when Langfuse is required but not configured.""" +# Default system prompt used when Langfuse is not configured +# This is a snapshot of the "CoPilot Prompt" from Langfuse (version 11) +DEFAULT_SYSTEM_PROMPT = """You are **Otto**, an AI Co-Pilot for AutoGPT and a Forward-Deployed Automation Engineer serving small business owners. Your mission is to help users automate business tasks with AI by delivering tangible value through working automations—not through documentation or lengthy explanations. - pass +Here is everything you know about the current user from previous interactions: + + +{users_information} + + +## YOUR CORE MANDATE + +You are action-oriented. Your success is measured by: +- **Value Delivery**: Does the user think "wow, that was amazing" or "what was the point"? +- **Demonstrable Proof**: Show working automations, not descriptions of what's possible +- **Time Saved**: Focus on tangible efficiency gains +- **Quality Output**: Deliver results that meet or exceed expectations + +## YOUR WORKFLOW + +Adapt flexibly to the conversation context. Not every interaction requires all stages: + +1. **Explore & Understand**: Learn about the user's business, tasks, and goals. Use `add_understanding` to capture important context that will improve future conversations. + +2. **Assess Automation Potential**: Help the user understand whether and how AI can automate their task. + +3. **Prepare for AI**: Provide brief, actionable guidance on prerequisites (data, access, etc.). + +4. **Discover or Create Agents**: + - **Always check the user's library first** with `find_library_agent` (these may be customized to their needs) + - Search the marketplace with `find_agent` for pre-built automations + - Find reusable components with `find_block` + - Create custom solutions with `create_agent` if nothing suitable exists + - Modify existing library agents with `edit_agent` + +5. **Execute**: Run automations immediately, schedule them, or set up webhooks using `run_agent`. Test specific components with `run_block`. + +6. **Show Results**: Display outputs using `agent_output`. + +## AVAILABLE TOOLS + +**Understanding & Discovery:** +- `add_understanding`: Create a memory about the user's business or use cases for future sessions +- `search_docs`: Search platform documentation for specific technical information +- `get_doc_page`: Retrieve full text of a specific documentation page + +**Agent Discovery:** +- `find_library_agent`: Search the user's existing agents (CHECK HERE FIRST—these may be customized) +- `find_agent`: Search the marketplace for pre-built automations +- `find_block`: Find pre-written code units that perform specific tasks (agents are built from blocks) + +**Agent Creation & Editing:** +- `create_agent`: Create a new automation agent +- `edit_agent`: Modify an agent in the user's library + +**Execution & Output:** +- `run_agent`: Run an agent now, schedule it, or set up a webhook trigger +- `run_block`: Test or run a specific block independently +- `agent_output`: View results from previous agent runs + +## BEHAVIORAL GUIDELINES + +**Be Concise:** +- Target 2-5 short lines maximum +- Make every word count—no repetition or filler +- Use lightweight structure for scannability (bullets, numbered lists, short prompts) +- Avoid jargon (blocks, slugs, cron) unless the user asks + +**Be Proactive:** +- Suggest next steps before being asked +- Anticipate needs based on conversation context and user information +- Look for opportunities to expand scope when relevant +- Reveal capabilities through action, not explanation + +**Use Tools Effectively:** +- Select the right tool for each task +- **Always check `find_library_agent` before searching the marketplace** +- Use `add_understanding` to capture valuable business context +- When tool calls fail, try alternative approaches + +## CRITICAL REMINDER + +You are NOT a chatbot. You are NOT documentation. You are a partner who helps busy business owners get value quickly by showing proof through working automations. Bias toward action over explanation.""" + +# Module-level set to hold strong references to background tasks. +# This prevents asyncio from garbage collecting tasks before they complete. +# Tasks are automatically removed on completion via done_callback. +_background_tasks: set[asyncio.Task] = set() + + +async def _mark_operation_started(tool_call_id: str) -> bool: + """Mark a long-running operation as started (Redis-based). + + Returns True if successfully marked (operation was not already running), + False if operation was already running (lost race condition). + Raises exception if Redis is unavailable (fail-closed). + """ + redis = await get_redis_async() + key = f"{RUNNING_OPERATION_PREFIX}{tool_call_id}" + # SETNX with TTL - atomic "set if not exists" + result = await redis.set(key, "1", ex=config.long_running_operation_ttl, nx=True) + return result is not None + + +async def _mark_operation_completed(tool_call_id: str) -> None: + """Mark a long-running operation as completed (remove Redis key). + + This is best-effort - if Redis fails, the TTL will eventually clean up. + """ + try: + redis = await get_redis_async() + key = f"{RUNNING_OPERATION_PREFIX}{tool_call_id}" + await redis.delete(key) + except Exception as e: + # Non-critical: TTL will clean up eventually + logger.warning(f"Failed to delete running operation key {tool_call_id}: {e}") def _is_langfuse_configured() -> bool: @@ -75,6 +198,30 @@ def _is_langfuse_configured() -> bool: ) +async def _get_system_prompt_template(context: str) -> str: + """Get the system prompt, trying Langfuse first with fallback to default. + + Args: + context: The user context/information to compile into the prompt. + + Returns: + The compiled system prompt string. + """ + if _is_langfuse_configured(): + try: + # cache_ttl_seconds=0 disables SDK caching to always get the latest prompt + # Use asyncio.to_thread to avoid blocking the event loop + prompt = await asyncio.to_thread( + langfuse.get_prompt, config.langfuse_prompt_name, cache_ttl_seconds=0 + ) + return prompt.compile(users_information=context) + except Exception as e: + logger.warning(f"Failed to fetch prompt from Langfuse, using default: {e}") + + # Fallback to default prompt + return DEFAULT_SYSTEM_PROMPT.format(users_information=context) + + async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]: """Build the full system prompt including business understanding if available. @@ -83,12 +230,8 @@ async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]: If "default" and this is the user's first session, will use "onboarding" instead. Returns: - Tuple of (compiled prompt string, Langfuse prompt object for tracing) + Tuple of (compiled prompt string, business understanding object) """ - - # cache_ttl_seconds=0 disables SDK caching to always get the latest prompt - prompt = langfuse.get_prompt(config.langfuse_prompt_name, cache_ttl_seconds=0) - # If user is authenticated, try to fetch their business understanding understanding = None if user_id: @@ -97,12 +240,13 @@ async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]: except Exception as e: logger.warning(f"Failed to fetch business understanding: {e}") understanding = None + if understanding: context = format_understanding_for_prompt(understanding) else: context = "This is the first time you are meeting the user. Greet them and introduce them to the platform" - compiled = prompt.compile(users_information=context) + compiled = await _get_system_prompt_template(context) return compiled, understanding @@ -210,16 +354,6 @@ async def stream_chat_completion( f"Streaming chat completion for session {session_id} for message {message} and user id {user_id}. Message is user message: {is_user_message}" ) - # Check if Langfuse is configured - required for chat functionality - if not _is_langfuse_configured(): - logger.error("Chat request failed: Langfuse is not configured") - yield StreamError( - errorText="Chat service is not available. Langfuse must be configured " - "with LANGFUSE_PUBLIC_KEY and LANGFUSE_SECRET_KEY environment variables." - ) - yield StreamFinish() - return - # Only fetch from Redis if session not provided (initial call) if session is None: session = await get_chat_session(session_id, user_id) @@ -315,6 +449,7 @@ async def stream_chat_completion( has_yielded_end = False has_yielded_error = False has_done_tool_call = False + has_long_running_tool_call = False # Track if we had a long-running tool call has_received_text = False text_streaming_ended = False tool_response_messages: list[ChatMessage] = [] @@ -336,7 +471,6 @@ async def stream_chat_completion( system_prompt=system_prompt, text_block_id=text_block_id, ): - if isinstance(chunk, StreamTextStart): # Emit text-start before first text delta if not has_received_text: @@ -394,13 +528,34 @@ async def stream_chat_completion( if isinstance(chunk.output, str) else orjson.dumps(chunk.output).decode("utf-8") ) - tool_response_messages.append( - ChatMessage( - role="tool", - content=result_content, - tool_call_id=chunk.toolCallId, + # Skip saving long-running operation responses - messages already saved in _yield_tool_call + # Use JSON parsing instead of substring matching to avoid false positives + is_long_running_response = False + try: + parsed = orjson.loads(result_content) + if isinstance(parsed, dict) and parsed.get("type") in ( + "operation_started", + "operation_in_progress", + ): + is_long_running_response = True + except (orjson.JSONDecodeError, TypeError): + pass # Not JSON or not a dict - treat as regular response + if is_long_running_response: + # Remove from accumulated_tool_calls since assistant message was already saved + accumulated_tool_calls[:] = [ + tc + for tc in accumulated_tool_calls + if tc["id"] != chunk.toolCallId + ] + has_long_running_tool_call = True + else: + tool_response_messages.append( + ChatMessage( + role="tool", + content=result_content, + tool_call_id=chunk.toolCallId, + ) ) - ) has_done_tool_call = True # Track if any tool execution failed if not chunk.success: @@ -576,7 +731,14 @@ async def stream_chat_completion( logger.info( f"Extended session messages, new message_count={len(session.messages)}" ) - if messages_to_save or has_appended_streaming_message: + # Save if there are regular (non-long-running) tool responses or streaming message. + # Long-running tools save their own state, but we still need to save regular tools + # that may be in the same response. + has_regular_tool_responses = len(tool_response_messages) > 0 + if has_regular_tool_responses or ( + not has_long_running_tool_call + and (messages_to_save or has_appended_streaming_message) + ): await upsert_chat_session(session) else: logger.info( @@ -585,7 +747,9 @@ async def stream_chat_completion( ) # If we did a tool call, stream the chat completion again to get the next response - if has_done_tool_call: + # Skip only if ALL tools were long-running (they handle their own completion) + has_regular_tools = len(tool_response_messages) > 0 + if has_done_tool_call and (has_regular_tools or not has_long_running_tool_call): logger.info( "Tool call executed, streaming chat completion again to get assistant response" ) @@ -725,6 +889,114 @@ async def _summarize_messages( return summary or "No summary available." +def _ensure_tool_pairs_intact( + recent_messages: list[dict], + all_messages: list[dict], + start_index: int, +) -> list[dict]: + """ + Ensure tool_call/tool_response pairs stay together after slicing. + + When slicing messages for context compaction, a naive slice can separate + an assistant message containing tool_calls from its corresponding tool + response messages. This causes API validation errors (e.g., Anthropic's + "unexpected tool_use_id found in tool_result blocks"). + + This function checks for orphan tool responses in the slice and extends + backwards to include their corresponding assistant messages. + + Args: + recent_messages: The sliced messages to validate + all_messages: The complete message list (for looking up missing assistants) + start_index: The index in all_messages where recent_messages begins + + Returns: + A potentially extended list of messages with tool pairs intact + """ + if not recent_messages: + return recent_messages + + # Collect all tool_call_ids from assistant messages in the slice + available_tool_call_ids: set[str] = set() + for msg in recent_messages: + if msg.get("role") == "assistant" and msg.get("tool_calls"): + for tc in msg["tool_calls"]: + tc_id = tc.get("id") + if tc_id: + available_tool_call_ids.add(tc_id) + + # Find orphan tool responses (tool messages whose tool_call_id is missing) + orphan_tool_call_ids: set[str] = set() + for msg in recent_messages: + if msg.get("role") == "tool": + tc_id = msg.get("tool_call_id") + if tc_id and tc_id not in available_tool_call_ids: + orphan_tool_call_ids.add(tc_id) + + if not orphan_tool_call_ids: + # No orphans, slice is valid + return recent_messages + + # Find the assistant messages that contain the orphan tool_call_ids + # Search backwards from start_index in all_messages + messages_to_prepend: list[dict] = [] + for i in range(start_index - 1, -1, -1): + msg = all_messages[i] + if msg.get("role") == "assistant" and msg.get("tool_calls"): + msg_tool_ids = {tc.get("id") for tc in msg["tool_calls"] if tc.get("id")} + if msg_tool_ids & orphan_tool_call_ids: + # This assistant message has tool_calls we need + # Also collect its contiguous tool responses that follow it + assistant_and_responses: list[dict] = [msg] + + # Scan forward from this assistant to collect tool responses + for j in range(i + 1, start_index): + following_msg = all_messages[j] + if following_msg.get("role") == "tool": + tool_id = following_msg.get("tool_call_id") + if tool_id and tool_id in msg_tool_ids: + assistant_and_responses.append(following_msg) + else: + # Stop at first non-tool message + break + + # Prepend the assistant and its tool responses (maintain order) + messages_to_prepend = assistant_and_responses + messages_to_prepend + # Mark these as found + orphan_tool_call_ids -= msg_tool_ids + # Also add this assistant's tool_call_ids to available set + available_tool_call_ids |= msg_tool_ids + + if not orphan_tool_call_ids: + # Found all missing assistants + break + + if orphan_tool_call_ids: + # Some tool_call_ids couldn't be resolved - remove those tool responses + # This shouldn't happen in normal operation but handles edge cases + logger.warning( + f"Could not find assistant messages for tool_call_ids: {orphan_tool_call_ids}. " + "Removing orphan tool responses." + ) + recent_messages = [ + msg + for msg in recent_messages + if not ( + msg.get("role") == "tool" + and msg.get("tool_call_id") in orphan_tool_call_ids + ) + ] + + if messages_to_prepend: + logger.info( + f"Extended recent messages by {len(messages_to_prepend)} to preserve " + f"tool_call/tool_response pairs" + ) + return messages_to_prepend + recent_messages + + return recent_messages + + async def _stream_chat_chunks( session: ChatSession, tools: list[ChatCompletionToolParam], @@ -816,7 +1088,15 @@ async def _stream_chat_chunks( # Always attempt mitigation when over limit, even with few messages if messages: # Split messages based on whether system prompt exists - recent_messages = messages[-KEEP_RECENT:] + # Calculate start index for the slice + slice_start = max(0, len(messages_dict) - KEEP_RECENT) + recent_messages = messages_dict[-KEEP_RECENT:] + + # Ensure tool_call/tool_response pairs stay together + # This prevents API errors from orphan tool responses + recent_messages = _ensure_tool_pairs_intact( + recent_messages, messages_dict, slice_start + ) if has_system_prompt: # Keep system prompt separate, summarize everything between system and recent @@ -903,6 +1183,13 @@ async def _stream_chat_chunks( if len(recent_messages) >= keep_count else recent_messages ) + # Ensure tool pairs stay intact in the reduced slice + reduced_slice_start = max( + 0, len(recent_messages) - keep_count + ) + reduced_recent = _ensure_tool_pairs_intact( + reduced_recent, recent_messages, reduced_slice_start + ) if has_system_prompt: messages = [ system_msg, @@ -961,7 +1248,10 @@ async def _stream_chat_chunks( # Create a base list excluding system prompt to avoid duplication # This is the pool of messages we'll slice from in the loop - base_msgs = messages[1:] if has_system_prompt else messages + # Use messages_dict for type consistency with _ensure_tool_pairs_intact + base_msgs = ( + messages_dict[1:] if has_system_prompt else messages_dict + ) # Try progressively smaller keep counts new_token_count = token_count # Initialize with current count @@ -984,6 +1274,12 @@ async def _stream_chat_chunks( # Slice from base_msgs to get recent messages (without system prompt) recent_messages = base_msgs[-keep_count:] + # Ensure tool pairs stay intact in the reduced slice + reduced_slice_start = max(0, len(base_msgs) - keep_count) + recent_messages = _ensure_tool_pairs_intact( + recent_messages, base_msgs, reduced_slice_start + ) + if has_system_prompt: messages = [system_msg] + recent_messages else: @@ -1260,17 +1556,19 @@ async def _yield_tool_call( """ Yield a tool call and its execution result. - For long-running tools, yields heartbeat events every 15 seconds to keep - the SSE connection alive through proxies and load balancers. + For tools marked with `is_long_running=True` (like agent generation), spawns a + background task so the operation survives SSE disconnections. For other tools, + yields heartbeat events every 15 seconds to keep the SSE connection alive. Raises: orjson.JSONDecodeError: If tool call arguments cannot be parsed as JSON KeyError: If expected tool call fields are missing TypeError: If tool call structure is invalid """ + import uuid as uuid_module + tool_name = tool_calls[yield_idx]["function"]["name"] tool_call_id = tool_calls[yield_idx]["id"] - logger.info(f"Yielding tool call: {tool_calls[yield_idx]}") # Parse tool call arguments - handle empty arguments gracefully raw_arguments = tool_calls[yield_idx]["function"]["arguments"] @@ -1285,7 +1583,151 @@ async def _yield_tool_call( input=arguments, ) - # Run tool execution in background task with heartbeats to keep connection alive + # Check if this tool is long-running (survives SSE disconnection) + tool = get_tool(tool_name) + if tool and tool.is_long_running: + # Atomic check-and-set: returns False if operation already running (lost race) + if not await _mark_operation_started(tool_call_id): + logger.info( + f"Tool call {tool_call_id} already in progress, returning status" + ) + # Build dynamic message based on tool name + if tool_name == "create_agent": + in_progress_msg = "Agent creation already in progress. Please wait..." + elif tool_name == "edit_agent": + in_progress_msg = "Agent edit already in progress. Please wait..." + else: + in_progress_msg = f"{tool_name} already in progress. Please wait..." + + yield StreamToolOutputAvailable( + toolCallId=tool_call_id, + toolName=tool_name, + output=OperationInProgressResponse( + message=in_progress_msg, + tool_call_id=tool_call_id, + ).model_dump_json(), + success=True, + ) + return + + # Generate operation ID + operation_id = str(uuid_module.uuid4()) + + # Build a user-friendly message based on tool and arguments + if tool_name == "create_agent": + agent_desc = arguments.get("description", "") + # Truncate long descriptions for the message + desc_preview = ( + (agent_desc[:100] + "...") if len(agent_desc) > 100 else agent_desc + ) + pending_msg = ( + f"Creating your agent: {desc_preview}" + if desc_preview + else "Creating agent... This may take a few minutes." + ) + started_msg = ( + "Agent creation started. You can close this tab - " + "check your library in a few minutes." + ) + elif tool_name == "edit_agent": + changes = arguments.get("changes", "") + changes_preview = (changes[:100] + "...") if len(changes) > 100 else changes + pending_msg = ( + f"Editing agent: {changes_preview}" + if changes_preview + else "Editing agent... This may take a few minutes." + ) + started_msg = ( + "Agent edit started. You can close this tab - " + "check your library in a few minutes." + ) + else: + pending_msg = f"Running {tool_name}... This may take a few minutes." + started_msg = ( + f"{tool_name} started. You can close this tab - " + "check back in a few minutes." + ) + + # Track appended messages for rollback on failure + assistant_message: ChatMessage | None = None + pending_message: ChatMessage | None = None + + # Wrap session save and task creation in try-except to release lock on failure + try: + # Save assistant message with tool_call FIRST (required by LLM) + assistant_message = ChatMessage( + role="assistant", + content="", + tool_calls=[tool_calls[yield_idx]], + ) + session.messages.append(assistant_message) + + # Then save pending tool result + pending_message = ChatMessage( + role="tool", + content=OperationPendingResponse( + message=pending_msg, + operation_id=operation_id, + tool_name=tool_name, + ).model_dump_json(), + tool_call_id=tool_call_id, + ) + session.messages.append(pending_message) + await upsert_chat_session(session) + logger.info( + f"Saved pending operation {operation_id} for tool {tool_name} " + f"in session {session.session_id}" + ) + + # Store task reference in module-level set to prevent GC before completion + task = asyncio.create_task( + _execute_long_running_tool( + tool_name=tool_name, + parameters=arguments, + tool_call_id=tool_call_id, + operation_id=operation_id, + session_id=session.session_id, + user_id=session.user_id, + ) + ) + _background_tasks.add(task) + task.add_done_callback(_background_tasks.discard) + except Exception as e: + # Roll back appended messages to prevent data corruption on subsequent saves + if ( + pending_message + and session.messages + and session.messages[-1] == pending_message + ): + session.messages.pop() + if ( + assistant_message + and session.messages + and session.messages[-1] == assistant_message + ): + session.messages.pop() + + # Release the Redis lock since the background task won't be spawned + await _mark_operation_completed(tool_call_id) + logger.error( + f"Failed to setup long-running tool {tool_name}: {e}", exc_info=True + ) + raise + + # Return immediately - don't wait for completion + yield StreamToolOutputAvailable( + toolCallId=tool_call_id, + toolName=tool_name, + output=OperationStartedResponse( + message=started_msg, + operation_id=operation_id, + tool_name=tool_name, + ).model_dump_json(), + success=True, + ) + return + + # Normal flow: Run tool execution in background task with heartbeats tool_task = asyncio.create_task( execute_tool( tool_name=tool_name, @@ -1335,3 +1777,195 @@ async def _yield_tool_call( ) yield tool_execution_response + + +async def _execute_long_running_tool( + tool_name: str, + parameters: dict[str, Any], + tool_call_id: str, + operation_id: str, + session_id: str, + user_id: str | None, +) -> None: + """Execute a long-running tool in background and update chat history with result. + + This function runs independently of the SSE connection, so the operation + survives if the user closes their browser tab. + """ + try: + # Load fresh session (not stale reference) + session = await get_chat_session(session_id, user_id) + if not session: + logger.error(f"Session {session_id} not found for background tool") + return + + # Execute the actual tool + result = await execute_tool( + tool_name=tool_name, + parameters=parameters, + tool_call_id=tool_call_id, + user_id=user_id, + session=session, + ) + + # Update the pending message with result + await _update_pending_operation( + session_id=session_id, + tool_call_id=tool_call_id, + result=( + result.output + if isinstance(result.output, str) + else orjson.dumps(result.output).decode("utf-8") + ), + ) + + logger.info(f"Background tool {tool_name} completed for session {session_id}") + + # Generate LLM continuation so user sees response when they poll/refresh + await _generate_llm_continuation(session_id=session_id, user_id=user_id) + + except Exception as e: + logger.error(f"Background tool {tool_name} failed: {e}", exc_info=True) + error_response = ErrorResponse( + message=f"Tool {tool_name} failed: {str(e)}", + ) + await _update_pending_operation( + session_id=session_id, + tool_call_id=tool_call_id, + result=error_response.model_dump_json(), + ) + # Generate LLM continuation so user sees explanation even for errors + try: + await _generate_llm_continuation(session_id=session_id, user_id=user_id) + except Exception as llm_err: + logger.warning(f"Failed to generate LLM continuation for error: {llm_err}") + finally: + await _mark_operation_completed(tool_call_id) + + +async def _update_pending_operation( + session_id: str, + tool_call_id: str, + result: str, +) -> None: + """Update the pending tool message with final result. + + This is called by background tasks when long-running operations complete. + """ + # Update the message in database + updated = await chat_db.update_tool_message_content( + session_id=session_id, + tool_call_id=tool_call_id, + new_content=result, + ) + + if updated: + # Invalidate Redis cache so next load gets fresh data + # Wrap in try/except to prevent cache failures from triggering error handling + # that would overwrite our successful DB update + try: + await invalidate_session_cache(session_id) + except Exception as e: + # Non-critical: cache will eventually be refreshed on next load + logger.warning(f"Failed to invalidate cache for session {session_id}: {e}") + logger.info( + f"Updated pending operation for tool_call_id {tool_call_id} " + f"in session {session_id}" + ) + else: + logger.warning( + f"Failed to update pending operation for tool_call_id {tool_call_id} " + f"in session {session_id}" + ) + + +async def _generate_llm_continuation( + session_id: str, + user_id: str | None, +) -> None: + """Generate an LLM response after a long-running tool completes. + + This is called by background tasks to continue the conversation + after a tool result is saved. The response is saved to the database + so users see it when they refresh or poll. + """ + try: + # Load fresh session from DB (bypass cache to get the updated tool result) + await invalidate_session_cache(session_id) + session = await get_chat_session(session_id, user_id) + if not session: + logger.error(f"Session {session_id} not found for LLM continuation") + return + + # Build system prompt + system_prompt, _ = await _build_system_prompt(user_id) + + # Build messages in OpenAI format + messages = session.to_openai_messages() + if system_prompt: + from openai.types.chat import ChatCompletionSystemMessageParam + + system_message = ChatCompletionSystemMessageParam( + role="system", + content=system_prompt, + ) + messages = [system_message] + messages + + # Build extra_body for tracing + extra_body: dict[str, Any] = { + "posthogProperties": { + "environment": settings.config.app_env.value, + }, + } + if user_id: + extra_body["user"] = user_id[:128] + extra_body["posthogDistinctId"] = user_id + if session_id: + extra_body["session_id"] = session_id[:128] + + # Make non-streaming LLM call (no tools - just text response) + from typing import cast + + from openai.types.chat import ChatCompletionMessageParam + + # No tools parameter = text-only response (no tool calls) + response = await client.chat.completions.create( + model=config.model, + messages=cast(list[ChatCompletionMessageParam], messages), + extra_body=extra_body, + ) + + if response.choices and response.choices[0].message.content: + assistant_content = response.choices[0].message.content + + # Reload session from DB to avoid race condition with user messages + # that may have been sent while we were generating the LLM response + fresh_session = await get_chat_session(session_id, user_id) + if not fresh_session: + logger.error( + f"Session {session_id} disappeared during LLM continuation" + ) + return + + # Save assistant message to database + assistant_message = ChatMessage( + role="assistant", + content=assistant_content, + ) + fresh_session.messages.append(assistant_message) + + # Save to database (not cache) to persist the response + await upsert_chat_session(fresh_session) + + # Invalidate cache so next poll/refresh gets fresh data + await invalidate_session_cache(session_id) + + logger.info( + f"Generated LLM continuation for session {session_id}, " + f"response length: {len(assistant_content)}" + ) + else: + logger.warning(f"LLM continuation returned empty response for {session_id}") + + except Exception as e: + logger.error(f"Failed to generate LLM continuation: {e}", exc_info=True) diff --git a/autogpt_platform/backend/backend/api/features/chat/tools/IDEAS.md b/autogpt_platform/backend/backend/api/features/chat/tools/IDEAS.md new file mode 100644 index 0000000000..656aac61c4 --- /dev/null +++ b/autogpt_platform/backend/backend/api/features/chat/tools/IDEAS.md @@ -0,0 +1,79 @@ +# CoPilot Tools - Future Ideas + +## Multimodal Image Support for CoPilot + +**Problem:** CoPilot uses a vision-capable model but can't "see" workspace images. When a block generates an image and returns `workspace://abc123`, CoPilot can't evaluate it (e.g., checking blog thumbnail quality). + +**Backend Solution:** +When preparing messages for the LLM, detect `workspace://` image references and convert them to proper image content blocks: + +```python +# Before sending to LLM, scan for workspace image references +# and inject them as image content parts + +# Example message transformation: +# FROM: {"role": "assistant", "content": "Generated image: workspace://abc123"} +# TO: {"role": "assistant", "content": [ +# {"type": "text", "text": "Generated image: workspace://abc123"}, +# {"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}} +# ]} +``` + +**Where to implement:** +- In the chat stream handler before calling the LLM +- Or in a message preprocessing step +- Need to fetch image from workspace, convert to base64, add as image content + +**Considerations:** +- Only do this for image MIME types (image/png, image/jpeg, etc.) +- May want a size limit (don't pass 10MB images) +- Track which images were "shown" to the AI for frontend indicator +- Cost implications - vision API calls are more expensive + +**Frontend Solution:** +Show visual indicator on workspace files in chat: +- If AI saw the image: normal display +- If AI didn't see it: overlay icon saying "AI can't see this image" + +Requires response metadata indicating which `workspace://` refs were passed to the model. + +--- + +## Output Post-Processing Layer for run_block + +**Problem:** Many blocks produce large outputs that: +- Consume massive context (100KB base64 image = ~133KB tokens) +- Can't fit in conversation +- Break things and cause high LLM costs + +**Proposed Solution:** Instead of modifying individual blocks or `store_media_file()`, implement a centralized output processor in `run_block.py` that handles outputs before they're returned to CoPilot. + +**Benefits:** +1. **Centralized** - one place to handle all output processing +2. **Future-proof** - new blocks automatically get output processing +3. **Keeps blocks pure** - they don't need to know about context constraints +4. **Handles all large outputs** - not just images + +**Processing Rules:** +- Detect base64 data URIs → save to workspace, return `workspace://` reference +- Truncate very long strings (>N chars) with truncation note +- Summarize large arrays/lists (e.g., "Array with 1000 items, first 5: [...]") +- Handle nested large outputs in dicts recursively +- Cap total output size + +**Implementation Location:** `run_block.py` after block execution, before returning `BlockOutputResponse` + +**Example:** +```python +def _process_outputs_for_context( + outputs: dict[str, list[Any]], + workspace_manager: WorkspaceManager, + max_string_length: int = 10000, + max_array_preview: int = 5, +) -> dict[str, list[Any]]: + """Process block outputs to prevent context bloat.""" + processed = {} + for name, values in outputs.items(): + processed[name] = [_process_value(v, workspace_manager) for v in values] + return processed +``` diff --git a/autogpt_platform/backend/backend/api/features/chat/tools/__init__.py b/autogpt_platform/backend/backend/api/features/chat/tools/__init__.py index 284273f3b9..d078860c3a 100644 --- a/autogpt_platform/backend/backend/api/features/chat/tools/__init__.py +++ b/autogpt_platform/backend/backend/api/features/chat/tools/__init__.py @@ -18,6 +18,12 @@ from .get_doc_page import GetDocPageTool from .run_agent import RunAgentTool from .run_block import RunBlockTool from .search_docs import SearchDocsTool +from .workspace_files import ( + DeleteWorkspaceFileTool, + ListWorkspaceFilesTool, + ReadWorkspaceFileTool, + WriteWorkspaceFileTool, +) if TYPE_CHECKING: from backend.api.features.chat.response_model import StreamToolOutputAvailable @@ -37,6 +43,11 @@ TOOL_REGISTRY: dict[str, BaseTool] = { "view_agent_output": AgentOutputTool(), "search_docs": SearchDocsTool(), "get_doc_page": GetDocPageTool(), + # Workspace tools for CoPilot file operations + "list_workspace_files": ListWorkspaceFilesTool(), + "read_workspace_file": ReadWorkspaceFileTool(), + "write_workspace_file": WriteWorkspaceFileTool(), + "delete_workspace_file": DeleteWorkspaceFileTool(), } # Export individual tool instances for backwards compatibility @@ -49,6 +60,11 @@ tools: list[ChatCompletionToolParam] = [ ] +def get_tool(tool_name: str) -> BaseTool | None: + """Get a tool instance by name.""" + return TOOL_REGISTRY.get(tool_name) + + async def execute_tool( tool_name: str, parameters: dict[str, Any], @@ -57,7 +73,7 @@ async def execute_tool( tool_call_id: str, ) -> "StreamToolOutputAvailable": """Execute a tool by name.""" - tool = TOOL_REGISTRY.get(tool_name) + tool = get_tool(tool_name) if not tool: raise ValueError(f"Tool {tool_name} not found") diff --git a/autogpt_platform/backend/backend/api/features/chat/tools/agent_generator/__init__.py b/autogpt_platform/backend/backend/api/features/chat/tools/agent_generator/__init__.py index 392f642c41..b7650b3cbd 100644 --- a/autogpt_platform/backend/backend/api/features/chat/tools/agent_generator/__init__.py +++ b/autogpt_platform/backend/backend/api/features/chat/tools/agent_generator/__init__.py @@ -2,27 +2,54 @@ from .core import ( AgentGeneratorNotConfiguredError, + AgentJsonValidationError, + AgentSummary, + DecompositionResult, + DecompositionStep, + LibraryAgentSummary, + MarketplaceAgentSummary, decompose_goal, + enrich_library_agents_from_steps, + extract_search_terms_from_steps, + extract_uuids_from_text, generate_agent, generate_agent_patch, get_agent_as_json, + get_all_relevant_agents_for_generation, + get_library_agent_by_graph_id, + get_library_agent_by_id, + get_library_agents_for_generation, json_to_graph, save_agent_to_library, + search_marketplace_agents_for_generation, ) +from .errors import get_user_message_for_error from .service import health_check as check_external_service_health from .service import is_external_service_configured __all__ = [ - # Core functions + "AgentGeneratorNotConfiguredError", + "AgentJsonValidationError", + "AgentSummary", + "DecompositionResult", + "DecompositionStep", + "LibraryAgentSummary", + "MarketplaceAgentSummary", + "check_external_service_health", "decompose_goal", + "enrich_library_agents_from_steps", + "extract_search_terms_from_steps", + "extract_uuids_from_text", "generate_agent", "generate_agent_patch", - "save_agent_to_library", "get_agent_as_json", - "json_to_graph", - # Exceptions - "AgentGeneratorNotConfiguredError", - # Service + "get_all_relevant_agents_for_generation", + "get_library_agent_by_graph_id", + "get_library_agent_by_id", + "get_library_agents_for_generation", + "get_user_message_for_error", "is_external_service_configured", - "check_external_service_health", + "json_to_graph", + "save_agent_to_library", + "search_marketplace_agents_for_generation", ] diff --git a/autogpt_platform/backend/backend/api/features/chat/tools/agent_generator/core.py b/autogpt_platform/backend/backend/api/features/chat/tools/agent_generator/core.py index fc15587110..0ddd2aa86b 100644 --- a/autogpt_platform/backend/backend/api/features/chat/tools/agent_generator/core.py +++ b/autogpt_platform/backend/backend/api/features/chat/tools/agent_generator/core.py @@ -1,11 +1,22 @@ """Core agent generation functions.""" import logging +import re import uuid -from typing import Any +from typing import Any, NotRequired, TypedDict from backend.api.features.library import db as library_db -from backend.data.graph import Graph, Link, Node, create_graph +from backend.api.features.store import db as store_db +from backend.data.graph import ( + Graph, + Link, + Node, + create_graph, + get_graph, + get_graph_all_versions, + get_store_listed_graphs, +) +from backend.util.exceptions import DatabaseError, NotFoundError from .service import ( decompose_goal_external, @@ -16,6 +27,74 @@ from .service import ( logger = logging.getLogger(__name__) +AGENT_EXECUTOR_BLOCK_ID = "e189baac-8c20-45a1-94a7-55177ea42565" + + +class ExecutionSummary(TypedDict): + """Summary of a single execution for quality assessment.""" + + status: str + correctness_score: NotRequired[float] + activity_summary: NotRequired[str] + + +class LibraryAgentSummary(TypedDict): + """Summary of a library agent for sub-agent composition. + + Includes recent executions to help the LLM decide whether to use this agent. + Each execution shows status, correctness_score (0-1), and activity_summary. + """ + + graph_id: str + graph_version: int + name: str + description: str + input_schema: dict[str, Any] + output_schema: dict[str, Any] + recent_executions: NotRequired[list[ExecutionSummary]] + + +class MarketplaceAgentSummary(TypedDict): + """Summary of a marketplace agent for sub-agent composition.""" + + name: str + description: str + sub_heading: str + creator: str + is_marketplace_agent: bool + + +class DecompositionStep(TypedDict, total=False): + """A single step in decomposed instructions.""" + + description: str + action: str + block_name: str + tool: str + name: str + + +class DecompositionResult(TypedDict, total=False): + """Result from decompose_goal - can be instructions, questions, or error.""" + + type: str + steps: list[DecompositionStep] + questions: list[dict[str, Any]] + error: str + error_type: str + + +AgentSummary = LibraryAgentSummary | MarketplaceAgentSummary | dict[str, Any] + + +def _to_dict_list( + agents: list[AgentSummary] | list[dict[str, Any]] | None, +) -> list[dict[str, Any]] | None: + """Convert typed agent summaries to plain dicts for external service calls.""" + if agents is None: + return None + return [dict(a) for a in agents] + class AgentGeneratorNotConfiguredError(Exception): """Raised when the external Agent Generator service is not configured.""" @@ -36,15 +115,422 @@ def _check_service_configured() -> None: ) -async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None: +_UUID_PATTERN = re.compile( + r"[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}", + re.IGNORECASE, +) + + +def extract_uuids_from_text(text: str) -> list[str]: + """Extract all UUID v4 strings from text. + + Args: + text: Text that may contain UUIDs (e.g., user's goal description) + + Returns: + List of unique UUIDs found in the text (lowercase) + """ + matches = _UUID_PATTERN.findall(text) + return list({m.lower() for m in matches}) + + +async def get_library_agent_by_id( + user_id: str, agent_id: str +) -> LibraryAgentSummary | None: + """Fetch a specific library agent by its ID (library agent ID or graph_id). + + This function tries multiple lookup strategies: + 1. First tries to find by graph_id (AgentGraph primary key) + 2. If not found, tries to find by library agent ID (LibraryAgent primary key) + + This handles both cases: + - User provides graph_id (e.g., from AgentExecutorBlock) + - User provides library agent ID (e.g., from library URL) + + Args: + user_id: The user ID + agent_id: The ID to look up (can be graph_id or library agent ID) + + Returns: + LibraryAgentSummary if found, None otherwise + """ + try: + agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id) + if agent: + logger.debug(f"Found library agent by graph_id: {agent.name}") + return LibraryAgentSummary( + graph_id=agent.graph_id, + graph_version=agent.graph_version, + name=agent.name, + description=agent.description, + input_schema=agent.input_schema, + output_schema=agent.output_schema, + ) + except DatabaseError: + raise + except Exception as e: + logger.debug(f"Could not fetch library agent by graph_id {agent_id}: {e}") + + try: + agent = await library_db.get_library_agent(agent_id, user_id) + if agent: + logger.debug(f"Found library agent by library_id: {agent.name}") + return LibraryAgentSummary( + graph_id=agent.graph_id, + graph_version=agent.graph_version, + name=agent.name, + description=agent.description, + input_schema=agent.input_schema, + output_schema=agent.output_schema, + ) + except NotFoundError: + logger.debug(f"Library agent not found by library_id: {agent_id}") + except DatabaseError: + raise + except Exception as e: + logger.warning( + f"Could not fetch library agent by library_id {agent_id}: {e}", + exc_info=True, + ) + + return None + + +get_library_agent_by_graph_id = get_library_agent_by_id + + +async def get_library_agents_for_generation( + user_id: str, + search_query: str | None = None, + exclude_graph_id: str | None = None, + max_results: int = 15, +) -> list[LibraryAgentSummary]: + """Fetch user's library agents formatted for Agent Generator. + + Uses search-based fetching to return relevant agents instead of all agents. + This is more scalable for users with large libraries. + + Includes recent_executions list to help the LLM assess agent quality: + - Each execution has status, correctness_score (0-1), and activity_summary + - This gives the LLM concrete examples of recent performance + + Args: + user_id: The user ID + search_query: Optional search term to find relevant agents (user's goal/description) + exclude_graph_id: Optional graph ID to exclude (prevents circular references) + max_results: Maximum number of agents to return (default 15) + + Returns: + List of LibraryAgentSummary with schemas and recent executions for sub-agent composition + """ + try: + response = await library_db.list_library_agents( + user_id=user_id, + search_term=search_query, + page=1, + page_size=max_results, + include_executions=True, + ) + + results: list[LibraryAgentSummary] = [] + for agent in response.agents: + if exclude_graph_id is not None and agent.graph_id == exclude_graph_id: + continue + + summary = LibraryAgentSummary( + graph_id=agent.graph_id, + graph_version=agent.graph_version, + name=agent.name, + description=agent.description, + input_schema=agent.input_schema, + output_schema=agent.output_schema, + ) + if agent.recent_executions: + exec_summaries: list[ExecutionSummary] = [] + for ex in agent.recent_executions: + exec_sum = ExecutionSummary(status=ex.status) + if ex.correctness_score is not None: + exec_sum["correctness_score"] = ex.correctness_score + if ex.activity_summary: + exec_sum["activity_summary"] = ex.activity_summary + exec_summaries.append(exec_sum) + summary["recent_executions"] = exec_summaries + results.append(summary) + return results + except DatabaseError: + raise + except Exception as e: + logger.warning(f"Failed to fetch library agents: {e}") + return [] + + +async def search_marketplace_agents_for_generation( + search_query: str, + max_results: int = 10, +) -> list[LibraryAgentSummary]: + """Search marketplace agents formatted for Agent Generator. + + Fetches marketplace agents and their full schemas so they can be used + as sub-agents in generated workflows. + + Args: + search_query: Search term to find relevant public agents + max_results: Maximum number of agents to return (default 10) + + Returns: + List of LibraryAgentSummary with full input/output schemas + """ + try: + response = await store_db.get_store_agents( + search_query=search_query, + page=1, + page_size=max_results, + ) + + agents_with_graphs = [ + agent for agent in response.agents if agent.agent_graph_id + ] + + if not agents_with_graphs: + return [] + + graph_ids = [agent.agent_graph_id for agent in agents_with_graphs] + graphs = await get_store_listed_graphs(*graph_ids) + + results: list[LibraryAgentSummary] = [] + for agent in agents_with_graphs: + graph_id = agent.agent_graph_id + if graph_id and graph_id in graphs: + graph = graphs[graph_id] + results.append( + LibraryAgentSummary( + graph_id=graph.id, + graph_version=graph.version, + name=agent.agent_name, + description=agent.description, + input_schema=graph.input_schema, + output_schema=graph.output_schema, + ) + ) + return results + except Exception as e: + logger.warning(f"Failed to search marketplace agents: {e}") + return [] + + +async def get_all_relevant_agents_for_generation( + user_id: str, + search_query: str | None = None, + exclude_graph_id: str | None = None, + include_library: bool = True, + include_marketplace: bool = True, + max_library_results: int = 15, + max_marketplace_results: int = 10, +) -> list[AgentSummary]: + """Fetch relevant agents from library and/or marketplace. + + Searches both user's library and marketplace by default. + Explicitly mentioned UUIDs in the search query are always looked up. + + Args: + user_id: The user ID + search_query: Search term to find relevant agents (user's goal/description) + exclude_graph_id: Optional graph ID to exclude (prevents circular references) + include_library: Whether to search user's library (default True) + include_marketplace: Whether to also search marketplace (default True) + max_library_results: Max library agents to return (default 15) + max_marketplace_results: Max marketplace agents to return (default 10) + + Returns: + List of AgentSummary with full schemas (both library and marketplace agents) + """ + agents: list[AgentSummary] = [] + seen_graph_ids: set[str] = set() + + if search_query: + mentioned_uuids = extract_uuids_from_text(search_query) + for graph_id in mentioned_uuids: + if graph_id == exclude_graph_id: + continue + agent = await get_library_agent_by_graph_id(user_id, graph_id) + agent_graph_id = agent.get("graph_id") if agent else None + if agent and agent_graph_id and agent_graph_id not in seen_graph_ids: + agents.append(agent) + seen_graph_ids.add(agent_graph_id) + logger.debug( + f"Found explicitly mentioned agent: {agent.get('name') or 'Unknown'}" + ) + + if include_library: + library_agents = await get_library_agents_for_generation( + user_id=user_id, + search_query=search_query, + exclude_graph_id=exclude_graph_id, + max_results=max_library_results, + ) + for agent in library_agents: + graph_id = agent.get("graph_id") + if graph_id and graph_id not in seen_graph_ids: + agents.append(agent) + seen_graph_ids.add(graph_id) + + if include_marketplace and search_query: + marketplace_agents = await search_marketplace_agents_for_generation( + search_query=search_query, + max_results=max_marketplace_results, + ) + for agent in marketplace_agents: + graph_id = agent.get("graph_id") + if graph_id and graph_id not in seen_graph_ids: + agents.append(agent) + seen_graph_ids.add(graph_id) + + return agents + + +def extract_search_terms_from_steps( + decomposition_result: DecompositionResult | dict[str, Any], +) -> list[str]: + """Extract search terms from decomposed instruction steps. + + Analyzes the decomposition result to extract relevant keywords + for additional library agent searches. + + Args: + decomposition_result: Result from decompose_goal containing steps + + Returns: + List of unique search terms extracted from steps + """ + search_terms: list[str] = [] + + if decomposition_result.get("type") != "instructions": + return search_terms + + steps = decomposition_result.get("steps", []) + if not steps: + return search_terms + + step_keys: list[str] = ["description", "action", "block_name", "tool", "name"] + + for step in steps: + for key in step_keys: + value = step.get(key) # type: ignore[union-attr] + if isinstance(value, str) and len(value) > 3: + search_terms.append(value) + + seen: set[str] = set() + unique_terms: list[str] = [] + for term in search_terms: + term_lower = term.lower() + if term_lower not in seen: + seen.add(term_lower) + unique_terms.append(term) + + return unique_terms + + +async def enrich_library_agents_from_steps( + user_id: str, + decomposition_result: DecompositionResult | dict[str, Any], + existing_agents: list[AgentSummary] | list[dict[str, Any]], + exclude_graph_id: str | None = None, + include_marketplace: bool = True, + max_additional_results: int = 10, +) -> list[AgentSummary] | list[dict[str, Any]]: + """Enrich library agents list with additional searches based on decomposed steps. + + This implements two-phase search: after decomposition, we search for additional + relevant agents based on the specific steps identified. + + Args: + user_id: The user ID + decomposition_result: Result from decompose_goal containing steps + existing_agents: Already fetched library agents from initial search + exclude_graph_id: Optional graph ID to exclude + include_marketplace: Whether to also search marketplace + max_additional_results: Max additional agents per search term (default 10) + + Returns: + Combined list of library agents (existing + newly discovered) + """ + search_terms = extract_search_terms_from_steps(decomposition_result) + + if not search_terms: + return existing_agents + + existing_ids: set[str] = set() + existing_names: set[str] = set() + + for agent in existing_agents: + agent_name = agent.get("name") + if agent_name and isinstance(agent_name, str): + existing_names.add(agent_name.lower()) + graph_id = agent.get("graph_id") # type: ignore[call-overload] + if graph_id and isinstance(graph_id, str): + existing_ids.add(graph_id) + + all_agents: list[AgentSummary] | list[dict[str, Any]] = list(existing_agents) + + for term in search_terms[:3]: + try: + additional_agents = await get_all_relevant_agents_for_generation( + user_id=user_id, + search_query=term, + exclude_graph_id=exclude_graph_id, + include_marketplace=include_marketplace, + max_library_results=max_additional_results, + max_marketplace_results=5, + ) + + for agent in additional_agents: + agent_name = agent.get("name") + if not agent_name or not isinstance(agent_name, str): + continue + agent_name_lower = agent_name.lower() + + if agent_name_lower in existing_names: + continue + + graph_id = agent.get("graph_id") # type: ignore[call-overload] + if graph_id and graph_id in existing_ids: + continue + + all_agents.append(agent) + existing_names.add(agent_name_lower) + if graph_id and isinstance(graph_id, str): + existing_ids.add(graph_id) + + except DatabaseError: + logger.error(f"Database error searching for agents with term '{term}'") + raise + except Exception as e: + logger.warning( + f"Failed to search for additional agents with term '{term}': {e}" + ) + + logger.debug( + f"Enriched library agents: {len(existing_agents)} initial + " + f"{len(all_agents) - len(existing_agents)} additional = {len(all_agents)} total" + ) + + return all_agents + + +async def decompose_goal( + description: str, + context: str = "", + library_agents: list[AgentSummary] | None = None, +) -> DecompositionResult | None: """Break down a goal into steps or return clarifying questions. Args: description: Natural language goal description context: Additional context (e.g., answers to previous questions) + library_agents: User's library agents available for sub-agent composition Returns: - Dict with either: + DecompositionResult with either: - {"type": "clarifying_questions", "questions": [...]} - {"type": "instructions", "steps": [...]} Or None on error @@ -54,26 +540,36 @@ async def decompose_goal(description: str, context: str = "") -> dict[str, Any] """ _check_service_configured() logger.info("Calling external Agent Generator service for decompose_goal") - return await decompose_goal_external(description, context) + result = await decompose_goal_external( + description, context, _to_dict_list(library_agents) + ) + return result # type: ignore[return-value] -async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None: +async def generate_agent( + instructions: DecompositionResult | dict[str, Any], + library_agents: list[AgentSummary] | list[dict[str, Any]] | None = None, +) -> dict[str, Any] | None: """Generate agent JSON from instructions. Args: instructions: Structured instructions from decompose_goal + library_agents: User's library agents available for sub-agent composition Returns: - Agent JSON dict or None on error + Agent JSON dict, error dict {"type": "error", ...}, or None on error Raises: AgentGeneratorNotConfiguredError: If the external service is not configured. """ _check_service_configured() logger.info("Calling external Agent Generator service for generate_agent") - result = await generate_agent_external(instructions) + result = await generate_agent_external( + dict(instructions), _to_dict_list(library_agents) + ) if result: - # Ensure required fields + if isinstance(result, dict) and result.get("type") == "error": + return result if "id" not in result: result["id"] = str(uuid.uuid4()) if "version" not in result: @@ -83,6 +579,12 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None: return result +class AgentJsonValidationError(Exception): + """Raised when agent JSON is invalid or missing required fields.""" + + pass + + def json_to_graph(agent_json: dict[str, Any]) -> Graph: """Convert agent JSON dict to Graph model. @@ -91,25 +593,55 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph: Returns: Graph ready for saving + + Raises: + AgentJsonValidationError: If required fields are missing from nodes or links """ nodes = [] - for n in agent_json.get("nodes", []): + for idx, n in enumerate(agent_json.get("nodes", [])): + block_id = n.get("block_id") + if not block_id: + node_id = n.get("id", f"index_{idx}") + raise AgentJsonValidationError( + f"Node '{node_id}' is missing required field 'block_id'" + ) node = Node( id=n.get("id", str(uuid.uuid4())), - block_id=n["block_id"], + block_id=block_id, input_default=n.get("input_default", {}), metadata=n.get("metadata", {}), ) nodes.append(node) links = [] - for link_data in agent_json.get("links", []): + for idx, link_data in enumerate(agent_json.get("links", [])): + source_id = link_data.get("source_id") + sink_id = link_data.get("sink_id") + source_name = link_data.get("source_name") + sink_name = link_data.get("sink_name") + + missing_fields = [] + if not source_id: + missing_fields.append("source_id") + if not sink_id: + missing_fields.append("sink_id") + if not source_name: + missing_fields.append("source_name") + if not sink_name: + missing_fields.append("sink_name") + + if missing_fields: + link_id = link_data.get("id", f"index_{idx}") + raise AgentJsonValidationError( + f"Link '{link_id}' is missing required fields: {', '.join(missing_fields)}" + ) + link = Link( id=link_data.get("id", str(uuid.uuid4())), - source_id=link_data["source_id"], - sink_id=link_data["sink_id"], - source_name=link_data["source_name"], - sink_name=link_data["sink_name"], + source_id=source_id, + sink_id=sink_id, + source_name=source_name, + sink_name=sink_name, is_static=link_data.get("is_static", False), ) links.append(link) @@ -130,22 +662,40 @@ def _reassign_node_ids(graph: Graph) -> None: This is needed when creating a new version to avoid unique constraint violations. """ - # Create mapping from old node IDs to new UUIDs id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes} - # Reassign node IDs for node in graph.nodes: node.id = id_map[node.id] - # Update link references to use new node IDs for link in graph.links: - link.id = str(uuid.uuid4()) # Also give links new IDs + link.id = str(uuid.uuid4()) if link.source_id in id_map: link.source_id = id_map[link.source_id] if link.sink_id in id_map: link.sink_id = id_map[link.sink_id] +def _populate_agent_executor_user_ids(agent_json: dict[str, Any], user_id: str) -> None: + """Populate user_id in AgentExecutorBlock nodes. + + The external agent generator creates AgentExecutorBlock nodes with empty user_id. + This function fills in the actual user_id so sub-agents run with correct permissions. + + Args: + agent_json: Agent JSON dict (modified in place) + user_id: User ID to set + """ + for node in agent_json.get("nodes", []): + if node.get("block_id") == AGENT_EXECUTOR_BLOCK_ID: + input_default = node.get("input_default") or {} + if not input_default.get("user_id"): + input_default["user_id"] = user_id + node["input_default"] = input_default + logger.debug( + f"Set user_id for AgentExecutorBlock node {node.get('id')}" + ) + + async def save_agent_to_library( agent_json: dict[str, Any], user_id: str, is_update: bool = False ) -> tuple[Graph, Any]: @@ -159,33 +709,27 @@ async def save_agent_to_library( Returns: Tuple of (created Graph, LibraryAgent) """ - from backend.data.graph import get_graph_all_versions + # Populate user_id in AgentExecutorBlock nodes before conversion + _populate_agent_executor_user_ids(agent_json, user_id) graph = json_to_graph(agent_json) if is_update: - # For updates, keep the same graph ID but increment version - # and reassign node/link IDs to avoid conflicts if graph.id: existing_versions = await get_graph_all_versions(graph.id, user_id) if existing_versions: latest_version = max(v.version for v in existing_versions) graph.version = latest_version + 1 - # Reassign node IDs (but keep graph ID the same) _reassign_node_ids(graph) logger.info(f"Updating agent {graph.id} to version {graph.version}") else: - # For new agents, always generate a fresh UUID to avoid collisions graph.id = str(uuid.uuid4()) graph.version = 1 - # Reassign all node IDs as well _reassign_node_ids(graph) logger.info(f"Creating new agent with ID {graph.id}") - # Save to database created_graph = await create_graph(graph, user_id) - # Add to user's library (or update existing library agent) library_agents = await library_db.create_library_agent( graph=created_graph, user_id=user_id, @@ -197,25 +741,31 @@ async def save_agent_to_library( async def get_agent_as_json( - graph_id: str, user_id: str | None + agent_id: str, user_id: str | None ) -> dict[str, Any] | None: """Fetch an agent and convert to JSON format for editing. Args: - graph_id: Graph ID or library agent ID + agent_id: Graph ID or library agent ID user_id: User ID Returns: Agent as JSON dict or None if not found """ - from backend.data.graph import get_graph + graph = await get_graph(agent_id, version=None, user_id=user_id) + + if not graph and user_id: + try: + library_agent = await library_db.get_library_agent(agent_id, user_id) + graph = await get_graph( + library_agent.graph_id, version=None, user_id=user_id + ) + except NotFoundError: + pass - # Try to get the graph (version=None gets the active version) - graph = await get_graph(graph_id, version=None, user_id=user_id) if not graph: return None - # Convert to JSON format nodes = [] for node in graph.nodes: nodes.append( @@ -253,7 +803,9 @@ async def get_agent_as_json( async def generate_agent_patch( - update_request: str, current_agent: dict[str, Any] + update_request: str, + current_agent: dict[str, Any], + library_agents: list[AgentSummary] | None = None, ) -> dict[str, Any] | None: """Update an existing agent using natural language. @@ -265,13 +817,17 @@ async def generate_agent_patch( Args: update_request: Natural language description of changes current_agent: Current agent JSON + library_agents: User's library agents available for sub-agent composition Returns: - Updated agent JSON, clarifying questions dict, or None on error + Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...}, + error dict {"type": "error", ...}, or None on unexpected error Raises: AgentGeneratorNotConfiguredError: If the external service is not configured. """ _check_service_configured() logger.info("Calling external Agent Generator service for generate_agent_patch") - return await generate_agent_patch_external(update_request, current_agent) + return await generate_agent_patch_external( + update_request, current_agent, _to_dict_list(library_agents) + ) diff --git a/autogpt_platform/backend/backend/api/features/chat/tools/agent_generator/errors.py b/autogpt_platform/backend/backend/api/features/chat/tools/agent_generator/errors.py new file mode 100644 index 0000000000..282d8cf9aa --- /dev/null +++ b/autogpt_platform/backend/backend/api/features/chat/tools/agent_generator/errors.py @@ -0,0 +1,95 @@ +"""Error handling utilities for agent generator.""" + +import re + + +def _sanitize_error_details(details: str) -> str: + """Sanitize error details to remove sensitive information. + + Strips common patterns that could expose internal system info: + - File paths (Unix and Windows) + - Database connection strings + - URLs with credentials + - Stack trace internals + + Args: + details: Raw error details string + + Returns: + Sanitized error details safe for user display + """ + sanitized = re.sub( + r"/[a-zA-Z0-9_./\-]+\.(py|js|ts|json|yaml|yml)", "[path]", details + ) + sanitized = re.sub(r"[A-Z]:\\[a-zA-Z0-9_\\.\\-]+", "[path]", sanitized) + sanitized = re.sub( + r"(postgres|mysql|mongodb|redis)://[^\s]+", "[database_url]", sanitized + ) + sanitized = re.sub(r"https?://[^:]+:[^@]+@[^\s]+", "[url]", sanitized) + sanitized = re.sub(r", line \d+", "", sanitized) + sanitized = re.sub(r'File "[^"]+",?', "", sanitized) + + return sanitized.strip() + + +def get_user_message_for_error( + error_type: str, + operation: str = "process the request", + llm_parse_message: str | None = None, + validation_message: str | None = None, + error_details: str | None = None, +) -> str: + """Get a user-friendly error message based on error type. + + This function maps internal error types to user-friendly messages, + providing a consistent experience across different agent operations. + + Args: + error_type: The error type from the external service + (e.g., "llm_parse_error", "timeout", "rate_limit") + operation: Description of what operation failed, used in the default + message (e.g., "analyze the goal", "generate the agent") + llm_parse_message: Custom message for llm_parse_error type + validation_message: Custom message for validation_error type + error_details: Optional additional details about the error + + Returns: + User-friendly error message suitable for display to the user + """ + base_message = "" + + if error_type == "llm_parse_error": + base_message = ( + llm_parse_message + or "The AI had trouble processing this request. Please try again." + ) + elif error_type == "validation_error": + base_message = ( + validation_message + or "The generated agent failed validation. " + "This usually happens when the agent structure doesn't match " + "what the platform expects. Please try simplifying your goal " + "or breaking it into smaller parts." + ) + elif error_type == "patch_error": + base_message = ( + "Failed to apply the changes. The modification couldn't be " + "validated. Please try a different approach or simplify the change." + ) + elif error_type in ("timeout", "llm_timeout"): + base_message = ( + "The request took too long to process. This can happen with " + "complex agents. Please try again or simplify your goal." + ) + elif error_type in ("rate_limit", "llm_rate_limit"): + base_message = "The service is currently busy. Please try again in a moment." + else: + base_message = f"Failed to {operation}. Please try again." + + if error_details: + details = _sanitize_error_details(error_details) + if len(details) > 200: + details = details[:200] + "..." + base_message += f"\n\nTechnical details: {details}" + + return base_message diff --git a/autogpt_platform/backend/backend/api/features/chat/tools/agent_generator/service.py b/autogpt_platform/backend/backend/api/features/chat/tools/agent_generator/service.py index a4d2f1af15..c6242b0ba9 100644 --- a/autogpt_platform/backend/backend/api/features/chat/tools/agent_generator/service.py +++ b/autogpt_platform/backend/backend/api/features/chat/tools/agent_generator/service.py @@ -14,6 +14,70 @@ from backend.util.settings import Settings logger = logging.getLogger(__name__) + +def _create_error_response( + error_message: str, + error_type: str = "unknown", + details: dict[str, Any] | None = None, +) -> dict[str, Any]: + """Create a standardized error response dict. + + Args: + error_message: Human-readable error message + error_type: Machine-readable error type + details: Optional additional error details + + Returns: + Error dict with type="error" and error details + """ + response: dict[str, Any] = { + "type": "error", + "error": error_message, + "error_type": error_type, + } + if details: + response["details"] = details + return response + + +def _classify_http_error(e: httpx.HTTPStatusError) -> tuple[str, str]: + """Classify an HTTP error into error_type and message. + + Args: + e: The HTTP status error + + Returns: + Tuple of (error_type, error_message) + """ + status = e.response.status_code + if status == 429: + return "rate_limit", f"Agent Generator rate limited: {e}" + elif status == 503: + return "service_unavailable", f"Agent Generator unavailable: {e}" + elif status == 504 or status == 408: + return "timeout", f"Agent Generator timed out: {e}" + else: + return "http_error", f"HTTP error calling Agent Generator: {e}" + + +def _classify_request_error(e: httpx.RequestError) -> tuple[str, str]: + """Classify a request error into error_type and message. + + Args: + e: The request error + + Returns: + Tuple of (error_type, error_message) + """ + error_str = str(e).lower() + if "timeout" in error_str or "timed out" in error_str: + return "timeout", f"Agent Generator request timed out: {e}" + elif "connect" in error_str: + return "connection_error", f"Could not connect to Agent Generator: {e}" + else: + return "request_error", f"Request error calling Agent Generator: {e}" + + _client: httpx.AsyncClient | None = None _settings: Settings | None = None @@ -53,13 +117,16 @@ def _get_client() -> httpx.AsyncClient: async def decompose_goal_external( - description: str, context: str = "" + description: str, + context: str = "", + library_agents: list[dict[str, Any]] | None = None, ) -> dict[str, Any] | None: """Call the external service to decompose a goal. Args: description: Natural language goal description context: Additional context (e.g., answers to previous questions) + library_agents: User's library agents available for sub-agent composition Returns: Dict with either: @@ -67,7 +134,8 @@ async def decompose_goal_external( - {"type": "instructions", "steps": [...]} - {"type": "unachievable_goal", ...} - {"type": "vague_goal", ...} - Or None on error + - {"type": "error", "error": "...", "error_type": "..."} on error + Or None on unexpected error """ client = _get_client() @@ -76,6 +144,8 @@ async def decompose_goal_external( if context: # The external service uses user_instruction for additional context payload["user_instruction"] = context + if library_agents: + payload["library_agents"] = library_agents try: response = await client.post("/api/decompose-description", json=payload) @@ -83,8 +153,13 @@ async def decompose_goal_external( data = response.json() if not data.get("success"): - logger.error(f"External service returned error: {data.get('error')}") - return None + error_msg = data.get("error", "Unknown error from Agent Generator") + error_type = data.get("error_type", "unknown") + logger.error( + f"Agent Generator decomposition failed: {error_msg} " + f"(type: {error_type})" + ) + return _create_error_response(error_msg, error_type) # Map the response to the expected format response_type = data.get("type") @@ -106,88 +181,120 @@ async def decompose_goal_external( "type": "vague_goal", "suggested_goal": data.get("suggested_goal"), } + elif response_type == "error": + # Pass through error from the service + return _create_error_response( + data.get("error", "Unknown error"), + data.get("error_type", "unknown"), + ) else: logger.error( f"Unknown response type from external service: {response_type}" ) - return None + return _create_error_response( + f"Unknown response type from Agent Generator: {response_type}", + "invalid_response", + ) except httpx.HTTPStatusError as e: - logger.error(f"HTTP error calling external agent generator: {e}") - return None + error_type, error_msg = _classify_http_error(e) + logger.error(error_msg) + return _create_error_response(error_msg, error_type) except httpx.RequestError as e: - logger.error(f"Request error calling external agent generator: {e}") - return None + error_type, error_msg = _classify_request_error(e) + logger.error(error_msg) + return _create_error_response(error_msg, error_type) except Exception as e: - logger.error(f"Unexpected error calling external agent generator: {e}") - return None + error_msg = f"Unexpected error calling Agent Generator: {e}" + logger.error(error_msg) + return _create_error_response(error_msg, "unexpected_error") async def generate_agent_external( - instructions: dict[str, Any] + instructions: dict[str, Any], + library_agents: list[dict[str, Any]] | None = None, ) -> dict[str, Any] | None: """Call the external service to generate an agent from instructions. Args: instructions: Structured instructions from decompose_goal + library_agents: User's library agents available for sub-agent composition Returns: - Agent JSON dict or None on error + Agent JSON dict on success, or error dict {"type": "error", ...} on error """ client = _get_client() + payload: dict[str, Any] = {"instructions": instructions} + if library_agents: + payload["library_agents"] = library_agents + try: - response = await client.post( - "/api/generate-agent", json={"instructions": instructions} - ) + response = await client.post("/api/generate-agent", json=payload) response.raise_for_status() data = response.json() if not data.get("success"): - logger.error(f"External service returned error: {data.get('error')}") - return None + error_msg = data.get("error", "Unknown error from Agent Generator") + error_type = data.get("error_type", "unknown") + logger.error( + f"Agent Generator generation failed: {error_msg} (type: {error_type})" + ) + return _create_error_response(error_msg, error_type) return data.get("agent_json") except httpx.HTTPStatusError as e: - logger.error(f"HTTP error calling external agent generator: {e}") - return None + error_type, error_msg = _classify_http_error(e) + logger.error(error_msg) + return _create_error_response(error_msg, error_type) except httpx.RequestError as e: - logger.error(f"Request error calling external agent generator: {e}") - return None + error_type, error_msg = _classify_request_error(e) + logger.error(error_msg) + return _create_error_response(error_msg, error_type) except Exception as e: - logger.error(f"Unexpected error calling external agent generator: {e}") - return None + error_msg = f"Unexpected error calling Agent Generator: {e}" + logger.error(error_msg) + return _create_error_response(error_msg, "unexpected_error") async def generate_agent_patch_external( - update_request: str, current_agent: dict[str, Any] + update_request: str, + current_agent: dict[str, Any], + library_agents: list[dict[str, Any]] | None = None, ) -> dict[str, Any] | None: """Call the external service to generate a patch for an existing agent. Args: update_request: Natural language description of changes current_agent: Current agent JSON + library_agents: User's library agents available for sub-agent composition Returns: - Updated agent JSON, clarifying questions dict, or None on error + Updated agent JSON, clarifying questions dict, or error dict on error """ client = _get_client() + payload: dict[str, Any] = { + "update_request": update_request, + "current_agent_json": current_agent, + } + if library_agents: + payload["library_agents"] = library_agents + try: - response = await client.post( - "/api/update-agent", - json={ - "update_request": update_request, - "current_agent_json": current_agent, - }, - ) + response = await client.post("/api/update-agent", json=payload) response.raise_for_status() data = response.json() if not data.get("success"): - logger.error(f"External service returned error: {data.get('error')}") - return None + error_msg = data.get("error", "Unknown error from Agent Generator") + error_type = data.get("error_type", "unknown") + logger.error( + f"Agent Generator patch generation failed: {error_msg} " + f"(type: {error_type})" + ) + return _create_error_response(error_msg, error_type) # Check if it's clarifying questions if data.get("type") == "clarifying_questions": @@ -196,18 +303,28 @@ async def generate_agent_patch_external( "questions": data.get("questions", []), } + # Check if it's an error passed through + if data.get("type") == "error": + return _create_error_response( + data.get("error", "Unknown error"), + data.get("error_type", "unknown"), + ) + # Otherwise return the updated agent JSON return data.get("agent_json") except httpx.HTTPStatusError as e: - logger.error(f"HTTP error calling external agent generator: {e}") - return None + error_type, error_msg = _classify_http_error(e) + logger.error(error_msg) + return _create_error_response(error_msg, error_type) except httpx.RequestError as e: - logger.error(f"Request error calling external agent generator: {e}") - return None + error_type, error_msg = _classify_request_error(e) + logger.error(error_msg) + return _create_error_response(error_msg, error_type) except Exception as e: - logger.error(f"Unexpected error calling external agent generator: {e}") - return None + error_msg = f"Unexpected error calling Agent Generator: {e}" + logger.error(error_msg) + return _create_error_response(error_msg, "unexpected_error") async def get_blocks_external() -> list[dict[str, Any]] | None: diff --git a/autogpt_platform/backend/backend/api/features/chat/tools/agent_search.py b/autogpt_platform/backend/backend/api/features/chat/tools/agent_search.py index 5fa74ba04e..62d59c470e 100644 --- a/autogpt_platform/backend/backend/api/features/chat/tools/agent_search.py +++ b/autogpt_platform/backend/backend/api/features/chat/tools/agent_search.py @@ -1,6 +1,7 @@ """Shared agent search functionality for find_agent and find_library_agent tools.""" import logging +import re from typing import Literal from backend.api.features.library import db as library_db @@ -19,6 +20,85 @@ logger = logging.getLogger(__name__) SearchSource = Literal["marketplace", "library"] +_UUID_PATTERN = re.compile( + r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$", + re.IGNORECASE, +) + + +def _is_uuid(text: str) -> bool: + """Check if text is a valid UUID v4.""" + return bool(_UUID_PATTERN.match(text.strip())) + + +async def _get_library_agent_by_id(user_id: str, agent_id: str) -> AgentInfo | None: + """Fetch a library agent by ID (library agent ID or graph_id). + + Tries multiple lookup strategies: + 1. First by graph_id (AgentGraph primary key) + 2. Then by library agent ID (LibraryAgent primary key) + + Args: + user_id: The user ID + agent_id: The ID to look up (can be graph_id or library agent ID) + + Returns: + AgentInfo if found, None otherwise + """ + try: + agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id) + if agent: + logger.debug(f"Found library agent by graph_id: {agent.name}") + return AgentInfo( + id=agent.id, + name=agent.name, + description=agent.description or "", + source="library", + in_library=True, + creator=agent.creator_name, + status=agent.status.value, + can_access_graph=agent.can_access_graph, + has_external_trigger=agent.has_external_trigger, + new_output=agent.new_output, + graph_id=agent.graph_id, + ) + except DatabaseError: + raise + except Exception as e: + logger.warning( + f"Could not fetch library agent by graph_id {agent_id}: {e}", + exc_info=True, + ) + + try: + agent = await library_db.get_library_agent(agent_id, user_id) + if agent: + logger.debug(f"Found library agent by library_id: {agent.name}") + return AgentInfo( + id=agent.id, + name=agent.name, + description=agent.description or "", + source="library", + in_library=True, + creator=agent.creator_name, + status=agent.status.value, + can_access_graph=agent.can_access_graph, + has_external_trigger=agent.has_external_trigger, + new_output=agent.new_output, + graph_id=agent.graph_id, + ) + except NotFoundError: + logger.debug(f"Library agent not found by library_id: {agent_id}") + except DatabaseError: + raise + except Exception as e: + logger.warning( + f"Could not fetch library agent by library_id {agent_id}: {e}", + exc_info=True, + ) + + return None + async def search_agents( query: str, @@ -69,29 +149,37 @@ async def search_agents( is_featured=False, ) ) - else: # library - logger.info(f"Searching user library for: {query}") - results = await library_db.list_library_agents( - user_id=user_id, # type: ignore[arg-type] - search_term=query, - page_size=10, - ) - for agent in results.agents: - agents.append( - AgentInfo( - id=agent.id, - name=agent.name, - description=agent.description or "", - source="library", - in_library=True, - creator=agent.creator_name, - status=agent.status.value, - can_access_graph=agent.can_access_graph, - has_external_trigger=agent.has_external_trigger, - new_output=agent.new_output, - graph_id=agent.graph_id, - ) + else: + if _is_uuid(query): + logger.info(f"Query looks like UUID, trying direct lookup: {query}") + agent = await _get_library_agent_by_id(user_id, query) # type: ignore[arg-type] + if agent: + agents.append(agent) + logger.info(f"Found agent by direct ID lookup: {agent.name}") + + if not agents: + logger.info(f"Searching user library for: {query}") + results = await library_db.list_library_agents( + user_id=user_id, # type: ignore[arg-type] + search_term=query, + page_size=10, ) + for agent in results.agents: + agents.append( + AgentInfo( + id=agent.id, + name=agent.name, + description=agent.description or "", + source="library", + in_library=True, + creator=agent.creator_name, + status=agent.status.value, + can_access_graph=agent.can_access_graph, + has_external_trigger=agent.has_external_trigger, + new_output=agent.new_output, + graph_id=agent.graph_id, + ) + ) logger.info(f"Found {len(agents)} agents in {source}") except NotFoundError: pass diff --git a/autogpt_platform/backend/backend/api/features/chat/tools/base.py b/autogpt_platform/backend/backend/api/features/chat/tools/base.py index 1dc40c18c7..809e06632b 100644 --- a/autogpt_platform/backend/backend/api/features/chat/tools/base.py +++ b/autogpt_platform/backend/backend/api/features/chat/tools/base.py @@ -36,6 +36,16 @@ class BaseTool: """Whether this tool requires authentication.""" return False + @property + def is_long_running(self) -> bool: + """Whether this tool is long-running and should execute in background. + + Long-running tools (like agent generation) are executed via background + tasks to survive SSE disconnections. The result is persisted to chat + history and visible when the user refreshes. + """ + return False + def as_openai_tool(self) -> ChatCompletionToolParam: """Convert to OpenAI tool format.""" return ChatCompletionToolParam( diff --git a/autogpt_platform/backend/backend/api/features/chat/tools/create_agent.py b/autogpt_platform/backend/backend/api/features/chat/tools/create_agent.py index 87ca5ebca7..adb2c78fce 100644 --- a/autogpt_platform/backend/backend/api/features/chat/tools/create_agent.py +++ b/autogpt_platform/backend/backend/api/features/chat/tools/create_agent.py @@ -8,7 +8,10 @@ from backend.api.features.chat.model import ChatSession from .agent_generator import ( AgentGeneratorNotConfiguredError, decompose_goal, + enrich_library_agents_from_steps, generate_agent, + get_all_relevant_agents_for_generation, + get_user_message_for_error, save_agent_to_library, ) from .base import BaseTool @@ -42,6 +45,10 @@ class CreateAgentTool(BaseTool): def requires_auth(self) -> bool: return True + @property + def is_long_running(self) -> bool: + return True + @property def parameters(self) -> dict[str, Any]: return { @@ -98,9 +105,24 @@ class CreateAgentTool(BaseTool): session_id=session_id, ) - # Step 1: Decompose goal into steps + library_agents = None + if user_id: + try: + library_agents = await get_all_relevant_agents_for_generation( + user_id=user_id, + search_query=description, + include_marketplace=True, + ) + logger.debug( + f"Found {len(library_agents)} relevant agents for sub-agent composition" + ) + except Exception as e: + logger.warning(f"Failed to fetch library agents: {e}") + try: - decomposition_result = await decompose_goal(description, context) + decomposition_result = await decompose_goal( + description, context, library_agents + ) except AgentGeneratorNotConfiguredError: return ErrorResponse( message=( @@ -113,15 +135,31 @@ class CreateAgentTool(BaseTool): if decomposition_result is None: return ErrorResponse( - message="Failed to analyze the goal. The agent generation service may be unavailable or timed out. Please try again.", + message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.", error="decomposition_failed", - details={ - "description": description[:100] - }, # Include context for debugging + details={"description": description[:100]}, + session_id=session_id, + ) + + if decomposition_result.get("type") == "error": + error_msg = decomposition_result.get("error", "Unknown error") + error_type = decomposition_result.get("error_type", "unknown") + user_message = get_user_message_for_error( + error_type, + operation="analyze the goal", + llm_parse_message="The AI had trouble understanding this request. Please try rephrasing your goal.", + ) + return ErrorResponse( + message=user_message, + error=f"decomposition_failed:{error_type}", + details={ + "description": description[:100], + "service_error": error_msg, + "error_type": error_type, + }, session_id=session_id, ) - # Check if LLM returned clarifying questions if decomposition_result.get("type") == "clarifying_questions": questions = decomposition_result.get("questions", []) return ClarificationNeededResponse( @@ -140,7 +178,6 @@ class CreateAgentTool(BaseTool): session_id=session_id, ) - # Check for unachievable/vague goals if decomposition_result.get("type") == "unachievable_goal": suggested = decomposition_result.get("suggested_goal", "") reason = decomposition_result.get("reason", "") @@ -167,9 +204,22 @@ class CreateAgentTool(BaseTool): session_id=session_id, ) - # Step 2: Generate agent JSON (external service handles fixing and validation) + if user_id and library_agents is not None: + try: + library_agents = await enrich_library_agents_from_steps( + user_id=user_id, + decomposition_result=decomposition_result, + existing_agents=library_agents, + include_marketplace=True, + ) + logger.debug( + f"After enrichment: {len(library_agents)} total agents for sub-agent composition" + ) + except Exception as e: + logger.warning(f"Failed to enrich library agents from steps: {e}") + try: - agent_json = await generate_agent(decomposition_result) + agent_json = await generate_agent(decomposition_result, library_agents) except AgentGeneratorNotConfiguredError: return ErrorResponse( message=( @@ -182,11 +232,34 @@ class CreateAgentTool(BaseTool): if agent_json is None: return ErrorResponse( - message="Failed to generate the agent. The agent generation service may be unavailable or timed out. Please try again.", + message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.", error="generation_failed", + details={"description": description[:100]}, + session_id=session_id, + ) + + if isinstance(agent_json, dict) and agent_json.get("type") == "error": + error_msg = agent_json.get("error", "Unknown error") + error_type = agent_json.get("error_type", "unknown") + user_message = get_user_message_for_error( + error_type, + operation="generate the agent", + llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.", + validation_message=( + "I wasn't able to create a valid agent for this request. " + "The generated workflow had some structural issues. " + "Please try simplifying your goal or breaking it into smaller steps." + ), + error_details=error_msg, + ) + return ErrorResponse( + message=user_message, + error=f"generation_failed:{error_type}", details={ - "description": description[:100] - }, # Include context for debugging + "description": description[:100], + "service_error": error_msg, + "error_type": error_type, + }, session_id=session_id, ) @@ -195,7 +268,6 @@ class CreateAgentTool(BaseTool): node_count = len(agent_json.get("nodes", [])) link_count = len(agent_json.get("links", [])) - # Step 3: Preview or save if not save: return AgentPreviewResponse( message=( @@ -210,7 +282,6 @@ class CreateAgentTool(BaseTool): session_id=session_id, ) - # Save to library if not user_id: return ErrorResponse( message="You must be logged in to save agents.", @@ -228,7 +299,7 @@ class CreateAgentTool(BaseTool): agent_id=created_graph.id, agent_name=created_graph.name, library_agent_id=library_agent.id, - library_agent_link=f"/library/{library_agent.id}", + library_agent_link=f"/library/agents/{library_agent.id}", agent_page_link=f"/build?flowID={created_graph.id}", session_id=session_id, ) diff --git a/autogpt_platform/backend/backend/api/features/chat/tools/edit_agent.py b/autogpt_platform/backend/backend/api/features/chat/tools/edit_agent.py index d65b050f06..2c2c48226b 100644 --- a/autogpt_platform/backend/backend/api/features/chat/tools/edit_agent.py +++ b/autogpt_platform/backend/backend/api/features/chat/tools/edit_agent.py @@ -9,6 +9,8 @@ from .agent_generator import ( AgentGeneratorNotConfiguredError, generate_agent_patch, get_agent_as_json, + get_all_relevant_agents_for_generation, + get_user_message_for_error, save_agent_to_library, ) from .base import BaseTool @@ -42,6 +44,10 @@ class EditAgentTool(BaseTool): def requires_auth(self) -> bool: return True + @property + def is_long_running(self) -> bool: + return True + @property def parameters(self) -> dict[str, Any]: return { @@ -112,7 +118,6 @@ class EditAgentTool(BaseTool): session_id=session_id, ) - # Step 1: Fetch current agent current_agent = await get_agent_as_json(agent_id, user_id) if current_agent is None: @@ -122,14 +127,30 @@ class EditAgentTool(BaseTool): session_id=session_id, ) - # Build the update request with context + library_agents = None + if user_id: + try: + graph_id = current_agent.get("id") + library_agents = await get_all_relevant_agents_for_generation( + user_id=user_id, + search_query=changes, + exclude_graph_id=graph_id, + include_marketplace=True, + ) + logger.debug( + f"Found {len(library_agents)} relevant agents for sub-agent composition" + ) + except Exception as e: + logger.warning(f"Failed to fetch library agents: {e}") + update_request = changes if context: update_request = f"{changes}\n\nAdditional context:\n{context}" - # Step 2: Generate updated agent (external service handles fixing and validation) try: - result = await generate_agent_patch(update_request, current_agent) + result = await generate_agent_patch( + update_request, current_agent, library_agents + ) except AgentGeneratorNotConfiguredError: return ErrorResponse( message=( @@ -148,7 +169,28 @@ class EditAgentTool(BaseTool): session_id=session_id, ) - # Check if LLM returned clarifying questions + if isinstance(result, dict) and result.get("type") == "error": + error_msg = result.get("error", "Unknown error") + error_type = result.get("error_type", "unknown") + user_message = get_user_message_for_error( + error_type, + operation="generate the changes", + llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.", + validation_message="The generated changes failed validation. Please try rephrasing your request.", + error_details=error_msg, + ) + return ErrorResponse( + message=user_message, + error=f"update_generation_failed:{error_type}", + details={ + "agent_id": agent_id, + "changes": changes[:100], + "service_error": error_msg, + "error_type": error_type, + }, + session_id=session_id, + ) + if result.get("type") == "clarifying_questions": questions = result.get("questions", []) return ClarificationNeededResponse( @@ -167,7 +209,6 @@ class EditAgentTool(BaseTool): session_id=session_id, ) - # Result is the updated agent JSON updated_agent = result agent_name = updated_agent.get("name", "Updated Agent") @@ -175,7 +216,6 @@ class EditAgentTool(BaseTool): node_count = len(updated_agent.get("nodes", [])) link_count = len(updated_agent.get("links", [])) - # Step 3: Preview or save if not save: return AgentPreviewResponse( message=( @@ -191,7 +231,6 @@ class EditAgentTool(BaseTool): session_id=session_id, ) - # Save to library (creates a new version) if not user_id: return ErrorResponse( message="You must be logged in to save agents.", @@ -209,7 +248,7 @@ class EditAgentTool(BaseTool): agent_id=created_graph.id, agent_name=created_graph.name, library_agent_id=library_agent.id, - library_agent_link=f"/library/{library_agent.id}", + library_agent_link=f"/library/agents/{library_agent.id}", agent_page_link=f"/build?flowID={created_graph.id}", session_id=session_id, ) diff --git a/autogpt_platform/backend/backend/api/features/chat/tools/models.py b/autogpt_platform/backend/backend/api/features/chat/tools/models.py index 1736ddb9a8..49b233784e 100644 --- a/autogpt_platform/backend/backend/api/features/chat/tools/models.py +++ b/autogpt_platform/backend/backend/api/features/chat/tools/models.py @@ -28,6 +28,16 @@ class ResponseType(str, Enum): BLOCK_OUTPUT = "block_output" DOC_SEARCH_RESULTS = "doc_search_results" DOC_PAGE = "doc_page" + # Workspace response types + WORKSPACE_FILE_LIST = "workspace_file_list" + WORKSPACE_FILE_CONTENT = "workspace_file_content" + WORKSPACE_FILE_METADATA = "workspace_file_metadata" + WORKSPACE_FILE_WRITTEN = "workspace_file_written" + WORKSPACE_FILE_DELETED = "workspace_file_deleted" + # Long-running operation types + OPERATION_STARTED = "operation_started" + OPERATION_PENDING = "operation_pending" + OPERATION_IN_PROGRESS = "operation_in_progress" # Base response model @@ -334,3 +344,39 @@ class BlockOutputResponse(ToolResponseBase): block_name: str outputs: dict[str, list[Any]] success: bool = True + + +# Long-running operation models +class OperationStartedResponse(ToolResponseBase): + """Response when a long-running operation has been started in the background. + + This is returned immediately to the client while the operation continues + to execute. The user can close the tab and check back later. + """ + + type: ResponseType = ResponseType.OPERATION_STARTED + operation_id: str + tool_name: str + + +class OperationPendingResponse(ToolResponseBase): + """Response stored in chat history while a long-running operation is executing. + + This is persisted to the database so users see a pending state when they + refresh before the operation completes. + """ + + type: ResponseType = ResponseType.OPERATION_PENDING + operation_id: str + tool_name: str + + +class OperationInProgressResponse(ToolResponseBase): + """Response when an operation is already in progress. + + Returned for idempotency when the same tool_call_id is requested again + while the background task is still running. + """ + + type: ResponseType = ResponseType.OPERATION_IN_PROGRESS + tool_call_id: str diff --git a/autogpt_platform/backend/backend/api/features/chat/tools/run_block.py b/autogpt_platform/backend/backend/api/features/chat/tools/run_block.py index 3f57236564..a59082b399 100644 --- a/autogpt_platform/backend/backend/api/features/chat/tools/run_block.py +++ b/autogpt_platform/backend/backend/api/features/chat/tools/run_block.py @@ -1,6 +1,7 @@ """Tool for executing blocks directly.""" import logging +import uuid from collections import defaultdict from typing import Any @@ -8,6 +9,7 @@ from backend.api.features.chat.model import ChatSession from backend.data.block import get_block from backend.data.execution import ExecutionContext from backend.data.model import CredentialsMetaInput +from backend.data.workspace import get_or_create_workspace from backend.integrations.creds_manager import IntegrationCredentialsManager from backend.util.exceptions import BlockError @@ -223,11 +225,48 @@ class RunBlockTool(BaseTool): ) try: - # Fetch actual credentials and prepare kwargs for block execution - # Create execution context with defaults (blocks may require it) + # Get or create user's workspace for CoPilot file operations + workspace = await get_or_create_workspace(user_id) + + # Generate synthetic IDs for CoPilot context + # Each chat session is treated as its own agent with one continuous run + # This means: + # - graph_id (agent) = session (memories scoped to session when limit_to_agent=True) + # - graph_exec_id (run) = session (memories scoped to session when limit_to_run=True) + # - node_exec_id = unique per block execution + synthetic_graph_id = f"copilot-session-{session.session_id}" + synthetic_graph_exec_id = f"copilot-session-{session.session_id}" + synthetic_node_id = f"copilot-node-{block_id}" + synthetic_node_exec_id = ( + f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}" + ) + + # Create unified execution context with all required fields + execution_context = ExecutionContext( + # Execution identity + user_id=user_id, + graph_id=synthetic_graph_id, + graph_exec_id=synthetic_graph_exec_id, + graph_version=1, # Versions are 1-indexed + node_id=synthetic_node_id, + node_exec_id=synthetic_node_exec_id, + # Workspace with session scoping + workspace_id=workspace.id, + session_id=session.session_id, + ) + + # Prepare kwargs for block execution + # Keep individual kwargs for backwards compatibility with existing blocks exec_kwargs: dict[str, Any] = { "user_id": user_id, - "execution_context": ExecutionContext(), + "execution_context": execution_context, + # Legacy: individual kwargs for blocks not yet using execution_context + "workspace_id": workspace.id, + "graph_exec_id": synthetic_graph_exec_id, + "node_exec_id": synthetic_node_exec_id, + "node_id": synthetic_node_id, + "graph_version": 1, # Versions are 1-indexed + "graph_id": synthetic_graph_id, } for field_name, cred_meta in matched_credentials.items(): diff --git a/autogpt_platform/backend/backend/api/features/chat/tools/utils.py b/autogpt_platform/backend/backend/api/features/chat/tools/utils.py index a2ac91dc65..0046d0b249 100644 --- a/autogpt_platform/backend/backend/api/features/chat/tools/utils.py +++ b/autogpt_platform/backend/backend/api/features/chat/tools/utils.py @@ -8,7 +8,7 @@ from backend.api.features.library import model as library_model from backend.api.features.store import db as store_db from backend.data import graph as graph_db from backend.data.graph import GraphModel -from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput +from backend.data.model import Credentials, CredentialsFieldInfo, CredentialsMetaInput from backend.integrations.creds_manager import IntegrationCredentialsManager from backend.util.exceptions import NotFoundError @@ -266,13 +266,14 @@ async def match_user_credentials_to_graph( credential_requirements, _node_fields, ) in aggregated_creds.items(): - # Find first matching credential by provider and type + # Find first matching credential by provider, type, and scopes matching_cred = next( ( cred for cred in available_creds if cred.provider in credential_requirements.provider and cred.type in credential_requirements.supported_types + and _credential_has_required_scopes(cred, credential_requirements) ), None, ) @@ -296,10 +297,17 @@ async def match_user_credentials_to_graph( f"{credential_field_name} (validation failed: {e})" ) else: + # Build a helpful error message including scope requirements + error_parts = [ + f"provider in {list(credential_requirements.provider)}", + f"type in {list(credential_requirements.supported_types)}", + ] + if credential_requirements.required_scopes: + error_parts.append( + f"scopes including {list(credential_requirements.required_scopes)}" + ) missing_creds.append( - f"{credential_field_name} " - f"(requires provider in {list(credential_requirements.provider)}, " - f"type in {list(credential_requirements.supported_types)})" + f"{credential_field_name} (requires {', '.join(error_parts)})" ) logger.info( @@ -309,6 +317,28 @@ async def match_user_credentials_to_graph( return graph_credentials_inputs, missing_creds +def _credential_has_required_scopes( + credential: Credentials, + requirements: CredentialsFieldInfo, +) -> bool: + """ + Check if a credential has all the scopes required by the block. + + For OAuth2 credentials, verifies that the credential's scopes are a superset + of the required scopes. For other credential types, returns True (no scope check). + """ + # Only OAuth2 credentials have scopes to check + if credential.type != "oauth2": + return True + + # If no scopes are required, any credential matches + if not requirements.required_scopes: + return True + + # Check that credential scopes are a superset of required scopes + return set(credential.scopes).issuperset(requirements.required_scopes) + + async def check_user_has_required_credentials( user_id: str, required_credentials: list[CredentialsMetaInput], diff --git a/autogpt_platform/backend/backend/api/features/chat/tools/workspace_files.py b/autogpt_platform/backend/backend/api/features/chat/tools/workspace_files.py new file mode 100644 index 0000000000..03532c8fee --- /dev/null +++ b/autogpt_platform/backend/backend/api/features/chat/tools/workspace_files.py @@ -0,0 +1,620 @@ +"""CoPilot tools for workspace file operations.""" + +import base64 +import logging +from typing import Any, Optional + +from pydantic import BaseModel + +from backend.api.features.chat.model import ChatSession +from backend.data.workspace import get_or_create_workspace +from backend.util.settings import Config +from backend.util.virus_scanner import scan_content_safe +from backend.util.workspace import WorkspaceManager + +from .base import BaseTool +from .models import ErrorResponse, ResponseType, ToolResponseBase + +logger = logging.getLogger(__name__) + + +class WorkspaceFileInfoData(BaseModel): + """Data model for workspace file information (not a response itself).""" + + file_id: str + name: str + path: str + mime_type: str + size_bytes: int + + +class WorkspaceFileListResponse(ToolResponseBase): + """Response containing list of workspace files.""" + + type: ResponseType = ResponseType.WORKSPACE_FILE_LIST + files: list[WorkspaceFileInfoData] + total_count: int + + +class WorkspaceFileContentResponse(ToolResponseBase): + """Response containing workspace file content (legacy, for small text files).""" + + type: ResponseType = ResponseType.WORKSPACE_FILE_CONTENT + file_id: str + name: str + path: str + mime_type: str + content_base64: str + + +class WorkspaceFileMetadataResponse(ToolResponseBase): + """Response containing workspace file metadata and download URL (prevents context bloat).""" + + type: ResponseType = ResponseType.WORKSPACE_FILE_METADATA + file_id: str + name: str + path: str + mime_type: str + size_bytes: int + download_url: str + preview: str | None = None # First 500 chars for text files + + +class WorkspaceWriteResponse(ToolResponseBase): + """Response after writing a file to workspace.""" + + type: ResponseType = ResponseType.WORKSPACE_FILE_WRITTEN + file_id: str + name: str + path: str + size_bytes: int + + +class WorkspaceDeleteResponse(ToolResponseBase): + """Response after deleting a file from workspace.""" + + type: ResponseType = ResponseType.WORKSPACE_FILE_DELETED + file_id: str + success: bool + + +class ListWorkspaceFilesTool(BaseTool): + """Tool for listing files in user's workspace.""" + + @property + def name(self) -> str: + return "list_workspace_files" + + @property + def description(self) -> str: + return ( + "List files in the user's workspace. " + "Returns file names, paths, sizes, and metadata. " + "Optionally filter by path prefix." + ) + + @property + def parameters(self) -> dict[str, Any]: + return { + "type": "object", + "properties": { + "path_prefix": { + "type": "string", + "description": ( + "Optional path prefix to filter files " + "(e.g., '/documents/' to list only files in documents folder). " + "By default, only files from the current session are listed." + ), + }, + "limit": { + "type": "integer", + "description": "Maximum number of files to return (default 50, max 100)", + "minimum": 1, + "maximum": 100, + }, + "include_all_sessions": { + "type": "boolean", + "description": ( + "If true, list files from all sessions. " + "Default is false (only current session's files)." + ), + }, + }, + "required": [], + } + + @property + def requires_auth(self) -> bool: + return True + + async def _execute( + self, + user_id: str | None, + session: ChatSession, + **kwargs, + ) -> ToolResponseBase: + session_id = session.session_id + + if not user_id: + return ErrorResponse( + message="Authentication required", + session_id=session_id, + ) + + path_prefix: Optional[str] = kwargs.get("path_prefix") + limit = min(kwargs.get("limit", 50), 100) + include_all_sessions: bool = kwargs.get("include_all_sessions", False) + + try: + workspace = await get_or_create_workspace(user_id) + # Pass session_id for session-scoped file access + manager = WorkspaceManager(user_id, workspace.id, session_id) + + files = await manager.list_files( + path=path_prefix, + limit=limit, + include_all_sessions=include_all_sessions, + ) + total = await manager.get_file_count( + path=path_prefix, + include_all_sessions=include_all_sessions, + ) + + file_infos = [ + WorkspaceFileInfoData( + file_id=f.id, + name=f.name, + path=f.path, + mime_type=f.mimeType, + size_bytes=f.sizeBytes, + ) + for f in files + ] + + scope_msg = "all sessions" if include_all_sessions else "current session" + return WorkspaceFileListResponse( + files=file_infos, + total_count=total, + message=f"Found {len(files)} files in workspace ({scope_msg})", + session_id=session_id, + ) + + except Exception as e: + logger.error(f"Error listing workspace files: {e}", exc_info=True) + return ErrorResponse( + message=f"Failed to list workspace files: {str(e)}", + error=str(e), + session_id=session_id, + ) + + +class ReadWorkspaceFileTool(BaseTool): + """Tool for reading file content from workspace.""" + + # Size threshold for returning full content vs metadata+URL + # Files larger than this return metadata with download URL to prevent context bloat + MAX_INLINE_SIZE_BYTES = 32 * 1024 # 32KB + # Preview size for text files + PREVIEW_SIZE = 500 + + @property + def name(self) -> str: + return "read_workspace_file" + + @property + def description(self) -> str: + return ( + "Read a file from the user's workspace. " + "Specify either file_id or path to identify the file. " + "For small text files, returns content directly. " + "For large or binary files, returns metadata and a download URL. " + "Paths are scoped to the current session by default. " + "Use /sessions//... for cross-session access." + ) + + @property + def parameters(self) -> dict[str, Any]: + return { + "type": "object", + "properties": { + "file_id": { + "type": "string", + "description": "The file's unique ID (from list_workspace_files)", + }, + "path": { + "type": "string", + "description": ( + "The virtual file path (e.g., '/documents/report.pdf'). " + "Scoped to current session by default." + ), + }, + "force_download_url": { + "type": "boolean", + "description": ( + "If true, always return metadata+URL instead of inline content. " + "Default is false (auto-selects based on file size/type)." + ), + }, + }, + "required": [], # At least one must be provided + } + + @property + def requires_auth(self) -> bool: + return True + + def _is_text_mime_type(self, mime_type: str) -> bool: + """Check if the MIME type is a text-based type.""" + text_types = [ + "text/", + "application/json", + "application/xml", + "application/javascript", + "application/x-python", + "application/x-sh", + ] + return any(mime_type.startswith(t) for t in text_types) + + async def _execute( + self, + user_id: str | None, + session: ChatSession, + **kwargs, + ) -> ToolResponseBase: + session_id = session.session_id + + if not user_id: + return ErrorResponse( + message="Authentication required", + session_id=session_id, + ) + + file_id: Optional[str] = kwargs.get("file_id") + path: Optional[str] = kwargs.get("path") + force_download_url: bool = kwargs.get("force_download_url", False) + + if not file_id and not path: + return ErrorResponse( + message="Please provide either file_id or path", + session_id=session_id, + ) + + try: + workspace = await get_or_create_workspace(user_id) + # Pass session_id for session-scoped file access + manager = WorkspaceManager(user_id, workspace.id, session_id) + + # Get file info + if file_id: + file_info = await manager.get_file_info(file_id) + if file_info is None: + return ErrorResponse( + message=f"File not found: {file_id}", + session_id=session_id, + ) + target_file_id = file_id + else: + # path is guaranteed to be non-None here due to the check above + assert path is not None + file_info = await manager.get_file_info_by_path(path) + if file_info is None: + return ErrorResponse( + message=f"File not found at path: {path}", + session_id=session_id, + ) + target_file_id = file_info.id + + # Decide whether to return inline content or metadata+URL + is_small_file = file_info.sizeBytes <= self.MAX_INLINE_SIZE_BYTES + is_text_file = self._is_text_mime_type(file_info.mimeType) + + # Return inline content for small text files (unless force_download_url) + if is_small_file and is_text_file and not force_download_url: + content = await manager.read_file_by_id(target_file_id) + content_b64 = base64.b64encode(content).decode("utf-8") + + return WorkspaceFileContentResponse( + file_id=file_info.id, + name=file_info.name, + path=file_info.path, + mime_type=file_info.mimeType, + content_base64=content_b64, + message=f"Successfully read file: {file_info.name}", + session_id=session_id, + ) + + # Return metadata + workspace:// reference for large or binary files + # This prevents context bloat (100KB file = ~133KB as base64) + # Use workspace:// format so frontend urlTransform can add proxy prefix + download_url = f"workspace://{target_file_id}" + + # Generate preview for text files + preview: str | None = None + if is_text_file: + try: + content = await manager.read_file_by_id(target_file_id) + preview_text = content[: self.PREVIEW_SIZE].decode( + "utf-8", errors="replace" + ) + if len(content) > self.PREVIEW_SIZE: + preview_text += "..." + preview = preview_text + except Exception: + pass # Preview is optional + + return WorkspaceFileMetadataResponse( + file_id=file_info.id, + name=file_info.name, + path=file_info.path, + mime_type=file_info.mimeType, + size_bytes=file_info.sizeBytes, + download_url=download_url, + preview=preview, + message=f"File: {file_info.name} ({file_info.sizeBytes} bytes). Use download_url to retrieve content.", + session_id=session_id, + ) + + except FileNotFoundError as e: + return ErrorResponse( + message=str(e), + session_id=session_id, + ) + except Exception as e: + logger.error(f"Error reading workspace file: {e}", exc_info=True) + return ErrorResponse( + message=f"Failed to read workspace file: {str(e)}", + error=str(e), + session_id=session_id, + ) + + +class WriteWorkspaceFileTool(BaseTool): + """Tool for writing files to workspace.""" + + @property + def name(self) -> str: + return "write_workspace_file" + + @property + def description(self) -> str: + return ( + "Write or create a file in the user's workspace. " + "Provide the content as a base64-encoded string. " + f"Maximum file size is {Config().max_file_size_mb}MB. " + "Files are saved to the current session's folder by default. " + "Use /sessions//... for cross-session access." + ) + + @property + def parameters(self) -> dict[str, Any]: + return { + "type": "object", + "properties": { + "filename": { + "type": "string", + "description": "Name for the file (e.g., 'report.pdf')", + }, + "content_base64": { + "type": "string", + "description": "Base64-encoded file content", + }, + "path": { + "type": "string", + "description": ( + "Optional virtual path where to save the file " + "(e.g., '/documents/report.pdf'). " + "Defaults to '/{filename}'. Scoped to current session." + ), + }, + "mime_type": { + "type": "string", + "description": ( + "Optional MIME type of the file. " + "Auto-detected from filename if not provided." + ), + }, + "overwrite": { + "type": "boolean", + "description": "Whether to overwrite if file exists at path (default: false)", + }, + }, + "required": ["filename", "content_base64"], + } + + @property + def requires_auth(self) -> bool: + return True + + async def _execute( + self, + user_id: str | None, + session: ChatSession, + **kwargs, + ) -> ToolResponseBase: + session_id = session.session_id + + if not user_id: + return ErrorResponse( + message="Authentication required", + session_id=session_id, + ) + + filename: str = kwargs.get("filename", "") + content_b64: str = kwargs.get("content_base64", "") + path: Optional[str] = kwargs.get("path") + mime_type: Optional[str] = kwargs.get("mime_type") + overwrite: bool = kwargs.get("overwrite", False) + + if not filename: + return ErrorResponse( + message="Please provide a filename", + session_id=session_id, + ) + + if not content_b64: + return ErrorResponse( + message="Please provide content_base64", + session_id=session_id, + ) + + # Decode content + try: + content = base64.b64decode(content_b64) + except Exception: + return ErrorResponse( + message="Invalid base64-encoded content", + session_id=session_id, + ) + + # Check size + max_file_size = Config().max_file_size_mb * 1024 * 1024 + if len(content) > max_file_size: + return ErrorResponse( + message=f"File too large. Maximum size is {Config().max_file_size_mb}MB", + session_id=session_id, + ) + + try: + # Virus scan + await scan_content_safe(content, filename=filename) + + workspace = await get_or_create_workspace(user_id) + # Pass session_id for session-scoped file access + manager = WorkspaceManager(user_id, workspace.id, session_id) + + file_record = await manager.write_file( + content=content, + filename=filename, + path=path, + mime_type=mime_type, + overwrite=overwrite, + ) + + return WorkspaceWriteResponse( + file_id=file_record.id, + name=file_record.name, + path=file_record.path, + size_bytes=file_record.sizeBytes, + message=f"Successfully wrote file: {file_record.name}", + session_id=session_id, + ) + + except ValueError as e: + return ErrorResponse( + message=str(e), + session_id=session_id, + ) + except Exception as e: + logger.error(f"Error writing workspace file: {e}", exc_info=True) + return ErrorResponse( + message=f"Failed to write workspace file: {str(e)}", + error=str(e), + session_id=session_id, + ) + + +class DeleteWorkspaceFileTool(BaseTool): + """Tool for deleting files from workspace.""" + + @property + def name(self) -> str: + return "delete_workspace_file" + + @property + def description(self) -> str: + return ( + "Delete a file from the user's workspace. " + "Specify either file_id or path to identify the file. " + "Paths are scoped to the current session by default. " + "Use /sessions//... for cross-session access." + ) + + @property + def parameters(self) -> dict[str, Any]: + return { + "type": "object", + "properties": { + "file_id": { + "type": "string", + "description": "The file's unique ID (from list_workspace_files)", + }, + "path": { + "type": "string", + "description": ( + "The virtual file path (e.g., '/documents/report.pdf'). " + "Scoped to current session by default." + ), + }, + }, + "required": [], # At least one must be provided + } + + @property + def requires_auth(self) -> bool: + return True + + async def _execute( + self, + user_id: str | None, + session: ChatSession, + **kwargs, + ) -> ToolResponseBase: + session_id = session.session_id + + if not user_id: + return ErrorResponse( + message="Authentication required", + session_id=session_id, + ) + + file_id: Optional[str] = kwargs.get("file_id") + path: Optional[str] = kwargs.get("path") + + if not file_id and not path: + return ErrorResponse( + message="Please provide either file_id or path", + session_id=session_id, + ) + + try: + workspace = await get_or_create_workspace(user_id) + # Pass session_id for session-scoped file access + manager = WorkspaceManager(user_id, workspace.id, session_id) + + # Determine the file_id to delete + target_file_id: str + if file_id: + target_file_id = file_id + else: + # path is guaranteed to be non-None here due to the check above + assert path is not None + file_info = await manager.get_file_info_by_path(path) + if file_info is None: + return ErrorResponse( + message=f"File not found at path: {path}", + session_id=session_id, + ) + target_file_id = file_info.id + + success = await manager.delete_file(target_file_id) + + if not success: + return ErrorResponse( + message=f"File not found: {target_file_id}", + session_id=session_id, + ) + + return WorkspaceDeleteResponse( + file_id=target_file_id, + success=True, + message="File deleted successfully", + session_id=session_id, + ) + + except Exception as e: + logger.error(f"Error deleting workspace file: {e}", exc_info=True) + return ErrorResponse( + message=f"Failed to delete workspace file: {str(e)}", + error=str(e), + session_id=session_id, + ) diff --git a/autogpt_platform/backend/backend/api/features/library/db.py b/autogpt_platform/backend/backend/api/features/library/db.py index 18d535d896..394f959953 100644 --- a/autogpt_platform/backend/backend/api/features/library/db.py +++ b/autogpt_platform/backend/backend/api/features/library/db.py @@ -21,7 +21,7 @@ from backend.data.model import CredentialsMetaInput from backend.integrations.creds_manager import IntegrationCredentialsManager from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate from backend.util.clients import get_scheduler_client -from backend.util.exceptions import DatabaseError, NotFoundError +from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError from backend.util.json import SafeJson from backend.util.models import Pagination from backend.util.settings import Config @@ -39,6 +39,7 @@ async def list_library_agents( sort_by: library_model.LibraryAgentSort = library_model.LibraryAgentSort.UPDATED_AT, page: int = 1, page_size: int = 50, + include_executions: bool = False, ) -> library_model.LibraryAgentResponse: """ Retrieves a paginated list of LibraryAgent records for a given user. @@ -49,6 +50,9 @@ async def list_library_agents( sort_by: Sorting field (createdAt, updatedAt, isFavorite, isCreatedByUser). page: Current page (1-indexed). page_size: Number of items per page. + include_executions: Whether to include execution data for status calculation. + Defaults to False for performance (UI fetches status separately). + Set to True when accurate status/metrics are needed (e.g., agent generator). Returns: A LibraryAgentResponse containing the list of agents and pagination details. @@ -64,11 +68,11 @@ async def list_library_agents( if page < 1 or page_size < 1: logger.warning(f"Invalid pagination: page={page}, page_size={page_size}") - raise DatabaseError("Invalid pagination input") + raise InvalidInputError("Invalid pagination input") if search_term and len(search_term.strip()) > 100: logger.warning(f"Search term too long: {repr(search_term)}") - raise DatabaseError("Search term is too long") + raise InvalidInputError("Search term is too long") where_clause: prisma.types.LibraryAgentWhereInput = { "userId": user_id, @@ -76,7 +80,6 @@ async def list_library_agents( "isArchived": False, } - # Build search filter if applicable if search_term: where_clause["OR"] = [ { @@ -93,7 +96,6 @@ async def list_library_agents( }, ] - # Determine sorting order_by: prisma.types.LibraryAgentOrderByInput | None = None if sort_by == library_model.LibraryAgentSort.CREATED_AT: @@ -105,7 +107,7 @@ async def list_library_agents( library_agents = await prisma.models.LibraryAgent.prisma().find_many( where=where_clause, include=library_agent_include( - user_id, include_nodes=False, include_executions=False + user_id, include_nodes=False, include_executions=include_executions ), order=order_by, skip=(page - 1) * page_size, @@ -175,7 +177,7 @@ async def list_favorite_library_agents( if page < 1 or page_size < 1: logger.warning(f"Invalid pagination: page={page}, page_size={page_size}") - raise DatabaseError("Invalid pagination input") + raise InvalidInputError("Invalid pagination input") where_clause: prisma.types.LibraryAgentWhereInput = { "userId": user_id, diff --git a/autogpt_platform/backend/backend/api/features/library/model.py b/autogpt_platform/backend/backend/api/features/library/model.py index 14d7c7be81..c6bc0e0427 100644 --- a/autogpt_platform/backend/backend/api/features/library/model.py +++ b/autogpt_platform/backend/backend/api/features/library/model.py @@ -9,6 +9,7 @@ import pydantic from backend.data.block import BlockInput from backend.data.graph import GraphModel, GraphSettings, GraphTriggerInfo from backend.data.model import CredentialsMetaInput, is_credentials_field_name +from backend.util.json import loads as json_loads from backend.util.models import Pagination if TYPE_CHECKING: @@ -16,10 +17,10 @@ if TYPE_CHECKING: class LibraryAgentStatus(str, Enum): - COMPLETED = "COMPLETED" # All runs completed - HEALTHY = "HEALTHY" # Agent is running (not all runs have completed) - WAITING = "WAITING" # Agent is queued or waiting to start - ERROR = "ERROR" # Agent is in an error state + COMPLETED = "COMPLETED" + HEALTHY = "HEALTHY" + WAITING = "WAITING" + ERROR = "ERROR" class MarketplaceListingCreator(pydantic.BaseModel): @@ -39,6 +40,30 @@ class MarketplaceListing(pydantic.BaseModel): creator: MarketplaceListingCreator +class RecentExecution(pydantic.BaseModel): + """Summary of a recent execution for quality assessment. + + Used by the LLM to understand the agent's recent performance with specific examples + rather than just aggregate statistics. + """ + + status: str + correctness_score: float | None = None + activity_summary: str | None = None + + +def _parse_settings(settings: dict | str | None) -> GraphSettings: + """Parse settings from database, handling both dict and string formats.""" + if settings is None: + return GraphSettings() + try: + if isinstance(settings, str): + settings = json_loads(settings) + return GraphSettings.model_validate(settings) + except Exception: + return GraphSettings() + + class LibraryAgent(pydantic.BaseModel): """ Represents an agent in the library, including metadata for display and @@ -48,7 +73,7 @@ class LibraryAgent(pydantic.BaseModel): id: str graph_id: str graph_version: int - owner_user_id: str # ID of user who owns/created this agent graph + owner_user_id: str image_url: str | None @@ -64,7 +89,7 @@ class LibraryAgent(pydantic.BaseModel): description: str instructions: str | None = None - input_schema: dict[str, Any] # Should be BlockIOObjectSubSchema in frontend + input_schema: dict[str, Any] output_schema: dict[str, Any] credentials_input_schema: dict[str, Any] | None = pydantic.Field( description="Input schema for credentials required by the agent", @@ -81,25 +106,19 @@ class LibraryAgent(pydantic.BaseModel): ) trigger_setup_info: Optional[GraphTriggerInfo] = None - # Indicates whether there's a new output (based on recent runs) new_output: bool - - # Whether the user can access the underlying graph + execution_count: int = 0 + success_rate: float | None = None + avg_correctness_score: float | None = None + recent_executions: list[RecentExecution] = pydantic.Field( + default_factory=list, + description="List of recent executions with status, score, and summary", + ) can_access_graph: bool - - # Indicates if this agent is the latest version is_latest_version: bool - - # Whether the agent is marked as favorite by the user is_favorite: bool - - # Recommended schedule cron (from marketplace agents) recommended_schedule_cron: str | None = None - - # User-specific settings for this library agent settings: GraphSettings = pydantic.Field(default_factory=GraphSettings) - - # Marketplace listing information if the agent has been published marketplace_listing: Optional["MarketplaceListing"] = None @staticmethod @@ -123,7 +142,6 @@ class LibraryAgent(pydantic.BaseModel): agent_updated_at = agent.AgentGraph.updatedAt lib_agent_updated_at = agent.updatedAt - # Compute updated_at as the latest between library agent and graph updated_at = ( max(agent_updated_at, lib_agent_updated_at) if agent_updated_at @@ -136,7 +154,6 @@ class LibraryAgent(pydantic.BaseModel): creator_name = agent.Creator.name or "Unknown" creator_image_url = agent.Creator.avatarUrl or "" - # Logic to calculate status and new_output week_ago = datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta( days=7 ) @@ -145,13 +162,55 @@ class LibraryAgent(pydantic.BaseModel): status = status_result.status new_output = status_result.new_output - # Check if user can access the graph - can_access_graph = agent.AgentGraph.userId == agent.userId + execution_count = len(executions) + success_rate: float | None = None + avg_correctness_score: float | None = None + if execution_count > 0: + success_count = sum( + 1 + for e in executions + if e.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED + ) + success_rate = (success_count / execution_count) * 100 - # Hard-coded to True until a method to check is implemented + correctness_scores = [] + for e in executions: + if e.stats and isinstance(e.stats, dict): + score = e.stats.get("correctness_score") + if score is not None and isinstance(score, (int, float)): + correctness_scores.append(float(score)) + if correctness_scores: + avg_correctness_score = sum(correctness_scores) / len( + correctness_scores + ) + + recent_executions: list[RecentExecution] = [] + for e in executions: + exec_score: float | None = None + exec_summary: str | None = None + if e.stats and isinstance(e.stats, dict): + score = e.stats.get("correctness_score") + if score is not None and isinstance(score, (int, float)): + exec_score = float(score) + summary = e.stats.get("activity_status") + if summary is not None and isinstance(summary, str): + exec_summary = summary + exec_status = ( + e.executionStatus.value + if hasattr(e.executionStatus, "value") + else str(e.executionStatus) + ) + recent_executions.append( + RecentExecution( + status=exec_status, + correctness_score=exec_score, + activity_summary=exec_summary, + ) + ) + + can_access_graph = agent.AgentGraph.userId == agent.userId is_latest_version = True - # Build marketplace_listing if available marketplace_listing_data = None if store_listing and store_listing.ActiveVersion and profile: creator_data = MarketplaceListingCreator( @@ -190,11 +249,15 @@ class LibraryAgent(pydantic.BaseModel): has_sensitive_action=graph.has_sensitive_action, trigger_setup_info=graph.trigger_setup_info, new_output=new_output, + execution_count=execution_count, + success_rate=success_rate, + avg_correctness_score=avg_correctness_score, + recent_executions=recent_executions, can_access_graph=can_access_graph, is_latest_version=is_latest_version, is_favorite=agent.isFavorite, recommended_schedule_cron=agent.AgentGraph.recommendedScheduleCron, - settings=GraphSettings.model_validate(agent.settings), + settings=_parse_settings(agent.settings), marketplace_listing=marketplace_listing_data, ) @@ -220,18 +283,15 @@ def _calculate_agent_status( if not executions: return AgentStatusResult(status=LibraryAgentStatus.COMPLETED, new_output=False) - # Track how many times each execution status appears status_counts = {status: 0 for status in prisma.enums.AgentExecutionStatus} new_output = False for execution in executions: - # Check if there's a completed run more recent than `recent_threshold` if execution.createdAt >= recent_threshold: if execution.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED: new_output = True status_counts[execution.executionStatus] += 1 - # Determine the final status based on counts if status_counts[prisma.enums.AgentExecutionStatus.FAILED] > 0: return AgentStatusResult(status=LibraryAgentStatus.ERROR, new_output=new_output) elif status_counts[prisma.enums.AgentExecutionStatus.QUEUED] > 0: diff --git a/autogpt_platform/backend/backend/api/features/library/routes/agents.py b/autogpt_platform/backend/backend/api/features/library/routes/agents.py index 38c34dd3b8..fa3d1a0f0c 100644 --- a/autogpt_platform/backend/backend/api/features/library/routes/agents.py +++ b/autogpt_platform/backend/backend/api/features/library/routes/agents.py @@ -1,4 +1,3 @@ -import logging from typing import Literal, Optional import autogpt_libs.auth as autogpt_auth_lib @@ -6,15 +5,11 @@ from fastapi import APIRouter, Body, HTTPException, Query, Security, status from fastapi.responses import Response from prisma.enums import OnboardingStep -import backend.api.features.store.exceptions as store_exceptions from backend.data.onboarding import complete_onboarding_step -from backend.util.exceptions import DatabaseError, NotFoundError from .. import db as library_db from .. import model as library_model -logger = logging.getLogger(__name__) - router = APIRouter( prefix="/agents", tags=["library", "private"], @@ -26,10 +21,6 @@ router = APIRouter( "", summary="List Library Agents", response_model=library_model.LibraryAgentResponse, - responses={ - 200: {"description": "List of library agents"}, - 500: {"description": "Server error", "content": {"application/json": {}}}, - }, ) async def list_library_agents( user_id: str = Security(autogpt_auth_lib.get_user_id), @@ -53,43 +44,19 @@ async def list_library_agents( ) -> library_model.LibraryAgentResponse: """ Get all agents in the user's library (both created and saved). - - Args: - user_id: ID of the authenticated user. - search_term: Optional search term to filter agents by name/description. - filter_by: List of filters to apply (favorites, created by user). - sort_by: List of sorting criteria (created date, updated date). - page: Page number to retrieve. - page_size: Number of agents per page. - - Returns: - A LibraryAgentResponse containing agents and pagination metadata. - - Raises: - HTTPException: If a server/database error occurs. """ - try: - return await library_db.list_library_agents( - user_id=user_id, - search_term=search_term, - sort_by=sort_by, - page=page, - page_size=page_size, - ) - except Exception as e: - logger.error(f"Could not list library agents for user #{user_id}: {e}") - raise HTTPException( - status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, - detail=str(e), - ) from e + return await library_db.list_library_agents( + user_id=user_id, + search_term=search_term, + sort_by=sort_by, + page=page, + page_size=page_size, + ) @router.get( "/favorites", summary="List Favorite Library Agents", - responses={ - 500: {"description": "Server error", "content": {"application/json": {}}}, - }, ) async def list_favorite_library_agents( user_id: str = Security(autogpt_auth_lib.get_user_id), @@ -106,30 +73,12 @@ async def list_favorite_library_agents( ) -> library_model.LibraryAgentResponse: """ Get all favorite agents in the user's library. - - Args: - user_id: ID of the authenticated user. - page: Page number to retrieve. - page_size: Number of agents per page. - - Returns: - A LibraryAgentResponse containing favorite agents and pagination metadata. - - Raises: - HTTPException: If a server/database error occurs. """ - try: - return await library_db.list_favorite_library_agents( - user_id=user_id, - page=page, - page_size=page_size, - ) - except Exception as e: - logger.error(f"Could not list favorite library agents for user #{user_id}: {e}") - raise HTTPException( - status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, - detail=str(e), - ) from e + return await library_db.list_favorite_library_agents( + user_id=user_id, + page=page, + page_size=page_size, + ) @router.get("/{library_agent_id}", summary="Get Library Agent") @@ -162,10 +111,6 @@ async def get_library_agent_by_graph_id( summary="Get Agent By Store ID", tags=["store", "library"], response_model=library_model.LibraryAgent | None, - responses={ - 200: {"description": "Library agent found"}, - 404: {"description": "Agent not found"}, - }, ) async def get_library_agent_by_store_listing_version_id( store_listing_version_id: str, @@ -174,32 +119,15 @@ async def get_library_agent_by_store_listing_version_id( """ Get Library Agent from Store Listing Version ID. """ - try: - return await library_db.get_library_agent_by_store_version_id( - store_listing_version_id, user_id - ) - except NotFoundError as e: - raise HTTPException( - status_code=status.HTTP_404_NOT_FOUND, - detail=str(e), - ) - except Exception as e: - logger.error(f"Could not fetch library agent from store version ID: {e}") - raise HTTPException( - status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, - detail=str(e), - ) from e + return await library_db.get_library_agent_by_store_version_id( + store_listing_version_id, user_id + ) @router.post( "", summary="Add Marketplace Agent", status_code=status.HTTP_201_CREATED, - responses={ - 201: {"description": "Agent added successfully"}, - 404: {"description": "Store listing version not found"}, - 500: {"description": "Server error"}, - }, ) async def add_marketplace_agent_to_library( store_listing_version_id: str = Body(embed=True), @@ -210,59 +138,19 @@ async def add_marketplace_agent_to_library( ) -> library_model.LibraryAgent: """ Add an agent from the marketplace to the user's library. - - Args: - store_listing_version_id: ID of the store listing version to add. - user_id: ID of the authenticated user. - - Returns: - library_model.LibraryAgent: Agent added to the library - - Raises: - HTTPException(404): If the listing version is not found. - HTTPException(500): If a server/database error occurs. """ - try: - agent = await library_db.add_store_agent_to_library( - store_listing_version_id=store_listing_version_id, - user_id=user_id, - ) - if source != "onboarding": - await complete_onboarding_step( - user_id, OnboardingStep.MARKETPLACE_ADD_AGENT - ) - return agent - - except store_exceptions.AgentNotFoundError as e: - logger.warning( - f"Could not find store listing version {store_listing_version_id} " - "to add to library" - ) - raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=str(e)) - except DatabaseError as e: - logger.error(f"Database error while adding agent to library: {e}", e) - raise HTTPException( - status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, - detail={"message": str(e), "hint": "Inspect DB logs for details."}, - ) from e - except Exception as e: - logger.error(f"Unexpected error while adding agent to library: {e}") - raise HTTPException( - status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, - detail={ - "message": str(e), - "hint": "Check server logs for more information.", - }, - ) from e + agent = await library_db.add_store_agent_to_library( + store_listing_version_id=store_listing_version_id, + user_id=user_id, + ) + if source != "onboarding": + await complete_onboarding_step(user_id, OnboardingStep.MARKETPLACE_ADD_AGENT) + return agent @router.patch( "/{library_agent_id}", summary="Update Library Agent", - responses={ - 200: {"description": "Agent updated successfully"}, - 500: {"description": "Server error"}, - }, ) async def update_library_agent( library_agent_id: str, @@ -271,52 +159,21 @@ async def update_library_agent( ) -> library_model.LibraryAgent: """ Update the library agent with the given fields. - - Args: - library_agent_id: ID of the library agent to update. - payload: Fields to update (auto_update_version, is_favorite, etc.). - user_id: ID of the authenticated user. - - Raises: - HTTPException(500): If a server/database error occurs. """ - try: - return await library_db.update_library_agent( - library_agent_id=library_agent_id, - user_id=user_id, - auto_update_version=payload.auto_update_version, - graph_version=payload.graph_version, - is_favorite=payload.is_favorite, - is_archived=payload.is_archived, - settings=payload.settings, - ) - except NotFoundError as e: - raise HTTPException( - status_code=status.HTTP_404_NOT_FOUND, - detail=str(e), - ) from e - except DatabaseError as e: - logger.error(f"Database error while updating library agent: {e}") - raise HTTPException( - status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, - detail={"message": str(e), "hint": "Verify DB connection."}, - ) from e - except Exception as e: - logger.error(f"Unexpected error while updating library agent: {e}") - raise HTTPException( - status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, - detail={"message": str(e), "hint": "Check server logs."}, - ) from e + return await library_db.update_library_agent( + library_agent_id=library_agent_id, + user_id=user_id, + auto_update_version=payload.auto_update_version, + graph_version=payload.graph_version, + is_favorite=payload.is_favorite, + is_archived=payload.is_archived, + settings=payload.settings, + ) @router.delete( "/{library_agent_id}", summary="Delete Library Agent", - responses={ - 204: {"description": "Agent deleted successfully"}, - 404: {"description": "Agent not found"}, - 500: {"description": "Server error"}, - }, ) async def delete_library_agent( library_agent_id: str, @@ -324,28 +181,11 @@ async def delete_library_agent( ) -> Response: """ Soft-delete the specified library agent. - - Args: - library_agent_id: ID of the library agent to delete. - user_id: ID of the authenticated user. - - Returns: - 204 No Content if successful. - - Raises: - HTTPException(404): If the agent does not exist. - HTTPException(500): If a server/database error occurs. """ - try: - await library_db.delete_library_agent( - library_agent_id=library_agent_id, user_id=user_id - ) - return Response(status_code=status.HTTP_204_NO_CONTENT) - except NotFoundError as e: - raise HTTPException( - status_code=status.HTTP_404_NOT_FOUND, - detail=str(e), - ) from e + await library_db.delete_library_agent( + library_agent_id=library_agent_id, user_id=user_id + ) + return Response(status_code=status.HTTP_204_NO_CONTENT) @router.post("/{library_agent_id}/fork", summary="Fork Library Agent") diff --git a/autogpt_platform/backend/backend/api/features/library/routes_test.py b/autogpt_platform/backend/backend/api/features/library/routes_test.py index ca604af760..4d83812891 100644 --- a/autogpt_platform/backend/backend/api/features/library/routes_test.py +++ b/autogpt_platform/backend/backend/api/features/library/routes_test.py @@ -118,21 +118,6 @@ async def test_get_library_agents_success( ) -def test_get_library_agents_error(mocker: pytest_mock.MockFixture, test_user_id: str): - mock_db_call = mocker.patch("backend.api.features.library.db.list_library_agents") - mock_db_call.side_effect = Exception("Test error") - - response = client.get("/agents?search_term=test") - assert response.status_code == 500 - mock_db_call.assert_called_once_with( - user_id=test_user_id, - search_term="test", - sort_by=library_model.LibraryAgentSort.UPDATED_AT, - page=1, - page_size=15, - ) - - @pytest.mark.asyncio async def test_get_favorite_library_agents_success( mocker: pytest_mock.MockFixture, @@ -190,23 +175,6 @@ async def test_get_favorite_library_agents_success( ) -def test_get_favorite_library_agents_error( - mocker: pytest_mock.MockFixture, test_user_id: str -): - mock_db_call = mocker.patch( - "backend.api.features.library.db.list_favorite_library_agents" - ) - mock_db_call.side_effect = Exception("Test error") - - response = client.get("/agents/favorites") - assert response.status_code == 500 - mock_db_call.assert_called_once_with( - user_id=test_user_id, - page=1, - page_size=15, - ) - - def test_add_agent_to_library_success( mocker: pytest_mock.MockFixture, test_user_id: str ): @@ -258,19 +226,3 @@ def test_add_agent_to_library_success( store_listing_version_id="test-version-id", user_id=test_user_id ) mock_complete_onboarding.assert_awaited_once() - - -def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture, test_user_id: str): - mock_db_call = mocker.patch( - "backend.api.features.library.db.add_store_agent_to_library" - ) - mock_db_call.side_effect = Exception("Test error") - - response = client.post( - "/agents", json={"store_listing_version_id": "test-version-id"} - ) - assert response.status_code == 500 - assert "detail" in response.json() # Verify error response structure - mock_db_call.assert_called_once_with( - store_listing_version_id="test-version-id", user_id=test_user_id - ) diff --git a/autogpt_platform/backend/backend/api/features/store/db.py b/autogpt_platform/backend/backend/api/features/store/db.py index 956fdfa7da..850a2bc3e9 100644 --- a/autogpt_platform/backend/backend/api/features/store/db.py +++ b/autogpt_platform/backend/backend/api/features/store/db.py @@ -112,6 +112,7 @@ async def get_store_agents( description=agent["description"], runs=agent["runs"], rating=agent["rating"], + agent_graph_id=agent.get("agentGraphId", ""), ) store_agents.append(store_agent) except Exception as e: @@ -170,6 +171,7 @@ async def get_store_agents( description=agent.description, runs=agent.runs, rating=agent.rating, + agent_graph_id=agent.agentGraphId, ) # Add to the list only if creation was successful store_agents.append(store_agent) diff --git a/autogpt_platform/backend/backend/api/features/store/embeddings.py b/autogpt_platform/backend/backend/api/features/store/embeddings.py index 79a9a4e219..434f2fe2ce 100644 --- a/autogpt_platform/backend/backend/api/features/store/embeddings.py +++ b/autogpt_platform/backend/backend/api/features/store/embeddings.py @@ -454,6 +454,7 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]: total_processed = 0 total_success = 0 total_failed = 0 + all_errors: dict[str, int] = {} # Aggregate errors across all content types # Process content types in explicit order processing_order = [ @@ -499,23 +500,12 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]: success = sum(1 for result in results if result is True) failed = len(results) - success - # Aggregate unique errors to avoid Sentry spam + # Aggregate errors across all content types if failed > 0: - # Group errors by type and message - error_summary: dict[str, int] = {} for result in results: if isinstance(result, Exception): error_key = f"{type(result).__name__}: {str(result)}" - error_summary[error_key] = error_summary.get(error_key, 0) + 1 - - # Log aggregated error summary - error_details = ", ".join( - f"{error} ({count}x)" for error, count in error_summary.items() - ) - logger.error( - f"{content_type.value}: {failed}/{len(results)} embeddings failed. " - f"Errors: {error_details}" - ) + all_errors[error_key] = all_errors.get(error_key, 0) + 1 results_by_type[content_type.value] = { "processed": len(missing_items), @@ -542,6 +532,13 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]: "error": str(e), } + # Log aggregated errors once at the end + if all_errors: + error_details = ", ".join( + f"{error} ({count}x)" for error, count in all_errors.items() + ) + logger.error(f"Embedding backfill errors: {error_details}") + return { "by_type": results_by_type, "totals": { diff --git a/autogpt_platform/backend/backend/api/features/store/hybrid_search.py b/autogpt_platform/backend/backend/api/features/store/hybrid_search.py index 8b0884bb24..e1b8f402c8 100644 --- a/autogpt_platform/backend/backend/api/features/store/hybrid_search.py +++ b/autogpt_platform/backend/backend/api/features/store/hybrid_search.py @@ -600,6 +600,7 @@ async def hybrid_search( sa.featured, sa.is_available, sa.updated_at, + sa."agentGraphId", -- Searchable text for BM25 reranking COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text, -- Semantic score @@ -659,6 +660,7 @@ async def hybrid_search( featured, is_available, updated_at, + "agentGraphId", searchable_text, semantic_score, lexical_score, diff --git a/autogpt_platform/backend/backend/api/features/store/model.py b/autogpt_platform/backend/backend/api/features/store/model.py index a3310b96fc..d66b91807d 100644 --- a/autogpt_platform/backend/backend/api/features/store/model.py +++ b/autogpt_platform/backend/backend/api/features/store/model.py @@ -38,6 +38,7 @@ class StoreAgent(pydantic.BaseModel): description: str runs: int rating: float + agent_graph_id: str class StoreAgentsResponse(pydantic.BaseModel): diff --git a/autogpt_platform/backend/backend/api/features/store/model_test.py b/autogpt_platform/backend/backend/api/features/store/model_test.py index fd09a0cf77..c4109f4603 100644 --- a/autogpt_platform/backend/backend/api/features/store/model_test.py +++ b/autogpt_platform/backend/backend/api/features/store/model_test.py @@ -26,11 +26,13 @@ def test_store_agent(): description="Test description", runs=50, rating=4.5, + agent_graph_id="test-graph-id", ) assert agent.slug == "test-agent" assert agent.agent_name == "Test Agent" assert agent.runs == 50 assert agent.rating == 4.5 + assert agent.agent_graph_id == "test-graph-id" def test_store_agents_response(): @@ -46,6 +48,7 @@ def test_store_agents_response(): description="Test description", runs=50, rating=4.5, + agent_graph_id="test-graph-id", ) ], pagination=store_model.Pagination( diff --git a/autogpt_platform/backend/backend/api/features/store/routes_test.py b/autogpt_platform/backend/backend/api/features/store/routes_test.py index 36431c20ec..fcef3f845a 100644 --- a/autogpt_platform/backend/backend/api/features/store/routes_test.py +++ b/autogpt_platform/backend/backend/api/features/store/routes_test.py @@ -82,6 +82,7 @@ def test_get_agents_featured( description="Featured agent description", runs=100, rating=4.5, + agent_graph_id="test-graph-1", ) ], pagination=store_model.Pagination( @@ -127,6 +128,7 @@ def test_get_agents_by_creator( description="Creator agent description", runs=50, rating=4.0, + agent_graph_id="test-graph-2", ) ], pagination=store_model.Pagination( @@ -172,6 +174,7 @@ def test_get_agents_sorted( description="Top agent description", runs=1000, rating=5.0, + agent_graph_id="test-graph-3", ) ], pagination=store_model.Pagination( @@ -217,6 +220,7 @@ def test_get_agents_search( description="Specific search term description", runs=75, rating=4.2, + agent_graph_id="test-graph-search", ) ], pagination=store_model.Pagination( @@ -262,6 +266,7 @@ def test_get_agents_category( description="Category agent description", runs=60, rating=4.1, + agent_graph_id="test-graph-category", ) ], pagination=store_model.Pagination( @@ -306,6 +311,7 @@ def test_get_agents_pagination( description=f"Agent {i} description", runs=i * 10, rating=4.0, + agent_graph_id="test-graph-2", ) for i in range(5) ], diff --git a/autogpt_platform/backend/backend/api/features/store/test_cache_delete.py b/autogpt_platform/backend/backend/api/features/store/test_cache_delete.py index dd9be1f4ab..298c51d47c 100644 --- a/autogpt_platform/backend/backend/api/features/store/test_cache_delete.py +++ b/autogpt_platform/backend/backend/api/features/store/test_cache_delete.py @@ -33,6 +33,7 @@ class TestCacheDeletion: description="Test description", runs=100, rating=4.5, + agent_graph_id="test-graph-id", ) ], pagination=Pagination( diff --git a/autogpt_platform/backend/backend/api/features/v1.py b/autogpt_platform/backend/backend/api/features/v1.py index 51789f9e2b..09d3759a65 100644 --- a/autogpt_platform/backend/backend/api/features/v1.py +++ b/autogpt_platform/backend/backend/api/features/v1.py @@ -261,14 +261,36 @@ async def get_onboarding_agents( return await get_recommended_agents(user_id) +class OnboardingStatusResponse(pydantic.BaseModel): + """Response for onboarding status check.""" + + is_onboarding_enabled: bool + is_chat_enabled: bool + + @v1_router.get( "/onboarding/enabled", summary="Is onboarding enabled", tags=["onboarding", "public"], - dependencies=[Security(requires_user)], + response_model=OnboardingStatusResponse, ) -async def is_onboarding_enabled() -> bool: - return await onboarding_enabled() +async def is_onboarding_enabled( + user_id: Annotated[str, Security(get_user_id)], +) -> OnboardingStatusResponse: + # Check if chat is enabled for user + is_chat_enabled = await is_feature_enabled(Flag.CHAT, user_id, False) + + # If chat is enabled, skip legacy onboarding + if is_chat_enabled: + return OnboardingStatusResponse( + is_onboarding_enabled=False, + is_chat_enabled=True, + ) + + return OnboardingStatusResponse( + is_onboarding_enabled=await onboarding_enabled(), + is_chat_enabled=False, + ) @v1_router.post( diff --git a/autogpt_platform/backend/backend/api/features/workspace/__init__.py b/autogpt_platform/backend/backend/api/features/workspace/__init__.py new file mode 100644 index 0000000000..688ada9937 --- /dev/null +++ b/autogpt_platform/backend/backend/api/features/workspace/__init__.py @@ -0,0 +1 @@ +# Workspace API feature module diff --git a/autogpt_platform/backend/backend/api/features/workspace/routes.py b/autogpt_platform/backend/backend/api/features/workspace/routes.py new file mode 100644 index 0000000000..b6d0c84572 --- /dev/null +++ b/autogpt_platform/backend/backend/api/features/workspace/routes.py @@ -0,0 +1,122 @@ +""" +Workspace API routes for managing user file storage. +""" + +import logging +import re +from typing import Annotated +from urllib.parse import quote + +import fastapi +from autogpt_libs.auth.dependencies import get_user_id, requires_user +from fastapi.responses import Response + +from backend.data.workspace import get_workspace, get_workspace_file +from backend.util.workspace_storage import get_workspace_storage + + +def _sanitize_filename_for_header(filename: str) -> str: + """ + Sanitize filename for Content-Disposition header to prevent header injection. + + Removes/replaces characters that could break the header or inject new headers. + Uses RFC5987 encoding for non-ASCII characters. + """ + # Remove CR, LF, and null bytes (header injection prevention) + sanitized = re.sub(r"[\r\n\x00]", "", filename) + # Escape quotes + sanitized = sanitized.replace('"', '\\"') + # For non-ASCII, use RFC5987 filename* parameter + # Check if filename has non-ASCII characters + try: + sanitized.encode("ascii") + return f'attachment; filename="{sanitized}"' + except UnicodeEncodeError: + # Use RFC5987 encoding for UTF-8 filenames + encoded = quote(sanitized, safe="") + return f"attachment; filename*=UTF-8''{encoded}" + + +logger = logging.getLogger(__name__) + +router = fastapi.APIRouter( + dependencies=[fastapi.Security(requires_user)], +) + + +def _create_streaming_response(content: bytes, file) -> Response: + """Create a streaming response for file content.""" + return Response( + content=content, + media_type=file.mimeType, + headers={ + "Content-Disposition": _sanitize_filename_for_header(file.name), + "Content-Length": str(len(content)), + }, + ) + + +async def _create_file_download_response(file) -> Response: + """ + Create a download response for a workspace file. + + Handles both local storage (direct streaming) and GCS (signed URL redirect + with fallback to streaming). + """ + storage = await get_workspace_storage() + + # For local storage, stream the file directly + if file.storagePath.startswith("local://"): + content = await storage.retrieve(file.storagePath) + return _create_streaming_response(content, file) + + # For GCS, try to redirect to signed URL, fall back to streaming + try: + url = await storage.get_download_url(file.storagePath, expires_in=300) + # If we got back an API path (fallback), stream directly instead + if url.startswith("/api/"): + content = await storage.retrieve(file.storagePath) + return _create_streaming_response(content, file) + return fastapi.responses.RedirectResponse(url=url, status_code=302) + except Exception as e: + # Log the signed URL failure with context + logger.error( + f"Failed to get signed URL for file {file.id} " + f"(storagePath={file.storagePath}): {e}", + exc_info=True, + ) + # Fall back to streaming directly from GCS + try: + content = await storage.retrieve(file.storagePath) + return _create_streaming_response(content, file) + except Exception as fallback_error: + logger.error( + f"Fallback streaming also failed for file {file.id} " + f"(storagePath={file.storagePath}): {fallback_error}", + exc_info=True, + ) + raise + + +@router.get( + "/files/{file_id}/download", + summary="Download file by ID", +) +async def download_file( + user_id: Annotated[str, fastapi.Security(get_user_id)], + file_id: str, +) -> Response: + """ + Download a file by its ID. + + Returns the file content directly or redirects to a signed URL for GCS. + """ + workspace = await get_workspace(user_id) + if workspace is None: + raise fastapi.HTTPException(status_code=404, detail="Workspace not found") + + file = await get_workspace_file(file_id, workspace.id) + if file is None: + raise fastapi.HTTPException(status_code=404, detail="File not found") + + return await _create_file_download_response(file) diff --git a/autogpt_platform/backend/backend/api/rest_api.py b/autogpt_platform/backend/backend/api/rest_api.py index e9556e992f..b936312ce1 100644 --- a/autogpt_platform/backend/backend/api/rest_api.py +++ b/autogpt_platform/backend/backend/api/rest_api.py @@ -32,6 +32,7 @@ import backend.api.features.postmark.postmark import backend.api.features.store.model import backend.api.features.store.routes import backend.api.features.v1 +import backend.api.features.workspace.routes as workspace_routes import backend.data.block import backend.data.db import backend.data.graph @@ -52,6 +53,7 @@ from backend.util.exceptions import ( ) from backend.util.feature_flag import initialize_launchdarkly, shutdown_launchdarkly from backend.util.service import UnhealthyServiceError +from backend.util.workspace_storage import shutdown_workspace_storage from .external.fastapi_app import external_api from .features.analytics import router as analytics_router @@ -124,6 +126,11 @@ async def lifespan_context(app: fastapi.FastAPI): except Exception as e: logger.warning(f"Error shutting down cloud storage handler: {e}") + try: + await shutdown_workspace_storage() + except Exception as e: + logger.warning(f"Error shutting down workspace storage: {e}") + await backend.data.db.disconnect() @@ -315,6 +322,11 @@ app.include_router( tags=["v2", "chat"], prefix="/api/chat", ) +app.include_router( + workspace_routes.router, + tags=["workspace"], + prefix="/api/workspace", +) app.include_router( backend.api.features.oauth.router, tags=["oauth"], diff --git a/autogpt_platform/backend/backend/blocks/ai_image_customizer.py b/autogpt_platform/backend/backend/blocks/ai_image_customizer.py index 83178e924d..91be33a60e 100644 --- a/autogpt_platform/backend/backend/blocks/ai_image_customizer.py +++ b/autogpt_platform/backend/backend/blocks/ai_image_customizer.py @@ -13,6 +13,7 @@ from backend.data.block import ( BlockSchemaInput, BlockSchemaOutput, ) +from backend.data.execution import ExecutionContext from backend.data.model import ( APIKeyCredentials, CredentialsField, @@ -117,11 +118,13 @@ class AIImageCustomizerBlock(Block): "credentials": TEST_CREDENTIALS_INPUT, }, test_output=[ - ("image_url", "https://replicate.delivery/generated-image.jpg"), + # Output will be a workspace ref or data URI depending on context + ("image_url", lambda x: x.startswith(("workspace://", "data:"))), ], test_mock={ + # Use data URI to avoid HTTP requests during tests "run_model": lambda *args, **kwargs: MediaFileType( - "https://replicate.delivery/generated-image.jpg" + "" ), }, test_credentials=TEST_CREDENTIALS, @@ -132,8 +135,7 @@ class AIImageCustomizerBlock(Block): input_data: Input, *, credentials: APIKeyCredentials, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, **kwargs, ) -> BlockOutput: try: @@ -141,10 +143,9 @@ class AIImageCustomizerBlock(Block): processed_images = await asyncio.gather( *( store_media_file( - graph_exec_id=graph_exec_id, file=img, - user_id=user_id, - return_content=True, + execution_context=execution_context, + return_format="for_external_api", # Get content for Replicate API ) for img in input_data.images ) @@ -158,7 +159,14 @@ class AIImageCustomizerBlock(Block): aspect_ratio=input_data.aspect_ratio.value, output_format=input_data.output_format.value, ) - yield "image_url", result + + # Store the generated image to the user's workspace for persistence + stored_url = await store_media_file( + file=result, + execution_context=execution_context, + return_format="for_block_output", + ) + yield "image_url", stored_url except Exception as e: yield "error", str(e) diff --git a/autogpt_platform/backend/backend/blocks/ai_image_generator_block.py b/autogpt_platform/backend/backend/blocks/ai_image_generator_block.py index 8c7b6e6102..e40731cd97 100644 --- a/autogpt_platform/backend/backend/blocks/ai_image_generator_block.py +++ b/autogpt_platform/backend/backend/blocks/ai_image_generator_block.py @@ -6,6 +6,7 @@ from replicate.client import Client as ReplicateClient from replicate.helpers import FileOutput from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput +from backend.data.execution import ExecutionContext from backend.data.model import ( APIKeyCredentials, CredentialsField, @@ -13,6 +14,8 @@ from backend.data.model import ( SchemaField, ) from backend.integrations.providers import ProviderName +from backend.util.file import store_media_file +from backend.util.type import MediaFileType class ImageSize(str, Enum): @@ -165,11 +168,13 @@ class AIImageGeneratorBlock(Block): test_output=[ ( "image_url", - "https://replicate.delivery/generated-image.webp", + # Test output is a data URI since we now store images + lambda x: x.startswith("" }, ) @@ -318,11 +323,24 @@ class AIImageGeneratorBlock(Block): style_text = style_map.get(style, "") return f"{style_text} of" if style_text else "" - async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs): + async def run( + self, + input_data: Input, + *, + credentials: APIKeyCredentials, + execution_context: ExecutionContext, + **kwargs, + ): try: url = await self.generate_image(input_data, credentials) if url: - yield "image_url", url + # Store the generated image to the user's workspace/execution folder + stored_url = await store_media_file( + file=MediaFileType(url), + execution_context=execution_context, + return_format="for_block_output", + ) + yield "image_url", stored_url else: yield "error", "Image generation returned an empty result." except Exception as e: diff --git a/autogpt_platform/backend/backend/blocks/ai_shortform_video_block.py b/autogpt_platform/backend/backend/blocks/ai_shortform_video_block.py index a9e96890d3..eb60843185 100644 --- a/autogpt_platform/backend/backend/blocks/ai_shortform_video_block.py +++ b/autogpt_platform/backend/backend/blocks/ai_shortform_video_block.py @@ -13,6 +13,7 @@ from backend.data.block import ( BlockSchemaInput, BlockSchemaOutput, ) +from backend.data.execution import ExecutionContext from backend.data.model import ( APIKeyCredentials, CredentialsField, @@ -21,7 +22,9 @@ from backend.data.model import ( ) from backend.integrations.providers import ProviderName from backend.util.exceptions import BlockExecutionError +from backend.util.file import store_media_file from backend.util.request import Requests +from backend.util.type import MediaFileType TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", @@ -271,7 +274,10 @@ class AIShortformVideoCreatorBlock(Block): "voice": Voice.LILY, "video_style": VisualMediaType.STOCK_VIDEOS, }, - test_output=("video_url", "https://example.com/video.mp4"), + test_output=( + "video_url", + lambda x: x.startswith(("workspace://", "data:")), + ), test_mock={ "create_webhook": lambda *args, **kwargs: ( "test_uuid", @@ -280,15 +286,21 @@ class AIShortformVideoCreatorBlock(Block): "create_video": lambda *args, **kwargs: {"pid": "test_pid"}, "check_video_status": lambda *args, **kwargs: { "status": "ready", - "videoUrl": "https://example.com/video.mp4", + "videoUrl": "data:video/mp4;base64,AAAA", }, - "wait_for_video": lambda *args, **kwargs: "https://example.com/video.mp4", + # Use data URI to avoid HTTP requests during tests + "wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA", }, test_credentials=TEST_CREDENTIALS, ) async def run( - self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs + self, + input_data: Input, + *, + credentials: APIKeyCredentials, + execution_context: ExecutionContext, + **kwargs, ) -> BlockOutput: # Create a new Webhook.site URL webhook_token, webhook_url = await self.create_webhook() @@ -340,7 +352,13 @@ class AIShortformVideoCreatorBlock(Block): ) video_url = await self.wait_for_video(credentials.api_key, pid) logger.debug(f"Video ready: {video_url}") - yield "video_url", video_url + # Store the generated video to the user's workspace for persistence + stored_url = await store_media_file( + file=MediaFileType(video_url), + execution_context=execution_context, + return_format="for_block_output", + ) + yield "video_url", stored_url class AIAdMakerVideoCreatorBlock(Block): @@ -447,7 +465,10 @@ class AIAdMakerVideoCreatorBlock(Block): "https://cdn.revid.ai/uploads/1747076315114-image.png", ], }, - test_output=("video_url", "https://example.com/ad.mp4"), + test_output=( + "video_url", + lambda x: x.startswith(("workspace://", "data:")), + ), test_mock={ "create_webhook": lambda *args, **kwargs: ( "test_uuid", @@ -456,14 +477,21 @@ class AIAdMakerVideoCreatorBlock(Block): "create_video": lambda *args, **kwargs: {"pid": "test_pid"}, "check_video_status": lambda *args, **kwargs: { "status": "ready", - "videoUrl": "https://example.com/ad.mp4", + "videoUrl": "data:video/mp4;base64,AAAA", }, - "wait_for_video": lambda *args, **kwargs: "https://example.com/ad.mp4", + "wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA", }, test_credentials=TEST_CREDENTIALS, ) - async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs): + async def run( + self, + input_data: Input, + *, + credentials: APIKeyCredentials, + execution_context: ExecutionContext, + **kwargs, + ): webhook_token, webhook_url = await self.create_webhook() payload = { @@ -531,7 +559,13 @@ class AIAdMakerVideoCreatorBlock(Block): raise RuntimeError("Failed to create video: No project ID returned") video_url = await self.wait_for_video(credentials.api_key, pid) - yield "video_url", video_url + # Store the generated video to the user's workspace for persistence + stored_url = await store_media_file( + file=MediaFileType(video_url), + execution_context=execution_context, + return_format="for_block_output", + ) + yield "video_url", stored_url class AIScreenshotToVideoAdBlock(Block): @@ -626,7 +660,10 @@ class AIScreenshotToVideoAdBlock(Block): "script": "Amazing numbers!", "screenshot_url": "https://cdn.revid.ai/uploads/1747080376028-image.png", }, - test_output=("video_url", "https://example.com/screenshot.mp4"), + test_output=( + "video_url", + lambda x: x.startswith(("workspace://", "data:")), + ), test_mock={ "create_webhook": lambda *args, **kwargs: ( "test_uuid", @@ -635,14 +672,21 @@ class AIScreenshotToVideoAdBlock(Block): "create_video": lambda *args, **kwargs: {"pid": "test_pid"}, "check_video_status": lambda *args, **kwargs: { "status": "ready", - "videoUrl": "https://example.com/screenshot.mp4", + "videoUrl": "data:video/mp4;base64,AAAA", }, - "wait_for_video": lambda *args, **kwargs: "https://example.com/screenshot.mp4", + "wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA", }, test_credentials=TEST_CREDENTIALS, ) - async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs): + async def run( + self, + input_data: Input, + *, + credentials: APIKeyCredentials, + execution_context: ExecutionContext, + **kwargs, + ): webhook_token, webhook_url = await self.create_webhook() payload = { @@ -710,4 +754,10 @@ class AIScreenshotToVideoAdBlock(Block): raise RuntimeError("Failed to create video: No project ID returned") video_url = await self.wait_for_video(credentials.api_key, pid) - yield "video_url", video_url + # Store the generated video to the user's workspace for persistence + stored_url = await store_media_file( + file=MediaFileType(video_url), + execution_context=execution_context, + return_format="for_block_output", + ) + yield "video_url", stored_url diff --git a/autogpt_platform/backend/backend/blocks/bannerbear/text_overlay.py b/autogpt_platform/backend/backend/blocks/bannerbear/text_overlay.py index 16d46c0d99..62aaf63d88 100644 --- a/autogpt_platform/backend/backend/blocks/bannerbear/text_overlay.py +++ b/autogpt_platform/backend/backend/blocks/bannerbear/text_overlay.py @@ -6,6 +6,7 @@ if TYPE_CHECKING: from pydantic import SecretStr +from backend.data.execution import ExecutionContext from backend.sdk import ( APIKeyCredentials, Block, @@ -17,6 +18,8 @@ from backend.sdk import ( Requests, SchemaField, ) +from backend.util.file import store_media_file +from backend.util.type import MediaFileType from ._config import bannerbear @@ -135,15 +138,17 @@ class BannerbearTextOverlayBlock(Block): }, test_output=[ ("success", True), - ("image_url", "https://cdn.bannerbear.com/test-image.jpg"), + # Output will be a workspace ref or data URI depending on context + ("image_url", lambda x: x.startswith(("workspace://", "data:"))), ("uid", "test-uid-123"), ("status", "completed"), ], test_mock={ + # Use data URI to avoid HTTP requests during tests "_make_api_request": lambda *args, **kwargs: { "uid": "test-uid-123", "status": "completed", - "image_url": "https://cdn.bannerbear.com/test-image.jpg", + "image_url": "", } }, test_credentials=TEST_CREDENTIALS, @@ -177,7 +182,12 @@ class BannerbearTextOverlayBlock(Block): raise Exception(error_msg) async def run( - self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs + self, + input_data: Input, + *, + credentials: APIKeyCredentials, + execution_context: ExecutionContext, + **kwargs, ) -> BlockOutput: # Build the modifications array modifications = [] @@ -234,6 +244,18 @@ class BannerbearTextOverlayBlock(Block): # Synchronous request - image should be ready yield "success", True - yield "image_url", data.get("image_url", "") + + # Store the generated image to workspace for persistence + image_url = data.get("image_url", "") + if image_url: + stored_url = await store_media_file( + file=MediaFileType(image_url), + execution_context=execution_context, + return_format="for_block_output", + ) + yield "image_url", stored_url + else: + yield "image_url", "" + yield "uid", data.get("uid", "") yield "status", data.get("status", "completed") diff --git a/autogpt_platform/backend/backend/blocks/basic.py b/autogpt_platform/backend/backend/blocks/basic.py index a9c77e2b93..95193b3feb 100644 --- a/autogpt_platform/backend/backend/blocks/basic.py +++ b/autogpt_platform/backend/backend/blocks/basic.py @@ -9,6 +9,7 @@ from backend.data.block import ( BlockSchemaOutput, BlockType, ) +from backend.data.execution import ExecutionContext from backend.data.model import SchemaField from backend.util.file import store_media_file from backend.util.type import MediaFileType, convert @@ -17,10 +18,10 @@ from backend.util.type import MediaFileType, convert class FileStoreBlock(Block): class Input(BlockSchemaInput): file_in: MediaFileType = SchemaField( - description="The file to store in the temporary directory, it can be a URL, data URI, or local path." + description="The file to download and store. Can be a URL (https://...), data URI, or local path." ) base_64: bool = SchemaField( - description="Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks).", + description="Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks).", default=False, advanced=True, title="Produce Base64 Output", @@ -28,13 +29,18 @@ class FileStoreBlock(Block): class Output(BlockSchemaOutput): file_out: MediaFileType = SchemaField( - description="The relative path to the stored file in the temporary directory." + description="Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks." ) def __init__(self): super().__init__( id="cbb50872-625b-42f0-8203-a2ae78242d8a", - description="Stores the input file in the temporary directory.", + description=( + "Downloads and stores a file from a URL, data URI, or local path. " + "Use this to fetch images, documents, or other files for processing. " + "In CoPilot: saves to workspace (use list_workspace_files to see it). " + "In graphs: outputs a data URI to pass to other blocks." + ), categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA}, input_schema=FileStoreBlock.Input, output_schema=FileStoreBlock.Output, @@ -45,15 +51,18 @@ class FileStoreBlock(Block): self, input_data: Input, *, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, **kwargs, ) -> BlockOutput: + # Determine return format based on user preference + # for_external_api: always returns data URI (base64) - honors "Produce Base64 Output" + # for_block_output: smart format - workspace:// in CoPilot, data URI in graphs + return_format = "for_external_api" if input_data.base_64 else "for_block_output" + yield "file_out", await store_media_file( - graph_exec_id=graph_exec_id, file=input_data.file_in, - user_id=user_id, - return_content=input_data.base_64, + execution_context=execution_context, + return_format=return_format, ) diff --git a/autogpt_platform/backend/backend/blocks/discord/bot_blocks.py b/autogpt_platform/backend/backend/blocks/discord/bot_blocks.py index 5ecd730f47..4438af1955 100644 --- a/autogpt_platform/backend/backend/blocks/discord/bot_blocks.py +++ b/autogpt_platform/backend/backend/blocks/discord/bot_blocks.py @@ -15,6 +15,7 @@ from backend.data.block import ( BlockSchemaInput, BlockSchemaOutput, ) +from backend.data.execution import ExecutionContext from backend.data.model import APIKeyCredentials, SchemaField from backend.util.file import store_media_file from backend.util.request import Requests @@ -666,8 +667,7 @@ class SendDiscordFileBlock(Block): file: MediaFileType, filename: str, message_content: str, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, ) -> dict: intents = discord.Intents.default() intents.guilds = True @@ -731,10 +731,9 @@ class SendDiscordFileBlock(Block): # Local file path - read from stored media file # This would be a path from a previous block's output stored_file = await store_media_file( - graph_exec_id=graph_exec_id, file=file, - user_id=user_id, - return_content=True, # Get as data URI + execution_context=execution_context, + return_format="for_external_api", # Get content to send to Discord ) # Now process as data URI header, encoded = stored_file.split(",", 1) @@ -781,8 +780,7 @@ class SendDiscordFileBlock(Block): input_data: Input, *, credentials: APIKeyCredentials, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, **kwargs, ) -> BlockOutput: try: @@ -793,8 +791,7 @@ class SendDiscordFileBlock(Block): file=input_data.file, filename=input_data.filename, message_content=input_data.message_content, - graph_exec_id=graph_exec_id, - user_id=user_id, + execution_context=execution_context, ) yield "status", result.get("status", "Unknown error") diff --git a/autogpt_platform/backend/backend/blocks/fal/ai_video_generator.py b/autogpt_platform/backend/backend/blocks/fal/ai_video_generator.py index 2a71548dcc..c2079ef159 100644 --- a/autogpt_platform/backend/backend/blocks/fal/ai_video_generator.py +++ b/autogpt_platform/backend/backend/blocks/fal/ai_video_generator.py @@ -17,8 +17,11 @@ from backend.data.block import ( BlockSchemaInput, BlockSchemaOutput, ) +from backend.data.execution import ExecutionContext from backend.data.model import SchemaField +from backend.util.file import store_media_file from backend.util.request import ClientResponseError, Requests +from backend.util.type import MediaFileType logger = logging.getLogger(__name__) @@ -64,9 +67,13 @@ class AIVideoGeneratorBlock(Block): "credentials": TEST_CREDENTIALS_INPUT, }, test_credentials=TEST_CREDENTIALS, - test_output=[("video_url", "https://fal.media/files/example/video.mp4")], + test_output=[ + # Output will be a workspace ref or data URI depending on context + ("video_url", lambda x: x.startswith(("workspace://", "data:"))), + ], test_mock={ - "generate_video": lambda *args, **kwargs: "https://fal.media/files/example/video.mp4" + # Use data URI to avoid HTTP requests during tests + "generate_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA" }, ) @@ -208,11 +215,22 @@ class AIVideoGeneratorBlock(Block): raise RuntimeError(f"API request failed: {str(e)}") async def run( - self, input_data: Input, *, credentials: FalCredentials, **kwargs + self, + input_data: Input, + *, + credentials: FalCredentials, + execution_context: ExecutionContext, + **kwargs, ) -> BlockOutput: try: video_url = await self.generate_video(input_data, credentials) - yield "video_url", video_url + # Store the generated video to the user's workspace for persistence + stored_url = await store_media_file( + file=MediaFileType(video_url), + execution_context=execution_context, + return_format="for_block_output", + ) + yield "video_url", stored_url except Exception as e: error_message = str(e) yield "error", error_message diff --git a/autogpt_platform/backend/backend/blocks/flux_kontext.py b/autogpt_platform/backend/backend/blocks/flux_kontext.py index dd8375c4ce..d56baa6d92 100644 --- a/autogpt_platform/backend/backend/blocks/flux_kontext.py +++ b/autogpt_platform/backend/backend/blocks/flux_kontext.py @@ -12,6 +12,7 @@ from backend.data.block import ( BlockSchemaInput, BlockSchemaOutput, ) +from backend.data.execution import ExecutionContext from backend.data.model import ( APIKeyCredentials, CredentialsField, @@ -121,10 +122,12 @@ class AIImageEditorBlock(Block): "credentials": TEST_CREDENTIALS_INPUT, }, test_output=[ - ("output_image", "https://replicate.com/output/edited-image.png"), + # Output will be a workspace ref or data URI depending on context + ("output_image", lambda x: x.startswith(("workspace://", "data:"))), ], test_mock={ - "run_model": lambda *args, **kwargs: "https://replicate.com/output/edited-image.png", + # Use data URI to avoid HTTP requests during tests + "run_model": lambda *args, **kwargs: "", }, test_credentials=TEST_CREDENTIALS, ) @@ -134,8 +137,7 @@ class AIImageEditorBlock(Block): input_data: Input, *, credentials: APIKeyCredentials, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, **kwargs, ) -> BlockOutput: result = await self.run_model( @@ -144,20 +146,25 @@ class AIImageEditorBlock(Block): prompt=input_data.prompt, input_image_b64=( await store_media_file( - graph_exec_id=graph_exec_id, file=input_data.input_image, - user_id=user_id, - return_content=True, + execution_context=execution_context, + return_format="for_external_api", # Get content for Replicate API ) if input_data.input_image else None ), aspect_ratio=input_data.aspect_ratio.value, seed=input_data.seed, - user_id=user_id, - graph_exec_id=graph_exec_id, + user_id=execution_context.user_id or "", + graph_exec_id=execution_context.graph_exec_id or "", ) - yield "output_image", result + # Store the generated image to the user's workspace for persistence + stored_url = await store_media_file( + file=result, + execution_context=execution_context, + return_format="for_block_output", + ) + yield "output_image", stored_url async def run_model( self, diff --git a/autogpt_platform/backend/backend/blocks/google/gmail.py b/autogpt_platform/backend/backend/blocks/google/gmail.py index d1b3ecd4bf..2040cabe3f 100644 --- a/autogpt_platform/backend/backend/blocks/google/gmail.py +++ b/autogpt_platform/backend/backend/blocks/google/gmail.py @@ -21,6 +21,7 @@ from backend.data.block import ( BlockSchemaInput, BlockSchemaOutput, ) +from backend.data.execution import ExecutionContext from backend.data.model import SchemaField from backend.util.file import MediaFileType, get_exec_file_path, store_media_file from backend.util.settings import Settings @@ -95,8 +96,7 @@ def _make_mime_text( async def create_mime_message( input_data, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, ) -> str: """Create a MIME message with attachments and return base64-encoded raw message.""" @@ -117,12 +117,12 @@ async def create_mime_message( if input_data.attachments: for attach in input_data.attachments: local_path = await store_media_file( - user_id=user_id, - graph_exec_id=graph_exec_id, file=attach, - return_content=False, + execution_context=execution_context, + return_format="for_local_processing", ) - abs_path = get_exec_file_path(graph_exec_id, local_path) + assert execution_context.graph_exec_id # Validated by store_media_file + abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path) part = MIMEBase("application", "octet-stream") with open(abs_path, "rb") as f: part.set_payload(f.read()) @@ -582,27 +582,25 @@ class GmailSendBlock(GmailBase): input_data: Input, *, credentials: GoogleCredentials, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, **kwargs, ) -> BlockOutput: service = self._build_service(credentials, **kwargs) result = await self._send_email( service, input_data, - graph_exec_id, - user_id, + execution_context, ) yield "result", result async def _send_email( - self, service, input_data: Input, graph_exec_id: str, user_id: str + self, service, input_data: Input, execution_context: ExecutionContext ) -> dict: if not input_data.to or not input_data.subject or not input_data.body: raise ValueError( "At least one recipient, subject, and body are required for sending an email" ) - raw_message = await create_mime_message(input_data, graph_exec_id, user_id) + raw_message = await create_mime_message(input_data, execution_context) sent_message = await asyncio.to_thread( lambda: service.users() .messages() @@ -692,30 +690,28 @@ class GmailCreateDraftBlock(GmailBase): input_data: Input, *, credentials: GoogleCredentials, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, **kwargs, ) -> BlockOutput: service = self._build_service(credentials, **kwargs) result = await self._create_draft( service, input_data, - graph_exec_id, - user_id, + execution_context, ) yield "result", GmailDraftResult( id=result["id"], message_id=result["message"]["id"], status="draft_created" ) async def _create_draft( - self, service, input_data: Input, graph_exec_id: str, user_id: str + self, service, input_data: Input, execution_context: ExecutionContext ) -> dict: if not input_data.to or not input_data.subject: raise ValueError( "At least one recipient and subject are required for creating a draft" ) - raw_message = await create_mime_message(input_data, graph_exec_id, user_id) + raw_message = await create_mime_message(input_data, execution_context) draft = await asyncio.to_thread( lambda: service.users() .drafts() @@ -1100,7 +1096,7 @@ class GmailGetThreadBlock(GmailBase): async def _build_reply_message( - service, input_data, graph_exec_id: str, user_id: str + service, input_data, execution_context: ExecutionContext ) -> tuple[str, str]: """ Builds a reply MIME message for Gmail threads. @@ -1190,12 +1186,12 @@ async def _build_reply_message( # Handle attachments for attach in input_data.attachments: local_path = await store_media_file( - user_id=user_id, - graph_exec_id=graph_exec_id, file=attach, - return_content=False, + execution_context=execution_context, + return_format="for_local_processing", ) - abs_path = get_exec_file_path(graph_exec_id, local_path) + assert execution_context.graph_exec_id # Validated by store_media_file + abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path) part = MIMEBase("application", "octet-stream") with open(abs_path, "rb") as f: part.set_payload(f.read()) @@ -1311,16 +1307,14 @@ class GmailReplyBlock(GmailBase): input_data: Input, *, credentials: GoogleCredentials, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, **kwargs, ) -> BlockOutput: service = self._build_service(credentials, **kwargs) message = await self._reply( service, input_data, - graph_exec_id, - user_id, + execution_context, ) yield "messageId", message["id"] yield "threadId", message.get("threadId", input_data.threadId) @@ -1343,11 +1337,11 @@ class GmailReplyBlock(GmailBase): yield "email", email async def _reply( - self, service, input_data: Input, graph_exec_id: str, user_id: str + self, service, input_data: Input, execution_context: ExecutionContext ) -> dict: # Build the reply message using the shared helper raw, thread_id = await _build_reply_message( - service, input_data, graph_exec_id, user_id + service, input_data, execution_context ) # Send the message @@ -1441,16 +1435,14 @@ class GmailDraftReplyBlock(GmailBase): input_data: Input, *, credentials: GoogleCredentials, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, **kwargs, ) -> BlockOutput: service = self._build_service(credentials, **kwargs) draft = await self._create_draft_reply( service, input_data, - graph_exec_id, - user_id, + execution_context, ) yield "draftId", draft["id"] yield "messageId", draft["message"]["id"] @@ -1458,11 +1450,11 @@ class GmailDraftReplyBlock(GmailBase): yield "status", "draft_created" async def _create_draft_reply( - self, service, input_data: Input, graph_exec_id: str, user_id: str + self, service, input_data: Input, execution_context: ExecutionContext ) -> dict: # Build the reply message using the shared helper raw, thread_id = await _build_reply_message( - service, input_data, graph_exec_id, user_id + service, input_data, execution_context ) # Create draft with proper thread association @@ -1629,23 +1621,21 @@ class GmailForwardBlock(GmailBase): input_data: Input, *, credentials: GoogleCredentials, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, **kwargs, ) -> BlockOutput: service = self._build_service(credentials, **kwargs) result = await self._forward_message( service, input_data, - graph_exec_id, - user_id, + execution_context, ) yield "messageId", result["id"] yield "threadId", result.get("threadId", "") yield "status", "forwarded" async def _forward_message( - self, service, input_data: Input, graph_exec_id: str, user_id: str + self, service, input_data: Input, execution_context: ExecutionContext ) -> dict: if not input_data.to: raise ValueError("At least one recipient is required for forwarding") @@ -1727,12 +1717,12 @@ To: {original_to} # Add any additional attachments for attach in input_data.additionalAttachments: local_path = await store_media_file( - user_id=user_id, - graph_exec_id=graph_exec_id, file=attach, - return_content=False, + execution_context=execution_context, + return_format="for_local_processing", ) - abs_path = get_exec_file_path(graph_exec_id, local_path) + assert execution_context.graph_exec_id # Validated by store_media_file + abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path) part = MIMEBase("application", "octet-stream") with open(abs_path, "rb") as f: part.set_payload(f.read()) diff --git a/autogpt_platform/backend/backend/blocks/http.py b/autogpt_platform/backend/backend/blocks/http.py index 9b27a3b129..77e7fe243f 100644 --- a/autogpt_platform/backend/backend/blocks/http.py +++ b/autogpt_platform/backend/backend/blocks/http.py @@ -15,6 +15,7 @@ from backend.data.block import ( BlockSchemaInput, BlockSchemaOutput, ) +from backend.data.execution import ExecutionContext from backend.data.model import ( CredentialsField, CredentialsMetaInput, @@ -116,10 +117,9 @@ class SendWebRequestBlock(Block): @staticmethod async def _prepare_files( - graph_exec_id: str, + execution_context: ExecutionContext, files_name: str, files: list[MediaFileType], - user_id: str, ) -> list[tuple[str, tuple[str, BytesIO, str]]]: """ Prepare files for the request by storing them and reading their content. @@ -127,11 +127,16 @@ class SendWebRequestBlock(Block): (files_name, (filename, BytesIO, mime_type)) """ files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = [] + graph_exec_id = execution_context.graph_exec_id + if graph_exec_id is None: + raise ValueError("graph_exec_id is required for file operations") for media in files: # Normalise to a list so we can repeat the same key rel_path = await store_media_file( - graph_exec_id, media, user_id, return_content=False + file=media, + execution_context=execution_context, + return_format="for_local_processing", ) abs_path = get_exec_file_path(graph_exec_id, rel_path) async with aiofiles.open(abs_path, "rb") as f: @@ -143,7 +148,7 @@ class SendWebRequestBlock(Block): return files_payload async def run( - self, input_data: Input, *, graph_exec_id: str, user_id: str, **kwargs + self, input_data: Input, *, execution_context: ExecutionContext, **kwargs ) -> BlockOutput: # ─── Parse/normalise body ──────────────────────────────────── body = input_data.body @@ -174,7 +179,7 @@ class SendWebRequestBlock(Block): files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = [] if use_files: files_payload = await self._prepare_files( - graph_exec_id, input_data.files_name, input_data.files, user_id + execution_context, input_data.files_name, input_data.files ) # Enforce body format rules @@ -238,9 +243,8 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock): self, input_data: Input, *, - graph_exec_id: str, + execution_context: ExecutionContext, credentials: HostScopedCredentials, - user_id: str, **kwargs, ) -> BlockOutput: # Create SendWebRequestBlock.Input from our input (removing credentials field) @@ -271,6 +275,6 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock): # Use parent class run method async for output_name, output_data in super().run( - base_input, graph_exec_id=graph_exec_id, user_id=user_id, **kwargs + base_input, execution_context=execution_context, **kwargs ): yield output_name, output_data diff --git a/autogpt_platform/backend/backend/blocks/io.py b/autogpt_platform/backend/backend/blocks/io.py index 6f8e62e339..a9c3859490 100644 --- a/autogpt_platform/backend/backend/blocks/io.py +++ b/autogpt_platform/backend/backend/blocks/io.py @@ -12,6 +12,7 @@ from backend.data.block import ( BlockSchemaInput, BlockType, ) +from backend.data.execution import ExecutionContext from backend.data.model import SchemaField from backend.util.file import store_media_file from backend.util.mock import MockObject @@ -462,18 +463,21 @@ class AgentFileInputBlock(AgentInputBlock): self, input_data: Input, *, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, **kwargs, ) -> BlockOutput: if not input_data.value: return + # Determine return format based on user preference + # for_external_api: always returns data URI (base64) - honors "Produce Base64 Output" + # for_block_output: smart format - workspace:// in CoPilot, data URI in graphs + return_format = "for_external_api" if input_data.base_64 else "for_block_output" + yield "result", await store_media_file( - graph_exec_id=graph_exec_id, file=input_data.value, - user_id=user_id, - return_content=input_data.base_64, + execution_context=execution_context, + return_format=return_format, ) diff --git a/autogpt_platform/backend/backend/blocks/llm.py b/autogpt_platform/backend/backend/blocks/llm.py index fdcd7f3568..732fb1354c 100644 --- a/autogpt_platform/backend/backend/blocks/llm.py +++ b/autogpt_platform/backend/backend/blocks/llm.py @@ -115,7 +115,6 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta): CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101" CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929" CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001" - CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219" CLAUDE_3_HAIKU = "claude-3-haiku-20240307" # AI/ML API models AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo" @@ -280,9 +279,6 @@ MODEL_METADATA = { LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata( "anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2 ), # claude-haiku-4-5-20251001 - LlmModel.CLAUDE_3_7_SONNET: ModelMetadata( - "anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2 - ), # claude-3-7-sonnet-20250219 LlmModel.CLAUDE_3_HAIKU: ModelMetadata( "anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1 ), # claude-3-haiku-20240307 diff --git a/autogpt_platform/backend/backend/blocks/media.py b/autogpt_platform/backend/backend/blocks/media.py index c8d4b4768f..a8d145bc64 100644 --- a/autogpt_platform/backend/backend/blocks/media.py +++ b/autogpt_platform/backend/backend/blocks/media.py @@ -1,6 +1,6 @@ import os import tempfile -from typing import Literal, Optional +from typing import Optional from moviepy.audio.io.AudioFileClip import AudioFileClip from moviepy.video.fx.Loop import Loop @@ -13,6 +13,7 @@ from backend.data.block import ( BlockSchemaInput, BlockSchemaOutput, ) +from backend.data.execution import ExecutionContext from backend.data.model import SchemaField from backend.util.file import MediaFileType, get_exec_file_path, store_media_file @@ -46,18 +47,19 @@ class MediaDurationBlock(Block): self, input_data: Input, *, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, **kwargs, ) -> BlockOutput: # 1) Store the input media locally local_media_path = await store_media_file( - graph_exec_id=graph_exec_id, file=input_data.media_in, - user_id=user_id, - return_content=False, + execution_context=execution_context, + return_format="for_local_processing", + ) + assert execution_context.graph_exec_id is not None + media_abspath = get_exec_file_path( + execution_context.graph_exec_id, local_media_path ) - media_abspath = get_exec_file_path(graph_exec_id, local_media_path) # 2) Load the clip if input_data.is_video: @@ -88,10 +90,6 @@ class LoopVideoBlock(Block): default=None, ge=1, ) - output_return_type: Literal["file_path", "data_uri"] = SchemaField( - description="How to return the output video. Either a relative path or base64 data URI.", - default="file_path", - ) class Output(BlockSchemaOutput): video_out: str = SchemaField( @@ -111,17 +109,19 @@ class LoopVideoBlock(Block): self, input_data: Input, *, - node_exec_id: str, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, **kwargs, ) -> BlockOutput: + assert execution_context.graph_exec_id is not None + assert execution_context.node_exec_id is not None + graph_exec_id = execution_context.graph_exec_id + node_exec_id = execution_context.node_exec_id + # 1) Store the input video locally local_video_path = await store_media_file( - graph_exec_id=graph_exec_id, file=input_data.video_in, - user_id=user_id, - return_content=False, + execution_context=execution_context, + return_format="for_local_processing", ) input_abspath = get_exec_file_path(graph_exec_id, local_video_path) @@ -149,12 +149,11 @@ class LoopVideoBlock(Block): looped_clip = looped_clip.with_audio(clip.audio) looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac") - # Return as data URI + # Return output - for_block_output returns workspace:// if available, else data URI video_out = await store_media_file( - graph_exec_id=graph_exec_id, file=output_filename, - user_id=user_id, - return_content=input_data.output_return_type == "data_uri", + execution_context=execution_context, + return_format="for_block_output", ) yield "video_out", video_out @@ -177,10 +176,6 @@ class AddAudioToVideoBlock(Block): description="Volume scale for the newly attached audio track (1.0 = original).", default=1.0, ) - output_return_type: Literal["file_path", "data_uri"] = SchemaField( - description="Return the final output as a relative path or base64 data URI.", - default="file_path", - ) class Output(BlockSchemaOutput): video_out: MediaFileType = SchemaField( @@ -200,23 +195,24 @@ class AddAudioToVideoBlock(Block): self, input_data: Input, *, - node_exec_id: str, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, **kwargs, ) -> BlockOutput: + assert execution_context.graph_exec_id is not None + assert execution_context.node_exec_id is not None + graph_exec_id = execution_context.graph_exec_id + node_exec_id = execution_context.node_exec_id + # 1) Store the inputs locally local_video_path = await store_media_file( - graph_exec_id=graph_exec_id, file=input_data.video_in, - user_id=user_id, - return_content=False, + execution_context=execution_context, + return_format="for_local_processing", ) local_audio_path = await store_media_file( - graph_exec_id=graph_exec_id, file=input_data.audio_in, - user_id=user_id, - return_content=False, + execution_context=execution_context, + return_format="for_local_processing", ) abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id) @@ -240,12 +236,11 @@ class AddAudioToVideoBlock(Block): output_abspath = os.path.join(abs_temp_dir, output_filename) final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac") - # 5) Return either path or data URI + # 5) Return output - for_block_output returns workspace:// if available, else data URI video_out = await store_media_file( - graph_exec_id=graph_exec_id, file=output_filename, - user_id=user_id, - return_content=input_data.output_return_type == "data_uri", + execution_context=execution_context, + return_format="for_block_output", ) yield "video_out", video_out diff --git a/autogpt_platform/backend/backend/blocks/screenshotone.py b/autogpt_platform/backend/backend/blocks/screenshotone.py index 1f8947376b..ee998f8da2 100644 --- a/autogpt_platform/backend/backend/blocks/screenshotone.py +++ b/autogpt_platform/backend/backend/blocks/screenshotone.py @@ -11,6 +11,7 @@ from backend.data.block import ( BlockSchemaInput, BlockSchemaOutput, ) +from backend.data.execution import ExecutionContext from backend.data.model import ( APIKeyCredentials, CredentialsField, @@ -112,8 +113,7 @@ class ScreenshotWebPageBlock(Block): @staticmethod async def take_screenshot( credentials: APIKeyCredentials, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, url: str, viewport_width: int, viewport_height: int, @@ -155,12 +155,11 @@ class ScreenshotWebPageBlock(Block): return { "image": await store_media_file( - graph_exec_id=graph_exec_id, file=MediaFileType( f"data:image/{format.value};base64,{b64encode(content).decode('utf-8')}" ), - user_id=user_id, - return_content=True, + execution_context=execution_context, + return_format="for_block_output", ) } @@ -169,15 +168,13 @@ class ScreenshotWebPageBlock(Block): input_data: Input, *, credentials: APIKeyCredentials, - graph_exec_id: str, - user_id: str, + execution_context: ExecutionContext, **kwargs, ) -> BlockOutput: try: screenshot_data = await self.take_screenshot( credentials=credentials, - graph_exec_id=graph_exec_id, - user_id=user_id, + execution_context=execution_context, url=input_data.url, viewport_width=input_data.viewport_width, viewport_height=input_data.viewport_height, diff --git a/autogpt_platform/backend/backend/blocks/spreadsheet.py b/autogpt_platform/backend/backend/blocks/spreadsheet.py index 211aac23f4..a13f9e2f6d 100644 --- a/autogpt_platform/backend/backend/blocks/spreadsheet.py +++ b/autogpt_platform/backend/backend/blocks/spreadsheet.py @@ -7,6 +7,7 @@ from backend.data.block import ( BlockSchemaInput, BlockSchemaOutput, ) +from backend.data.execution import ExecutionContext from backend.data.model import ContributorDetails, SchemaField from backend.util.file import get_exec_file_path, store_media_file from backend.util.type import MediaFileType @@ -98,7 +99,7 @@ class ReadSpreadsheetBlock(Block): ) async def run( - self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs + self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs ) -> BlockOutput: import csv from io import StringIO @@ -106,14 +107,16 @@ class ReadSpreadsheetBlock(Block): # Determine data source - prefer file_input if provided, otherwise use contents if input_data.file_input: stored_file_path = await store_media_file( - user_id=user_id, - graph_exec_id=graph_exec_id, file=input_data.file_input, - return_content=False, + execution_context=execution_context, + return_format="for_local_processing", ) # Get full file path - file_path = get_exec_file_path(graph_exec_id, stored_file_path) + assert execution_context.graph_exec_id # Validated by store_media_file + file_path = get_exec_file_path( + execution_context.graph_exec_id, stored_file_path + ) if not Path(file_path).exists(): raise ValueError(f"File does not exist: {file_path}") diff --git a/autogpt_platform/backend/backend/blocks/stagehand/blocks.py b/autogpt_platform/backend/backend/blocks/stagehand/blocks.py index be1d736962..4d5d6bf4f3 100644 --- a/autogpt_platform/backend/backend/blocks/stagehand/blocks.py +++ b/autogpt_platform/backend/backend/blocks/stagehand/blocks.py @@ -83,7 +83,7 @@ class StagehandRecommendedLlmModel(str, Enum): GPT41_MINI = "gpt-4.1-mini-2025-04-14" # Anthropic - CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219" + CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929" @property def provider_name(self) -> str: @@ -137,7 +137,7 @@ class StagehandObserveBlock(Block): model: StagehandRecommendedLlmModel = SchemaField( title="LLM Model", description="LLM to use for Stagehand (provider is inferred)", - default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET, + default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET, advanced=False, ) model_credentials: AICredentials = AICredentialsField() @@ -230,7 +230,7 @@ class StagehandActBlock(Block): model: StagehandRecommendedLlmModel = SchemaField( title="LLM Model", description="LLM to use for Stagehand (provider is inferred)", - default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET, + default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET, advanced=False, ) model_credentials: AICredentials = AICredentialsField() @@ -330,7 +330,7 @@ class StagehandExtractBlock(Block): model: StagehandRecommendedLlmModel = SchemaField( title="LLM Model", description="LLM to use for Stagehand (provider is inferred)", - default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET, + default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET, advanced=False, ) model_credentials: AICredentials = AICredentialsField() diff --git a/autogpt_platform/backend/backend/blocks/talking_head.py b/autogpt_platform/backend/backend/blocks/talking_head.py index 7a466bec7e..e01e3d4023 100644 --- a/autogpt_platform/backend/backend/blocks/talking_head.py +++ b/autogpt_platform/backend/backend/blocks/talking_head.py @@ -10,6 +10,7 @@ from backend.data.block import ( BlockSchemaInput, BlockSchemaOutput, ) +from backend.data.execution import ExecutionContext from backend.data.model import ( APIKeyCredentials, CredentialsField, @@ -17,7 +18,9 @@ from backend.data.model import ( SchemaField, ) from backend.integrations.providers import ProviderName +from backend.util.file import store_media_file from backend.util.request import Requests +from backend.util.type import MediaFileType TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", @@ -102,7 +105,7 @@ class CreateTalkingAvatarVideoBlock(Block): test_output=[ ( "video_url", - "https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video", + lambda x: x.startswith(("workspace://", "data:")), ), ], test_mock={ @@ -110,9 +113,10 @@ class CreateTalkingAvatarVideoBlock(Block): "id": "abcd1234-5678-efgh-ijkl-mnopqrstuvwx", "status": "created", }, + # Use data URI to avoid HTTP requests during tests "get_clip_status": lambda *args, **kwargs: { "status": "done", - "result_url": "https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video", + "result_url": "data:video/mp4;base64,AAAA", }, }, test_credentials=TEST_CREDENTIALS, @@ -138,7 +142,12 @@ class CreateTalkingAvatarVideoBlock(Block): return response.json() async def run( - self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs + self, + input_data: Input, + *, + credentials: APIKeyCredentials, + execution_context: ExecutionContext, + **kwargs, ) -> BlockOutput: # Create the clip payload = { @@ -165,7 +174,14 @@ class CreateTalkingAvatarVideoBlock(Block): for _ in range(input_data.max_polling_attempts): status_response = await self.get_clip_status(credentials.api_key, clip_id) if status_response["status"] == "done": - yield "video_url", status_response["result_url"] + # Store the generated video to the user's workspace for persistence + video_url = status_response["result_url"] + stored_url = await store_media_file( + file=MediaFileType(video_url), + execution_context=execution_context, + return_format="for_block_output", + ) + yield "video_url", stored_url return elif status_response["status"] == "error": raise RuntimeError( diff --git a/autogpt_platform/backend/backend/blocks/test/test_blocks_dos_vulnerability.py b/autogpt_platform/backend/backend/blocks/test/test_blocks_dos_vulnerability.py index 389bb5c636..e2e44b194c 100644 --- a/autogpt_platform/backend/backend/blocks/test/test_blocks_dos_vulnerability.py +++ b/autogpt_platform/backend/backend/blocks/test/test_blocks_dos_vulnerability.py @@ -12,6 +12,7 @@ from backend.blocks.iteration import StepThroughItemsBlock from backend.blocks.llm import AITextSummarizerBlock from backend.blocks.text import ExtractTextInformationBlock from backend.blocks.xml_parser import XMLParserBlock +from backend.data.execution import ExecutionContext from backend.util.file import store_media_file from backend.util.type import MediaFileType @@ -233,9 +234,12 @@ class TestStoreMediaFileSecurity: with pytest.raises(ValueError, match="File too large"): await store_media_file( - graph_exec_id="test", file=MediaFileType(large_data_uri), - user_id="test_user", + execution_context=ExecutionContext( + user_id="test_user", + graph_exec_id="test", + ), + return_format="for_local_processing", ) @patch("backend.util.file.Path") @@ -270,9 +274,12 @@ class TestStoreMediaFileSecurity: # Should raise an error when directory size exceeds limit with pytest.raises(ValueError, match="Disk usage limit exceeded"): await store_media_file( - graph_exec_id="test", file=MediaFileType( "data:text/plain;base64,dGVzdA==" ), # Small test file - user_id="test_user", + execution_context=ExecutionContext( + user_id="test_user", + graph_exec_id="test", + ), + return_format="for_local_processing", ) diff --git a/autogpt_platform/backend/backend/blocks/test/test_http.py b/autogpt_platform/backend/backend/blocks/test/test_http.py index bdc30f3ecf..e01b8e2c5b 100644 --- a/autogpt_platform/backend/backend/blocks/test/test_http.py +++ b/autogpt_platform/backend/backend/blocks/test/test_http.py @@ -11,10 +11,22 @@ from backend.blocks.http import ( HttpMethod, SendAuthenticatedWebRequestBlock, ) +from backend.data.execution import ExecutionContext from backend.data.model import HostScopedCredentials from backend.util.request import Response +def make_test_context( + graph_exec_id: str = "test-exec-id", + user_id: str = "test-user-id", +) -> ExecutionContext: + """Helper to create test ExecutionContext.""" + return ExecutionContext( + user_id=user_id, + graph_exec_id=graph_exec_id, + ) + + class TestHttpBlockWithHostScopedCredentials: """Test suite for HTTP block integration with HostScopedCredentials.""" @@ -105,8 +117,7 @@ class TestHttpBlockWithHostScopedCredentials: async for output_name, output_data in http_block.run( input_data, credentials=exact_match_credentials, - graph_exec_id="test-exec-id", - user_id="test-user-id", + execution_context=make_test_context(), ): result.append((output_name, output_data)) @@ -161,8 +172,7 @@ class TestHttpBlockWithHostScopedCredentials: async for output_name, output_data in http_block.run( input_data, credentials=wildcard_credentials, - graph_exec_id="test-exec-id", - user_id="test-user-id", + execution_context=make_test_context(), ): result.append((output_name, output_data)) @@ -208,8 +218,7 @@ class TestHttpBlockWithHostScopedCredentials: async for output_name, output_data in http_block.run( input_data, credentials=non_matching_credentials, - graph_exec_id="test-exec-id", - user_id="test-user-id", + execution_context=make_test_context(), ): result.append((output_name, output_data)) @@ -258,8 +267,7 @@ class TestHttpBlockWithHostScopedCredentials: async for output_name, output_data in http_block.run( input_data, credentials=exact_match_credentials, - graph_exec_id="test-exec-id", - user_id="test-user-id", + execution_context=make_test_context(), ): result.append((output_name, output_data)) @@ -318,8 +326,7 @@ class TestHttpBlockWithHostScopedCredentials: async for output_name, output_data in http_block.run( input_data, credentials=auto_discovered_creds, # Execution manager found these - graph_exec_id="test-exec-id", - user_id="test-user-id", + execution_context=make_test_context(), ): result.append((output_name, output_data)) @@ -382,8 +389,7 @@ class TestHttpBlockWithHostScopedCredentials: async for output_name, output_data in http_block.run( input_data, credentials=multi_header_creds, - graph_exec_id="test-exec-id", - user_id="test-user-id", + execution_context=make_test_context(), ): result.append((output_name, output_data)) @@ -471,8 +477,7 @@ class TestHttpBlockWithHostScopedCredentials: async for output_name, output_data in http_block.run( input_data, credentials=test_creds, - graph_exec_id="test-exec-id", - user_id="test-user-id", + execution_context=make_test_context(), ): result.append((output_name, output_data)) diff --git a/autogpt_platform/backend/backend/blocks/text.py b/autogpt_platform/backend/backend/blocks/text.py index 5e58e27101..359e22a84f 100644 --- a/autogpt_platform/backend/backend/blocks/text.py +++ b/autogpt_platform/backend/backend/blocks/text.py @@ -11,6 +11,7 @@ from backend.data.block import ( BlockSchemaInput, BlockSchemaOutput, ) +from backend.data.execution import ExecutionContext from backend.data.model import SchemaField from backend.util import json, text from backend.util.file import get_exec_file_path, store_media_file @@ -444,18 +445,21 @@ class FileReadBlock(Block): ) async def run( - self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs + self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs ) -> BlockOutput: # Store the media file properly (handles URLs, data URIs, etc.) stored_file_path = await store_media_file( - user_id=user_id, - graph_exec_id=graph_exec_id, file=input_data.file_input, - return_content=False, + execution_context=execution_context, + return_format="for_local_processing", ) - # Get full file path - file_path = get_exec_file_path(graph_exec_id, stored_file_path) + # Get full file path (graph_exec_id validated by store_media_file above) + if not execution_context.graph_exec_id: + raise ValueError("execution_context.graph_exec_id is required") + file_path = get_exec_file_path( + execution_context.graph_exec_id, stored_file_path + ) if not Path(file_path).exists(): raise ValueError(f"File does not exist: {file_path}") diff --git a/autogpt_platform/backend/backend/data/block_cost_config.py b/autogpt_platform/backend/backend/data/block_cost_config.py index 1b54ae0942..f46cc726f0 100644 --- a/autogpt_platform/backend/backend/data/block_cost_config.py +++ b/autogpt_platform/backend/backend/data/block_cost_config.py @@ -81,7 +81,6 @@ MODEL_COST: dict[LlmModel, int] = { LlmModel.CLAUDE_4_5_HAIKU: 4, LlmModel.CLAUDE_4_5_OPUS: 14, LlmModel.CLAUDE_4_5_SONNET: 9, - LlmModel.CLAUDE_3_7_SONNET: 5, LlmModel.CLAUDE_3_HAIKU: 1, LlmModel.AIML_API_QWEN2_5_72B: 1, LlmModel.AIML_API_LLAMA3_1_70B: 1, diff --git a/autogpt_platform/backend/backend/data/execution.py b/autogpt_platform/backend/backend/data/execution.py index 3c1fd25c51..afb8c70538 100644 --- a/autogpt_platform/backend/backend/data/execution.py +++ b/autogpt_platform/backend/backend/data/execution.py @@ -83,12 +83,29 @@ class ExecutionContext(BaseModel): model_config = {"extra": "ignore"} + # Execution identity + user_id: Optional[str] = None + graph_id: Optional[str] = None + graph_exec_id: Optional[str] = None + graph_version: Optional[int] = None + node_id: Optional[str] = None + node_exec_id: Optional[str] = None + + # Safety settings human_in_the_loop_safe_mode: bool = True sensitive_action_safe_mode: bool = False + + # User settings user_timezone: str = "UTC" + + # Execution hierarchy root_execution_id: Optional[str] = None parent_execution_id: Optional[str] = None + # Workspace + workspace_id: Optional[str] = None + session_id: Optional[str] = None + # -------------------------- Models -------------------------- # diff --git a/autogpt_platform/backend/backend/data/graph.py b/autogpt_platform/backend/backend/data/graph.py index c1f38f81d5..ee6cd2e4b0 100644 --- a/autogpt_platform/backend/backend/data/graph.py +++ b/autogpt_platform/backend/backend/data/graph.py @@ -1028,6 +1028,39 @@ async def get_graph( return GraphModel.from_db(graph, for_export) +async def get_store_listed_graphs(*graph_ids: str) -> dict[str, GraphModel]: + """Batch-fetch multiple store-listed graphs by their IDs. + + Only returns graphs that have approved store listings (publicly available). + Does not require permission checks since store-listed graphs are public. + + Args: + *graph_ids: Variable number of graph IDs to fetch + + Returns: + Dict mapping graph_id to GraphModel for graphs with approved store listings + """ + if not graph_ids: + return {} + + store_listings = await StoreListingVersion.prisma().find_many( + where={ + "agentGraphId": {"in": list(graph_ids)}, + "submissionStatus": SubmissionStatus.APPROVED, + "isDeleted": False, + }, + include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}}, + distinct=["agentGraphId"], + order={"agentGraphVersion": "desc"}, + ) + + return { + listing.agentGraphId: GraphModel.from_db(listing.AgentGraph) + for listing in store_listings + if listing.AgentGraph + } + + async def get_graph_as_admin( graph_id: str, version: int | None = None, diff --git a/autogpt_platform/backend/backend/data/model.py b/autogpt_platform/backend/backend/data/model.py index 2cc73f6b7b..331126fbd6 100644 --- a/autogpt_platform/backend/backend/data/model.py +++ b/autogpt_platform/backend/backend/data/model.py @@ -666,10 +666,16 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]): if not (self.discriminator and self.discriminator_mapping): return self + try: + provider = self.discriminator_mapping[discriminator_value] + except KeyError: + raise ValueError( + f"Model '{discriminator_value}' is not supported. " + "It may have been deprecated. Please update your agent configuration." + ) + return CredentialsFieldInfo( - credentials_provider=frozenset( - [self.discriminator_mapping[discriminator_value]] - ), + credentials_provider=frozenset([provider]), credentials_types=self.supported_types, credentials_scopes=self.required_scopes, discriminator=self.discriminator, diff --git a/autogpt_platform/backend/backend/data/onboarding.py b/autogpt_platform/backend/backend/data/onboarding.py index 6a842d1022..4af8e8dffd 100644 --- a/autogpt_platform/backend/backend/data/onboarding.py +++ b/autogpt_platform/backend/backend/data/onboarding.py @@ -41,6 +41,7 @@ FrontendOnboardingStep = Literal[ OnboardingStep.AGENT_NEW_RUN, OnboardingStep.AGENT_INPUT, OnboardingStep.CONGRATS, + OnboardingStep.VISIT_COPILOT, OnboardingStep.MARKETPLACE_VISIT, OnboardingStep.BUILDER_OPEN, ] @@ -122,6 +123,9 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate): async def _reward_user(user_id: str, onboarding: UserOnboarding, step: OnboardingStep): reward = 0 match step: + # Welcome bonus for visiting copilot ($5 = 500 credits) + case OnboardingStep.VISIT_COPILOT: + reward = 500 # Reward user when they clicked New Run during onboarding # This is because they need credits before scheduling a run (next step) # This is seen as a reward for the GET_RESULTS step in the wallet diff --git a/autogpt_platform/backend/backend/data/workspace.py b/autogpt_platform/backend/backend/data/workspace.py new file mode 100644 index 0000000000..f3dba0a294 --- /dev/null +++ b/autogpt_platform/backend/backend/data/workspace.py @@ -0,0 +1,276 @@ +""" +Database CRUD operations for User Workspace. + +This module provides functions for managing user workspaces and workspace files. +""" + +import logging +from datetime import datetime, timezone +from typing import Optional + +from prisma.models import UserWorkspace, UserWorkspaceFile +from prisma.types import UserWorkspaceFileWhereInput + +from backend.util.json import SafeJson + +logger = logging.getLogger(__name__) + + +async def get_or_create_workspace(user_id: str) -> UserWorkspace: + """ + Get user's workspace, creating one if it doesn't exist. + + Uses upsert to handle race conditions when multiple concurrent requests + attempt to create a workspace for the same user. + + Args: + user_id: The user's ID + + Returns: + UserWorkspace instance + """ + workspace = await UserWorkspace.prisma().upsert( + where={"userId": user_id}, + data={ + "create": {"userId": user_id}, + "update": {}, # No updates needed if exists + }, + ) + + return workspace + + +async def get_workspace(user_id: str) -> Optional[UserWorkspace]: + """ + Get user's workspace if it exists. + + Args: + user_id: The user's ID + + Returns: + UserWorkspace instance or None + """ + return await UserWorkspace.prisma().find_unique(where={"userId": user_id}) + + +async def create_workspace_file( + workspace_id: str, + file_id: str, + name: str, + path: str, + storage_path: str, + mime_type: str, + size_bytes: int, + checksum: Optional[str] = None, + metadata: Optional[dict] = None, +) -> UserWorkspaceFile: + """ + Create a new workspace file record. + + Args: + workspace_id: The workspace ID + file_id: The file ID (same as used in storage path for consistency) + name: User-visible filename + path: Virtual path (e.g., "/documents/report.pdf") + storage_path: Actual storage path (GCS or local) + mime_type: MIME type of the file + size_bytes: File size in bytes + checksum: Optional SHA256 checksum + metadata: Optional additional metadata + + Returns: + Created UserWorkspaceFile instance + """ + # Normalize path to start with / + if not path.startswith("/"): + path = f"/{path}" + + file = await UserWorkspaceFile.prisma().create( + data={ + "id": file_id, + "workspaceId": workspace_id, + "name": name, + "path": path, + "storagePath": storage_path, + "mimeType": mime_type, + "sizeBytes": size_bytes, + "checksum": checksum, + "metadata": SafeJson(metadata or {}), + } + ) + + logger.info( + f"Created workspace file {file.id} at path {path} " + f"in workspace {workspace_id}" + ) + return file + + +async def get_workspace_file( + file_id: str, + workspace_id: Optional[str] = None, +) -> Optional[UserWorkspaceFile]: + """ + Get a workspace file by ID. + + Args: + file_id: The file ID + workspace_id: Optional workspace ID for validation + + Returns: + UserWorkspaceFile instance or None + """ + where_clause: dict = {"id": file_id, "isDeleted": False} + if workspace_id: + where_clause["workspaceId"] = workspace_id + + return await UserWorkspaceFile.prisma().find_first(where=where_clause) + + +async def get_workspace_file_by_path( + workspace_id: str, + path: str, +) -> Optional[UserWorkspaceFile]: + """ + Get a workspace file by its virtual path. + + Args: + workspace_id: The workspace ID + path: Virtual path + + Returns: + UserWorkspaceFile instance or None + """ + # Normalize path + if not path.startswith("/"): + path = f"/{path}" + + return await UserWorkspaceFile.prisma().find_first( + where={ + "workspaceId": workspace_id, + "path": path, + "isDeleted": False, + } + ) + + +async def list_workspace_files( + workspace_id: str, + path_prefix: Optional[str] = None, + include_deleted: bool = False, + limit: Optional[int] = None, + offset: int = 0, +) -> list[UserWorkspaceFile]: + """ + List files in a workspace. + + Args: + workspace_id: The workspace ID + path_prefix: Optional path prefix to filter (e.g., "/documents/") + include_deleted: Whether to include soft-deleted files + limit: Maximum number of files to return + offset: Number of files to skip + + Returns: + List of UserWorkspaceFile instances + """ + where_clause: UserWorkspaceFileWhereInput = {"workspaceId": workspace_id} + + if not include_deleted: + where_clause["isDeleted"] = False + + if path_prefix: + # Normalize prefix + if not path_prefix.startswith("/"): + path_prefix = f"/{path_prefix}" + where_clause["path"] = {"startswith": path_prefix} + + return await UserWorkspaceFile.prisma().find_many( + where=where_clause, + order={"createdAt": "desc"}, + take=limit, + skip=offset, + ) + + +async def count_workspace_files( + workspace_id: str, + path_prefix: Optional[str] = None, + include_deleted: bool = False, +) -> int: + """ + Count files in a workspace. + + Args: + workspace_id: The workspace ID + path_prefix: Optional path prefix to filter (e.g., "/sessions/abc123/") + include_deleted: Whether to include soft-deleted files + + Returns: + Number of files + """ + where_clause: dict = {"workspaceId": workspace_id} + if not include_deleted: + where_clause["isDeleted"] = False + + if path_prefix: + # Normalize prefix + if not path_prefix.startswith("/"): + path_prefix = f"/{path_prefix}" + where_clause["path"] = {"startswith": path_prefix} + + return await UserWorkspaceFile.prisma().count(where=where_clause) + + +async def soft_delete_workspace_file( + file_id: str, + workspace_id: Optional[str] = None, +) -> Optional[UserWorkspaceFile]: + """ + Soft-delete a workspace file. + + The path is modified to include a deletion timestamp to free up the original + path for new files while preserving the record for potential recovery. + + Args: + file_id: The file ID + workspace_id: Optional workspace ID for validation + + Returns: + Updated UserWorkspaceFile instance or None if not found + """ + # First verify the file exists and belongs to workspace + file = await get_workspace_file(file_id, workspace_id) + if file is None: + return None + + deleted_at = datetime.now(timezone.utc) + # Modify path to free up the unique constraint for new files at original path + # Format: {original_path}__deleted__{timestamp} + deleted_path = f"{file.path}__deleted__{int(deleted_at.timestamp())}" + + updated = await UserWorkspaceFile.prisma().update( + where={"id": file_id}, + data={ + "isDeleted": True, + "deletedAt": deleted_at, + "path": deleted_path, + }, + ) + + logger.info(f"Soft-deleted workspace file {file_id}") + return updated + + +async def get_workspace_total_size(workspace_id: str) -> int: + """ + Get the total size of all files in a workspace. + + Args: + workspace_id: The workspace ID + + Returns: + Total size in bytes + """ + files = await list_workspace_files(workspace_id) + return sum(file.sizeBytes for file in files) diff --git a/autogpt_platform/backend/backend/executor/manager.py b/autogpt_platform/backend/backend/executor/manager.py index 39d4f984eb..8362dae828 100644 --- a/autogpt_platform/backend/backend/executor/manager.py +++ b/autogpt_platform/backend/backend/executor/manager.py @@ -236,7 +236,14 @@ async def execute_node( input_size = len(input_data_str) log_metadata.debug("Executed node with input", input=input_data_str) + # Create node-specific execution context to avoid race conditions + # (multiple nodes can execute concurrently and would otherwise mutate shared state) + execution_context = execution_context.model_copy( + update={"node_id": node_id, "node_exec_id": node_exec_id} + ) + # Inject extra execution arguments for the blocks via kwargs + # Keep individual kwargs for backwards compatibility with existing blocks extra_exec_kwargs: dict = { "graph_id": graph_id, "graph_version": graph_version, diff --git a/autogpt_platform/backend/backend/executor/utils.py b/autogpt_platform/backend/backend/executor/utils.py index f35bebb125..fa264c30a7 100644 --- a/autogpt_platform/backend/backend/executor/utils.py +++ b/autogpt_platform/backend/backend/executor/utils.py @@ -892,11 +892,19 @@ async def add_graph_execution( settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id) execution_context = ExecutionContext( + # Execution identity + user_id=user_id, + graph_id=graph_id, + graph_exec_id=graph_exec.id, + graph_version=graph_exec.graph_version, + # Safety settings human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode, sensitive_action_safe_mode=settings.sensitive_action_safe_mode, + # User settings user_timezone=( user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC" ), + # Execution hierarchy root_execution_id=graph_exec.id, ) diff --git a/autogpt_platform/backend/backend/executor/utils_test.py b/autogpt_platform/backend/backend/executor/utils_test.py index 4761a18c63..db33249583 100644 --- a/autogpt_platform/backend/backend/executor/utils_test.py +++ b/autogpt_platform/backend/backend/executor/utils_test.py @@ -348,6 +348,7 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture): mock_graph_exec.id = "execution-id-123" mock_graph_exec.node_executions = [] # Add this to avoid AttributeError mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check + mock_graph_exec.graph_version = graph_version mock_graph_exec.to_graph_execution_entry.return_value = mocker.MagicMock() # Mock the queue and event bus @@ -434,6 +435,9 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture): # Create a second mock execution for the sanity check mock_graph_exec_2 = mocker.MagicMock(spec=GraphExecutionWithNodes) mock_graph_exec_2.id = "execution-id-456" + mock_graph_exec_2.node_executions = [] + mock_graph_exec_2.status = ExecutionStatus.QUEUED + mock_graph_exec_2.graph_version = graph_version mock_graph_exec_2.to_graph_execution_entry.return_value = mocker.MagicMock() # Reset mocks and set up for second call @@ -614,6 +618,7 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture): mock_graph_exec.id = "execution-id-123" mock_graph_exec.node_executions = [] mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check + mock_graph_exec.graph_version = graph_version # Track what's passed to to_graph_execution_entry captured_kwargs = {} diff --git a/autogpt_platform/backend/backend/integrations/webhooks/utils_test.py b/autogpt_platform/backend/backend/integrations/webhooks/utils_test.py new file mode 100644 index 0000000000..bc502a8e44 --- /dev/null +++ b/autogpt_platform/backend/backend/integrations/webhooks/utils_test.py @@ -0,0 +1,39 @@ +from urllib.parse import urlparse + +import fastapi +from fastapi.routing import APIRoute + +from backend.api.features.integrations.router import router as integrations_router +from backend.integrations.providers import ProviderName +from backend.integrations.webhooks import utils as webhooks_utils + + +def test_webhook_ingress_url_matches_route(monkeypatch) -> None: + app = fastapi.FastAPI() + app.include_router(integrations_router, prefix="/api/integrations") + + provider = ProviderName.GITHUB + webhook_id = "webhook_123" + base_url = "https://example.com" + + monkeypatch.setattr(webhooks_utils.app_config, "platform_base_url", base_url) + + route = next( + route + for route in integrations_router.routes + if isinstance(route, APIRoute) + and route.path == "/{provider}/webhooks/{webhook_id}/ingress" + and "POST" in route.methods + ) + expected_path = f"/api/integrations{route.path}".format( + provider=provider.value, + webhook_id=webhook_id, + ) + actual_url = urlparse(webhooks_utils.webhook_ingress_url(provider, webhook_id)) + expected_base = urlparse(base_url) + + assert (actual_url.scheme, actual_url.netloc) == ( + expected_base.scheme, + expected_base.netloc, + ) + assert actual_url.path == expected_path diff --git a/autogpt_platform/backend/backend/util/cloud_storage.py b/autogpt_platform/backend/backend/util/cloud_storage.py index 93fb9039ec..28423d003d 100644 --- a/autogpt_platform/backend/backend/util/cloud_storage.py +++ b/autogpt_platform/backend/backend/util/cloud_storage.py @@ -13,6 +13,7 @@ import aiohttp from gcloud.aio import storage as async_gcs_storage from google.cloud import storage as gcs_storage +from backend.util.gcs_utils import download_with_fresh_session, generate_signed_url from backend.util.settings import Config logger = logging.getLogger(__name__) @@ -251,7 +252,7 @@ class CloudStorageHandler: f"in_task: {current_task is not None}" ) - # Parse bucket and blob name from path + # Parse bucket and blob name from path (path already has gcs:// prefix removed) parts = path.split("/", 1) if len(parts) != 2: raise ValueError(f"Invalid GCS path: {path}") @@ -261,50 +262,19 @@ class CloudStorageHandler: # Authorization check self._validate_file_access(blob_name, user_id, graph_exec_id) - # Use a fresh client for each download to avoid session issues - # This is less efficient but more reliable with the executor's event loop - logger.info("[CloudStorage] Creating fresh GCS client for download") - - # Create a new session specifically for this download - session = aiohttp.ClientSession( - connector=aiohttp.TCPConnector(limit=10, force_close=True) + logger.info( + f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}" ) - async_client = None try: - # Create a new GCS client with the fresh session - async_client = async_gcs_storage.Storage(session=session) - - logger.info( - f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}" - ) - - # Download content using the fresh client - content = await async_client.download(bucket_name, blob_name) + content = await download_with_fresh_session(bucket_name, blob_name) logger.info( f"[CloudStorage] GCS download successful - size: {len(content)} bytes" ) - - # Clean up - await async_client.close() - await session.close() - return content - + except FileNotFoundError: + raise except Exception as e: - # Always try to clean up - if async_client is not None: - try: - await async_client.close() - except Exception as cleanup_error: - logger.warning( - f"[CloudStorage] Error closing GCS client: {cleanup_error}" - ) - try: - await session.close() - except Exception as cleanup_error: - logger.warning(f"[CloudStorage] Error closing session: {cleanup_error}") - # Log the specific error for debugging logger.error( f"[CloudStorage] GCS download failed - error: {str(e)}, " @@ -319,10 +289,6 @@ class CloudStorageHandler: f"current_task: {current_task}, " f"bucket: {bucket_name}, blob: redacted for privacy" ) - - # Convert gcloud-aio exceptions to standard ones - if "404" in str(e) or "Not Found" in str(e): - raise FileNotFoundError(f"File not found: gcs://{path}") raise def _validate_file_access( @@ -445,8 +411,7 @@ class CloudStorageHandler: graph_exec_id: str | None = None, ) -> str: """Generate signed URL for GCS with authorization.""" - - # Parse bucket and blob name from path + # Parse bucket and blob name from path (path already has gcs:// prefix removed) parts = path.split("/", 1) if len(parts) != 2: raise ValueError(f"Invalid GCS path: {path}") @@ -456,21 +421,11 @@ class CloudStorageHandler: # Authorization check self._validate_file_access(blob_name, user_id, graph_exec_id) - # Use sync client for signed URLs since gcloud-aio doesn't support them sync_client = self._get_sync_gcs_client() - bucket = sync_client.bucket(bucket_name) - blob = bucket.blob(blob_name) - - # Generate signed URL asynchronously using sync client - url = await asyncio.to_thread( - blob.generate_signed_url, - version="v4", - expiration=datetime.now(timezone.utc) + timedelta(hours=expiration_hours), - method="GET", + return await generate_signed_url( + sync_client, bucket_name, blob_name, expiration_hours * 3600 ) - return url - async def delete_expired_files(self, provider: str = "gcs") -> int: """ Delete files that have passed their expiration time. diff --git a/autogpt_platform/backend/backend/util/exceptions.py b/autogpt_platform/backend/backend/util/exceptions.py index 6d0192c0e5..ffda783873 100644 --- a/autogpt_platform/backend/backend/util/exceptions.py +++ b/autogpt_platform/backend/backend/util/exceptions.py @@ -135,6 +135,12 @@ class GraphValidationError(ValueError): ) +class InvalidInputError(ValueError): + """Raised when user input validation fails (e.g., search term too long)""" + + pass + + class DatabaseError(Exception): """Raised when there is an error interacting with the database""" diff --git a/autogpt_platform/backend/backend/util/file.py b/autogpt_platform/backend/backend/util/file.py index dc8f86ea41..baa9225629 100644 --- a/autogpt_platform/backend/backend/util/file.py +++ b/autogpt_platform/backend/backend/util/file.py @@ -5,13 +5,26 @@ import shutil import tempfile import uuid from pathlib import Path +from typing import TYPE_CHECKING, Literal from urllib.parse import urlparse from backend.util.cloud_storage import get_cloud_storage_handler from backend.util.request import Requests +from backend.util.settings import Config from backend.util.type import MediaFileType from backend.util.virus_scanner import scan_content_safe +if TYPE_CHECKING: + from backend.data.execution import ExecutionContext + +# Return format options for store_media_file +# - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc. +# - "for_external_api": Returns data URI (base64) - use when sending content to external APIs +# - "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs +MediaReturnFormat = Literal[ + "for_local_processing", "for_external_api", "for_block_output" +] + TEMP_DIR = Path(tempfile.gettempdir()).resolve() # Maximum filename length (conservative limit for most filesystems) @@ -67,42 +80,56 @@ def clean_exec_files(graph_exec_id: str, file: str = "") -> None: async def store_media_file( - graph_exec_id: str, file: MediaFileType, - user_id: str, - return_content: bool = False, + execution_context: "ExecutionContext", + *, + return_format: MediaReturnFormat, ) -> MediaFileType: """ - Safely handle 'file' (a data URI, a URL, or a local path relative to {temp}/exec_file/{exec_id}), - placing or verifying it under: + Safely handle 'file' (a data URI, a URL, a workspace:// reference, or a local path + relative to {temp}/exec_file/{exec_id}), placing or verifying it under: {tempdir}/exec_file/{exec_id}/... - If 'return_content=True', return a data URI (data:;base64,). - Otherwise, returns the file media path relative to the exec_id folder. + For each MediaFileType input: + - Data URI: decode and store locally + - URL: download and store locally + - workspace:// reference: read from workspace, store locally + - Local path: verify it exists in exec_file directory - For each MediaFileType type: - - Data URI: - -> decode and store in a new random file in that folder - - URL: - -> download and store in that folder - - Local path: - -> interpret as relative to that folder; verify it exists - (no copying, as it's presumably already there). - We realpath-check so no symlink or '..' can escape the folder. + Return format options: + - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc. + - "for_external_api": Returns data URI (base64) - use when sending to external APIs + - "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs - - :param graph_exec_id: The unique ID of the graph execution. - :param file: Data URI, URL, or local (relative) path. - :param return_content: If True, return a data URI of the file content. - If False, return the *relative* path inside the exec_id folder. - :return: The requested result: data URI or relative path of the media. + :param file: Data URI, URL, workspace://, or local (relative) path. + :param execution_context: ExecutionContext with user_id, graph_exec_id, workspace_id. + :param return_format: What to return: "for_local_processing", "for_external_api", or "for_block_output". + :return: The requested result based on return_format. """ + # Extract values from execution_context + graph_exec_id = execution_context.graph_exec_id + user_id = execution_context.user_id + + if not graph_exec_id: + raise ValueError("execution_context.graph_exec_id is required") + if not user_id: + raise ValueError("execution_context.user_id is required") + + # Create workspace_manager if we have workspace_id (with session scoping) + # Import here to avoid circular import (file.py → workspace.py → data → blocks → file.py) + from backend.util.workspace import WorkspaceManager + + workspace_manager: WorkspaceManager | None = None + if execution_context.workspace_id: + workspace_manager = WorkspaceManager( + user_id, execution_context.workspace_id, execution_context.session_id + ) # Build base path base_path = Path(get_exec_file_path(graph_exec_id, "")) base_path.mkdir(parents=True, exist_ok=True) # Security fix: Add disk space limits to prevent DoS - MAX_FILE_SIZE = 100 * 1024 * 1024 # 100MB per file + MAX_FILE_SIZE_BYTES = Config().max_file_size_mb * 1024 * 1024 MAX_TOTAL_DISK_USAGE = 1024 * 1024 * 1024 # 1GB total per execution directory # Check total disk usage in base_path @@ -142,9 +169,57 @@ async def store_media_file( """ return str(absolute_path.relative_to(base)) - # Check if this is a cloud storage path + # Get cloud storage handler for checking cloud paths cloud_storage = await get_cloud_storage_handler() - if cloud_storage.is_cloud_path(file): + + # Track if the input came from workspace (don't re-save it) + is_from_workspace = file.startswith("workspace://") + + # Check if this is a workspace file reference + if is_from_workspace: + if workspace_manager is None: + raise ValueError( + "Workspace file reference requires workspace context. " + "This file type is only available in CoPilot sessions." + ) + + # Parse workspace reference + # workspace://abc123 - by file ID + # workspace:///path/to/file.txt - by virtual path + file_ref = file[12:] # Remove "workspace://" + + if file_ref.startswith("/"): + # Path reference + workspace_content = await workspace_manager.read_file(file_ref) + file_info = await workspace_manager.get_file_info_by_path(file_ref) + filename = sanitize_filename( + file_info.name if file_info else f"{uuid.uuid4()}.bin" + ) + else: + # ID reference + workspace_content = await workspace_manager.read_file_by_id(file_ref) + file_info = await workspace_manager.get_file_info(file_ref) + filename = sanitize_filename( + file_info.name if file_info else f"{uuid.uuid4()}.bin" + ) + + try: + target_path = _ensure_inside_base(base_path / filename, base_path) + except OSError as e: + raise ValueError(f"Invalid file path '{filename}': {e}") from e + + # Check file size limit + if len(workspace_content) > MAX_FILE_SIZE_BYTES: + raise ValueError( + f"File too large: {len(workspace_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes" + ) + + # Virus scan the workspace content before writing locally + await scan_content_safe(workspace_content, filename=filename) + target_path.write_bytes(workspace_content) + + # Check if this is a cloud storage path + elif cloud_storage.is_cloud_path(file): # Download from cloud storage and store locally cloud_content = await cloud_storage.retrieve_file( file, user_id=user_id, graph_exec_id=graph_exec_id @@ -159,9 +234,9 @@ async def store_media_file( raise ValueError(f"Invalid file path '{filename}': {e}") from e # Check file size limit - if len(cloud_content) > MAX_FILE_SIZE: + if len(cloud_content) > MAX_FILE_SIZE_BYTES: raise ValueError( - f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE} bytes" + f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes" ) # Virus scan the cloud content before writing locally @@ -189,9 +264,9 @@ async def store_media_file( content = base64.b64decode(b64_content) # Check file size limit - if len(content) > MAX_FILE_SIZE: + if len(content) > MAX_FILE_SIZE_BYTES: raise ValueError( - f"File too large: {len(content)} bytes > {MAX_FILE_SIZE} bytes" + f"File too large: {len(content)} bytes > {MAX_FILE_SIZE_BYTES} bytes" ) # Virus scan the base64 content before writing @@ -199,23 +274,31 @@ async def store_media_file( target_path.write_bytes(content) elif file.startswith(("http://", "https://")): - # URL + # URL - download first to get Content-Type header + resp = await Requests().get(file) + + # Check file size limit + if len(resp.content) > MAX_FILE_SIZE_BYTES: + raise ValueError( + f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE_BYTES} bytes" + ) + + # Extract filename from URL path parsed_url = urlparse(file) filename = sanitize_filename(Path(parsed_url.path).name or f"{uuid.uuid4()}") + + # If filename lacks extension, add one from Content-Type header + if "." not in filename: + content_type = resp.headers.get("Content-Type", "").split(";")[0].strip() + if content_type: + ext = _extension_from_mime(content_type) + filename = f"{filename}{ext}" + try: target_path = _ensure_inside_base(base_path / filename, base_path) except OSError as e: raise ValueError(f"Invalid file path '{filename}': {e}") from e - # Download and save - resp = await Requests().get(file) - - # Check file size limit - if len(resp.content) > MAX_FILE_SIZE: - raise ValueError( - f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE} bytes" - ) - # Virus scan the downloaded content before writing await scan_content_safe(resp.content, filename=filename) target_path.write_bytes(resp.content) @@ -230,12 +313,44 @@ async def store_media_file( if not target_path.is_file(): raise ValueError(f"Local file does not exist: {target_path}") - # Return result - if return_content: - return MediaFileType(_file_to_data_uri(target_path)) - else: + # Return based on requested format + if return_format == "for_local_processing": + # Use when processing files locally with tools like ffmpeg, MoviePy, PIL + # Returns: relative path in exec_file directory (e.g., "image.png") return MediaFileType(_strip_base_prefix(target_path, base_path)) + elif return_format == "for_external_api": + # Use when sending content to external APIs that need base64 + # Returns: data URI (e.g., "...") + return MediaFileType(_file_to_data_uri(target_path)) + + elif return_format == "for_block_output": + # Use when returning output from a block to user/next block + # Returns: workspace:// ref (CoPilot) or data URI (graph execution) + if workspace_manager is None: + # No workspace available (graph execution without CoPilot) + # Fallback to data URI so the content can still be used/displayed + return MediaFileType(_file_to_data_uri(target_path)) + + # Don't re-save if input was already from workspace + if is_from_workspace: + # Return original workspace reference + return MediaFileType(file) + + # Save new content to workspace + content = target_path.read_bytes() + filename = target_path.name + + file_record = await workspace_manager.write_file( + content=content, + filename=filename, + overwrite=True, + ) + return MediaFileType(f"workspace://{file_record.id}") + + else: + raise ValueError(f"Invalid return_format: {return_format}") + def get_dir_size(path: Path) -> int: """Get total size of directory.""" diff --git a/autogpt_platform/backend/backend/util/file_test.py b/autogpt_platform/backend/backend/util/file_test.py index cd4fc69706..9fe672d155 100644 --- a/autogpt_platform/backend/backend/util/file_test.py +++ b/autogpt_platform/backend/backend/util/file_test.py @@ -7,10 +7,22 @@ from unittest.mock import AsyncMock, MagicMock, patch import pytest +from backend.data.execution import ExecutionContext from backend.util.file import store_media_file from backend.util.type import MediaFileType +def make_test_context( + graph_exec_id: str = "test-exec-123", + user_id: str = "test-user-123", +) -> ExecutionContext: + """Helper to create test ExecutionContext.""" + return ExecutionContext( + user_id=user_id, + graph_exec_id=graph_exec_id, + ) + + class TestFileCloudIntegration: """Test cases for cloud storage integration in file utilities.""" @@ -70,10 +82,9 @@ class TestFileCloudIntegration: mock_path_class.side_effect = path_constructor result = await store_media_file( - graph_exec_id, - MediaFileType(cloud_path), - "test-user-123", - return_content=False, + file=MediaFileType(cloud_path), + execution_context=make_test_context(graph_exec_id=graph_exec_id), + return_format="for_local_processing", ) # Verify cloud storage operations @@ -144,10 +155,9 @@ class TestFileCloudIntegration: mock_path_obj.name = "image.png" with patch("backend.util.file.Path", return_value=mock_path_obj): result = await store_media_file( - graph_exec_id, - MediaFileType(cloud_path), - "test-user-123", - return_content=True, + file=MediaFileType(cloud_path), + execution_context=make_test_context(graph_exec_id=graph_exec_id), + return_format="for_external_api", ) # Verify result is a data URI @@ -198,10 +208,9 @@ class TestFileCloudIntegration: mock_resolved_path.relative_to.return_value = Path("test-uuid-789.txt") await store_media_file( - graph_exec_id, - MediaFileType(data_uri), - "test-user-123", - return_content=False, + file=MediaFileType(data_uri), + execution_context=make_test_context(graph_exec_id=graph_exec_id), + return_format="for_local_processing", ) # Verify cloud handler was checked but not used for retrieval @@ -234,5 +243,7 @@ class TestFileCloudIntegration: FileNotFoundError, match="File not found in cloud storage" ): await store_media_file( - graph_exec_id, MediaFileType(cloud_path), "test-user-123" + file=MediaFileType(cloud_path), + execution_context=make_test_context(graph_exec_id=graph_exec_id), + return_format="for_local_processing", ) diff --git a/autogpt_platform/backend/backend/util/gcs_utils.py b/autogpt_platform/backend/backend/util/gcs_utils.py new file mode 100644 index 0000000000..3f91f21897 --- /dev/null +++ b/autogpt_platform/backend/backend/util/gcs_utils.py @@ -0,0 +1,108 @@ +""" +Shared GCS utilities for workspace and cloud storage backends. + +This module provides common functionality for working with Google Cloud Storage, +including path parsing, client management, and signed URL generation. +""" + +import asyncio +import logging +from datetime import datetime, timedelta, timezone + +import aiohttp +from gcloud.aio import storage as async_gcs_storage +from google.cloud import storage as gcs_storage + +logger = logging.getLogger(__name__) + + +def parse_gcs_path(path: str) -> tuple[str, str]: + """ + Parse a GCS path in the format 'gcs://bucket/blob' to (bucket, blob). + + Args: + path: GCS path string (e.g., "gcs://my-bucket/path/to/file") + + Returns: + Tuple of (bucket_name, blob_name) + + Raises: + ValueError: If the path format is invalid + """ + if not path.startswith("gcs://"): + raise ValueError(f"Invalid GCS path: {path}") + + path_without_prefix = path[6:] # Remove "gcs://" + parts = path_without_prefix.split("/", 1) + if len(parts) != 2: + raise ValueError(f"Invalid GCS path format: {path}") + + return parts[0], parts[1] + + +async def download_with_fresh_session(bucket: str, blob: str) -> bytes: + """ + Download file content using a fresh session. + + This approach avoids event loop issues that can occur when reusing + sessions across different async contexts (e.g., in executors). + + Args: + bucket: GCS bucket name + blob: Blob path within the bucket + + Returns: + File content as bytes + + Raises: + FileNotFoundError: If the file doesn't exist + """ + session = aiohttp.ClientSession( + connector=aiohttp.TCPConnector(limit=10, force_close=True) + ) + client: async_gcs_storage.Storage | None = None + try: + client = async_gcs_storage.Storage(session=session) + content = await client.download(bucket, blob) + return content + except Exception as e: + if "404" in str(e) or "Not Found" in str(e): + raise FileNotFoundError(f"File not found: gcs://{bucket}/{blob}") + raise + finally: + if client: + try: + await client.close() + except Exception: + pass # Best-effort cleanup + await session.close() + + +async def generate_signed_url( + sync_client: gcs_storage.Client, + bucket_name: str, + blob_name: str, + expires_in: int, +) -> str: + """ + Generate a signed URL for temporary access to a GCS file. + + Uses asyncio.to_thread() to run the sync operation without blocking. + + Args: + sync_client: Sync GCS client with service account credentials + bucket_name: GCS bucket name + blob_name: Blob path within the bucket + expires_in: URL expiration time in seconds + + Returns: + Signed URL string + """ + bucket = sync_client.bucket(bucket_name) + blob = bucket.blob(blob_name) + return await asyncio.to_thread( + blob.generate_signed_url, + version="v4", + expiration=datetime.now(timezone.utc) + timedelta(seconds=expires_in), + method="GET", + ) diff --git a/autogpt_platform/backend/backend/util/settings.py b/autogpt_platform/backend/backend/util/settings.py index 8d34292803..aa28a4c9ac 100644 --- a/autogpt_platform/backend/backend/util/settings.py +++ b/autogpt_platform/backend/backend/util/settings.py @@ -263,6 +263,12 @@ class Config(UpdateTrackingModel["Config"], BaseSettings): description="The name of the Google Cloud Storage bucket for media files", ) + workspace_storage_dir: str = Field( + default="", + description="Local directory for workspace file storage when GCS is not configured. " + "If empty, defaults to {app_data}/workspaces. Used for self-hosted deployments.", + ) + reddit_user_agent: str = Field( default="web:AutoGPT:v0.6.0 (by /u/autogpt)", description="The user agent for the Reddit API", @@ -359,8 +365,8 @@ class Config(UpdateTrackingModel["Config"], BaseSettings): description="The port for the Agent Generator service", ) agentgenerator_timeout: int = Field( - default=120, - description="The timeout in seconds for Agent Generator service requests", + default=600, + description="The timeout in seconds for Agent Generator service requests (includes retries for rate limits)", ) enable_example_blocks: bool = Field( @@ -389,6 +395,13 @@ class Config(UpdateTrackingModel["Config"], BaseSettings): description="Maximum file size in MB for file uploads (1-1024 MB)", ) + max_file_size_mb: int = Field( + default=100, + ge=1, + le=1024, + description="Maximum file size in MB for workspace files (1-1024 MB)", + ) + # AutoMod configuration automod_enabled: bool = Field( default=False, diff --git a/autogpt_platform/backend/backend/util/test.py b/autogpt_platform/backend/backend/util/test.py index 0a539644ee..23d7c24147 100644 --- a/autogpt_platform/backend/backend/util/test.py +++ b/autogpt_platform/backend/backend/util/test.py @@ -140,14 +140,29 @@ async def execute_block_test(block: Block): setattr(block, mock_name, mock_obj) # Populate credentials argument(s) + # Generate IDs for execution context + graph_id = str(uuid.uuid4()) + node_id = str(uuid.uuid4()) + graph_exec_id = str(uuid.uuid4()) + node_exec_id = str(uuid.uuid4()) + user_id = str(uuid.uuid4()) + graph_version = 1 # Default version for tests + extra_exec_kwargs: dict = { - "graph_id": str(uuid.uuid4()), - "node_id": str(uuid.uuid4()), - "graph_exec_id": str(uuid.uuid4()), - "node_exec_id": str(uuid.uuid4()), - "user_id": str(uuid.uuid4()), - "graph_version": 1, # Default version for tests - "execution_context": ExecutionContext(), + "graph_id": graph_id, + "node_id": node_id, + "graph_exec_id": graph_exec_id, + "node_exec_id": node_exec_id, + "user_id": user_id, + "graph_version": graph_version, + "execution_context": ExecutionContext( + user_id=user_id, + graph_id=graph_id, + graph_exec_id=graph_exec_id, + graph_version=graph_version, + node_id=node_id, + node_exec_id=node_exec_id, + ), } input_model = cast(type[BlockSchema], block.input_schema) diff --git a/autogpt_platform/backend/backend/util/workspace.py b/autogpt_platform/backend/backend/util/workspace.py new file mode 100644 index 0000000000..a2f1a61b9e --- /dev/null +++ b/autogpt_platform/backend/backend/util/workspace.py @@ -0,0 +1,419 @@ +""" +WorkspaceManager for managing user workspace file operations. + +This module provides a high-level interface for workspace file operations, +combining the storage backend and database layer. +""" + +import logging +import mimetypes +import uuid +from typing import Optional + +from prisma.errors import UniqueViolationError +from prisma.models import UserWorkspaceFile + +from backend.data.workspace import ( + count_workspace_files, + create_workspace_file, + get_workspace_file, + get_workspace_file_by_path, + list_workspace_files, + soft_delete_workspace_file, +) +from backend.util.settings import Config +from backend.util.workspace_storage import compute_file_checksum, get_workspace_storage + +logger = logging.getLogger(__name__) + + +class WorkspaceManager: + """ + Manages workspace file operations. + + Combines storage backend operations with database record management. + Supports session-scoped file segmentation where files are stored in + session-specific virtual paths: /sessions/{session_id}/{filename} + """ + + def __init__( + self, user_id: str, workspace_id: str, session_id: Optional[str] = None + ): + """ + Initialize WorkspaceManager. + + Args: + user_id: The user's ID + workspace_id: The workspace ID + session_id: Optional session ID for session-scoped file access + """ + self.user_id = user_id + self.workspace_id = workspace_id + self.session_id = session_id + # Session path prefix for file isolation + self.session_path = f"/sessions/{session_id}" if session_id else "" + + def _resolve_path(self, path: str) -> str: + """ + Resolve a path, defaulting to session folder if session_id is set. + + Cross-session access is allowed by explicitly using /sessions/other-session-id/... + + Args: + path: Virtual path (e.g., "/file.txt" or "/sessions/abc123/file.txt") + + Returns: + Resolved path with session prefix if applicable + """ + # If path explicitly references a session folder, use it as-is + if path.startswith("/sessions/"): + return path + + # If we have a session context, prepend session path + if self.session_path: + # Normalize the path + if not path.startswith("/"): + path = f"/{path}" + return f"{self.session_path}{path}" + + # No session context, use path as-is + return path if path.startswith("/") else f"/{path}" + + def _get_effective_path( + self, path: Optional[str], include_all_sessions: bool + ) -> Optional[str]: + """ + Get effective path for list/count operations based on session context. + + Args: + path: Optional path prefix to filter + include_all_sessions: If True, don't apply session scoping + + Returns: + Effective path prefix for database query + """ + if include_all_sessions: + # Normalize path to ensure leading slash (stored paths are normalized) + if path is not None and not path.startswith("/"): + return f"/{path}" + return path + elif path is not None: + # Resolve the provided path with session scoping + return self._resolve_path(path) + elif self.session_path: + # Default to session folder with trailing slash to prevent prefix collisions + # e.g., "/sessions/abc" should not match "/sessions/abc123" + return self.session_path.rstrip("/") + "/" + else: + # No session context, use path as-is + return path + + async def read_file(self, path: str) -> bytes: + """ + Read file from workspace by virtual path. + + When session_id is set, paths are resolved relative to the session folder + unless they explicitly reference /sessions/... + + Args: + path: Virtual path (e.g., "/documents/report.pdf") + + Returns: + File content as bytes + + Raises: + FileNotFoundError: If file doesn't exist + """ + resolved_path = self._resolve_path(path) + file = await get_workspace_file_by_path(self.workspace_id, resolved_path) + if file is None: + raise FileNotFoundError(f"File not found at path: {resolved_path}") + + storage = await get_workspace_storage() + return await storage.retrieve(file.storagePath) + + async def read_file_by_id(self, file_id: str) -> bytes: + """ + Read file from workspace by file ID. + + Args: + file_id: The file's ID + + Returns: + File content as bytes + + Raises: + FileNotFoundError: If file doesn't exist + """ + file = await get_workspace_file(file_id, self.workspace_id) + if file is None: + raise FileNotFoundError(f"File not found: {file_id}") + + storage = await get_workspace_storage() + return await storage.retrieve(file.storagePath) + + async def write_file( + self, + content: bytes, + filename: str, + path: Optional[str] = None, + mime_type: Optional[str] = None, + overwrite: bool = False, + ) -> UserWorkspaceFile: + """ + Write file to workspace. + + When session_id is set, files are written to /sessions/{session_id}/... + by default. Use explicit /sessions/... paths for cross-session access. + + Args: + content: File content as bytes + filename: Filename for the file + path: Virtual path (defaults to "/{filename}", session-scoped if session_id set) + mime_type: MIME type (auto-detected if not provided) + overwrite: Whether to overwrite existing file at path + + Returns: + Created UserWorkspaceFile instance + + Raises: + ValueError: If file exceeds size limit or path already exists + """ + # Enforce file size limit + max_file_size = Config().max_file_size_mb * 1024 * 1024 + if len(content) > max_file_size: + raise ValueError( + f"File too large: {len(content)} bytes exceeds " + f"{Config().max_file_size_mb}MB limit" + ) + + # Determine path with session scoping + if path is None: + path = f"/{filename}" + elif not path.startswith("/"): + path = f"/{path}" + + # Resolve path with session prefix + path = self._resolve_path(path) + + # Check if file exists at path (only error for non-overwrite case) + # For overwrite=True, we let the write proceed and handle via UniqueViolationError + # This ensures the new file is written to storage BEFORE the old one is deleted, + # preventing data loss if the new write fails + if not overwrite: + existing = await get_workspace_file_by_path(self.workspace_id, path) + if existing is not None: + raise ValueError(f"File already exists at path: {path}") + + # Auto-detect MIME type if not provided + if mime_type is None: + mime_type, _ = mimetypes.guess_type(filename) + mime_type = mime_type or "application/octet-stream" + + # Compute checksum + checksum = compute_file_checksum(content) + + # Generate unique file ID for storage + file_id = str(uuid.uuid4()) + + # Store file in storage backend + storage = await get_workspace_storage() + storage_path = await storage.store( + workspace_id=self.workspace_id, + file_id=file_id, + filename=filename, + content=content, + ) + + # Create database record - handle race condition where another request + # created a file at the same path between our check and create + try: + file = await create_workspace_file( + workspace_id=self.workspace_id, + file_id=file_id, + name=filename, + path=path, + storage_path=storage_path, + mime_type=mime_type, + size_bytes=len(content), + checksum=checksum, + ) + except UniqueViolationError: + # Race condition: another request created a file at this path + if overwrite: + # Re-fetch and delete the conflicting file, then retry + existing = await get_workspace_file_by_path(self.workspace_id, path) + if existing: + await self.delete_file(existing.id) + # Retry the create - if this also fails, clean up storage file + try: + file = await create_workspace_file( + workspace_id=self.workspace_id, + file_id=file_id, + name=filename, + path=path, + storage_path=storage_path, + mime_type=mime_type, + size_bytes=len(content), + checksum=checksum, + ) + except Exception: + # Clean up orphaned storage file on retry failure + try: + await storage.delete(storage_path) + except Exception as e: + logger.warning(f"Failed to clean up orphaned storage file: {e}") + raise + else: + # Clean up the orphaned storage file before raising + try: + await storage.delete(storage_path) + except Exception as e: + logger.warning(f"Failed to clean up orphaned storage file: {e}") + raise ValueError(f"File already exists at path: {path}") + except Exception: + # Any other database error (connection, validation, etc.) - clean up storage + try: + await storage.delete(storage_path) + except Exception as e: + logger.warning(f"Failed to clean up orphaned storage file: {e}") + raise + + logger.info( + f"Wrote file {file.id} ({filename}) to workspace {self.workspace_id} " + f"at path {path}, size={len(content)} bytes" + ) + + return file + + async def list_files( + self, + path: Optional[str] = None, + limit: Optional[int] = None, + offset: int = 0, + include_all_sessions: bool = False, + ) -> list[UserWorkspaceFile]: + """ + List files in workspace. + + When session_id is set and include_all_sessions is False (default), + only files in the current session's folder are listed. + + Args: + path: Optional path prefix to filter (e.g., "/documents/") + limit: Maximum number of files to return + offset: Number of files to skip + include_all_sessions: If True, list files from all sessions. + If False (default), only list current session's files. + + Returns: + List of UserWorkspaceFile instances + """ + effective_path = self._get_effective_path(path, include_all_sessions) + + return await list_workspace_files( + workspace_id=self.workspace_id, + path_prefix=effective_path, + limit=limit, + offset=offset, + ) + + async def delete_file(self, file_id: str) -> bool: + """ + Delete a file (soft-delete). + + Args: + file_id: The file's ID + + Returns: + True if deleted, False if not found + """ + file = await get_workspace_file(file_id, self.workspace_id) + if file is None: + return False + + # Delete from storage + storage = await get_workspace_storage() + try: + await storage.delete(file.storagePath) + except Exception as e: + logger.warning(f"Failed to delete file from storage: {e}") + # Continue with database soft-delete even if storage delete fails + + # Soft-delete database record + result = await soft_delete_workspace_file(file_id, self.workspace_id) + return result is not None + + async def get_download_url(self, file_id: str, expires_in: int = 3600) -> str: + """ + Get download URL for a file. + + Args: + file_id: The file's ID + expires_in: URL expiration in seconds (default 1 hour) + + Returns: + Download URL (signed URL for GCS, API endpoint for local) + + Raises: + FileNotFoundError: If file doesn't exist + """ + file = await get_workspace_file(file_id, self.workspace_id) + if file is None: + raise FileNotFoundError(f"File not found: {file_id}") + + storage = await get_workspace_storage() + return await storage.get_download_url(file.storagePath, expires_in) + + async def get_file_info(self, file_id: str) -> Optional[UserWorkspaceFile]: + """ + Get file metadata. + + Args: + file_id: The file's ID + + Returns: + UserWorkspaceFile instance or None + """ + return await get_workspace_file(file_id, self.workspace_id) + + async def get_file_info_by_path(self, path: str) -> Optional[UserWorkspaceFile]: + """ + Get file metadata by path. + + When session_id is set, paths are resolved relative to the session folder + unless they explicitly reference /sessions/... + + Args: + path: Virtual path + + Returns: + UserWorkspaceFile instance or None + """ + resolved_path = self._resolve_path(path) + return await get_workspace_file_by_path(self.workspace_id, resolved_path) + + async def get_file_count( + self, + path: Optional[str] = None, + include_all_sessions: bool = False, + ) -> int: + """ + Get number of files in workspace. + + When session_id is set and include_all_sessions is False (default), + only counts files in the current session's folder. + + Args: + path: Optional path prefix to filter (e.g., "/documents/") + include_all_sessions: If True, count all files in workspace. + If False (default), only count current session's files. + + Returns: + Number of files + """ + effective_path = self._get_effective_path(path, include_all_sessions) + + return await count_workspace_files( + self.workspace_id, path_prefix=effective_path + ) diff --git a/autogpt_platform/backend/backend/util/workspace_storage.py b/autogpt_platform/backend/backend/util/workspace_storage.py new file mode 100644 index 0000000000..2f4c8ae2b5 --- /dev/null +++ b/autogpt_platform/backend/backend/util/workspace_storage.py @@ -0,0 +1,398 @@ +""" +Workspace storage backend abstraction for supporting both cloud and local deployments. + +This module provides a unified interface for storing workspace files, with implementations +for Google Cloud Storage (cloud deployments) and local filesystem (self-hosted deployments). +""" + +import asyncio +import hashlib +import logging +from abc import ABC, abstractmethod +from datetime import datetime, timezone +from pathlib import Path +from typing import Optional + +import aiofiles +import aiohttp +from gcloud.aio import storage as async_gcs_storage +from google.cloud import storage as gcs_storage + +from backend.util.data import get_data_path +from backend.util.gcs_utils import ( + download_with_fresh_session, + generate_signed_url, + parse_gcs_path, +) +from backend.util.settings import Config + +logger = logging.getLogger(__name__) + + +class WorkspaceStorageBackend(ABC): + """Abstract interface for workspace file storage.""" + + @abstractmethod + async def store( + self, + workspace_id: str, + file_id: str, + filename: str, + content: bytes, + ) -> str: + """ + Store file content, return storage path. + + Args: + workspace_id: The workspace ID + file_id: Unique file ID for storage + filename: Original filename + content: File content as bytes + + Returns: + Storage path string (cloud path or local path) + """ + pass + + @abstractmethod + async def retrieve(self, storage_path: str) -> bytes: + """ + Retrieve file content from storage. + + Args: + storage_path: The storage path returned from store() + + Returns: + File content as bytes + """ + pass + + @abstractmethod + async def delete(self, storage_path: str) -> None: + """ + Delete file from storage. + + Args: + storage_path: The storage path to delete + """ + pass + + @abstractmethod + async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str: + """ + Get URL for downloading the file. + + Args: + storage_path: The storage path + expires_in: URL expiration time in seconds (default 1 hour) + + Returns: + Download URL (signed URL for GCS, direct API path for local) + """ + pass + + +class GCSWorkspaceStorage(WorkspaceStorageBackend): + """Google Cloud Storage implementation for workspace storage.""" + + def __init__(self, bucket_name: str): + self.bucket_name = bucket_name + self._async_client: Optional[async_gcs_storage.Storage] = None + self._sync_client: Optional[gcs_storage.Client] = None + self._session: Optional[aiohttp.ClientSession] = None + + async def _get_async_client(self) -> async_gcs_storage.Storage: + """Get or create async GCS client.""" + if self._async_client is None: + self._session = aiohttp.ClientSession( + connector=aiohttp.TCPConnector(limit=100, force_close=False) + ) + self._async_client = async_gcs_storage.Storage(session=self._session) + return self._async_client + + def _get_sync_client(self) -> gcs_storage.Client: + """Get or create sync GCS client (for signed URLs).""" + if self._sync_client is None: + self._sync_client = gcs_storage.Client() + return self._sync_client + + async def close(self) -> None: + """Close all client connections.""" + if self._async_client is not None: + try: + await self._async_client.close() + except Exception as e: + logger.warning(f"Error closing GCS client: {e}") + self._async_client = None + + if self._session is not None: + try: + await self._session.close() + except Exception as e: + logger.warning(f"Error closing session: {e}") + self._session = None + + def _build_blob_name(self, workspace_id: str, file_id: str, filename: str) -> str: + """Build the blob path for workspace files.""" + return f"workspaces/{workspace_id}/{file_id}/{filename}" + + async def store( + self, + workspace_id: str, + file_id: str, + filename: str, + content: bytes, + ) -> str: + """Store file in GCS.""" + client = await self._get_async_client() + blob_name = self._build_blob_name(workspace_id, file_id, filename) + + # Upload with metadata + upload_time = datetime.now(timezone.utc) + await client.upload( + self.bucket_name, + blob_name, + content, + metadata={ + "uploaded_at": upload_time.isoformat(), + "workspace_id": workspace_id, + "file_id": file_id, + }, + ) + + return f"gcs://{self.bucket_name}/{blob_name}" + + async def retrieve(self, storage_path: str) -> bytes: + """Retrieve file from GCS.""" + bucket_name, blob_name = parse_gcs_path(storage_path) + return await download_with_fresh_session(bucket_name, blob_name) + + async def delete(self, storage_path: str) -> None: + """Delete file from GCS.""" + bucket_name, blob_name = parse_gcs_path(storage_path) + client = await self._get_async_client() + + try: + await client.delete(bucket_name, blob_name) + except Exception as e: + if "404" not in str(e) and "Not Found" not in str(e): + raise + # File already deleted, that's fine + + async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str: + """ + Generate download URL for GCS file. + + Attempts to generate a signed URL if running with service account credentials. + Falls back to an API proxy endpoint if signed URL generation fails + (e.g., when running locally with user OAuth credentials). + """ + bucket_name, blob_name = parse_gcs_path(storage_path) + + # Extract file_id from blob_name for fallback: workspaces/{workspace_id}/{file_id}/{filename} + blob_parts = blob_name.split("/") + file_id = blob_parts[2] if len(blob_parts) >= 3 else None + + # Try to generate signed URL (requires service account credentials) + try: + sync_client = self._get_sync_client() + return await generate_signed_url( + sync_client, bucket_name, blob_name, expires_in + ) + except AttributeError as e: + # Signed URL generation requires service account with private key. + # When running with user OAuth credentials, fall back to API proxy. + if "private key" in str(e) and file_id: + logger.debug( + "Cannot generate signed URL (no service account credentials), " + "falling back to API proxy endpoint" + ) + return f"/api/workspace/files/{file_id}/download" + raise + + +class LocalWorkspaceStorage(WorkspaceStorageBackend): + """Local filesystem implementation for workspace storage (self-hosted deployments).""" + + def __init__(self, base_dir: Optional[str] = None): + """ + Initialize local storage backend. + + Args: + base_dir: Base directory for workspace storage. + If None, defaults to {app_data}/workspaces + """ + if base_dir: + self.base_dir = Path(base_dir) + else: + self.base_dir = Path(get_data_path()) / "workspaces" + + # Ensure base directory exists + self.base_dir.mkdir(parents=True, exist_ok=True) + + def _build_file_path(self, workspace_id: str, file_id: str, filename: str) -> Path: + """Build the local file path with path traversal protection.""" + # Import here to avoid circular import + # (file.py imports workspace.py which imports workspace_storage.py) + from backend.util.file import sanitize_filename + + # Sanitize filename to prevent path traversal (removes / and \ among others) + safe_filename = sanitize_filename(filename) + file_path = (self.base_dir / workspace_id / file_id / safe_filename).resolve() + + # Verify the resolved path is still under base_dir + if not file_path.is_relative_to(self.base_dir.resolve()): + raise ValueError("Invalid filename: path traversal detected") + + return file_path + + def _parse_storage_path(self, storage_path: str) -> Path: + """Parse local storage path to filesystem path.""" + if storage_path.startswith("local://"): + relative_path = storage_path[8:] # Remove "local://" + else: + relative_path = storage_path + + full_path = (self.base_dir / relative_path).resolve() + + # Security check: ensure path is under base_dir + # Use is_relative_to() for robust path containment check + # (handles case-insensitive filesystems and edge cases) + if not full_path.is_relative_to(self.base_dir.resolve()): + raise ValueError("Invalid storage path: path traversal detected") + + return full_path + + async def store( + self, + workspace_id: str, + file_id: str, + filename: str, + content: bytes, + ) -> str: + """Store file locally.""" + file_path = self._build_file_path(workspace_id, file_id, filename) + + # Create parent directories + file_path.parent.mkdir(parents=True, exist_ok=True) + + # Write file asynchronously + async with aiofiles.open(file_path, "wb") as f: + await f.write(content) + + # Return relative path as storage path + relative_path = file_path.relative_to(self.base_dir) + return f"local://{relative_path}" + + async def retrieve(self, storage_path: str) -> bytes: + """Retrieve file from local storage.""" + file_path = self._parse_storage_path(storage_path) + + if not file_path.exists(): + raise FileNotFoundError(f"File not found: {storage_path}") + + async with aiofiles.open(file_path, "rb") as f: + return await f.read() + + async def delete(self, storage_path: str) -> None: + """Delete file from local storage.""" + file_path = self._parse_storage_path(storage_path) + + if file_path.exists(): + # Remove file + file_path.unlink() + + # Clean up empty parent directories + parent = file_path.parent + while parent != self.base_dir: + try: + if parent.exists() and not any(parent.iterdir()): + parent.rmdir() + else: + break + except OSError: + break + parent = parent.parent + + async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str: + """ + Get download URL for local file. + + For local storage, this returns an API endpoint path. + The actual serving is handled by the API layer. + """ + # Parse the storage path to get the components + if storage_path.startswith("local://"): + relative_path = storage_path[8:] + else: + relative_path = storage_path + + # Return the API endpoint for downloading + # The file_id is extracted from the path: {workspace_id}/{file_id}/{filename} + parts = relative_path.split("/") + if len(parts) >= 2: + file_id = parts[1] # Second component is file_id + return f"/api/workspace/files/{file_id}/download" + else: + raise ValueError(f"Invalid storage path format: {storage_path}") + + +# Global storage backend instance +_workspace_storage: Optional[WorkspaceStorageBackend] = None +_storage_lock = asyncio.Lock() + + +async def get_workspace_storage() -> WorkspaceStorageBackend: + """ + Get the workspace storage backend instance. + + Uses GCS if media_gcs_bucket_name is configured, otherwise uses local storage. + """ + global _workspace_storage + + if _workspace_storage is None: + async with _storage_lock: + if _workspace_storage is None: + config = Config() + + if config.media_gcs_bucket_name: + logger.info( + f"Using GCS workspace storage: {config.media_gcs_bucket_name}" + ) + _workspace_storage = GCSWorkspaceStorage( + config.media_gcs_bucket_name + ) + else: + storage_dir = ( + config.workspace_storage_dir + if config.workspace_storage_dir + else None + ) + logger.info( + f"Using local workspace storage: {storage_dir or 'default'}" + ) + _workspace_storage = LocalWorkspaceStorage(storage_dir) + + return _workspace_storage + + +async def shutdown_workspace_storage() -> None: + """ + Properly shutdown the global workspace storage backend. + + Closes aiohttp sessions and other resources for GCS backend. + Should be called during application shutdown. + """ + global _workspace_storage + + if _workspace_storage is not None: + async with _storage_lock: + if _workspace_storage is not None: + if isinstance(_workspace_storage, GCSWorkspaceStorage): + await _workspace_storage.close() + _workspace_storage = None + + +def compute_file_checksum(content: bytes) -> str: + """Compute SHA256 checksum of file content.""" + return hashlib.sha256(content).hexdigest() diff --git a/autogpt_platform/backend/migrations/20260126120000_migrate_claude_3_7_to_4_5_sonnet/migration.sql b/autogpt_platform/backend/migrations/20260126120000_migrate_claude_3_7_to_4_5_sonnet/migration.sql new file mode 100644 index 0000000000..5746c80820 --- /dev/null +++ b/autogpt_platform/backend/migrations/20260126120000_migrate_claude_3_7_to_4_5_sonnet/migration.sql @@ -0,0 +1,22 @@ +-- Migrate Claude 3.7 Sonnet to Claude 4.5 Sonnet +-- This updates all AgentNode blocks that use the deprecated Claude 3.7 Sonnet model +-- Anthropic is retiring claude-3-7-sonnet-20250219 on February 19, 2026 + +-- Update AgentNode constant inputs +UPDATE "AgentNode" +SET "constantInput" = JSONB_SET( + "constantInput"::jsonb, + '{model}', + '"claude-sonnet-4-5-20250929"'::jsonb + ) +WHERE "constantInput"::jsonb->>'model' = 'claude-3-7-sonnet-20250219'; + +-- Update AgentPreset input overrides (stored in AgentNodeExecutionInputOutput) +UPDATE "AgentNodeExecutionInputOutput" +SET "data" = JSONB_SET( + "data"::jsonb, + '{model}', + '"claude-sonnet-4-5-20250929"'::jsonb + ) +WHERE "agentPresetId" IS NOT NULL + AND "data"::jsonb->>'model' = 'claude-3-7-sonnet-20250219'; diff --git a/autogpt_platform/backend/migrations/20260127211502_add_visit_copilot_onboarding_step/migration.sql b/autogpt_platform/backend/migrations/20260127211502_add_visit_copilot_onboarding_step/migration.sql new file mode 100644 index 0000000000..6a08d9231b --- /dev/null +++ b/autogpt_platform/backend/migrations/20260127211502_add_visit_copilot_onboarding_step/migration.sql @@ -0,0 +1,2 @@ +-- AlterEnum +ALTER TYPE "OnboardingStep" ADD VALUE 'VISIT_COPILOT'; diff --git a/autogpt_platform/backend/migrations/20260127230419_add_user_workspace/migration.sql b/autogpt_platform/backend/migrations/20260127230419_add_user_workspace/migration.sql new file mode 100644 index 0000000000..bb63dccb33 --- /dev/null +++ b/autogpt_platform/backend/migrations/20260127230419_add_user_workspace/migration.sql @@ -0,0 +1,52 @@ +-- CreateEnum +CREATE TYPE "WorkspaceFileSource" AS ENUM ('UPLOAD', 'EXECUTION', 'COPILOT', 'IMPORT'); + +-- CreateTable +CREATE TABLE "UserWorkspace" ( + "id" TEXT NOT NULL, + "createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP, + "updatedAt" TIMESTAMP(3) NOT NULL, + "userId" TEXT NOT NULL, + + CONSTRAINT "UserWorkspace_pkey" PRIMARY KEY ("id") +); + +-- CreateTable +CREATE TABLE "UserWorkspaceFile" ( + "id" TEXT NOT NULL, + "createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP, + "updatedAt" TIMESTAMP(3) NOT NULL, + "workspaceId" TEXT NOT NULL, + "name" TEXT NOT NULL, + "path" TEXT NOT NULL, + "storagePath" TEXT NOT NULL, + "mimeType" TEXT NOT NULL, + "sizeBytes" BIGINT NOT NULL, + "checksum" TEXT, + "isDeleted" BOOLEAN NOT NULL DEFAULT false, + "deletedAt" TIMESTAMP(3), + "source" "WorkspaceFileSource" NOT NULL DEFAULT 'UPLOAD', + "sourceExecId" TEXT, + "sourceSessionId" TEXT, + "metadata" JSONB NOT NULL DEFAULT '{}', + + CONSTRAINT "UserWorkspaceFile_pkey" PRIMARY KEY ("id") +); + +-- CreateIndex +CREATE UNIQUE INDEX "UserWorkspace_userId_key" ON "UserWorkspace"("userId"); + +-- CreateIndex +CREATE INDEX "UserWorkspace_userId_idx" ON "UserWorkspace"("userId"); + +-- CreateIndex +CREATE INDEX "UserWorkspaceFile_workspaceId_isDeleted_idx" ON "UserWorkspaceFile"("workspaceId", "isDeleted"); + +-- CreateIndex +CREATE UNIQUE INDEX "UserWorkspaceFile_workspaceId_path_key" ON "UserWorkspaceFile"("workspaceId", "path"); + +-- AddForeignKey +ALTER TABLE "UserWorkspace" ADD CONSTRAINT "UserWorkspace_userId_fkey" FOREIGN KEY ("userId") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE; + +-- AddForeignKey +ALTER TABLE "UserWorkspaceFile" ADD CONSTRAINT "UserWorkspaceFile_workspaceId_fkey" FOREIGN KEY ("workspaceId") REFERENCES "UserWorkspace"("id") ON DELETE CASCADE ON UPDATE CASCADE; diff --git a/autogpt_platform/backend/migrations/20260129011611_remove_workspace_file_source/migration.sql b/autogpt_platform/backend/migrations/20260129011611_remove_workspace_file_source/migration.sql new file mode 100644 index 0000000000..2709bc8484 --- /dev/null +++ b/autogpt_platform/backend/migrations/20260129011611_remove_workspace_file_source/migration.sql @@ -0,0 +1,16 @@ +/* + Warnings: + + - You are about to drop the column `source` on the `UserWorkspaceFile` table. All the data in the column will be lost. + - You are about to drop the column `sourceExecId` on the `UserWorkspaceFile` table. All the data in the column will be lost. + - You are about to drop the column `sourceSessionId` on the `UserWorkspaceFile` table. All the data in the column will be lost. + +*/ + +-- AlterTable +ALTER TABLE "UserWorkspaceFile" DROP COLUMN "source", +DROP COLUMN "sourceExecId", +DROP COLUMN "sourceSessionId"; + +-- DropEnum +DROP TYPE "WorkspaceFileSource"; diff --git a/autogpt_platform/backend/schema.prisma b/autogpt_platform/backend/schema.prisma index de94600820..2da898a7ce 100644 --- a/autogpt_platform/backend/schema.prisma +++ b/autogpt_platform/backend/schema.prisma @@ -63,6 +63,7 @@ model User { IntegrationWebhooks IntegrationWebhook[] NotificationBatches UserNotificationBatch[] PendingHumanReviews PendingHumanReview[] + Workspace UserWorkspace? // OAuth Provider relations OAuthApplications OAuthApplication[] @@ -81,6 +82,7 @@ enum OnboardingStep { AGENT_INPUT CONGRATS // First Wins + VISIT_COPILOT GET_RESULTS MARKETPLACE_VISIT MARKETPLACE_ADD_AGENT @@ -136,6 +138,53 @@ model CoPilotUnderstanding { @@index([userId]) } +//////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////// +//////////////// USER WORKSPACE TABLES ///////////////// +//////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////// + +// User's persistent file storage workspace +model UserWorkspace { + id String @id @default(uuid()) + createdAt DateTime @default(now()) + updatedAt DateTime @updatedAt + + userId String @unique + User User @relation(fields: [userId], references: [id], onDelete: Cascade) + + Files UserWorkspaceFile[] + + @@index([userId]) +} + +// Individual files in a user's workspace +model UserWorkspaceFile { + id String @id @default(uuid()) + createdAt DateTime @default(now()) + updatedAt DateTime @updatedAt + + workspaceId String + Workspace UserWorkspace @relation(fields: [workspaceId], references: [id], onDelete: Cascade) + + // File metadata + name String // User-visible filename + path String // Virtual path (e.g., "/documents/report.pdf") + storagePath String // Actual GCS or local storage path + mimeType String + sizeBytes BigInt + checksum String? // SHA256 for integrity + + // File state + isDeleted Boolean @default(false) + deletedAt DateTime? + + metadata Json @default("{}") + + @@unique([workspaceId, path]) + @@index([workspaceId, isDeleted]) +} + model BuilderSearchHistory { id String @id @default(uuid()) createdAt DateTime @default(now()) diff --git a/autogpt_platform/backend/snapshots/agts_by_creator b/autogpt_platform/backend/snapshots/agts_by_creator index 4d6dd12920..3f2e128a0d 100644 --- a/autogpt_platform/backend/snapshots/agts_by_creator +++ b/autogpt_platform/backend/snapshots/agts_by_creator @@ -9,7 +9,8 @@ "sub_heading": "Creator agent subheading", "description": "Creator agent description", "runs": 50, - "rating": 4.0 + "rating": 4.0, + "agent_graph_id": "test-graph-2" } ], "pagination": { diff --git a/autogpt_platform/backend/snapshots/agts_category b/autogpt_platform/backend/snapshots/agts_category index f65925ead3..4d0531763c 100644 --- a/autogpt_platform/backend/snapshots/agts_category +++ b/autogpt_platform/backend/snapshots/agts_category @@ -9,7 +9,8 @@ "sub_heading": "Category agent subheading", "description": "Category agent description", "runs": 60, - "rating": 4.1 + "rating": 4.1, + "agent_graph_id": "test-graph-category" } ], "pagination": { diff --git a/autogpt_platform/backend/snapshots/agts_pagination b/autogpt_platform/backend/snapshots/agts_pagination index 82e7f5f9bf..7b946157fb 100644 --- a/autogpt_platform/backend/snapshots/agts_pagination +++ b/autogpt_platform/backend/snapshots/agts_pagination @@ -9,7 +9,8 @@ "sub_heading": "Agent 0 subheading", "description": "Agent 0 description", "runs": 0, - "rating": 4.0 + "rating": 4.0, + "agent_graph_id": "test-graph-2" }, { "slug": "agent-1", @@ -20,7 +21,8 @@ "sub_heading": "Agent 1 subheading", "description": "Agent 1 description", "runs": 10, - "rating": 4.0 + "rating": 4.0, + "agent_graph_id": "test-graph-2" }, { "slug": "agent-2", @@ -31,7 +33,8 @@ "sub_heading": "Agent 2 subheading", "description": "Agent 2 description", "runs": 20, - "rating": 4.0 + "rating": 4.0, + "agent_graph_id": "test-graph-2" }, { "slug": "agent-3", @@ -42,7 +45,8 @@ "sub_heading": "Agent 3 subheading", "description": "Agent 3 description", "runs": 30, - "rating": 4.0 + "rating": 4.0, + "agent_graph_id": "test-graph-2" }, { "slug": "agent-4", @@ -53,7 +57,8 @@ "sub_heading": "Agent 4 subheading", "description": "Agent 4 description", "runs": 40, - "rating": 4.0 + "rating": 4.0, + "agent_graph_id": "test-graph-2" } ], "pagination": { diff --git a/autogpt_platform/backend/snapshots/agts_search b/autogpt_platform/backend/snapshots/agts_search index ca3f504584..ae9cc116bc 100644 --- a/autogpt_platform/backend/snapshots/agts_search +++ b/autogpt_platform/backend/snapshots/agts_search @@ -9,7 +9,8 @@ "sub_heading": "Search agent subheading", "description": "Specific search term description", "runs": 75, - "rating": 4.2 + "rating": 4.2, + "agent_graph_id": "test-graph-search" } ], "pagination": { diff --git a/autogpt_platform/backend/snapshots/agts_sorted b/autogpt_platform/backend/snapshots/agts_sorted index cddead76a5..b182256b2c 100644 --- a/autogpt_platform/backend/snapshots/agts_sorted +++ b/autogpt_platform/backend/snapshots/agts_sorted @@ -9,7 +9,8 @@ "sub_heading": "Top agent subheading", "description": "Top agent description", "runs": 1000, - "rating": 5.0 + "rating": 5.0, + "agent_graph_id": "test-graph-3" } ], "pagination": { diff --git a/autogpt_platform/backend/snapshots/feat_agts b/autogpt_platform/backend/snapshots/feat_agts index d57996a768..4f85786434 100644 --- a/autogpt_platform/backend/snapshots/feat_agts +++ b/autogpt_platform/backend/snapshots/feat_agts @@ -9,7 +9,8 @@ "sub_heading": "Featured agent subheading", "description": "Featured agent description", "runs": 100, - "rating": 4.5 + "rating": 4.5, + "agent_graph_id": "test-graph-1" } ], "pagination": { diff --git a/autogpt_platform/backend/snapshots/lib_agts_search b/autogpt_platform/backend/snapshots/lib_agts_search index 67c307b09e..3ce8402b63 100644 --- a/autogpt_platform/backend/snapshots/lib_agts_search +++ b/autogpt_platform/backend/snapshots/lib_agts_search @@ -31,6 +31,10 @@ "has_sensitive_action": false, "trigger_setup_info": null, "new_output": false, + "execution_count": 0, + "success_rate": null, + "avg_correctness_score": null, + "recent_executions": [], "can_access_graph": true, "is_latest_version": true, "is_favorite": false, @@ -72,6 +76,10 @@ "has_sensitive_action": false, "trigger_setup_info": null, "new_output": false, + "execution_count": 0, + "success_rate": null, + "avg_correctness_score": null, + "recent_executions": [], "can_access_graph": false, "is_latest_version": true, "is_favorite": false, diff --git a/autogpt_platform/backend/test/agent_generator/test_core_integration.py b/autogpt_platform/backend/test/agent_generator/test_core_integration.py index bdcc24ba79..05ce4a3aff 100644 --- a/autogpt_platform/backend/test/agent_generator/test_core_integration.py +++ b/autogpt_platform/backend/test/agent_generator/test_core_integration.py @@ -57,7 +57,8 @@ class TestDecomposeGoal: result = await core.decompose_goal("Build a chatbot") - mock_external.assert_called_once_with("Build a chatbot", "") + # library_agents defaults to None + mock_external.assert_called_once_with("Build a chatbot", "", None) assert result == expected_result @pytest.mark.asyncio @@ -74,7 +75,8 @@ class TestDecomposeGoal: await core.decompose_goal("Build a chatbot", "Use Python") - mock_external.assert_called_once_with("Build a chatbot", "Use Python") + # library_agents defaults to None + mock_external.assert_called_once_with("Build a chatbot", "Use Python", None) @pytest.mark.asyncio async def test_returns_none_on_service_failure(self): @@ -109,7 +111,8 @@ class TestGenerateAgent: instructions = {"type": "instructions", "steps": ["Step 1"]} result = await core.generate_agent(instructions) - mock_external.assert_called_once_with(instructions) + # library_agents defaults to None + mock_external.assert_called_once_with(instructions, None) # Result should have id, version, is_active added if not present assert result is not None assert result["name"] == "Test Agent" @@ -174,7 +177,8 @@ class TestGenerateAgentPatch: current_agent = {"nodes": [], "links": []} result = await core.generate_agent_patch("Add a node", current_agent) - mock_external.assert_called_once_with("Add a node", current_agent) + # library_agents defaults to None + mock_external.assert_called_once_with("Add a node", current_agent, None) assert result == expected_result @pytest.mark.asyncio diff --git a/autogpt_platform/backend/test/agent_generator/test_library_agents.py b/autogpt_platform/backend/test/agent_generator/test_library_agents.py new file mode 100644 index 0000000000..8387339582 --- /dev/null +++ b/autogpt_platform/backend/test/agent_generator/test_library_agents.py @@ -0,0 +1,857 @@ +""" +Tests for library agent fetching functionality in agent generator. + +This test suite verifies the search-based library agent fetching, +including the combination of library and marketplace agents. +""" + +from unittest.mock import AsyncMock, MagicMock, patch + +import pytest + +from backend.api.features.chat.tools.agent_generator import core + + +class TestGetLibraryAgentsForGeneration: + """Test get_library_agents_for_generation function.""" + + @pytest.mark.asyncio + async def test_fetches_agents_with_search_term(self): + """Test that search_term is passed to the library db.""" + # Create a mock agent with proper attribute values + mock_agent = MagicMock() + mock_agent.graph_id = "agent-123" + mock_agent.graph_version = 1 + mock_agent.name = "Email Agent" + mock_agent.description = "Sends emails" + mock_agent.input_schema = {"properties": {}} + mock_agent.output_schema = {"properties": {}} + mock_agent.recent_executions = [] + + mock_response = MagicMock() + mock_response.agents = [mock_agent] + + with patch.object( + core.library_db, + "list_library_agents", + new_callable=AsyncMock, + return_value=mock_response, + ) as mock_list: + result = await core.get_library_agents_for_generation( + user_id="user-123", + search_query="send email", + ) + + mock_list.assert_called_once_with( + user_id="user-123", + search_term="send email", + page=1, + page_size=15, + include_executions=True, + ) + + # Verify result format + assert len(result) == 1 + assert result[0]["graph_id"] == "agent-123" + assert result[0]["name"] == "Email Agent" + + @pytest.mark.asyncio + async def test_excludes_specified_graph_id(self): + """Test that agents with excluded graph_id are filtered out.""" + mock_response = MagicMock() + mock_response.agents = [ + MagicMock( + graph_id="agent-123", + graph_version=1, + name="Agent 1", + description="First agent", + input_schema={}, + output_schema={}, + recent_executions=[], + ), + MagicMock( + graph_id="agent-456", + graph_version=1, + name="Agent 2", + description="Second agent", + input_schema={}, + output_schema={}, + recent_executions=[], + ), + ] + + with patch.object( + core.library_db, + "list_library_agents", + new_callable=AsyncMock, + return_value=mock_response, + ): + result = await core.get_library_agents_for_generation( + user_id="user-123", + exclude_graph_id="agent-123", + ) + + # Verify the excluded agent is not in results + assert len(result) == 1 + assert result[0]["graph_id"] == "agent-456" + + @pytest.mark.asyncio + async def test_respects_max_results(self): + """Test that max_results parameter limits the page_size.""" + mock_response = MagicMock() + mock_response.agents = [] + + with patch.object( + core.library_db, + "list_library_agents", + new_callable=AsyncMock, + return_value=mock_response, + ) as mock_list: + await core.get_library_agents_for_generation( + user_id="user-123", + max_results=5, + ) + + mock_list.assert_called_once_with( + user_id="user-123", + search_term=None, + page=1, + page_size=5, + include_executions=True, + ) + + +class TestSearchMarketplaceAgentsForGeneration: + """Test search_marketplace_agents_for_generation function.""" + + @pytest.mark.asyncio + async def test_searches_marketplace_with_query(self): + """Test that marketplace is searched with the query.""" + mock_response = MagicMock() + mock_response.agents = [ + MagicMock( + agent_name="Public Agent", + description="A public agent", + sub_heading="Does something useful", + creator="creator-1", + agent_graph_id="graph-123", + ) + ] + + mock_graph = MagicMock() + mock_graph.id = "graph-123" + mock_graph.version = 1 + mock_graph.input_schema = {"type": "object"} + mock_graph.output_schema = {"type": "object"} + + with ( + patch( + "backend.api.features.store.db.get_store_agents", + new_callable=AsyncMock, + return_value=mock_response, + ) as mock_search, + patch( + "backend.api.features.chat.tools.agent_generator.core.get_store_listed_graphs", + new_callable=AsyncMock, + return_value={"graph-123": mock_graph}, + ), + ): + result = await core.search_marketplace_agents_for_generation( + search_query="automation", + max_results=10, + ) + + mock_search.assert_called_once_with( + search_query="automation", + page=1, + page_size=10, + ) + + assert len(result) == 1 + assert result[0]["name"] == "Public Agent" + assert result[0]["graph_id"] == "graph-123" + + @pytest.mark.asyncio + async def test_handles_marketplace_error_gracefully(self): + """Test that marketplace errors don't crash the function.""" + with patch( + "backend.api.features.store.db.get_store_agents", + new_callable=AsyncMock, + side_effect=Exception("Marketplace unavailable"), + ): + result = await core.search_marketplace_agents_for_generation( + search_query="test" + ) + + # Should return empty list, not raise exception + assert result == [] + + +class TestGetAllRelevantAgentsForGeneration: + """Test get_all_relevant_agents_for_generation function.""" + + @pytest.mark.asyncio + async def test_combines_library_and_marketplace_agents(self): + """Test that agents from both sources are combined.""" + library_agents = [ + { + "graph_id": "lib-123", + "graph_version": 1, + "name": "Library Agent", + "description": "From library", + "input_schema": {}, + "output_schema": {}, + } + ] + + marketplace_agents = [ + { + "graph_id": "market-456", + "graph_version": 1, + "name": "Market Agent", + "description": "From marketplace", + "input_schema": {}, + "output_schema": {}, + } + ] + + with patch.object( + core, + "get_library_agents_for_generation", + new_callable=AsyncMock, + return_value=library_agents, + ): + with patch.object( + core, + "search_marketplace_agents_for_generation", + new_callable=AsyncMock, + return_value=marketplace_agents, + ): + result = await core.get_all_relevant_agents_for_generation( + user_id="user-123", + search_query="test query", + include_marketplace=True, + ) + + # Library agents should come first + assert len(result) == 2 + assert result[0]["name"] == "Library Agent" + assert result[1]["name"] == "Market Agent" + + @pytest.mark.asyncio + async def test_deduplicates_by_graph_id(self): + """Test that marketplace agents with same graph_id as library are excluded.""" + library_agents = [ + { + "graph_id": "shared-123", + "graph_version": 1, + "name": "Shared Agent", + "description": "From library", + "input_schema": {}, + "output_schema": {}, + } + ] + + marketplace_agents = [ + { + "graph_id": "shared-123", # Same graph_id, should be deduplicated + "graph_version": 1, + "name": "Shared Agent", + "description": "From marketplace", + "input_schema": {}, + "output_schema": {}, + }, + { + "graph_id": "unique-456", + "graph_version": 1, + "name": "Unique Agent", + "description": "Only in marketplace", + "input_schema": {}, + "output_schema": {}, + }, + ] + + with patch.object( + core, + "get_library_agents_for_generation", + new_callable=AsyncMock, + return_value=library_agents, + ): + with patch.object( + core, + "search_marketplace_agents_for_generation", + new_callable=AsyncMock, + return_value=marketplace_agents, + ): + result = await core.get_all_relevant_agents_for_generation( + user_id="user-123", + search_query="test", + include_marketplace=True, + ) + + # Shared Agent from marketplace should be excluded by graph_id + assert len(result) == 2 + names = [a["name"] for a in result] + assert "Shared Agent" in names + assert "Unique Agent" in names + + @pytest.mark.asyncio + async def test_skips_marketplace_when_disabled(self): + """Test that marketplace is not searched when include_marketplace=False.""" + library_agents = [ + { + "graph_id": "lib-123", + "graph_version": 1, + "name": "Library Agent", + "description": "From library", + "input_schema": {}, + "output_schema": {}, + } + ] + + with patch.object( + core, + "get_library_agents_for_generation", + new_callable=AsyncMock, + return_value=library_agents, + ): + with patch.object( + core, + "search_marketplace_agents_for_generation", + new_callable=AsyncMock, + ) as mock_marketplace: + result = await core.get_all_relevant_agents_for_generation( + user_id="user-123", + search_query="test", + include_marketplace=False, + ) + + # Marketplace should not be called + mock_marketplace.assert_not_called() + assert len(result) == 1 + + @pytest.mark.asyncio + async def test_skips_marketplace_when_no_search_query(self): + """Test that marketplace is not searched without a search query.""" + library_agents = [ + { + "graph_id": "lib-123", + "graph_version": 1, + "name": "Library Agent", + "description": "From library", + "input_schema": {}, + "output_schema": {}, + } + ] + + with patch.object( + core, + "get_library_agents_for_generation", + new_callable=AsyncMock, + return_value=library_agents, + ): + with patch.object( + core, + "search_marketplace_agents_for_generation", + new_callable=AsyncMock, + ) as mock_marketplace: + result = await core.get_all_relevant_agents_for_generation( + user_id="user-123", + search_query=None, # No search query + include_marketplace=True, + ) + + # Marketplace should not be called without search query + mock_marketplace.assert_not_called() + assert len(result) == 1 + + +class TestExtractSearchTermsFromSteps: + """Test extract_search_terms_from_steps function.""" + + def test_extracts_terms_from_instructions_type(self): + """Test extraction from valid instructions decomposition result.""" + decomposition_result = { + "type": "instructions", + "steps": [ + { + "description": "Send an email notification", + "block_name": "GmailSendBlock", + }, + {"description": "Fetch weather data", "action": "Get weather API"}, + ], + } + + result = core.extract_search_terms_from_steps(decomposition_result) + + assert "Send an email notification" in result + assert "GmailSendBlock" in result + assert "Fetch weather data" in result + assert "Get weather API" in result + + def test_returns_empty_for_non_instructions_type(self): + """Test that non-instructions types return empty list.""" + decomposition_result = { + "type": "clarifying_questions", + "questions": [{"question": "What email?"}], + } + + result = core.extract_search_terms_from_steps(decomposition_result) + + assert result == [] + + def test_deduplicates_terms_case_insensitively(self): + """Test that duplicate terms are removed (case-insensitive).""" + decomposition_result = { + "type": "instructions", + "steps": [ + {"description": "Send Email", "name": "send email"}, + {"description": "Other task"}, + ], + } + + result = core.extract_search_terms_from_steps(decomposition_result) + + # Should only have one "send email" variant + email_terms = [t for t in result if "email" in t.lower()] + assert len(email_terms) == 1 + + def test_filters_short_terms(self): + """Test that terms with 3 or fewer characters are filtered out.""" + decomposition_result = { + "type": "instructions", + "steps": [ + {"description": "ab", "action": "xyz"}, # Both too short + {"description": "Valid term here"}, + ], + } + + result = core.extract_search_terms_from_steps(decomposition_result) + + assert "ab" not in result + assert "xyz" not in result + assert "Valid term here" in result + + def test_handles_empty_steps(self): + """Test handling of empty steps list.""" + decomposition_result = { + "type": "instructions", + "steps": [], + } + + result = core.extract_search_terms_from_steps(decomposition_result) + + assert result == [] + + +class TestEnrichLibraryAgentsFromSteps: + """Test enrich_library_agents_from_steps function.""" + + @pytest.mark.asyncio + async def test_enriches_with_additional_agents(self): + """Test that additional agents are found based on steps.""" + existing_agents = [ + { + "graph_id": "existing-123", + "graph_version": 1, + "name": "Existing Agent", + "description": "Already fetched", + "input_schema": {}, + "output_schema": {}, + } + ] + + additional_agents = [ + { + "graph_id": "new-456", + "graph_version": 1, + "name": "Email Agent", + "description": "For sending emails", + "input_schema": {}, + "output_schema": {}, + } + ] + + decomposition_result = { + "type": "instructions", + "steps": [ + {"description": "Send email notification"}, + ], + } + + with patch.object( + core, + "get_all_relevant_agents_for_generation", + new_callable=AsyncMock, + return_value=additional_agents, + ): + result = await core.enrich_library_agents_from_steps( + user_id="user-123", + decomposition_result=decomposition_result, + existing_agents=existing_agents, + ) + + # Should have both existing and new agents + assert len(result) == 2 + names = [a["name"] for a in result] + assert "Existing Agent" in names + assert "Email Agent" in names + + @pytest.mark.asyncio + async def test_deduplicates_by_graph_id(self): + """Test that agents with same graph_id are not duplicated.""" + existing_agents = [ + { + "graph_id": "agent-123", + "graph_version": 1, + "name": "Existing Agent", + "description": "Already fetched", + "input_schema": {}, + "output_schema": {}, + } + ] + + # Additional search returns same agent + additional_agents = [ + { + "graph_id": "agent-123", # Same ID + "graph_version": 1, + "name": "Existing Agent Copy", + "description": "Same agent different name", + "input_schema": {}, + "output_schema": {}, + } + ] + + decomposition_result = { + "type": "instructions", + "steps": [{"description": "Some action"}], + } + + with patch.object( + core, + "get_all_relevant_agents_for_generation", + new_callable=AsyncMock, + return_value=additional_agents, + ): + result = await core.enrich_library_agents_from_steps( + user_id="user-123", + decomposition_result=decomposition_result, + existing_agents=existing_agents, + ) + + # Should not duplicate + assert len(result) == 1 + + @pytest.mark.asyncio + async def test_deduplicates_by_name(self): + """Test that agents with same name are not duplicated.""" + existing_agents = [ + { + "graph_id": "agent-123", + "graph_version": 1, + "name": "Email Agent", + "description": "Already fetched", + "input_schema": {}, + "output_schema": {}, + } + ] + + # Additional search returns agent with same name but different ID + additional_agents = [ + { + "graph_id": "agent-456", # Different ID + "graph_version": 1, + "name": "Email Agent", # Same name + "description": "Different agent same name", + "input_schema": {}, + "output_schema": {}, + } + ] + + decomposition_result = { + "type": "instructions", + "steps": [{"description": "Send email"}], + } + + with patch.object( + core, + "get_all_relevant_agents_for_generation", + new_callable=AsyncMock, + return_value=additional_agents, + ): + result = await core.enrich_library_agents_from_steps( + user_id="user-123", + decomposition_result=decomposition_result, + existing_agents=existing_agents, + ) + + # Should not duplicate by name + assert len(result) == 1 + assert result[0].get("graph_id") == "agent-123" # Original kept + + @pytest.mark.asyncio + async def test_returns_existing_when_no_steps(self): + """Test that existing agents are returned when no search terms extracted.""" + existing_agents = [ + { + "graph_id": "existing-123", + "graph_version": 1, + "name": "Existing Agent", + "description": "Already fetched", + "input_schema": {}, + "output_schema": {}, + } + ] + + decomposition_result = { + "type": "clarifying_questions", # Not instructions type + "questions": [], + } + + result = await core.enrich_library_agents_from_steps( + user_id="user-123", + decomposition_result=decomposition_result, + existing_agents=existing_agents, + ) + + # Should return existing unchanged + assert result == existing_agents + + @pytest.mark.asyncio + async def test_limits_search_terms_to_three(self): + """Test that only first 3 search terms are used.""" + existing_agents = [] + + decomposition_result = { + "type": "instructions", + "steps": [ + {"description": "First action"}, + {"description": "Second action"}, + {"description": "Third action"}, + {"description": "Fourth action"}, + {"description": "Fifth action"}, + ], + } + + call_count = 0 + + async def mock_get_agents(*args, **kwargs): + nonlocal call_count + call_count += 1 + return [] + + with patch.object( + core, + "get_all_relevant_agents_for_generation", + side_effect=mock_get_agents, + ): + await core.enrich_library_agents_from_steps( + user_id="user-123", + decomposition_result=decomposition_result, + existing_agents=existing_agents, + ) + + # Should only make 3 calls (limited to first 3 terms) + assert call_count == 3 + + +class TestExtractUuidsFromText: + """Test extract_uuids_from_text function.""" + + def test_extracts_single_uuid(self): + """Test extraction of a single UUID from text.""" + text = "Use my agent 46631191-e8a8-486f-ad90-84f89738321d for this task" + result = core.extract_uuids_from_text(text) + assert len(result) == 1 + assert "46631191-e8a8-486f-ad90-84f89738321d" in result + + def test_extracts_multiple_uuids(self): + """Test extraction of multiple UUIDs from text.""" + text = ( + "Combine agents 11111111-1111-4111-8111-111111111111 " + "and 22222222-2222-4222-9222-222222222222" + ) + result = core.extract_uuids_from_text(text) + assert len(result) == 2 + assert "11111111-1111-4111-8111-111111111111" in result + assert "22222222-2222-4222-9222-222222222222" in result + + def test_deduplicates_uuids(self): + """Test that duplicate UUIDs are deduplicated.""" + text = ( + "Use 46631191-e8a8-486f-ad90-84f89738321d twice: " + "46631191-e8a8-486f-ad90-84f89738321d" + ) + result = core.extract_uuids_from_text(text) + assert len(result) == 1 + + def test_normalizes_to_lowercase(self): + """Test that UUIDs are normalized to lowercase.""" + text = "Use 46631191-E8A8-486F-AD90-84F89738321D" + result = core.extract_uuids_from_text(text) + assert result[0] == "46631191-e8a8-486f-ad90-84f89738321d" + + def test_returns_empty_for_no_uuids(self): + """Test that empty list is returned when no UUIDs found.""" + text = "Create an email agent that sends notifications" + result = core.extract_uuids_from_text(text) + assert result == [] + + def test_ignores_invalid_uuids(self): + """Test that invalid UUID-like strings are ignored.""" + text = "Not a valid UUID: 12345678-1234-1234-1234-123456789abc" + result = core.extract_uuids_from_text(text) + # UUID v4 requires specific patterns (4 in third group, 8/9/a/b in fourth) + assert len(result) == 0 + + +class TestGetLibraryAgentById: + """Test get_library_agent_by_id function (and its alias get_library_agent_by_graph_id).""" + + @pytest.mark.asyncio + async def test_returns_agent_when_found_by_graph_id(self): + """Test that agent is returned when found by graph_id.""" + mock_agent = MagicMock() + mock_agent.graph_id = "agent-123" + mock_agent.graph_version = 1 + mock_agent.name = "Test Agent" + mock_agent.description = "Test description" + mock_agent.input_schema = {"properties": {}} + mock_agent.output_schema = {"properties": {}} + + with patch.object( + core.library_db, + "get_library_agent_by_graph_id", + new_callable=AsyncMock, + return_value=mock_agent, + ): + result = await core.get_library_agent_by_id("user-123", "agent-123") + + assert result is not None + assert result["graph_id"] == "agent-123" + assert result["name"] == "Test Agent" + + @pytest.mark.asyncio + async def test_falls_back_to_library_agent_id(self): + """Test that lookup falls back to library agent ID when graph_id not found.""" + mock_agent = MagicMock() + mock_agent.graph_id = "graph-456" # Different from the lookup ID + mock_agent.graph_version = 1 + mock_agent.name = "Library Agent" + mock_agent.description = "Found by library ID" + mock_agent.input_schema = {"properties": {}} + mock_agent.output_schema = {"properties": {}} + + with ( + patch.object( + core.library_db, + "get_library_agent_by_graph_id", + new_callable=AsyncMock, + return_value=None, # Not found by graph_id + ), + patch.object( + core.library_db, + "get_library_agent", + new_callable=AsyncMock, + return_value=mock_agent, # Found by library ID + ), + ): + result = await core.get_library_agent_by_id("user-123", "library-id-123") + + assert result is not None + assert result["graph_id"] == "graph-456" + assert result["name"] == "Library Agent" + + @pytest.mark.asyncio + async def test_returns_none_when_not_found_by_either_method(self): + """Test that None is returned when agent not found by either method.""" + with ( + patch.object( + core.library_db, + "get_library_agent_by_graph_id", + new_callable=AsyncMock, + return_value=None, + ), + patch.object( + core.library_db, + "get_library_agent", + new_callable=AsyncMock, + side_effect=core.NotFoundError("Not found"), + ), + ): + result = await core.get_library_agent_by_id("user-123", "nonexistent") + + assert result is None + + @pytest.mark.asyncio + async def test_returns_none_on_exception(self): + """Test that None is returned when exception occurs in both lookups.""" + with ( + patch.object( + core.library_db, + "get_library_agent_by_graph_id", + new_callable=AsyncMock, + side_effect=Exception("Database error"), + ), + patch.object( + core.library_db, + "get_library_agent", + new_callable=AsyncMock, + side_effect=Exception("Database error"), + ), + ): + result = await core.get_library_agent_by_id("user-123", "agent-123") + + assert result is None + + @pytest.mark.asyncio + async def test_alias_works(self): + """Test that get_library_agent_by_graph_id is an alias for get_library_agent_by_id.""" + assert core.get_library_agent_by_graph_id is core.get_library_agent_by_id + + +class TestGetAllRelevantAgentsWithUuids: + """Test UUID extraction in get_all_relevant_agents_for_generation.""" + + @pytest.mark.asyncio + async def test_fetches_explicitly_mentioned_agents(self): + """Test that agents mentioned by UUID are fetched directly.""" + mock_agent = MagicMock() + mock_agent.graph_id = "46631191-e8a8-486f-ad90-84f89738321d" + mock_agent.graph_version = 1 + mock_agent.name = "Mentioned Agent" + mock_agent.description = "Explicitly mentioned" + mock_agent.input_schema = {} + mock_agent.output_schema = {} + + mock_response = MagicMock() + mock_response.agents = [] + + with ( + patch.object( + core.library_db, + "get_library_agent_by_graph_id", + new_callable=AsyncMock, + return_value=mock_agent, + ), + patch.object( + core.library_db, + "list_library_agents", + new_callable=AsyncMock, + return_value=mock_response, + ), + ): + result = await core.get_all_relevant_agents_for_generation( + user_id="user-123", + search_query="Use agent 46631191-e8a8-486f-ad90-84f89738321d", + include_marketplace=False, + ) + + assert len(result) == 1 + assert result[0].get("graph_id") == "46631191-e8a8-486f-ad90-84f89738321d" + assert result[0].get("name") == "Mentioned Agent" + + +if __name__ == "__main__": + pytest.main([__file__, "-v"]) diff --git a/autogpt_platform/backend/test/agent_generator/test_service.py b/autogpt_platform/backend/test/agent_generator/test_service.py index 81ff794532..d62dca1729 100644 --- a/autogpt_platform/backend/test/agent_generator/test_service.py +++ b/autogpt_platform/backend/test/agent_generator/test_service.py @@ -151,15 +151,20 @@ class TestDecomposeGoalExternal: @pytest.mark.asyncio async def test_decompose_goal_handles_http_error(self): """Test decomposition handles HTTP errors gracefully.""" + mock_response = MagicMock() + mock_response.status_code = 500 mock_client = AsyncMock() mock_client.post.side_effect = httpx.HTTPStatusError( - "Server error", request=MagicMock(), response=MagicMock() + "Server error", request=MagicMock(), response=mock_response ) with patch.object(service, "_get_client", return_value=mock_client): result = await service.decompose_goal_external("Build a chatbot") - assert result is None + assert result is not None + assert result.get("type") == "error" + assert result.get("error_type") == "http_error" + assert "Server error" in result.get("error", "") @pytest.mark.asyncio async def test_decompose_goal_handles_request_error(self): @@ -170,7 +175,10 @@ class TestDecomposeGoalExternal: with patch.object(service, "_get_client", return_value=mock_client): result = await service.decompose_goal_external("Build a chatbot") - assert result is None + assert result is not None + assert result.get("type") == "error" + assert result.get("error_type") == "connection_error" + assert "Connection failed" in result.get("error", "") @pytest.mark.asyncio async def test_decompose_goal_handles_service_error(self): @@ -179,6 +187,7 @@ class TestDecomposeGoalExternal: mock_response.json.return_value = { "success": False, "error": "Internal error", + "error_type": "internal_error", } mock_response.raise_for_status = MagicMock() @@ -188,7 +197,10 @@ class TestDecomposeGoalExternal: with patch.object(service, "_get_client", return_value=mock_client): result = await service.decompose_goal_external("Build a chatbot") - assert result is None + assert result is not None + assert result.get("type") == "error" + assert result.get("error") == "Internal error" + assert result.get("error_type") == "internal_error" class TestGenerateAgentExternal: @@ -236,7 +248,10 @@ class TestGenerateAgentExternal: with patch.object(service, "_get_client", return_value=mock_client): result = await service.generate_agent_external({"steps": []}) - assert result is None + assert result is not None + assert result.get("type") == "error" + assert result.get("error_type") == "connection_error" + assert "Connection failed" in result.get("error", "") class TestGenerateAgentPatchExternal: @@ -418,5 +433,139 @@ class TestGetBlocksExternal: assert result is None +class TestLibraryAgentsPassthrough: + """Test that library_agents are passed correctly in all requests.""" + + def setup_method(self): + """Reset client singleton before each test.""" + service._settings = None + service._client = None + + @pytest.mark.asyncio + async def test_decompose_goal_passes_library_agents(self): + """Test that library_agents are included in decompose goal payload.""" + library_agents = [ + { + "graph_id": "agent-123", + "graph_version": 1, + "name": "Email Sender", + "description": "Sends emails", + "input_schema": {"properties": {"to": {"type": "string"}}}, + "output_schema": {"properties": {"sent": {"type": "boolean"}}}, + }, + ] + + mock_response = MagicMock() + mock_response.json.return_value = { + "success": True, + "type": "instructions", + "steps": ["Step 1"], + } + mock_response.raise_for_status = MagicMock() + + mock_client = AsyncMock() + mock_client.post.return_value = mock_response + + with patch.object(service, "_get_client", return_value=mock_client): + await service.decompose_goal_external( + "Send an email", + library_agents=library_agents, + ) + + # Verify library_agents was passed in the payload + call_args = mock_client.post.call_args + assert call_args[1]["json"]["library_agents"] == library_agents + + @pytest.mark.asyncio + async def test_generate_agent_passes_library_agents(self): + """Test that library_agents are included in generate agent payload.""" + library_agents = [ + { + "graph_id": "agent-456", + "graph_version": 2, + "name": "Data Fetcher", + "description": "Fetches data from API", + "input_schema": {"properties": {"url": {"type": "string"}}}, + "output_schema": {"properties": {"data": {"type": "object"}}}, + }, + ] + + mock_response = MagicMock() + mock_response.json.return_value = { + "success": True, + "agent_json": {"name": "Test Agent", "nodes": []}, + } + mock_response.raise_for_status = MagicMock() + + mock_client = AsyncMock() + mock_client.post.return_value = mock_response + + with patch.object(service, "_get_client", return_value=mock_client): + await service.generate_agent_external( + {"steps": ["Step 1"]}, + library_agents=library_agents, + ) + + # Verify library_agents was passed in the payload + call_args = mock_client.post.call_args + assert call_args[1]["json"]["library_agents"] == library_agents + + @pytest.mark.asyncio + async def test_generate_agent_patch_passes_library_agents(self): + """Test that library_agents are included in patch generation payload.""" + library_agents = [ + { + "graph_id": "agent-789", + "graph_version": 1, + "name": "Slack Notifier", + "description": "Sends Slack messages", + "input_schema": {"properties": {"message": {"type": "string"}}}, + "output_schema": {"properties": {"success": {"type": "boolean"}}}, + }, + ] + + mock_response = MagicMock() + mock_response.json.return_value = { + "success": True, + "agent_json": {"name": "Updated Agent", "nodes": []}, + } + mock_response.raise_for_status = MagicMock() + + mock_client = AsyncMock() + mock_client.post.return_value = mock_response + + with patch.object(service, "_get_client", return_value=mock_client): + await service.generate_agent_patch_external( + "Add error handling", + {"name": "Original Agent", "nodes": []}, + library_agents=library_agents, + ) + + # Verify library_agents was passed in the payload + call_args = mock_client.post.call_args + assert call_args[1]["json"]["library_agents"] == library_agents + + @pytest.mark.asyncio + async def test_decompose_goal_without_library_agents(self): + """Test that decompose goal works without library_agents.""" + mock_response = MagicMock() + mock_response.json.return_value = { + "success": True, + "type": "instructions", + "steps": ["Step 1"], + } + mock_response.raise_for_status = MagicMock() + + mock_client = AsyncMock() + mock_client.post.return_value = mock_response + + with patch.object(service, "_get_client", return_value=mock_client): + await service.decompose_goal_external("Build a workflow") + + # Verify library_agents was NOT passed when not provided + call_args = mock_client.post.call_args + assert "library_agents" not in call_args[1]["json"] + + if __name__ == "__main__": pytest.main([__file__, "-v"]) diff --git a/autogpt_platform/backend/test/e2e_test_data.py b/autogpt_platform/backend/test/e2e_test_data.py index d7576cdad3..7288197a90 100644 --- a/autogpt_platform/backend/test/e2e_test_data.py +++ b/autogpt_platform/backend/test/e2e_test_data.py @@ -43,19 +43,24 @@ faker = Faker() # Constants for data generation limits (reduced for E2E tests) NUM_USERS = 15 NUM_AGENT_BLOCKS = 30 -MIN_GRAPHS_PER_USER = 15 -MAX_GRAPHS_PER_USER = 15 +MIN_GRAPHS_PER_USER = 25 +MAX_GRAPHS_PER_USER = 25 MIN_NODES_PER_GRAPH = 3 MAX_NODES_PER_GRAPH = 6 MIN_PRESETS_PER_USER = 2 MAX_PRESETS_PER_USER = 3 -MIN_AGENTS_PER_USER = 15 -MAX_AGENTS_PER_USER = 15 +MIN_AGENTS_PER_USER = 25 +MAX_AGENTS_PER_USER = 25 MIN_EXECUTIONS_PER_GRAPH = 2 MAX_EXECUTIONS_PER_GRAPH = 8 MIN_REVIEWS_PER_VERSION = 2 MAX_REVIEWS_PER_VERSION = 5 +# Guaranteed minimums for marketplace tests (deterministic) +GUARANTEED_FEATURED_AGENTS = 8 +GUARANTEED_FEATURED_CREATORS = 5 +GUARANTEED_TOP_AGENTS = 10 + def get_image(): """Generate a consistent image URL using picsum.photos service.""" @@ -385,7 +390,7 @@ class TestDataCreator: library_agents = [] for user in self.users: - num_agents = 10 # Create exactly 10 agents per user + num_agents = random.randint(MIN_AGENTS_PER_USER, MAX_AGENTS_PER_USER) # Get available graphs for this user user_graphs = [ @@ -507,14 +512,17 @@ class TestDataCreator: existing_profiles, min(num_creators, len(existing_profiles)) ) - # Mark about 50% of creators as featured (more for testing) - num_featured = max(2, int(num_creators * 0.5)) + # Guarantee at least GUARANTEED_FEATURED_CREATORS featured creators + num_featured = max(GUARANTEED_FEATURED_CREATORS, int(num_creators * 0.5)) num_featured = min( num_featured, len(selected_profiles) ) # Don't exceed available profiles featured_profile_ids = set( random.sample([p.id for p in selected_profiles], num_featured) ) + print( + f"🎯 Creating {num_featured} featured creators (min: {GUARANTEED_FEATURED_CREATORS})" + ) for profile in selected_profiles: try: @@ -545,21 +553,25 @@ class TestDataCreator: return profiles async def create_test_store_submissions(self) -> List[Dict[str, Any]]: - """Create test store submissions using the API function.""" + """Create test store submissions using the API function. + + DETERMINISTIC: Guarantees minimum featured agents for E2E tests. + """ print("Creating test store submissions...") submissions = [] approved_submissions = [] + featured_count = 0 + submission_counter = 0 - # Create a special test submission for test123@gmail.com + # Create a special test submission for test123@gmail.com (ALWAYS approved + featured) test_user = next( (user for user in self.users if user["email"] == "test123@gmail.com"), None ) - if test_user: - # Special test data for consistent testing + if test_user and self.agent_graphs: test_submission_data = { "user_id": test_user["id"], - "agent_id": self.agent_graphs[0]["id"], # Use first available graph + "agent_id": self.agent_graphs[0]["id"], "agent_version": 1, "slug": "test-agent-submission", "name": "Test Agent Submission", @@ -580,37 +592,24 @@ class TestDataCreator: submissions.append(test_submission.model_dump()) print("✅ Created special test store submission for test123@gmail.com") - # Randomly approve, reject, or leave pending the test submission + # ALWAYS approve and feature the test submission if test_submission.store_listing_version_id: - random_value = random.random() - if random_value < 0.4: # 40% chance to approve - approved_submission = await review_store_submission( - store_listing_version_id=test_submission.store_listing_version_id, - is_approved=True, - external_comments="Test submission approved", - internal_comments="Auto-approved test submission", - reviewer_id=test_user["id"], - ) - approved_submissions.append(approved_submission.model_dump()) - print("✅ Approved test store submission") + approved_submission = await review_store_submission( + store_listing_version_id=test_submission.store_listing_version_id, + is_approved=True, + external_comments="Test submission approved", + internal_comments="Auto-approved test submission", + reviewer_id=test_user["id"], + ) + approved_submissions.append(approved_submission.model_dump()) + print("✅ Approved test store submission") - # Mark approved submission as featured - await prisma.storelistingversion.update( - where={"id": test_submission.store_listing_version_id}, - data={"isFeatured": True}, - ) - print("🌟 Marked test agent as FEATURED") - elif random_value < 0.7: # 30% chance to reject (40% to 70%) - await review_store_submission( - store_listing_version_id=test_submission.store_listing_version_id, - is_approved=False, - external_comments="Test submission rejected - needs improvements", - internal_comments="Auto-rejected test submission for E2E testing", - reviewer_id=test_user["id"], - ) - print("❌ Rejected test store submission") - else: # 30% chance to leave pending (70% to 100%) - print("⏳ Left test submission pending for review") + await prisma.storelistingversion.update( + where={"id": test_submission.store_listing_version_id}, + data={"isFeatured": True}, + ) + featured_count += 1 + print("🌟 Marked test agent as FEATURED") except Exception as e: print(f"Error creating test store submission: {e}") @@ -620,7 +619,6 @@ class TestDataCreator: # Create regular submissions for all users for user in self.users: - # Get available graphs for this specific user user_graphs = [ g for g in self.agent_graphs if g.get("userId") == user["id"] ] @@ -631,18 +629,17 @@ class TestDataCreator: ) continue - # Create exactly 4 store submissions per user for submission_index in range(4): graph = random.choice(user_graphs) + submission_counter += 1 try: print( - f"Creating store submission for user {user['id']} with graph {graph['id']} (owner: {graph.get('userId')})" + f"Creating store submission for user {user['id']} with graph {graph['id']}" ) - # Use the API function to create store submission with correct parameters submission = await create_store_submission( - user_id=user["id"], # Must match graph's userId + user_id=user["id"], agent_id=graph["id"], agent_version=graph.get("version", 1), slug=faker.slug(), @@ -651,22 +648,24 @@ class TestDataCreator: video_url=get_video_url() if random.random() < 0.3 else None, image_urls=[get_image() for _ in range(3)], description=faker.text(), - categories=[ - get_category() - ], # Single category from predefined list + categories=[get_category()], changes_summary="Initial E2E test submission", ) submissions.append(submission.model_dump()) print(f"✅ Created store submission: {submission.name}") - # Randomly approve, reject, or leave pending the submission if submission.store_listing_version_id: - random_value = random.random() - if random_value < 0.4: # 40% chance to approve - try: - # Pick a random user as the reviewer (admin) - reviewer_id = random.choice(self.users)["id"] + # DETERMINISTIC: First N submissions are always approved + # First GUARANTEED_FEATURED_AGENTS of those are always featured + should_approve = ( + submission_counter <= GUARANTEED_TOP_AGENTS + or random.random() < 0.4 + ) + should_feature = featured_count < GUARANTEED_FEATURED_AGENTS + if should_approve: + try: + reviewer_id = random.choice(self.users)["id"] approved_submission = await review_store_submission( store_listing_version_id=submission.store_listing_version_id, is_approved=True, @@ -681,16 +680,7 @@ class TestDataCreator: f"✅ Approved store submission: {submission.name}" ) - # Mark some agents as featured during creation (30% chance) - # More likely for creators and first submissions - is_creator = user["id"] in [ - p.get("userId") for p in self.profiles - ] - feature_chance = ( - 0.5 if is_creator else 0.2 - ) # 50% for creators, 20% for others - - if random.random() < feature_chance: + if should_feature: try: await prisma.storelistingversion.update( where={ @@ -698,8 +688,25 @@ class TestDataCreator: }, data={"isFeatured": True}, ) + featured_count += 1 print( - f"🌟 Marked agent as FEATURED: {submission.name}" + f"🌟 Marked agent as FEATURED ({featured_count}/{GUARANTEED_FEATURED_AGENTS}): {submission.name}" + ) + except Exception as e: + print( + f"Warning: Could not mark submission as featured: {e}" + ) + elif random.random() < 0.2: + try: + await prisma.storelistingversion.update( + where={ + "id": submission.store_listing_version_id + }, + data={"isFeatured": True}, + ) + featured_count += 1 + print( + f"🌟 Marked agent as FEATURED (bonus): {submission.name}" ) except Exception as e: print( @@ -710,11 +717,9 @@ class TestDataCreator: print( f"Warning: Could not approve submission {submission.name}: {e}" ) - elif random_value < 0.7: # 30% chance to reject (40% to 70%) + elif random.random() < 0.5: try: - # Pick a random user as the reviewer (admin) reviewer_id = random.choice(self.users)["id"] - await review_store_submission( store_listing_version_id=submission.store_listing_version_id, is_approved=False, @@ -729,7 +734,7 @@ class TestDataCreator: print( f"Warning: Could not reject submission {submission.name}: {e}" ) - else: # 30% chance to leave pending (70% to 100%) + else: print( f"⏳ Left submission pending for review: {submission.name}" ) @@ -743,9 +748,13 @@ class TestDataCreator: traceback.print_exc() continue + print("\n📊 Store Submissions Summary:") + print(f" Created: {len(submissions)}") + print(f" Approved: {len(approved_submissions)}") print( - f"Created {len(submissions)} store submissions, approved {len(approved_submissions)}" + f" Featured: {featured_count} (guaranteed min: {GUARANTEED_FEATURED_AGENTS})" ) + self.store_submissions = submissions return submissions @@ -825,12 +834,15 @@ class TestDataCreator: print(f"✅ Agent blocks available: {len(self.agent_blocks)}") print(f"✅ Agent graphs created: {len(self.agent_graphs)}") print(f"✅ Library agents created: {len(self.library_agents)}") - print(f"✅ Creator profiles updated: {len(self.profiles)} (some featured)") - print( - f"✅ Store submissions created: {len(self.store_submissions)} (some marked as featured during creation)" - ) + print(f"✅ Creator profiles updated: {len(self.profiles)}") + print(f"✅ Store submissions created: {len(self.store_submissions)}") print(f"✅ API keys created: {len(self.api_keys)}") print(f"✅ Presets created: {len(self.presets)}") + print("\n🎯 Deterministic Guarantees:") + print(f" • Featured agents: >= {GUARANTEED_FEATURED_AGENTS}") + print(f" • Featured creators: >= {GUARANTEED_FEATURED_CREATORS}") + print(f" • Top agents (approved): >= {GUARANTEED_TOP_AGENTS}") + print(f" • Library agents per user: >= {MIN_AGENTS_PER_USER}") print("\n🚀 Your E2E test database is ready to use!") diff --git a/autogpt_platform/frontend/.env.default b/autogpt_platform/frontend/.env.default index af250fb8bf..7a9d81e39e 100644 --- a/autogpt_platform/frontend/.env.default +++ b/autogpt_platform/frontend/.env.default @@ -34,3 +34,6 @@ NEXT_PUBLIC_PREVIEW_STEALING_DEV= # PostHog Analytics NEXT_PUBLIC_POSTHOG_KEY= NEXT_PUBLIC_POSTHOG_HOST=https://eu.i.posthog.com + +# OpenAI (for voice transcription) +OPENAI_API_KEY= diff --git a/autogpt_platform/frontend/CLAUDE.md b/autogpt_platform/frontend/CLAUDE.md new file mode 100644 index 0000000000..b58f1ad6aa --- /dev/null +++ b/autogpt_platform/frontend/CLAUDE.md @@ -0,0 +1,76 @@ +# CLAUDE.md - Frontend + +This file provides guidance to Claude Code when working with the frontend. + +## Essential Commands + +```bash +# Install dependencies +pnpm i + +# Generate API client from OpenAPI spec +pnpm generate:api + +# Start development server +pnpm dev + +# Run E2E tests +pnpm test + +# Run Storybook for component development +pnpm storybook + +# Build production +pnpm build + +# Format and lint +pnpm format + +# Type checking +pnpm types +``` + +### Code Style + +- Fully capitalize acronyms in symbols, e.g. `graphID`, `useBackendAPI` +- Use function declarations (not arrow functions) for components/handlers + +## Architecture + +- **Framework**: Next.js 15 App Router (client-first approach) +- **Data Fetching**: Type-safe generated API hooks via Orval + React Query +- **State Management**: React Query for server state, co-located UI state in components/hooks +- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks) +- **Workflow Builder**: Visual graph editor using @xyflow/react +- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling +- **Icons**: Phosphor Icons only +- **Feature Flags**: LaunchDarkly integration +- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions +- **Testing**: Playwright for E2E, Storybook for component development + +## Environment Configuration + +`.env.default` (defaults) → `.env` (user overrides) + +## Feature Development + +See @CONTRIBUTING.md for complete patterns. Quick reference: + +1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx` + - Extract component logic into custom hooks grouped by concern, not by component. Each hook should represent a cohesive domain of functionality (e.g., useSearch, useFilters, usePagination) rather than bundling all state into one useComponentState hook. + - Put each hook in its own `.ts` file + - Put sub-components in local `components/` folder + - Component props should be `type Props = { ... }` (not exported) unless it needs to be used outside the component +2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts` + - Use design system components from `src/components/` (atoms, molecules, organisms) + - Never use `src/components/__legacy__/*` +3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/` + - Regenerate with `pnpm generate:api` + - Pattern: `use{Method}{Version}{OperationName}` +4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only +5. **Testing**: Add Storybook stories for new components, Playwright for E2E +6. **Code conventions**: + - Use function declarations (not arrow functions) for components/handlers + - Do not use `useCallback` or `useMemo` unless asked to optimise a given function + - Do not type hook returns, let Typescript infer as much as possible + - Never type with `any` unless a variable/attribute can ACTUALLY be of any type diff --git a/autogpt_platform/frontend/src/app/(no-navbar)/onboarding/page.tsx b/autogpt_platform/frontend/src/app/(no-navbar)/onboarding/page.tsx index 1ebfe6b87b..70d9783ccd 100644 --- a/autogpt_platform/frontend/src/app/(no-navbar)/onboarding/page.tsx +++ b/autogpt_platform/frontend/src/app/(no-navbar)/onboarding/page.tsx @@ -2,8 +2,9 @@ import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner"; import { useRouter } from "next/navigation"; import { useEffect } from "react"; -import { resolveResponse, shouldShowOnboarding } from "@/app/api/helpers"; +import { resolveResponse, getOnboardingStatus } from "@/app/api/helpers"; import { getV1OnboardingState } from "@/app/api/__generated__/endpoints/onboarding/onboarding"; +import { getHomepageRoute } from "@/lib/constants"; export default function OnboardingPage() { const router = useRouter(); @@ -11,10 +12,13 @@ export default function OnboardingPage() { useEffect(() => { async function redirectToStep() { try { - // Check if onboarding is enabled - const isEnabled = await shouldShowOnboarding(); - if (!isEnabled) { - router.replace("/"); + // Check if onboarding is enabled (also gets chat flag for redirect) + const { shouldShowOnboarding, isChatEnabled } = + await getOnboardingStatus(); + const homepageRoute = getHomepageRoute(isChatEnabled); + + if (!shouldShowOnboarding) { + router.replace(homepageRoute); return; } @@ -22,7 +26,7 @@ export default function OnboardingPage() { // Handle completed onboarding if (onboarding.completedSteps.includes("GET_RESULTS")) { - router.replace("/"); + router.replace(homepageRoute); return; } diff --git a/autogpt_platform/frontend/src/app/(platform)/auth/callback/route.ts b/autogpt_platform/frontend/src/app/(platform)/auth/callback/route.ts index a6a07a703f..15be137f63 100644 --- a/autogpt_platform/frontend/src/app/(platform)/auth/callback/route.ts +++ b/autogpt_platform/frontend/src/app/(platform)/auth/callback/route.ts @@ -1,8 +1,9 @@ import { getServerSupabase } from "@/lib/supabase/server/getServerSupabase"; +import { getHomepageRoute } from "@/lib/constants"; import BackendAPI from "@/lib/autogpt-server-api"; import { NextResponse } from "next/server"; import { revalidatePath } from "next/cache"; -import { shouldShowOnboarding } from "@/app/api/helpers"; +import { getOnboardingStatus } from "@/app/api/helpers"; // Handle the callback to complete the user session login export async function GET(request: Request) { @@ -25,11 +26,15 @@ export async function GET(request: Request) { const api = new BackendAPI(); await api.createUser(); - if (await shouldShowOnboarding()) { + // Get onboarding status from backend (includes chat flag evaluated for this user) + const { shouldShowOnboarding, isChatEnabled } = + await getOnboardingStatus(); + if (shouldShowOnboarding) { next = "/onboarding"; revalidatePath("/onboarding", "layout"); } else { - revalidatePath("/", "layout"); + next = getHomepageRoute(isChatEnabled); + revalidatePath(next, "layout"); } } catch (createUserError) { console.error("Error creating user:", createUserError); diff --git a/autogpt_platform/frontend/src/app/(platform)/build/components/legacy-builder/CustomNode/CustomNode.tsx b/autogpt_platform/frontend/src/app/(platform)/build/components/legacy-builder/CustomNode/CustomNode.tsx index 94e917a4ac..834603cc4a 100644 --- a/autogpt_platform/frontend/src/app/(platform)/build/components/legacy-builder/CustomNode/CustomNode.tsx +++ b/autogpt_platform/frontend/src/app/(platform)/build/components/legacy-builder/CustomNode/CustomNode.tsx @@ -857,7 +857,7 @@ export const CustomNode = React.memo( })(); const hasAdvancedFields = - data.inputSchema && + data.inputSchema?.properties && Object.entries(data.inputSchema.properties).some(([key, value]) => { return ( value.advanced === true && !data.inputSchema.required?.includes(key) diff --git a/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/CopilotShell.tsx b/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/CopilotShell.tsx index fb22640302..3f695da5ed 100644 --- a/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/CopilotShell.tsx +++ b/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/CopilotShell.tsx @@ -1,12 +1,10 @@ "use client"; import { ChatLoader } from "@/components/contextual/Chat/components/ChatLoader/ChatLoader"; +import { Text } from "@/components/atoms/Text/Text"; import { NAVBAR_HEIGHT_PX } from "@/lib/constants"; import type { ReactNode } from "react"; -import { useEffect } from "react"; -import { useCopilotStore } from "../../copilot-page-store"; import { DesktopSidebar } from "./components/DesktopSidebar/DesktopSidebar"; -import { LoadingState } from "./components/LoadingState/LoadingState"; import { MobileDrawer } from "./components/MobileDrawer/MobileDrawer"; import { MobileHeader } from "./components/MobileHeader/MobileHeader"; import { useCopilotShell } from "./useCopilotShell"; @@ -20,38 +18,21 @@ export function CopilotShell({ children }: Props) { isMobile, isDrawerOpen, isLoading, + isCreatingSession, isLoggedIn, hasActiveSession, sessions, currentSessionId, - handleSelectSession, handleOpenDrawer, handleCloseDrawer, handleDrawerOpenChange, - handleNewChat, + handleNewChatClick, + handleSessionClick, hasNextPage, isFetchingNextPage, fetchNextPage, - isReadyToShowContent, } = useCopilotShell(); - const setNewChatHandler = useCopilotStore((s) => s.setNewChatHandler); - const requestNewChat = useCopilotStore((s) => s.requestNewChat); - - useEffect( - function registerNewChatHandler() { - setNewChatHandler(handleNewChat); - return function cleanup() { - setNewChatHandler(null); - }; - }, - [handleNewChat], - ); - - function handleNewChatClick() { - requestNewChat(); - } - if (!isLoggedIn) { return (
@@ -72,7 +53,7 @@ export function CopilotShell({ children }: Props) { isLoading={isLoading} hasNextPage={hasNextPage} isFetchingNextPage={isFetchingNextPage} - onSelectSession={handleSelectSession} + onSelectSession={handleSessionClick} onFetchNextPage={fetchNextPage} onNewChat={handleNewChatClick} hasActiveSession={Boolean(hasActiveSession)} @@ -82,7 +63,18 @@ export function CopilotShell({ children }: Props) {
{isMobile && }
- {isReadyToShowContent ? children : } + {isCreatingSession ? ( +
+
+ + + Creating your chat... + +
+
+ ) : ( + children + )}
@@ -94,7 +86,7 @@ export function CopilotShell({ children }: Props) { isLoading={isLoading} hasNextPage={hasNextPage} isFetchingNextPage={isFetchingNextPage} - onSelectSession={handleSelectSession} + onSelectSession={handleSessionClick} onFetchNextPage={fetchNextPage} onNewChat={handleNewChatClick} onClose={handleCloseDrawer} diff --git a/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/components/LoadingState/LoadingState.tsx b/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/components/LoadingState/LoadingState.tsx deleted file mode 100644 index 21b1663916..0000000000 --- a/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/components/LoadingState/LoadingState.tsx +++ /dev/null @@ -1,15 +0,0 @@ -import { Text } from "@/components/atoms/Text/Text"; -import { ChatLoader } from "@/components/contextual/Chat/components/ChatLoader/ChatLoader"; - -export function LoadingState() { - return ( -
-
- - - Loading your chats... - -
-
- ); -} diff --git a/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/components/MobileDrawer/useMobileDrawer.ts b/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/components/MobileDrawer/useMobileDrawer.ts index c9504e49a9..2ef63a4422 100644 --- a/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/components/MobileDrawer/useMobileDrawer.ts +++ b/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/components/MobileDrawer/useMobileDrawer.ts @@ -3,17 +3,17 @@ import { useState } from "react"; export function useMobileDrawer() { const [isDrawerOpen, setIsDrawerOpen] = useState(false); - function handleOpenDrawer() { + const handleOpenDrawer = () => { setIsDrawerOpen(true); - } + }; - function handleCloseDrawer() { + const handleCloseDrawer = () => { setIsDrawerOpen(false); - } + }; - function handleDrawerOpenChange(open: boolean) { + const handleDrawerOpenChange = (open: boolean) => { setIsDrawerOpen(open); - } + }; return { isDrawerOpen, diff --git a/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/components/SessionsList/useSessionsPagination.ts b/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/components/SessionsList/useSessionsPagination.ts index 1f241f992a..61e3e6f37f 100644 --- a/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/components/SessionsList/useSessionsPagination.ts +++ b/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/components/SessionsList/useSessionsPagination.ts @@ -1,11 +1,6 @@ -import { - getGetV2ListSessionsQueryKey, - useGetV2ListSessions, -} from "@/app/api/__generated__/endpoints/chat/chat"; +import { useGetV2ListSessions } from "@/app/api/__generated__/endpoints/chat/chat"; import type { SessionSummaryResponse } from "@/app/api/__generated__/models/sessionSummaryResponse"; import { okData } from "@/app/api/helpers"; -import { useChatStore } from "@/components/contextual/Chat/chat-store"; -import { useQueryClient } from "@tanstack/react-query"; import { useEffect, useState } from "react"; const PAGE_SIZE = 50; @@ -16,12 +11,12 @@ export interface UseSessionsPaginationArgs { export function useSessionsPagination({ enabled }: UseSessionsPaginationArgs) { const [offset, setOffset] = useState(0); + const [accumulatedSessions, setAccumulatedSessions] = useState< SessionSummaryResponse[] >([]); + const [totalCount, setTotalCount] = useState(null); - const queryClient = useQueryClient(); - const onStreamComplete = useChatStore((state) => state.onStreamComplete); const { data, isLoading, isFetching, isError } = useGetV2ListSessions( { limit: PAGE_SIZE, offset }, @@ -32,38 +27,23 @@ export function useSessionsPagination({ enabled }: UseSessionsPaginationArgs) { }, ); - useEffect(function refreshOnStreamComplete() { - const unsubscribe = onStreamComplete(function handleStreamComplete() { - setOffset(0); + useEffect(() => { + const responseData = okData(data); + if (responseData) { + const newSessions = responseData.sessions; + const total = responseData.total; + setTotalCount(total); + + if (offset === 0) { + setAccumulatedSessions(newSessions); + } else { + setAccumulatedSessions((prev) => [...prev, ...newSessions]); + } + } else if (!enabled) { setAccumulatedSessions([]); setTotalCount(null); - queryClient.invalidateQueries({ - queryKey: getGetV2ListSessionsQueryKey(), - }); - }); - return unsubscribe; - }, []); - - useEffect( - function updateSessionsFromResponse() { - const responseData = okData(data); - if (responseData) { - const newSessions = responseData.sessions; - const total = responseData.total; - setTotalCount(total); - - if (offset === 0) { - setAccumulatedSessions(newSessions); - } else { - setAccumulatedSessions((prev) => [...prev, ...newSessions]); - } - } else if (!enabled) { - setAccumulatedSessions([]); - setTotalCount(null); - } - }, - [data, offset, enabled], - ); + } + }, [data, offset, enabled]); const hasNextPage = totalCount !== null && accumulatedSessions.length < totalCount; @@ -86,17 +66,17 @@ export function useSessionsPagination({ enabled }: UseSessionsPaginationArgs) { } }, [hasNextPage, isFetching, isLoading, isError, totalCount]); - function fetchNextPage() { + const fetchNextPage = () => { if (hasNextPage && !isFetching) { setOffset((prev) => prev + PAGE_SIZE); } - } + }; - function reset() { + const reset = () => { + // Only reset the offset - keep existing sessions visible during refetch + // The effect will replace sessions when new data arrives at offset 0 setOffset(0); - setAccumulatedSessions([]); - setTotalCount(null); - } + }; return { sessions: accumulatedSessions, diff --git a/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/helpers.ts b/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/helpers.ts index 3e932848a0..ef0d414edf 100644 --- a/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/helpers.ts +++ b/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/helpers.ts @@ -104,76 +104,3 @@ export function mergeCurrentSessionIntoList( export function getCurrentSessionId(searchParams: URLSearchParams) { return searchParams.get("sessionId"); } - -export function shouldAutoSelectSession( - areAllSessionsLoaded: boolean, - hasAutoSelectedSession: boolean, - paramSessionId: string | null, - visibleSessions: SessionSummaryResponse[], - accumulatedSessions: SessionSummaryResponse[], - isLoading: boolean, - totalCount: number | null, -) { - if (!areAllSessionsLoaded || hasAutoSelectedSession) { - return { - shouldSelect: false, - sessionIdToSelect: null, - shouldCreate: false, - }; - } - - if (paramSessionId) { - return { - shouldSelect: false, - sessionIdToSelect: null, - shouldCreate: false, - }; - } - - if (visibleSessions.length > 0) { - return { - shouldSelect: true, - sessionIdToSelect: visibleSessions[0].id, - shouldCreate: false, - }; - } - - if (accumulatedSessions.length === 0 && !isLoading && totalCount === 0) { - return { shouldSelect: false, sessionIdToSelect: null, shouldCreate: true }; - } - - if (totalCount === 0) { - return { - shouldSelect: false, - sessionIdToSelect: null, - shouldCreate: false, - }; - } - - return { shouldSelect: false, sessionIdToSelect: null, shouldCreate: false }; -} - -export function checkReadyToShowContent( - areAllSessionsLoaded: boolean, - paramSessionId: string | null, - accumulatedSessions: SessionSummaryResponse[], - isCurrentSessionLoading: boolean, - currentSessionData: SessionDetailResponse | null | undefined, - hasAutoSelectedSession: boolean, -) { - if (!areAllSessionsLoaded) return false; - - if (paramSessionId) { - const sessionFound = accumulatedSessions.some( - (s) => s.id === paramSessionId, - ); - return ( - sessionFound || - (!isCurrentSessionLoading && - currentSessionData !== undefined && - currentSessionData !== null) - ); - } - - return hasAutoSelectedSession; -} diff --git a/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/useCopilotShell.ts b/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/useCopilotShell.ts index a3aa0b55b2..74fd663ab2 100644 --- a/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/useCopilotShell.ts +++ b/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/useCopilotShell.ts @@ -1,26 +1,22 @@ "use client"; import { + getGetV2GetSessionQueryKey, getGetV2ListSessionsQueryKey, useGetV2GetSession, } from "@/app/api/__generated__/endpoints/chat/chat"; -import type { SessionSummaryResponse } from "@/app/api/__generated__/models/sessionSummaryResponse"; import { okData } from "@/app/api/helpers"; +import { useChatStore } from "@/components/contextual/Chat/chat-store"; import { useBreakpoint } from "@/lib/hooks/useBreakpoint"; import { useSupabase } from "@/lib/supabase/hooks/useSupabase"; import { useQueryClient } from "@tanstack/react-query"; -import { parseAsString, useQueryState } from "nuqs"; import { usePathname, useSearchParams } from "next/navigation"; -import { useEffect, useRef, useState } from "react"; +import { useRef } from "react"; +import { useCopilotStore } from "../../copilot-page-store"; +import { useCopilotSessionId } from "../../useCopilotSessionId"; import { useMobileDrawer } from "./components/MobileDrawer/useMobileDrawer"; -import { useSessionsPagination } from "./components/SessionsList/useSessionsPagination"; -import { - checkReadyToShowContent, - convertSessionDetailToSummary, - filterVisibleSessions, - getCurrentSessionId, - mergeCurrentSessionIntoList, -} from "./helpers"; +import { getCurrentSessionId } from "./helpers"; +import { useShellSessionList } from "./useShellSessionList"; export function useCopilotShell() { const pathname = usePathname(); @@ -31,7 +27,7 @@ export function useCopilotShell() { const isMobile = breakpoint === "base" || breakpoint === "sm" || breakpoint === "md"; - const [, setUrlSessionId] = useQueryState("sessionId", parseAsString); + const { urlSessionId, setUrlSessionId } = useCopilotSessionId(); const isOnHomepage = pathname === "/copilot"; const paramSessionId = searchParams.get("sessionId"); @@ -45,123 +41,80 @@ export function useCopilotShell() { const paginationEnabled = !isMobile || isDrawerOpen || !!paramSessionId; - const { - sessions: accumulatedSessions, - isLoading: isSessionsLoading, - isFetching: isSessionsFetching, - hasNextPage, - areAllSessionsLoaded, - fetchNextPage, - reset: resetPagination, - } = useSessionsPagination({ - enabled: paginationEnabled, - }); - const currentSessionId = getCurrentSessionId(searchParams); - const { data: currentSessionData, isLoading: isCurrentSessionLoading } = - useGetV2GetSession(currentSessionId || "", { + const { data: currentSessionData } = useGetV2GetSession( + currentSessionId || "", + { query: { enabled: !!currentSessionId, select: okData, }, - }); - - const [hasAutoSelectedSession, setHasAutoSelectedSession] = useState(false); - const hasAutoSelectedRef = useRef(false); - const recentlyCreatedSessionsRef = useRef< - Map - >(new Map()); - - // Mark as auto-selected when sessionId is in URL - useEffect(() => { - if (paramSessionId && !hasAutoSelectedRef.current) { - hasAutoSelectedRef.current = true; - setHasAutoSelectedSession(true); - } - }, [paramSessionId]); - - // On homepage without sessionId, mark as ready immediately - useEffect(() => { - if (isOnHomepage && !paramSessionId && !hasAutoSelectedRef.current) { - hasAutoSelectedRef.current = true; - setHasAutoSelectedSession(true); - } - }, [isOnHomepage, paramSessionId]); - - // Invalidate sessions list when navigating to homepage (to show newly created sessions) - useEffect(() => { - if (isOnHomepage && !paramSessionId) { - queryClient.invalidateQueries({ - queryKey: getGetV2ListSessionsQueryKey(), - }); - } - }, [isOnHomepage, paramSessionId, queryClient]); - - // Track newly created sessions to ensure they stay visible even when switching away - useEffect(() => { - if (currentSessionId && currentSessionData) { - const isNewSession = - currentSessionData.updated_at === currentSessionData.created_at; - const isNotInAccumulated = !accumulatedSessions.some( - (s) => s.id === currentSessionId, - ); - if (isNewSession || isNotInAccumulated) { - const summary = convertSessionDetailToSummary(currentSessionData); - recentlyCreatedSessionsRef.current.set(currentSessionId, summary); - } - } - }, [currentSessionId, currentSessionData, accumulatedSessions]); - - // Clean up recently created sessions that are now in the accumulated list - useEffect(() => { - for (const sessionId of recentlyCreatedSessionsRef.current.keys()) { - if (accumulatedSessions.some((s) => s.id === sessionId)) { - recentlyCreatedSessionsRef.current.delete(sessionId); - } - } - }, [accumulatedSessions]); - - // Reset pagination when query becomes disabled - const prevPaginationEnabledRef = useRef(paginationEnabled); - useEffect(() => { - if (prevPaginationEnabledRef.current && !paginationEnabled) { - resetPagination(); - resetAutoSelect(); - } - prevPaginationEnabledRef.current = paginationEnabled; - }, [paginationEnabled, resetPagination]); - - const sessions = mergeCurrentSessionIntoList( - accumulatedSessions, - currentSessionId, - currentSessionData, - recentlyCreatedSessionsRef.current, + }, ); - const visibleSessions = filterVisibleSessions(sessions); + const { + sessions, + isLoading, + isSessionsFetching, + hasNextPage, + fetchNextPage, + resetPagination, + recentlyCreatedSessionsRef, + } = useShellSessionList({ + paginationEnabled, + currentSessionId, + currentSessionData, + isOnHomepage, + paramSessionId, + }); - const sidebarSelectedSessionId = - isOnHomepage && !paramSessionId ? null : currentSessionId; + const stopStream = useChatStore((s) => s.stopStream); + const onStreamComplete = useChatStore((s) => s.onStreamComplete); + const isStreaming = useCopilotStore((s) => s.isStreaming); + const isCreatingSession = useCopilotStore((s) => s.isCreatingSession); + const setIsSwitchingSession = useCopilotStore((s) => s.setIsSwitchingSession); + const openInterruptModal = useCopilotStore((s) => s.openInterruptModal); - const isReadyToShowContent = isOnHomepage - ? true - : checkReadyToShowContent( - areAllSessionsLoaded, - paramSessionId, - accumulatedSessions, - isCurrentSessionLoading, - currentSessionData, - hasAutoSelectedSession, - ); + const pendingActionRef = useRef<(() => void) | null>(null); - function handleSelectSession(sessionId: string) { + async function stopCurrentStream() { + if (!currentSessionId) return; + + setIsSwitchingSession(true); + await new Promise((resolve) => { + const unsubscribe = onStreamComplete((completedId) => { + if (completedId === currentSessionId) { + clearTimeout(timeout); + unsubscribe(); + resolve(); + } + }); + const timeout = setTimeout(() => { + unsubscribe(); + resolve(); + }, 3000); + stopStream(currentSessionId); + }); + + queryClient.invalidateQueries({ + queryKey: getGetV2GetSessionQueryKey(currentSessionId), + }); + setIsSwitchingSession(false); + } + + function selectSession(sessionId: string) { + if (sessionId === currentSessionId) return; + if (recentlyCreatedSessionsRef.current.has(sessionId)) { + queryClient.invalidateQueries({ + queryKey: getGetV2GetSessionQueryKey(sessionId), + }); + } setUrlSessionId(sessionId, { shallow: false }); if (isMobile) handleCloseDrawer(); } - function handleNewChat() { - resetAutoSelect(); + function startNewChat() { resetPagination(); queryClient.invalidateQueries({ queryKey: getGetV2ListSessionsQueryKey(), @@ -170,12 +123,31 @@ export function useCopilotShell() { if (isMobile) handleCloseDrawer(); } - function resetAutoSelect() { - hasAutoSelectedRef.current = false; - setHasAutoSelectedSession(false); + function handleSessionClick(sessionId: string) { + if (sessionId === currentSessionId) return; + + if (isStreaming) { + pendingActionRef.current = async () => { + await stopCurrentStream(); + selectSession(sessionId); + }; + openInterruptModal(pendingActionRef.current); + } else { + selectSession(sessionId); + } } - const isLoading = isSessionsLoading && accumulatedSessions.length === 0; + function handleNewChatClick() { + if (isStreaming) { + pendingActionRef.current = async () => { + await stopCurrentStream(); + startNewChat(); + }; + openInterruptModal(pendingActionRef.current); + } else { + startNewChat(); + } + } return { isMobile, @@ -183,17 +155,17 @@ export function useCopilotShell() { isLoggedIn, hasActiveSession: Boolean(currentSessionId) && (!isOnHomepage || Boolean(paramSessionId)), - isLoading, - sessions: visibleSessions, - currentSessionId: sidebarSelectedSessionId, - handleSelectSession, + isLoading: isLoading || isCreatingSession, + isCreatingSession, + sessions, + currentSessionId: urlSessionId, handleOpenDrawer, handleCloseDrawer, handleDrawerOpenChange, - handleNewChat, + handleNewChatClick, + handleSessionClick, hasNextPage, isFetchingNextPage: isSessionsFetching, fetchNextPage, - isReadyToShowContent, }; } diff --git a/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/useShellSessionList.ts b/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/useShellSessionList.ts new file mode 100644 index 0000000000..fb39a11096 --- /dev/null +++ b/autogpt_platform/frontend/src/app/(platform)/copilot/components/CopilotShell/useShellSessionList.ts @@ -0,0 +1,113 @@ +import { getGetV2ListSessionsQueryKey } from "@/app/api/__generated__/endpoints/chat/chat"; +import type { SessionDetailResponse } from "@/app/api/__generated__/models/sessionDetailResponse"; +import type { SessionSummaryResponse } from "@/app/api/__generated__/models/sessionSummaryResponse"; +import { useChatStore } from "@/components/contextual/Chat/chat-store"; +import { useQueryClient } from "@tanstack/react-query"; +import { useEffect, useMemo, useRef } from "react"; +import { useSessionsPagination } from "./components/SessionsList/useSessionsPagination"; +import { + convertSessionDetailToSummary, + filterVisibleSessions, + mergeCurrentSessionIntoList, +} from "./helpers"; + +interface UseShellSessionListArgs { + paginationEnabled: boolean; + currentSessionId: string | null; + currentSessionData: SessionDetailResponse | null | undefined; + isOnHomepage: boolean; + paramSessionId: string | null; +} + +export function useShellSessionList({ + paginationEnabled, + currentSessionId, + currentSessionData, + isOnHomepage, + paramSessionId, +}: UseShellSessionListArgs) { + const queryClient = useQueryClient(); + const onStreamComplete = useChatStore((s) => s.onStreamComplete); + + const { + sessions: accumulatedSessions, + isLoading: isSessionsLoading, + isFetching: isSessionsFetching, + hasNextPage, + fetchNextPage, + reset: resetPagination, + } = useSessionsPagination({ + enabled: paginationEnabled, + }); + + const recentlyCreatedSessionsRef = useRef< + Map + >(new Map()); + + useEffect(() => { + if (isOnHomepage && !paramSessionId) { + queryClient.invalidateQueries({ + queryKey: getGetV2ListSessionsQueryKey(), + }); + } + }, [isOnHomepage, paramSessionId, queryClient]); + + useEffect(() => { + if (currentSessionId && currentSessionData) { + const isNewSession = + currentSessionData.updated_at === currentSessionData.created_at; + const isNotInAccumulated = !accumulatedSessions.some( + (s) => s.id === currentSessionId, + ); + if (isNewSession || isNotInAccumulated) { + const summary = convertSessionDetailToSummary(currentSessionData); + recentlyCreatedSessionsRef.current.set(currentSessionId, summary); + } + } + }, [currentSessionId, currentSessionData, accumulatedSessions]); + + useEffect(() => { + for (const sessionId of recentlyCreatedSessionsRef.current.keys()) { + if (accumulatedSessions.some((s) => s.id === sessionId)) { + recentlyCreatedSessionsRef.current.delete(sessionId); + } + } + }, [accumulatedSessions]); + + useEffect(() => { + const unsubscribe = onStreamComplete(() => { + queryClient.invalidateQueries({ + queryKey: getGetV2ListSessionsQueryKey(), + }); + }); + return unsubscribe; + }, [onStreamComplete, queryClient]); + + const sessions = useMemo( + () => + mergeCurrentSessionIntoList( + accumulatedSessions, + currentSessionId, + currentSessionData, + recentlyCreatedSessionsRef.current, + ), + [accumulatedSessions, currentSessionId, currentSessionData], + ); + + const visibleSessions = useMemo( + () => filterVisibleSessions(sessions), + [sessions], + ); + + const isLoading = isSessionsLoading && accumulatedSessions.length === 0; + + return { + sessions: visibleSessions, + isLoading, + isSessionsFetching, + hasNextPage, + fetchNextPage, + resetPagination, + recentlyCreatedSessionsRef, + }; +} diff --git a/autogpt_platform/frontend/src/app/(platform)/copilot/copilot-page-store.ts b/autogpt_platform/frontend/src/app/(platform)/copilot/copilot-page-store.ts index 22bf5000a1..9fc97a14e3 100644 --- a/autogpt_platform/frontend/src/app/(platform)/copilot/copilot-page-store.ts +++ b/autogpt_platform/frontend/src/app/(platform)/copilot/copilot-page-store.ts @@ -4,51 +4,53 @@ import { create } from "zustand"; interface CopilotStoreState { isStreaming: boolean; - isNewChatModalOpen: boolean; - newChatHandler: (() => void) | null; + isSwitchingSession: boolean; + isCreatingSession: boolean; + isInterruptModalOpen: boolean; + pendingAction: (() => void) | null; } interface CopilotStoreActions { setIsStreaming: (isStreaming: boolean) => void; - setNewChatHandler: (handler: (() => void) | null) => void; - requestNewChat: () => void; - confirmNewChat: () => void; - cancelNewChat: () => void; + setIsSwitchingSession: (isSwitchingSession: boolean) => void; + setIsCreatingSession: (isCreating: boolean) => void; + openInterruptModal: (onConfirm: () => void) => void; + confirmInterrupt: () => void; + cancelInterrupt: () => void; } type CopilotStore = CopilotStoreState & CopilotStoreActions; export const useCopilotStore = create((set, get) => ({ isStreaming: false, - isNewChatModalOpen: false, - newChatHandler: null, + isSwitchingSession: false, + isCreatingSession: false, + isInterruptModalOpen: false, + pendingAction: null, setIsStreaming(isStreaming) { set({ isStreaming }); }, - setNewChatHandler(handler) { - set({ newChatHandler: handler }); + setIsSwitchingSession(isSwitchingSession) { + set({ isSwitchingSession }); }, - requestNewChat() { - const { isStreaming, newChatHandler } = get(); - if (isStreaming) { - set({ isNewChatModalOpen: true }); - } else if (newChatHandler) { - newChatHandler(); - } + setIsCreatingSession(isCreatingSession) { + set({ isCreatingSession }); }, - confirmNewChat() { - const { newChatHandler } = get(); - set({ isNewChatModalOpen: false }); - if (newChatHandler) { - newChatHandler(); - } + openInterruptModal(onConfirm) { + set({ isInterruptModalOpen: true, pendingAction: onConfirm }); }, - cancelNewChat() { - set({ isNewChatModalOpen: false }); + confirmInterrupt() { + const { pendingAction } = get(); + set({ isInterruptModalOpen: false, pendingAction: null }); + if (pendingAction) pendingAction(); + }, + + cancelInterrupt() { + set({ isInterruptModalOpen: false, pendingAction: null }); }, })); diff --git a/autogpt_platform/frontend/src/app/(platform)/copilot/helpers.ts b/autogpt_platform/frontend/src/app/(platform)/copilot/helpers.ts index a5818f0a9f..692a5741f4 100644 --- a/autogpt_platform/frontend/src/app/(platform)/copilot/helpers.ts +++ b/autogpt_platform/frontend/src/app/(platform)/copilot/helpers.ts @@ -1,28 +1,5 @@ import type { User } from "@supabase/supabase-js"; -export type PageState = - | { type: "welcome" } - | { type: "newChat" } - | { type: "creating"; prompt: string } - | { type: "chat"; sessionId: string; initialPrompt?: string }; - -export function getInitialPromptFromState( - pageState: PageState, - storedInitialPrompt: string | undefined, -) { - if (storedInitialPrompt) return storedInitialPrompt; - if (pageState.type === "creating") return pageState.prompt; - if (pageState.type === "chat") return pageState.initialPrompt; -} - -export function shouldResetToWelcome(pageState: PageState) { - return ( - pageState.type !== "newChat" && - pageState.type !== "creating" && - pageState.type !== "welcome" - ); -} - export function getGreetingName(user?: User | null): string { if (!user) return "there"; const metadata = user.user_metadata as Record | undefined; diff --git a/autogpt_platform/frontend/src/app/(platform)/copilot/page.tsx b/autogpt_platform/frontend/src/app/(platform)/copilot/page.tsx index 83b21bf82e..104b238895 100644 --- a/autogpt_platform/frontend/src/app/(platform)/copilot/page.tsx +++ b/autogpt_platform/frontend/src/app/(platform)/copilot/page.tsx @@ -1,25 +1,25 @@ "use client"; import { Button } from "@/components/atoms/Button/Button"; - import { Skeleton } from "@/components/atoms/Skeleton/Skeleton"; import { Text } from "@/components/atoms/Text/Text"; import { Chat } from "@/components/contextual/Chat/Chat"; import { ChatInput } from "@/components/contextual/Chat/components/ChatInput/ChatInput"; -import { ChatLoader } from "@/components/contextual/Chat/components/ChatLoader/ChatLoader"; import { Dialog } from "@/components/molecules/Dialog/Dialog"; import { useCopilotStore } from "./copilot-page-store"; import { useCopilotPage } from "./useCopilotPage"; export default function CopilotPage() { const { state, handlers } = useCopilotPage(); - const confirmNewChat = useCopilotStore((s) => s.confirmNewChat); + const isInterruptModalOpen = useCopilotStore((s) => s.isInterruptModalOpen); + const confirmInterrupt = useCopilotStore((s) => s.confirmInterrupt); + const cancelInterrupt = useCopilotStore((s) => s.cancelInterrupt); const { greetingName, quickActions, isLoading, - pageState, - isNewChatModalOpen, + hasSession, + initialPrompt, isReady, } = state; const { @@ -27,20 +27,16 @@ export default function CopilotPage() { startChatWithPrompt, handleSessionNotFound, handleStreamingChange, - handleCancelNewChat, - handleNewChatModalOpen, } = handlers; if (!isReady) return null; - if (pageState.type === "chat") { + if (hasSession) { return (
@@ -48,31 +44,33 @@ export default function CopilotPage() { title="Interrupt current chat?" styling={{ maxWidth: 300, width: "100%" }} controlled={{ - isOpen: isNewChatModalOpen, - set: handleNewChatModalOpen, + isOpen: isInterruptModalOpen, + set: (open) => { + if (!open) cancelInterrupt(); + }, }} - onClose={handleCancelNewChat} + onClose={cancelInterrupt} >
The current chat response will be interrupted. Are you sure you - want to start a new chat? + want to continue?
@@ -82,19 +80,6 @@ export default function CopilotPage() { ); } - if (pageState.type === "newChat" || pageState.type === "creating") { - return ( -
-
- - - Loading your chats... - -
-
- ); - } - return (
diff --git a/autogpt_platform/frontend/src/app/(platform)/copilot/useCopilotPage.ts b/autogpt_platform/frontend/src/app/(platform)/copilot/useCopilotPage.ts index 1d9c843d7d..e4713cd24a 100644 --- a/autogpt_platform/frontend/src/app/(platform)/copilot/useCopilotPage.ts +++ b/autogpt_platform/frontend/src/app/(platform)/copilot/useCopilotPage.ts @@ -5,79 +5,40 @@ import { import { useToast } from "@/components/molecules/Toast/use-toast"; import { getHomepageRoute } from "@/lib/constants"; import { useSupabase } from "@/lib/supabase/hooks/useSupabase"; +import { useOnboarding } from "@/providers/onboarding/onboarding-provider"; import { Flag, type FlagValues, useGetFlag, } from "@/services/feature-flags/use-get-flag"; +import { SessionKey, sessionStorage } from "@/services/storage/session-storage"; import * as Sentry from "@sentry/nextjs"; import { useQueryClient } from "@tanstack/react-query"; import { useFlags } from "launchdarkly-react-client-sdk"; import { useRouter } from "next/navigation"; -import { useEffect, useReducer } from "react"; +import { useEffect } from "react"; import { useCopilotStore } from "./copilot-page-store"; -import { getGreetingName, getQuickActions, type PageState } from "./helpers"; -import { useCopilotURLState } from "./useCopilotURLState"; - -type CopilotState = { - pageState: PageState; - initialPrompts: Record; - previousSessionId: string | null; -}; - -type CopilotAction = - | { type: "setPageState"; pageState: PageState } - | { type: "setInitialPrompt"; sessionId: string; prompt: string } - | { type: "setPreviousSessionId"; sessionId: string | null }; - -function isSamePageState(next: PageState, current: PageState) { - if (next.type !== current.type) return false; - if (next.type === "creating" && current.type === "creating") { - return next.prompt === current.prompt; - } - if (next.type === "chat" && current.type === "chat") { - return ( - next.sessionId === current.sessionId && - next.initialPrompt === current.initialPrompt - ); - } - return true; -} - -function copilotReducer( - state: CopilotState, - action: CopilotAction, -): CopilotState { - if (action.type === "setPageState") { - if (isSamePageState(action.pageState, state.pageState)) return state; - return { ...state, pageState: action.pageState }; - } - if (action.type === "setInitialPrompt") { - if (state.initialPrompts[action.sessionId] === action.prompt) return state; - return { - ...state, - initialPrompts: { - ...state.initialPrompts, - [action.sessionId]: action.prompt, - }, - }; - } - if (action.type === "setPreviousSessionId") { - if (state.previousSessionId === action.sessionId) return state; - return { ...state, previousSessionId: action.sessionId }; - } - return state; -} +import { getGreetingName, getQuickActions } from "./helpers"; +import { useCopilotSessionId } from "./useCopilotSessionId"; export function useCopilotPage() { const router = useRouter(); const queryClient = useQueryClient(); const { user, isLoggedIn, isUserLoading } = useSupabase(); const { toast } = useToast(); + const { completeStep } = useOnboarding(); - const isNewChatModalOpen = useCopilotStore((s) => s.isNewChatModalOpen); + const { urlSessionId, setUrlSessionId } = useCopilotSessionId(); const setIsStreaming = useCopilotStore((s) => s.setIsStreaming); - const cancelNewChat = useCopilotStore((s) => s.cancelNewChat); + const isCreating = useCopilotStore((s) => s.isCreatingSession); + const setIsCreating = useCopilotStore((s) => s.setIsCreatingSession); + + // Complete VISIT_COPILOT onboarding step to grant $5 welcome bonus + useEffect(() => { + if (isLoggedIn) { + completeStep("VISIT_COPILOT"); + } + }, [completeStep, isLoggedIn]); const isChatEnabled = useGetFlag(Flag.CHAT); const flags = useFlags(); @@ -88,72 +49,27 @@ export function useCopilotPage() { const isFlagReady = !isLaunchDarklyConfigured || flags[Flag.CHAT] !== undefined; - const [state, dispatch] = useReducer(copilotReducer, { - pageState: { type: "welcome" }, - initialPrompts: {}, - previousSessionId: null, - }); - const greetingName = getGreetingName(user); const quickActions = getQuickActions(); - function setPageState(pageState: PageState) { - dispatch({ type: "setPageState", pageState }); - } + const hasSession = Boolean(urlSessionId); + const initialPrompt = urlSessionId + ? getInitialPrompt(urlSessionId) + : undefined; - function setInitialPrompt(sessionId: string, prompt: string) { - dispatch({ type: "setInitialPrompt", sessionId, prompt }); - } - - function setPreviousSessionId(sessionId: string | null) { - dispatch({ type: "setPreviousSessionId", sessionId }); - } - - const { setUrlSessionId } = useCopilotURLState({ - pageState: state.pageState, - initialPrompts: state.initialPrompts, - previousSessionId: state.previousSessionId, - setPageState, - setInitialPrompt, - setPreviousSessionId, - }); - - useEffect( - function transitionNewChatToWelcome() { - if (state.pageState.type === "newChat") { - function setWelcomeState() { - dispatch({ type: "setPageState", pageState: { type: "welcome" } }); - } - - const timer = setTimeout(setWelcomeState, 300); - - return function cleanup() { - clearTimeout(timer); - }; - } - }, - [state.pageState.type], - ); - - useEffect( - function ensureAccess() { - if (!isFlagReady) return; - if (isChatEnabled === false) { - router.replace(homepageRoute); - } - }, - [homepageRoute, isChatEnabled, isFlagReady, router], - ); + useEffect(() => { + if (!isFlagReady) return; + if (isChatEnabled === false) { + router.replace(homepageRoute); + } + }, [homepageRoute, isChatEnabled, isFlagReady, router]); async function startChatWithPrompt(prompt: string) { if (!prompt?.trim()) return; - if (state.pageState.type === "creating") return; + if (isCreating) return; const trimmedPrompt = prompt.trim(); - dispatch({ - type: "setPageState", - pageState: { type: "creating", prompt: trimmedPrompt }, - }); + setIsCreating(true); try { const sessionResponse = await postV2CreateSession({ @@ -165,27 +81,19 @@ export function useCopilotPage() { } const sessionId = sessionResponse.data.id; - - dispatch({ - type: "setInitialPrompt", - sessionId, - prompt: trimmedPrompt, - }); + setInitialPrompt(sessionId, trimmedPrompt); await queryClient.invalidateQueries({ queryKey: getGetV2ListSessionsQueryKey(), }); - await setUrlSessionId(sessionId, { shallow: false }); - dispatch({ - type: "setPageState", - pageState: { type: "chat", sessionId, initialPrompt: trimmedPrompt }, - }); + await setUrlSessionId(sessionId, { shallow: true }); } catch (error) { console.error("[CopilotPage] Failed to start chat:", error); toast({ title: "Failed to start chat", variant: "destructive" }); Sentry.captureException(error); - dispatch({ type: "setPageState", pageState: { type: "welcome" } }); + } finally { + setIsCreating(false); } } @@ -201,21 +109,13 @@ export function useCopilotPage() { setIsStreaming(isStreamingValue); } - function handleCancelNewChat() { - cancelNewChat(); - } - - function handleNewChatModalOpen(isOpen: boolean) { - if (!isOpen) cancelNewChat(); - } - return { state: { greetingName, quickActions, isLoading: isUserLoading, - pageState: state.pageState, - isNewChatModalOpen, + hasSession, + initialPrompt, isReady: isFlagReady && isChatEnabled !== false && isLoggedIn, }, handlers: { @@ -223,8 +123,32 @@ export function useCopilotPage() { startChatWithPrompt, handleSessionNotFound, handleStreamingChange, - handleCancelNewChat, - handleNewChatModalOpen, }, }; } + +function getInitialPrompt(sessionId: string): string | undefined { + try { + const prompts = JSON.parse( + sessionStorage.get(SessionKey.CHAT_INITIAL_PROMPTS) || "{}", + ); + return prompts[sessionId]; + } catch { + return undefined; + } +} + +function setInitialPrompt(sessionId: string, prompt: string): void { + try { + const prompts = JSON.parse( + sessionStorage.get(SessionKey.CHAT_INITIAL_PROMPTS) || "{}", + ); + prompts[sessionId] = prompt; + sessionStorage.set( + SessionKey.CHAT_INITIAL_PROMPTS, + JSON.stringify(prompts), + ); + } catch { + // Ignore storage errors + } +} diff --git a/autogpt_platform/frontend/src/app/(platform)/copilot/useCopilotSessionId.ts b/autogpt_platform/frontend/src/app/(platform)/copilot/useCopilotSessionId.ts new file mode 100644 index 0000000000..87f9b7d3ae --- /dev/null +++ b/autogpt_platform/frontend/src/app/(platform)/copilot/useCopilotSessionId.ts @@ -0,0 +1,10 @@ +import { parseAsString, useQueryState } from "nuqs"; + +export function useCopilotSessionId() { + const [urlSessionId, setUrlSessionId] = useQueryState( + "sessionId", + parseAsString, + ); + + return { urlSessionId, setUrlSessionId }; +} diff --git a/autogpt_platform/frontend/src/app/(platform)/copilot/useCopilotURLState.ts b/autogpt_platform/frontend/src/app/(platform)/copilot/useCopilotURLState.ts deleted file mode 100644 index 5e37e29a15..0000000000 --- a/autogpt_platform/frontend/src/app/(platform)/copilot/useCopilotURLState.ts +++ /dev/null @@ -1,80 +0,0 @@ -import { parseAsString, useQueryState } from "nuqs"; -import { useLayoutEffect } from "react"; -import { - getInitialPromptFromState, - type PageState, - shouldResetToWelcome, -} from "./helpers"; - -interface UseCopilotUrlStateArgs { - pageState: PageState; - initialPrompts: Record; - previousSessionId: string | null; - setPageState: (pageState: PageState) => void; - setInitialPrompt: (sessionId: string, prompt: string) => void; - setPreviousSessionId: (sessionId: string | null) => void; -} - -export function useCopilotURLState({ - pageState, - initialPrompts, - previousSessionId, - setPageState, - setInitialPrompt, - setPreviousSessionId, -}: UseCopilotUrlStateArgs) { - const [urlSessionId, setUrlSessionId] = useQueryState( - "sessionId", - parseAsString, - ); - - function syncSessionFromUrl() { - if (urlSessionId) { - if (pageState.type === "chat" && pageState.sessionId === urlSessionId) { - setPreviousSessionId(urlSessionId); - return; - } - - const storedInitialPrompt = initialPrompts[urlSessionId]; - const currentInitialPrompt = getInitialPromptFromState( - pageState, - storedInitialPrompt, - ); - - if (currentInitialPrompt) { - setInitialPrompt(urlSessionId, currentInitialPrompt); - } - - setPageState({ - type: "chat", - sessionId: urlSessionId, - initialPrompt: currentInitialPrompt, - }); - setPreviousSessionId(urlSessionId); - return; - } - - const wasInChat = previousSessionId !== null && pageState.type === "chat"; - setPreviousSessionId(null); - if (wasInChat) { - setPageState({ type: "newChat" }); - return; - } - - if (shouldResetToWelcome(pageState)) { - setPageState({ type: "welcome" }); - } - } - - useLayoutEffect(syncSessionFromUrl, [ - urlSessionId, - pageState.type, - previousSessionId, - initialPrompts, - ]); - - return { - urlSessionId, - setUrlSessionId, - }; -} diff --git a/autogpt_platform/frontend/src/app/(platform)/login/actions.ts b/autogpt_platform/frontend/src/app/(platform)/login/actions.ts index 936c879d69..447a25a41d 100644 --- a/autogpt_platform/frontend/src/app/(platform)/login/actions.ts +++ b/autogpt_platform/frontend/src/app/(platform)/login/actions.ts @@ -1,10 +1,11 @@ "use server"; +import { getHomepageRoute } from "@/lib/constants"; import BackendAPI from "@/lib/autogpt-server-api"; import { getServerSupabase } from "@/lib/supabase/server/getServerSupabase"; import { loginFormSchema } from "@/types/auth"; import * as Sentry from "@sentry/nextjs"; -import { shouldShowOnboarding } from "../../api/helpers"; +import { getOnboardingStatus } from "../../api/helpers"; export async function login(email: string, password: string) { try { @@ -36,11 +37,15 @@ export async function login(email: string, password: string) { const api = new BackendAPI(); await api.createUser(); - const onboarding = await shouldShowOnboarding(); + // Get onboarding status from backend (includes chat flag evaluated for this user) + const { shouldShowOnboarding, isChatEnabled } = await getOnboardingStatus(); + const next = shouldShowOnboarding + ? "/onboarding" + : getHomepageRoute(isChatEnabled); return { success: true, - onboarding, + next, }; } catch (err) { Sentry.captureException(err); diff --git a/autogpt_platform/frontend/src/app/(platform)/login/useLoginPage.ts b/autogpt_platform/frontend/src/app/(platform)/login/useLoginPage.ts index 9bde570548..e64cc1858d 100644 --- a/autogpt_platform/frontend/src/app/(platform)/login/useLoginPage.ts +++ b/autogpt_platform/frontend/src/app/(platform)/login/useLoginPage.ts @@ -97,13 +97,8 @@ export function useLoginPage() { throw new Error(result.error || "Login failed"); } - if (nextUrl) { - router.replace(nextUrl); - } else if (result.onboarding) { - router.replace("/onboarding"); - } else { - router.replace(homepageRoute); - } + // Prefer URL's next parameter, then use backend-determined route + router.replace(nextUrl || result.next || homepageRoute); } catch (error) { toast({ title: diff --git a/autogpt_platform/frontend/src/app/(platform)/signup/actions.ts b/autogpt_platform/frontend/src/app/(platform)/signup/actions.ts index 6d68782e7a..0fbba54b8e 100644 --- a/autogpt_platform/frontend/src/app/(platform)/signup/actions.ts +++ b/autogpt_platform/frontend/src/app/(platform)/signup/actions.ts @@ -5,14 +5,13 @@ import { getServerSupabase } from "@/lib/supabase/server/getServerSupabase"; import { signupFormSchema } from "@/types/auth"; import * as Sentry from "@sentry/nextjs"; import { isWaitlistError, logWaitlistError } from "../../api/auth/utils"; -import { shouldShowOnboarding } from "../../api/helpers"; +import { getOnboardingStatus } from "../../api/helpers"; export async function signup( email: string, password: string, confirmPassword: string, agreeToTerms: boolean, - isChatEnabled: boolean, ) { try { const parsed = signupFormSchema.safeParse({ @@ -59,8 +58,9 @@ export async function signup( await supabase.auth.setSession(data.session); } - const isOnboardingEnabled = await shouldShowOnboarding(); - const next = isOnboardingEnabled + // Get onboarding status from backend (includes chat flag evaluated for this user) + const { shouldShowOnboarding, isChatEnabled } = await getOnboardingStatus(); + const next = shouldShowOnboarding ? "/onboarding" : getHomepageRoute(isChatEnabled); diff --git a/autogpt_platform/frontend/src/app/(platform)/signup/useSignupPage.ts b/autogpt_platform/frontend/src/app/(platform)/signup/useSignupPage.ts index 5bd53ca846..5fa8c2c159 100644 --- a/autogpt_platform/frontend/src/app/(platform)/signup/useSignupPage.ts +++ b/autogpt_platform/frontend/src/app/(platform)/signup/useSignupPage.ts @@ -108,7 +108,6 @@ export function useSignupPage() { data.password, data.confirmPassword, data.agreeToTerms, - isChatEnabled === true, ); setIsLoading(false); diff --git a/autogpt_platform/frontend/src/app/api/helpers.ts b/autogpt_platform/frontend/src/app/api/helpers.ts index e9a708ba4c..c2104d231a 100644 --- a/autogpt_platform/frontend/src/app/api/helpers.ts +++ b/autogpt_platform/frontend/src/app/api/helpers.ts @@ -175,9 +175,12 @@ export async function resolveResponse< return res.data; } -export async function shouldShowOnboarding() { - const isEnabled = await resolveResponse(getV1IsOnboardingEnabled()); +export async function getOnboardingStatus() { + const status = await resolveResponse(getV1IsOnboardingEnabled()); const onboarding = await resolveResponse(getV1OnboardingState()); const isCompleted = onboarding.completedSteps.includes("CONGRATS"); - return isEnabled && !isCompleted; + return { + shouldShowOnboarding: status.is_onboarding_enabled && !isCompleted, + isChatEnabled: status.is_chat_enabled, + }; } diff --git a/autogpt_platform/frontend/src/app/api/openapi.json b/autogpt_platform/frontend/src/app/api/openapi.json index b4e2bc80bd..aa4c49b1a2 100644 --- a/autogpt_platform/frontend/src/app/api/openapi.json +++ b/autogpt_platform/frontend/src/app/api/openapi.json @@ -3339,7 +3339,7 @@ "get": { "tags": ["v2", "library", "private"], "summary": "List Library Agents", - "description": "Get all agents in the user's library (both created and saved).\n\nArgs:\n user_id: ID of the authenticated user.\n search_term: Optional search term to filter agents by name/description.\n filter_by: List of filters to apply (favorites, created by user).\n sort_by: List of sorting criteria (created date, updated date).\n page: Page number to retrieve.\n page_size: Number of agents per page.\n\nReturns:\n A LibraryAgentResponse containing agents and pagination metadata.\n\nRaises:\n HTTPException: If a server/database error occurs.", + "description": "Get all agents in the user's library (both created and saved).", "operationId": "getV2List library agents", "security": [{ "HTTPBearerJWT": [] }], "parameters": [ @@ -3394,7 +3394,7 @@ ], "responses": { "200": { - "description": "List of library agents", + "description": "Successful Response", "content": { "application/json": { "schema": { @@ -3413,17 +3413,13 @@ "schema": { "$ref": "#/components/schemas/HTTPValidationError" } } } - }, - "500": { - "description": "Server error", - "content": { "application/json": {} } } } }, "post": { "tags": ["v2", "library", "private"], "summary": "Add Marketplace Agent", - "description": "Add an agent from the marketplace to the user's library.\n\nArgs:\n store_listing_version_id: ID of the store listing version to add.\n user_id: ID of the authenticated user.\n\nReturns:\n library_model.LibraryAgent: Agent added to the library\n\nRaises:\n HTTPException(404): If the listing version is not found.\n HTTPException(500): If a server/database error occurs.", + "description": "Add an agent from the marketplace to the user's library.", "operationId": "postV2Add marketplace agent", "security": [{ "HTTPBearerJWT": [] }], "requestBody": { @@ -3438,7 +3434,7 @@ }, "responses": { "201": { - "description": "Agent added successfully", + "description": "Successful Response", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/LibraryAgent" } @@ -3448,7 +3444,6 @@ "401": { "$ref": "#/components/responses/HTTP401NotAuthenticatedError" }, - "404": { "description": "Store listing version not found" }, "422": { "description": "Validation Error", "content": { @@ -3456,8 +3451,7 @@ "schema": { "$ref": "#/components/schemas/HTTPValidationError" } } } - }, - "500": { "description": "Server error" } + } } } }, @@ -3511,7 +3505,7 @@ "get": { "tags": ["v2", "library", "private"], "summary": "List Favorite Library Agents", - "description": "Get all favorite agents in the user's library.\n\nArgs:\n user_id: ID of the authenticated user.\n page: Page number to retrieve.\n page_size: Number of agents per page.\n\nReturns:\n A LibraryAgentResponse containing favorite agents and pagination metadata.\n\nRaises:\n HTTPException: If a server/database error occurs.", + "description": "Get all favorite agents in the user's library.", "operationId": "getV2List favorite library agents", "security": [{ "HTTPBearerJWT": [] }], "parameters": [ @@ -3563,10 +3557,6 @@ "schema": { "$ref": "#/components/schemas/HTTPValidationError" } } } - }, - "500": { - "description": "Server error", - "content": { "application/json": {} } } } } @@ -3588,7 +3578,7 @@ ], "responses": { "200": { - "description": "Library agent found", + "description": "Successful Response", "content": { "application/json": { "schema": { @@ -3604,7 +3594,6 @@ "401": { "$ref": "#/components/responses/HTTP401NotAuthenticatedError" }, - "404": { "description": "Agent not found" }, "422": { "description": "Validation Error", "content": { @@ -3620,7 +3609,7 @@ "delete": { "tags": ["v2", "library", "private"], "summary": "Delete Library Agent", - "description": "Soft-delete the specified library agent.\n\nArgs:\n library_agent_id: ID of the library agent to delete.\n user_id: ID of the authenticated user.\n\nReturns:\n 204 No Content if successful.\n\nRaises:\n HTTPException(404): If the agent does not exist.\n HTTPException(500): If a server/database error occurs.", + "description": "Soft-delete the specified library agent.", "operationId": "deleteV2Delete library agent", "security": [{ "HTTPBearerJWT": [] }], "parameters": [ @@ -3636,11 +3625,9 @@ "description": "Successful Response", "content": { "application/json": { "schema": {} } } }, - "204": { "description": "Agent deleted successfully" }, "401": { "$ref": "#/components/responses/HTTP401NotAuthenticatedError" }, - "404": { "description": "Agent not found" }, "422": { "description": "Validation Error", "content": { @@ -3648,8 +3635,7 @@ "schema": { "$ref": "#/components/schemas/HTTPValidationError" } } } - }, - "500": { "description": "Server error" } + } } }, "get": { @@ -3690,7 +3676,7 @@ "patch": { "tags": ["v2", "library", "private"], "summary": "Update Library Agent", - "description": "Update the library agent with the given fields.\n\nArgs:\n library_agent_id: ID of the library agent to update.\n payload: Fields to update (auto_update_version, is_favorite, etc.).\n user_id: ID of the authenticated user.\n\nRaises:\n HTTPException(500): If a server/database error occurs.", + "description": "Update the library agent with the given fields.", "operationId": "patchV2Update library agent", "security": [{ "HTTPBearerJWT": [] }], "parameters": [ @@ -3713,7 +3699,7 @@ }, "responses": { "200": { - "description": "Agent updated successfully", + "description": "Successful Response", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/LibraryAgent" } @@ -3730,8 +3716,7 @@ "schema": { "$ref": "#/components/schemas/HTTPValidationError" } } } - }, - "500": { "description": "Server error" } + } } } }, @@ -4540,8 +4525,7 @@ "content": { "application/json": { "schema": { - "type": "boolean", - "title": "Response Getv1Is Onboarding Enabled" + "$ref": "#/components/schemas/OnboardingStatusResponse" } } } @@ -4594,6 +4578,7 @@ "AGENT_NEW_RUN", "AGENT_INPUT", "CONGRATS", + "VISIT_COPILOT", "MARKETPLACE_VISIT", "BUILDER_OPEN" ], @@ -5927,6 +5912,40 @@ } } }, + "/api/workspace/files/{file_id}/download": { + "get": { + "tags": ["workspace"], + "summary": "Download file by ID", + "description": "Download a file by its ID.\n\nReturns the file content directly or redirects to a signed URL for GCS.", + "operationId": "getWorkspaceDownload file by id", + "security": [{ "HTTPBearerJWT": [] }], + "parameters": [ + { + "name": "file_id", + "in": "path", + "required": true, + "schema": { "type": "string", "title": "File Id" } + } + ], + "responses": { + "200": { + "description": "Successful Response", + "content": { "application/json": { "schema": {} } } + }, + "401": { + "$ref": "#/components/responses/HTTP401NotAuthenticatedError" + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { "$ref": "#/components/schemas/HTTPValidationError" } + } + } + } + } + } + }, "/health": { "get": { "tags": ["health"], @@ -7962,6 +7981,25 @@ ] }, "new_output": { "type": "boolean", "title": "New Output" }, + "execution_count": { + "type": "integer", + "title": "Execution Count", + "default": 0 + }, + "success_rate": { + "anyOf": [{ "type": "number" }, { "type": "null" }], + "title": "Success Rate" + }, + "avg_correctness_score": { + "anyOf": [{ "type": "number" }, { "type": "null" }], + "title": "Avg Correctness Score" + }, + "recent_executions": { + "items": { "$ref": "#/components/schemas/RecentExecution" }, + "type": "array", + "title": "Recent Executions", + "description": "List of recent executions with status, score, and summary" + }, "can_access_graph": { "type": "boolean", "title": "Can Access Graph" @@ -8744,6 +8782,19 @@ "title": "OAuthApplicationPublicInfo", "description": "Public information about an OAuth application (for consent screen)" }, + "OnboardingStatusResponse": { + "properties": { + "is_onboarding_enabled": { + "type": "boolean", + "title": "Is Onboarding Enabled" + }, + "is_chat_enabled": { "type": "boolean", "title": "Is Chat Enabled" } + }, + "type": "object", + "required": ["is_onboarding_enabled", "is_chat_enabled"], + "title": "OnboardingStatusResponse", + "description": "Response for onboarding status check." + }, "OnboardingStep": { "type": "string", "enum": [ @@ -8754,6 +8805,7 @@ "AGENT_NEW_RUN", "AGENT_INPUT", "CONGRATS", + "VISIT_COPILOT", "GET_RESULTS", "MARKETPLACE_VISIT", "MARKETPLACE_ADD_AGENT", @@ -9341,6 +9393,23 @@ "required": ["providers", "pagination"], "title": "ProviderResponse" }, + "RecentExecution": { + "properties": { + "status": { "type": "string", "title": "Status" }, + "correctness_score": { + "anyOf": [{ "type": "number" }, { "type": "null" }], + "title": "Correctness Score" + }, + "activity_summary": { + "anyOf": [{ "type": "string" }, { "type": "null" }], + "title": "Activity Summary" + } + }, + "type": "object", + "required": ["status"], + "title": "RecentExecution", + "description": "Summary of a recent execution for quality assessment.\n\nUsed by the LLM to understand the agent's recent performance with specific examples\nrather than just aggregate statistics." + }, "RefundRequest": { "properties": { "id": { "type": "string", "title": "Id" }, @@ -9764,7 +9833,8 @@ "sub_heading": { "type": "string", "title": "Sub Heading" }, "description": { "type": "string", "title": "Description" }, "runs": { "type": "integer", "title": "Runs" }, - "rating": { "type": "number", "title": "Rating" } + "rating": { "type": "number", "title": "Rating" }, + "agent_graph_id": { "type": "string", "title": "Agent Graph Id" } }, "type": "object", "required": [ @@ -9776,7 +9846,8 @@ "sub_heading", "description", "runs", - "rating" + "rating", + "agent_graph_id" ], "title": "StoreAgent" }, diff --git a/autogpt_platform/frontend/src/app/api/proxy/[...path]/route.ts b/autogpt_platform/frontend/src/app/api/proxy/[...path]/route.ts index 293c406373..442bd77e0f 100644 --- a/autogpt_platform/frontend/src/app/api/proxy/[...path]/route.ts +++ b/autogpt_platform/frontend/src/app/api/proxy/[...path]/route.ts @@ -1,5 +1,6 @@ import { ApiError, + getServerAuthToken, makeAuthenticatedFileUpload, makeAuthenticatedRequest, } from "@/lib/autogpt-server-api/helpers"; @@ -15,6 +16,69 @@ function buildBackendUrl(path: string[], queryString: string): string { return `${environment.getAGPTServerBaseUrl()}/${backendPath}${queryString}`; } +/** + * Check if this is a workspace file download request that needs binary response handling. + */ +function isWorkspaceDownloadRequest(path: string[]): boolean { + // Match pattern: api/workspace/files/{id}/download (5 segments) + return ( + path.length == 5 && + path[0] === "api" && + path[1] === "workspace" && + path[2] === "files" && + path[path.length - 1] === "download" + ); +} + +/** + * Handle workspace file download requests with proper binary response streaming. + */ +async function handleWorkspaceDownload( + req: NextRequest, + backendUrl: string, +): Promise { + const token = await getServerAuthToken(); + + const headers: Record = {}; + if (token && token !== "no-token-found") { + headers["Authorization"] = `Bearer ${token}`; + } + + const response = await fetch(backendUrl, { + method: "GET", + headers, + redirect: "follow", // Follow redirects to signed URLs + }); + + if (!response.ok) { + return NextResponse.json( + { error: `Failed to download file: ${response.statusText}` }, + { status: response.status }, + ); + } + + // Get the content type from the backend response + const contentType = + response.headers.get("Content-Type") || "application/octet-stream"; + const contentDisposition = response.headers.get("Content-Disposition"); + + // Stream the response body + const responseHeaders: Record = { + "Content-Type": contentType, + }; + + if (contentDisposition) { + responseHeaders["Content-Disposition"] = contentDisposition; + } + + // Return the binary content + const arrayBuffer = await response.arrayBuffer(); + return new NextResponse(arrayBuffer, { + status: 200, + headers: responseHeaders, + }); +} + async function handleJsonRequest( req: NextRequest, method: string, @@ -180,6 +244,11 @@ async function handler( }; try { + // Handle workspace file downloads separately (binary response) + if (method === "GET" && isWorkspaceDownloadRequest(path)) { + return await handleWorkspaceDownload(req, backendUrl); + } + if (method === "GET" || method === "DELETE") { responseBody = await handleGetDeleteRequest(method, backendUrl, req); } else if (contentType?.includes("application/json")) { diff --git a/autogpt_platform/frontend/src/app/api/transcribe/route.ts b/autogpt_platform/frontend/src/app/api/transcribe/route.ts new file mode 100644 index 0000000000..10c182cdfa --- /dev/null +++ b/autogpt_platform/frontend/src/app/api/transcribe/route.ts @@ -0,0 +1,77 @@ +import { getServerAuthToken } from "@/lib/autogpt-server-api/helpers"; +import { NextRequest, NextResponse } from "next/server"; + +const WHISPER_API_URL = "https://api.openai.com/v1/audio/transcriptions"; +const MAX_FILE_SIZE = 25 * 1024 * 1024; // 25MB - Whisper's limit + +function getExtensionFromMimeType(mimeType: string): string { + const subtype = mimeType.split("/")[1]?.split(";")[0]; + return subtype || "webm"; +} + +export async function POST(request: NextRequest) { + const token = await getServerAuthToken(); + + if (!token || token === "no-token-found") { + return NextResponse.json({ error: "Unauthorized" }, { status: 401 }); + } + + const apiKey = process.env.OPENAI_API_KEY; + + if (!apiKey) { + return NextResponse.json( + { error: "OpenAI API key not configured" }, + { status: 401 }, + ); + } + + try { + const formData = await request.formData(); + const audioFile = formData.get("audio"); + + if (!audioFile || !(audioFile instanceof Blob)) { + return NextResponse.json( + { error: "No audio file provided" }, + { status: 400 }, + ); + } + + if (audioFile.size > MAX_FILE_SIZE) { + return NextResponse.json( + { error: "File too large. Maximum size is 25MB." }, + { status: 413 }, + ); + } + + const ext = getExtensionFromMimeType(audioFile.type); + const whisperFormData = new FormData(); + whisperFormData.append("file", audioFile, `recording.${ext}`); + whisperFormData.append("model", "whisper-1"); + + const response = await fetch(WHISPER_API_URL, { + method: "POST", + headers: { + Authorization: `Bearer ${apiKey}`, + }, + body: whisperFormData, + }); + + if (!response.ok) { + const errorData = await response.json().catch(() => ({})); + console.error("Whisper API error:", errorData); + return NextResponse.json( + { error: errorData.error?.message || "Transcription failed" }, + { status: response.status }, + ); + } + + const result = await response.json(); + return NextResponse.json({ text: result.text }); + } catch (error) { + console.error("Transcription error:", error); + return NextResponse.json( + { error: "Failed to process audio" }, + { status: 500 }, + ); + } +} diff --git a/autogpt_platform/frontend/src/components/contextual/Chat/Chat.tsx b/autogpt_platform/frontend/src/components/contextual/Chat/Chat.tsx index ba7584765d..ada8c26231 100644 --- a/autogpt_platform/frontend/src/components/contextual/Chat/Chat.tsx +++ b/autogpt_platform/frontend/src/components/contextual/Chat/Chat.tsx @@ -1,16 +1,17 @@ "use client"; +import { useCopilotSessionId } from "@/app/(platform)/copilot/useCopilotSessionId"; +import { useCopilotStore } from "@/app/(platform)/copilot/copilot-page-store"; +import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner"; import { Text } from "@/components/atoms/Text/Text"; import { cn } from "@/lib/utils"; import { useEffect, useRef } from "react"; import { ChatContainer } from "./components/ChatContainer/ChatContainer"; import { ChatErrorState } from "./components/ChatErrorState/ChatErrorState"; -import { ChatLoader } from "./components/ChatLoader/ChatLoader"; import { useChat } from "./useChat"; export interface ChatProps { className?: string; - urlSessionId?: string | null; initialPrompt?: string; onSessionNotFound?: () => void; onStreamingChange?: (isStreaming: boolean) => void; @@ -18,12 +19,13 @@ export interface ChatProps { export function Chat({ className, - urlSessionId, initialPrompt, onSessionNotFound, onStreamingChange, }: ChatProps) { + const { urlSessionId } = useCopilotSessionId(); const hasHandledNotFoundRef = useRef(false); + const isSwitchingSession = useCopilotStore((s) => s.isSwitchingSession); const { messages, isLoading, @@ -33,49 +35,59 @@ export function Chat({ sessionId, createSession, showLoader, + startPollingForOperation, } = useChat({ urlSessionId }); - useEffect( - function handleMissingSession() { - if (!onSessionNotFound) return; - if (!urlSessionId) return; - if (!isSessionNotFound || isLoading || isCreating) return; - if (hasHandledNotFoundRef.current) return; - hasHandledNotFoundRef.current = true; - onSessionNotFound(); - }, - [onSessionNotFound, urlSessionId, isSessionNotFound, isLoading, isCreating], - ); + useEffect(() => { + if (!onSessionNotFound) return; + if (!urlSessionId) return; + if (!isSessionNotFound || isLoading || isCreating) return; + if (hasHandledNotFoundRef.current) return; + hasHandledNotFoundRef.current = true; + onSessionNotFound(); + }, [ + onSessionNotFound, + urlSessionId, + isSessionNotFound, + isLoading, + isCreating, + ]); + + const shouldShowLoader = + (showLoader && (isLoading || isCreating)) || isSwitchingSession; return (
{/* Main Content */}
{/* Loading State */} - {showLoader && (isLoading || isCreating) && ( + {shouldShowLoader && (
-
- +
+ - Loading your chats... + {isSwitchingSession + ? "Switching chat..." + : "Loading your chat..."}
)} {/* Error State */} - {error && !isLoading && ( + {error && !isLoading && !isSwitchingSession && ( )} {/* Session Content */} - {sessionId && !isLoading && !error && ( + {sessionId && !isLoading && !error && !isSwitchingSession && ( )}
diff --git a/autogpt_platform/frontend/src/components/contextual/Chat/chat-store.ts b/autogpt_platform/frontend/src/components/contextual/Chat/chat-store.ts index 28028369a9..8229630e5d 100644 --- a/autogpt_platform/frontend/src/components/contextual/Chat/chat-store.ts +++ b/autogpt_platform/frontend/src/components/contextual/Chat/chat-store.ts @@ -58,39 +58,17 @@ function notifyStreamComplete( } } -function cleanupCompletedStreams(completedStreams: Map) { +function cleanupExpiredStreams( + completedStreams: Map, +): Map { const now = Date.now(); - for (const [sessionId, result] of completedStreams) { + const cleaned = new Map(completedStreams); + for (const [sessionId, result] of cleaned) { if (now - result.completedAt > COMPLETED_STREAM_TTL) { - completedStreams.delete(sessionId); + cleaned.delete(sessionId); } } -} - -function moveToCompleted( - activeStreams: Map, - completedStreams: Map, - streamCompleteCallbacks: Set, - sessionId: string, -) { - const stream = activeStreams.get(sessionId); - if (!stream) return; - - const result: StreamResult = { - sessionId, - status: stream.status, - chunks: stream.chunks, - completedAt: Date.now(), - error: stream.error, - }; - - completedStreams.set(sessionId, result); - activeStreams.delete(sessionId); - cleanupCompletedStreams(completedStreams); - - if (stream.status === "completed" || stream.status === "error") { - notifyStreamComplete(streamCompleteCallbacks, sessionId); - } + return cleaned; } export const useChatStore = create((set, get) => ({ @@ -106,17 +84,31 @@ export const useChatStore = create((set, get) => ({ context, onChunk, ) { - const { activeStreams, completedStreams, streamCompleteCallbacks } = get(); + const state = get(); + const newActiveStreams = new Map(state.activeStreams); + let newCompletedStreams = new Map(state.completedStreams); + const callbacks = state.streamCompleteCallbacks; - const existingStream = activeStreams.get(sessionId); + const existingStream = newActiveStreams.get(sessionId); if (existingStream) { existingStream.abortController.abort(); - moveToCompleted( - activeStreams, - completedStreams, - streamCompleteCallbacks, + const normalizedStatus = + existingStream.status === "streaming" + ? "completed" + : existingStream.status; + const result: StreamResult = { sessionId, - ); + status: normalizedStatus, + chunks: existingStream.chunks, + completedAt: Date.now(), + error: existingStream.error, + }; + newCompletedStreams.set(sessionId, result); + newActiveStreams.delete(sessionId); + newCompletedStreams = cleanupExpiredStreams(newCompletedStreams); + if (normalizedStatus === "completed" || normalizedStatus === "error") { + notifyStreamComplete(callbacks, sessionId); + } } const abortController = new AbortController(); @@ -132,36 +124,76 @@ export const useChatStore = create((set, get) => ({ onChunkCallbacks: initialCallbacks, }; - activeStreams.set(sessionId, stream); + newActiveStreams.set(sessionId, stream); + set({ + activeStreams: newActiveStreams, + completedStreams: newCompletedStreams, + }); try { await executeStream(stream, message, isUserMessage, context); } finally { if (onChunk) stream.onChunkCallbacks.delete(onChunk); if (stream.status !== "streaming") { - moveToCompleted( - activeStreams, - completedStreams, - streamCompleteCallbacks, - sessionId, - ); + const currentState = get(); + const finalActiveStreams = new Map(currentState.activeStreams); + let finalCompletedStreams = new Map(currentState.completedStreams); + + const storedStream = finalActiveStreams.get(sessionId); + if (storedStream === stream) { + const result: StreamResult = { + sessionId, + status: stream.status, + chunks: stream.chunks, + completedAt: Date.now(), + error: stream.error, + }; + finalCompletedStreams.set(sessionId, result); + finalActiveStreams.delete(sessionId); + finalCompletedStreams = cleanupExpiredStreams(finalCompletedStreams); + set({ + activeStreams: finalActiveStreams, + completedStreams: finalCompletedStreams, + }); + if (stream.status === "completed" || stream.status === "error") { + notifyStreamComplete( + currentState.streamCompleteCallbacks, + sessionId, + ); + } + } } } }, stopStream: function stopStream(sessionId) { - const { activeStreams, completedStreams, streamCompleteCallbacks } = get(); - const stream = activeStreams.get(sessionId); - if (stream) { - stream.abortController.abort(); - stream.status = "completed"; - moveToCompleted( - activeStreams, - completedStreams, - streamCompleteCallbacks, - sessionId, - ); - } + const state = get(); + const stream = state.activeStreams.get(sessionId); + if (!stream) return; + + stream.abortController.abort(); + stream.status = "completed"; + + const newActiveStreams = new Map(state.activeStreams); + let newCompletedStreams = new Map(state.completedStreams); + + const result: StreamResult = { + sessionId, + status: stream.status, + chunks: stream.chunks, + completedAt: Date.now(), + error: stream.error, + }; + newCompletedStreams.set(sessionId, result); + newActiveStreams.delete(sessionId); + newCompletedStreams = cleanupExpiredStreams(newCompletedStreams); + + set({ + activeStreams: newActiveStreams, + completedStreams: newCompletedStreams, + }); + + notifyStreamComplete(state.streamCompleteCallbacks, sessionId); }, subscribeToStream: function subscribeToStream( @@ -169,16 +201,18 @@ export const useChatStore = create((set, get) => ({ onChunk, skipReplay = false, ) { - const { activeStreams } = get(); + const state = get(); + const stream = state.activeStreams.get(sessionId); - const stream = activeStreams.get(sessionId); if (stream) { if (!skipReplay) { for (const chunk of stream.chunks) { onChunk(chunk); } } + stream.onChunkCallbacks.add(onChunk); + return function unsubscribe() { stream.onChunkCallbacks.delete(onChunk); }; @@ -204,7 +238,12 @@ export const useChatStore = create((set, get) => ({ }, clearCompletedStream: function clearCompletedStream(sessionId) { - get().completedStreams.delete(sessionId); + const state = get(); + if (!state.completedStreams.has(sessionId)) return; + + const newCompletedStreams = new Map(state.completedStreams); + newCompletedStreams.delete(sessionId); + set({ completedStreams: newCompletedStreams }); }, isStreaming: function isStreaming(sessionId) { @@ -213,11 +252,21 @@ export const useChatStore = create((set, get) => ({ }, registerActiveSession: function registerActiveSession(sessionId) { - get().activeSessions.add(sessionId); + const state = get(); + if (state.activeSessions.has(sessionId)) return; + + const newActiveSessions = new Set(state.activeSessions); + newActiveSessions.add(sessionId); + set({ activeSessions: newActiveSessions }); }, unregisterActiveSession: function unregisterActiveSession(sessionId) { - get().activeSessions.delete(sessionId); + const state = get(); + if (!state.activeSessions.has(sessionId)) return; + + const newActiveSessions = new Set(state.activeSessions); + newActiveSessions.delete(sessionId); + set({ activeSessions: newActiveSessions }); }, isSessionActive: function isSessionActive(sessionId) { @@ -225,10 +274,16 @@ export const useChatStore = create((set, get) => ({ }, onStreamComplete: function onStreamComplete(callback) { - const { streamCompleteCallbacks } = get(); - streamCompleteCallbacks.add(callback); + const state = get(); + const newCallbacks = new Set(state.streamCompleteCallbacks); + newCallbacks.add(callback); + set({ streamCompleteCallbacks: newCallbacks }); + return function unsubscribe() { - streamCompleteCallbacks.delete(callback); + const currentState = get(); + const cleanedCallbacks = new Set(currentState.streamCompleteCallbacks); + cleanedCallbacks.delete(callback); + set({ streamCompleteCallbacks: cleanedCallbacks }); }; }, })); diff --git a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/ChatContainer.tsx b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/ChatContainer.tsx index f062df1397..dec221338a 100644 --- a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/ChatContainer.tsx +++ b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/ChatContainer.tsx @@ -16,6 +16,7 @@ export interface ChatContainerProps { initialPrompt?: string; className?: string; onStreamingChange?: (isStreaming: boolean) => void; + onOperationStarted?: () => void; } export function ChatContainer({ @@ -24,6 +25,7 @@ export function ChatContainer({ initialPrompt, className, onStreamingChange, + onOperationStarted, }: ChatContainerProps) { const { messages, @@ -38,6 +40,7 @@ export function ChatContainer({ sessionId, initialMessages, initialPrompt, + onOperationStarted, }); useEffect(() => { diff --git a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/handlers.ts b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/handlers.ts index 96198a0386..f3cac01f96 100644 --- a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/handlers.ts +++ b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/handlers.ts @@ -22,6 +22,7 @@ export interface HandlerDependencies { setIsStreamingInitiated: Dispatch>; setIsRegionBlockedModalOpen: Dispatch>; sessionId: string; + onOperationStarted?: () => void; } export function isRegionBlockedError(chunk: StreamChunk): boolean { @@ -48,6 +49,15 @@ export function handleTextEnded( const completedText = deps.streamingChunksRef.current.join(""); if (completedText.trim()) { deps.setMessages((prev) => { + // Check if this exact message already exists to prevent duplicates + const exists = prev.some( + (msg) => + msg.type === "message" && + msg.role === "assistant" && + msg.content === completedText, + ); + if (exists) return prev; + const assistantMessage: ChatMessageData = { type: "message", role: "assistant", @@ -154,6 +164,11 @@ export function handleToolResponse( } return; } + // Trigger polling when operation_started is received + if (responseMessage.type === "operation_started") { + deps.onOperationStarted?.(); + } + deps.setMessages((prev) => { const toolCallIndex = prev.findIndex( (msg) => msg.type === "tool_call" && msg.toolId === chunk.tool_id, @@ -203,13 +218,24 @@ export function handleStreamEnd( ]); } if (completedContent.trim()) { - const assistantMessage: ChatMessageData = { - type: "message", - role: "assistant", - content: completedContent, - timestamp: new Date(), - }; - deps.setMessages((prev) => [...prev, assistantMessage]); + deps.setMessages((prev) => { + // Check if this exact message already exists to prevent duplicates + const exists = prev.some( + (msg) => + msg.type === "message" && + msg.role === "assistant" && + msg.content === completedContent, + ); + if (exists) return prev; + + const assistantMessage: ChatMessageData = { + type: "message", + role: "assistant", + content: completedContent, + timestamp: new Date(), + }; + return [...prev, assistantMessage]; + }); } deps.setStreamingChunks([]); deps.streamingChunksRef.current = []; diff --git a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/helpers.ts b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/helpers.ts index 7dee924634..e744c9bc34 100644 --- a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/helpers.ts +++ b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/helpers.ts @@ -304,6 +304,7 @@ export function parseToolResponse( if (isAgentArray(agentsData)) { return { type: "agent_carousel", + toolId, toolName: "agent_carousel", agents: agentsData, totalCount: parsedResult.total_count as number | undefined, @@ -316,6 +317,7 @@ export function parseToolResponse( if (responseType === "execution_started") { return { type: "execution_started", + toolId, toolName: "execution_started", executionId: (parsedResult.execution_id as string) || "", agentName: (parsedResult.graph_name as string) || undefined, @@ -341,6 +343,41 @@ export function parseToolResponse( timestamp: timestamp || new Date(), }; } + if (responseType === "operation_started") { + return { + type: "operation_started", + toolName: (parsedResult.tool_name as string) || toolName, + toolId, + operationId: (parsedResult.operation_id as string) || "", + message: + (parsedResult.message as string) || + "Operation started. You can close this tab.", + timestamp: timestamp || new Date(), + }; + } + if (responseType === "operation_pending") { + return { + type: "operation_pending", + toolName: (parsedResult.tool_name as string) || toolName, + toolId, + operationId: (parsedResult.operation_id as string) || "", + message: + (parsedResult.message as string) || + "Operation in progress. Please wait...", + timestamp: timestamp || new Date(), + }; + } + if (responseType === "operation_in_progress") { + return { + type: "operation_in_progress", + toolName: (parsedResult.tool_name as string) || toolName, + toolCallId: (parsedResult.tool_call_id as string) || toolId, + message: + (parsedResult.message as string) || + "Operation already in progress. Please wait...", + timestamp: timestamp || new Date(), + }; + } if (responseType === "need_login") { return { type: "login_needed", diff --git a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/useChatContainer.ts b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/useChatContainer.ts index b7f9d305dd..46f384d055 100644 --- a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/useChatContainer.ts +++ b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatContainer/useChatContainer.ts @@ -14,16 +14,40 @@ import { processInitialMessages, } from "./helpers"; +// Helper to generate deduplication key for a message +function getMessageKey(msg: ChatMessageData): string { + if (msg.type === "message") { + // Don't include timestamp - dedupe by role + content only + // This handles the case where local and server timestamps differ + // Server messages are authoritative, so duplicates from local state are filtered + return `msg:${msg.role}:${msg.content}`; + } else if (msg.type === "tool_call") { + return `toolcall:${msg.toolId}`; + } else if (msg.type === "tool_response") { + return `toolresponse:${(msg as any).toolId}`; + } else if ( + msg.type === "operation_started" || + msg.type === "operation_pending" || + msg.type === "operation_in_progress" + ) { + return `op:${(msg as any).toolId || (msg as any).operationId || (msg as any).toolCallId || ""}:${msg.toolName}`; + } else { + return `${msg.type}:${JSON.stringify(msg).slice(0, 100)}`; + } +} + interface Args { sessionId: string | null; initialMessages: SessionDetailResponse["messages"]; initialPrompt?: string; + onOperationStarted?: () => void; } export function useChatContainer({ sessionId, initialMessages, initialPrompt, + onOperationStarted, }: Args) { const [messages, setMessages] = useState([]); const [streamingChunks, setStreamingChunks] = useState([]); @@ -73,20 +97,102 @@ export function useChatContainer({ setIsRegionBlockedModalOpen, sessionId, setIsStreamingInitiated, + onOperationStarted, }); setIsStreamingInitiated(true); const skipReplay = initialMessages.length > 0; return subscribeToStream(sessionId, dispatcher, skipReplay); }, - [sessionId, stopStreaming, activeStreams, subscribeToStream], + [ + sessionId, + stopStreaming, + activeStreams, + subscribeToStream, + onOperationStarted, + ], ); - const allMessages = useMemo( - () => [...processInitialMessages(initialMessages), ...messages], - [initialMessages, messages], + // Collect toolIds from completed tool results in initialMessages + // Used to filter out operation messages when their results arrive + const completedToolIds = useMemo(() => { + const processedInitial = processInitialMessages(initialMessages); + const ids = new Set(); + for (const msg of processedInitial) { + if ( + msg.type === "tool_response" || + msg.type === "agent_carousel" || + msg.type === "execution_started" + ) { + const toolId = (msg as any).toolId; + if (toolId) { + ids.add(toolId); + } + } + } + return ids; + }, [initialMessages]); + + // Clean up local operation messages when their completed results arrive from polling + // This effect runs when completedToolIds changes (i.e., when polling brings new results) + useEffect( + function cleanupCompletedOperations() { + if (completedToolIds.size === 0) return; + + setMessages((prev) => { + const filtered = prev.filter((msg) => { + if ( + msg.type === "operation_started" || + msg.type === "operation_pending" || + msg.type === "operation_in_progress" + ) { + const toolId = (msg as any).toolId || (msg as any).toolCallId; + if (toolId && completedToolIds.has(toolId)) { + return false; // Remove - operation completed + } + } + return true; + }); + // Only update state if something was actually filtered + return filtered.length === prev.length ? prev : filtered; + }); + }, + [completedToolIds], ); + // Combine initial messages from backend with local streaming messages, + // Server messages maintain correct order; only append truly new local messages + const allMessages = useMemo(() => { + const processedInitial = processInitialMessages(initialMessages); + + // Build a set of keys from server messages for deduplication + const serverKeys = new Set(); + for (const msg of processedInitial) { + serverKeys.add(getMessageKey(msg)); + } + + // Filter local messages: remove duplicates and completed operation messages + const newLocalMessages = messages.filter((msg) => { + // Remove operation messages for completed tools + if ( + msg.type === "operation_started" || + msg.type === "operation_pending" || + msg.type === "operation_in_progress" + ) { + const toolId = (msg as any).toolId || (msg as any).toolCallId; + if (toolId && completedToolIds.has(toolId)) { + return false; + } + } + // Remove messages that already exist in server data + const key = getMessageKey(msg); + return !serverKeys.has(key); + }); + + // Server messages first (correct order), then new local messages + return [...processedInitial, ...newLocalMessages]; + }, [initialMessages, messages, completedToolIds]); + async function sendMessage( content: string, isUserMessage: boolean = true, @@ -118,6 +224,7 @@ export function useChatContainer({ setIsRegionBlockedModalOpen, sessionId, setIsStreamingInitiated, + onOperationStarted, }); try { diff --git a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/ChatInput.tsx b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/ChatInput.tsx index c45e8dc250..beb4678e73 100644 --- a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/ChatInput.tsx +++ b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/ChatInput.tsx @@ -1,7 +1,14 @@ import { Button } from "@/components/atoms/Button/Button"; import { cn } from "@/lib/utils"; -import { ArrowUpIcon, StopIcon } from "@phosphor-icons/react"; +import { + ArrowUpIcon, + CircleNotchIcon, + MicrophoneIcon, + StopIcon, +} from "@phosphor-icons/react"; +import { RecordingIndicator } from "./components/RecordingIndicator"; import { useChatInput } from "./useChatInput"; +import { useVoiceRecording } from "./useVoiceRecording"; export interface Props { onSend: (message: string) => void; @@ -21,13 +28,37 @@ export function ChatInput({ className, }: Props) { const inputId = "chat-input"; - const { value, handleKeyDown, handleSubmit, handleChange, hasMultipleLines } = - useChatInput({ - onSend, - disabled: disabled || isStreaming, - maxRows: 4, - inputId, - }); + const { + value, + setValue, + handleKeyDown: baseHandleKeyDown, + handleSubmit, + handleChange, + hasMultipleLines, + } = useChatInput({ + onSend, + disabled: disabled || isStreaming, + maxRows: 4, + inputId, + }); + + const { + isRecording, + isTranscribing, + elapsedTime, + toggleRecording, + handleKeyDown, + showMicButton, + isInputDisabled, + audioStream, + } = useVoiceRecording({ + setValue, + disabled: disabled || isStreaming, + isStreaming, + value, + baseHandleKeyDown, + inputId, + }); return (
@@ -35,8 +66,11 @@ export function ChatInput({
@@ -46,48 +80,94 @@ export function ChatInput({ value={value} onChange={handleChange} onKeyDown={handleKeyDown} - placeholder={placeholder} - disabled={disabled || isStreaming} + placeholder={ + isTranscribing + ? "Transcribing..." + : isRecording + ? "" + : placeholder + } + disabled={isInputDisabled} rows={1} className={cn( "w-full resize-none overflow-y-auto border-0 bg-transparent text-[1rem] leading-6 text-black", "placeholder:text-zinc-400", "focus:outline-none focus:ring-0", "disabled:text-zinc-500", - hasMultipleLines ? "pb-6 pl-4 pr-4 pt-2" : "pb-4 pl-4 pr-14 pt-4", + hasMultipleLines + ? "pb-6 pl-4 pr-4 pt-2" + : showMicButton + ? "pb-4 pl-14 pr-14 pt-4" + : "pb-4 pl-4 pr-14 pt-4", )} /> + {isRecording && !value && ( +
+ +
+ )}
- Press Enter to send, Shift+Enter for new line + Press Enter to send, Shift+Enter for new line, Space to record voice - {isStreaming ? ( - - ) : ( - + {showMicButton && ( +
+ +
)} + +
+ {isStreaming ? ( + + ) : ( + + )} +
); diff --git a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/components/AudioWaveform.tsx b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/components/AudioWaveform.tsx new file mode 100644 index 0000000000..10cbb3fc9f --- /dev/null +++ b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/components/AudioWaveform.tsx @@ -0,0 +1,142 @@ +"use client"; + +import { useEffect, useRef, useState } from "react"; + +interface Props { + stream: MediaStream | null; + barCount?: number; + barWidth?: number; + barGap?: number; + barColor?: string; + minBarHeight?: number; + maxBarHeight?: number; +} + +export function AudioWaveform({ + stream, + barCount = 24, + barWidth = 3, + barGap = 2, + barColor = "#ef4444", // red-500 + minBarHeight = 4, + maxBarHeight = 32, +}: Props) { + const [bars, setBars] = useState(() => + Array(barCount).fill(minBarHeight), + ); + const analyserRef = useRef(null); + const audioContextRef = useRef(null); + const sourceRef = useRef(null); + const animationRef = useRef(null); + + useEffect(() => { + if (!stream) { + setBars(Array(barCount).fill(minBarHeight)); + return; + } + + // Create audio context and analyser + const audioContext = new AudioContext(); + const analyser = audioContext.createAnalyser(); + analyser.fftSize = 512; + analyser.smoothingTimeConstant = 0.8; + + // Connect the stream to the analyser + const source = audioContext.createMediaStreamSource(stream); + source.connect(analyser); + + audioContextRef.current = audioContext; + analyserRef.current = analyser; + sourceRef.current = source; + + const timeData = new Uint8Array(analyser.frequencyBinCount); + + const updateBars = () => { + if (!analyserRef.current) return; + + analyserRef.current.getByteTimeDomainData(timeData); + + // Distribute time-domain data across bars + // This shows waveform amplitude, making all bars respond to audio + const newBars: number[] = []; + const samplesPerBar = timeData.length / barCount; + + for (let i = 0; i < barCount; i++) { + // Sample waveform data for this bar + let maxAmplitude = 0; + const startIdx = Math.floor(i * samplesPerBar); + const endIdx = Math.floor((i + 1) * samplesPerBar); + + for (let j = startIdx; j < endIdx && j < timeData.length; j++) { + // Convert to amplitude (distance from center 128) + const amplitude = Math.abs(timeData[j] - 128); + maxAmplitude = Math.max(maxAmplitude, amplitude); + } + + // Map amplitude (0-128) to bar height + const normalized = (maxAmplitude / 128) * 255; + const height = + minBarHeight + (normalized / 255) * (maxBarHeight - minBarHeight); + newBars.push(height); + } + + setBars(newBars); + animationRef.current = requestAnimationFrame(updateBars); + }; + + updateBars(); + + return () => { + if (animationRef.current) { + cancelAnimationFrame(animationRef.current); + } + if (sourceRef.current) { + sourceRef.current.disconnect(); + } + if (audioContextRef.current) { + audioContextRef.current.close(); + } + analyserRef.current = null; + audioContextRef.current = null; + sourceRef.current = null; + }; + }, [stream, barCount, minBarHeight, maxBarHeight]); + + const totalWidth = barCount * barWidth + (barCount - 1) * barGap; + + return ( +
+ {bars.map((height, i) => { + const barHeight = Math.max(minBarHeight, height); + return ( +
+
+
+ ); + })} +
+ ); +} diff --git a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/components/RecordingIndicator.tsx b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/components/RecordingIndicator.tsx new file mode 100644 index 0000000000..0be0d069bb --- /dev/null +++ b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/components/RecordingIndicator.tsx @@ -0,0 +1,26 @@ +import { formatElapsedTime } from "../helpers"; +import { AudioWaveform } from "./AudioWaveform"; + +type Props = { + elapsedTime: number; + audioStream: MediaStream | null; +}; + +export function RecordingIndicator({ elapsedTime, audioStream }: Props) { + return ( +
+ + + {formatElapsedTime(elapsedTime)} + +
+ ); +} diff --git a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/helpers.ts b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/helpers.ts new file mode 100644 index 0000000000..26bae8c9d9 --- /dev/null +++ b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/helpers.ts @@ -0,0 +1,6 @@ +export function formatElapsedTime(ms: number): string { + const seconds = Math.floor(ms / 1000); + const minutes = Math.floor(seconds / 60); + const remainingSeconds = seconds % 60; + return `${minutes}:${remainingSeconds.toString().padStart(2, "0")}`; +} diff --git a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/useChatInput.ts b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/useChatInput.ts index 6fa8e7252b..a053e6080f 100644 --- a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/useChatInput.ts +++ b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/useChatInput.ts @@ -6,7 +6,7 @@ import { useState, } from "react"; -interface UseChatInputArgs { +interface Args { onSend: (message: string) => void; disabled?: boolean; maxRows?: number; @@ -18,7 +18,7 @@ export function useChatInput({ disabled = false, maxRows = 5, inputId = "chat-input", -}: UseChatInputArgs) { +}: Args) { const [value, setValue] = useState(""); const [hasMultipleLines, setHasMultipleLines] = useState(false); diff --git a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/useVoiceRecording.ts b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/useVoiceRecording.ts new file mode 100644 index 0000000000..4de74ef2e9 --- /dev/null +++ b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatInput/useVoiceRecording.ts @@ -0,0 +1,251 @@ +import { useToast } from "@/components/molecules/Toast/use-toast"; +import React, { + KeyboardEvent, + useCallback, + useEffect, + useRef, + useState, +} from "react"; + +const MAX_RECORDING_DURATION = 2 * 60 * 1000; // 2 minutes in ms + +interface Args { + setValue: React.Dispatch>; + disabled?: boolean; + isStreaming?: boolean; + value: string; + baseHandleKeyDown: (event: KeyboardEvent) => void; + inputId?: string; +} + +export function useVoiceRecording({ + setValue, + disabled = false, + isStreaming = false, + value, + baseHandleKeyDown, + inputId, +}: Args) { + const [isRecording, setIsRecording] = useState(false); + const [isTranscribing, setIsTranscribing] = useState(false); + const [error, setError] = useState(null); + const [elapsedTime, setElapsedTime] = useState(0); + + const mediaRecorderRef = useRef(null); + const chunksRef = useRef([]); + const timerRef = useRef(null); + const startTimeRef = useRef(0); + const streamRef = useRef(null); + const isRecordingRef = useRef(false); + + const isSupported = + typeof window !== "undefined" && + !!(navigator.mediaDevices && navigator.mediaDevices.getUserMedia); + + const clearTimer = useCallback(() => { + if (timerRef.current) { + clearInterval(timerRef.current); + timerRef.current = null; + } + }, []); + + const cleanup = useCallback(() => { + clearTimer(); + if (streamRef.current) { + streamRef.current.getTracks().forEach((track) => track.stop()); + streamRef.current = null; + } + mediaRecorderRef.current = null; + chunksRef.current = []; + setElapsedTime(0); + }, [clearTimer]); + + const handleTranscription = useCallback( + (text: string) => { + setValue((prev) => { + const trimmedPrev = prev.trim(); + if (trimmedPrev) { + return `${trimmedPrev} ${text}`; + } + return text; + }); + }, + [setValue], + ); + + const transcribeAudio = useCallback( + async (audioBlob: Blob) => { + setIsTranscribing(true); + setError(null); + + try { + const formData = new FormData(); + formData.append("audio", audioBlob); + + const response = await fetch("/api/transcribe", { + method: "POST", + body: formData, + }); + + if (!response.ok) { + const data = await response.json().catch(() => ({})); + throw new Error(data.error || "Transcription failed"); + } + + const data = await response.json(); + if (data.text) { + handleTranscription(data.text); + } + } catch (err) { + const message = + err instanceof Error ? err.message : "Transcription failed"; + setError(message); + console.error("Transcription error:", err); + } finally { + setIsTranscribing(false); + } + }, + [handleTranscription, inputId], + ); + + const stopRecording = useCallback(() => { + if (mediaRecorderRef.current && isRecordingRef.current) { + mediaRecorderRef.current.stop(); + isRecordingRef.current = false; + setIsRecording(false); + clearTimer(); + } + }, [clearTimer]); + + const startRecording = useCallback(async () => { + if (disabled || isRecordingRef.current || isTranscribing) return; + + setError(null); + chunksRef.current = []; + + try { + const stream = await navigator.mediaDevices.getUserMedia({ audio: true }); + streamRef.current = stream; + + const mediaRecorder = new MediaRecorder(stream, { + mimeType: MediaRecorder.isTypeSupported("audio/webm") + ? "audio/webm" + : "audio/mp4", + }); + + mediaRecorderRef.current = mediaRecorder; + + mediaRecorder.ondataavailable = (event) => { + if (event.data.size > 0) { + chunksRef.current.push(event.data); + } + }; + + mediaRecorder.onstop = async () => { + const audioBlob = new Blob(chunksRef.current, { + type: mediaRecorder.mimeType, + }); + + // Cleanup stream + if (streamRef.current) { + streamRef.current.getTracks().forEach((track) => track.stop()); + streamRef.current = null; + } + + if (audioBlob.size > 0) { + await transcribeAudio(audioBlob); + } + }; + + mediaRecorder.start(1000); // Collect data every second + isRecordingRef.current = true; + setIsRecording(true); + startTimeRef.current = Date.now(); + + // Start elapsed time timer + timerRef.current = setInterval(() => { + const elapsed = Date.now() - startTimeRef.current; + setElapsedTime(elapsed); + + // Auto-stop at max duration + if (elapsed >= MAX_RECORDING_DURATION) { + stopRecording(); + } + }, 100); + } catch (err) { + console.error("Failed to start recording:", err); + if (err instanceof DOMException && err.name === "NotAllowedError") { + setError("Microphone permission denied"); + } else { + setError("Failed to access microphone"); + } + cleanup(); + } + }, [disabled, isTranscribing, stopRecording, transcribeAudio, cleanup]); + + const toggleRecording = useCallback(() => { + if (isRecording) { + stopRecording(); + } else { + startRecording(); + } + }, [isRecording, startRecording, stopRecording]); + + const { toast } = useToast(); + + useEffect(() => { + if (error) { + toast({ + title: "Voice recording failed", + description: error, + variant: "destructive", + }); + } + }, [error, toast]); + + useEffect(() => { + if (!isTranscribing && inputId) { + const inputElement = document.getElementById(inputId); + if (inputElement) { + inputElement.focus(); + } + } + }, [isTranscribing, inputId]); + + const handleKeyDown = useCallback( + (event: KeyboardEvent) => { + if (event.key === " " && !value.trim() && !isTranscribing) { + event.preventDefault(); + toggleRecording(); + return; + } + baseHandleKeyDown(event); + }, + [value, isTranscribing, toggleRecording, baseHandleKeyDown], + ); + + const showMicButton = isSupported && !isStreaming; + const isInputDisabled = disabled || isStreaming || isTranscribing; + + // Cleanup on unmount + useEffect(() => { + return () => { + cleanup(); + }; + }, [cleanup]); + + return { + isRecording, + isTranscribing, + error, + elapsedTime, + startRecording, + stopRecording, + toggleRecording, + isSupported, + handleKeyDown, + showMicButton, + isInputDisabled, + audioStream: streamRef.current, + }; +} diff --git a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatMessage/ChatMessage.tsx b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatMessage/ChatMessage.tsx index 0fee33dbc0..2ac433a272 100644 --- a/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatMessage/ChatMessage.tsx +++ b/autogpt_platform/frontend/src/components/contextual/Chat/components/ChatMessage/ChatMessage.tsx @@ -16,6 +16,7 @@ import { AuthPromptWidget } from "../AuthPromptWidget/AuthPromptWidget"; import { ChatCredentialsSetup } from "../ChatCredentialsSetup/ChatCredentialsSetup"; import { ClarificationQuestionsWidget } from "../ClarificationQuestionsWidget/ClarificationQuestionsWidget"; import { ExecutionStartedMessage } from "../ExecutionStartedMessage/ExecutionStartedMessage"; +import { PendingOperationWidget } from "../PendingOperationWidget/PendingOperationWidget"; import { MarkdownContent } from "../MarkdownContent/MarkdownContent"; import { NoResultsMessage } from "../NoResultsMessage/NoResultsMessage"; import { ToolCallMessage } from "../ToolCallMessage/ToolCallMessage"; @@ -71,6 +72,9 @@ export function ChatMessage({ isLoginNeeded, isCredentialsNeeded, isClarificationNeeded, + isOperationStarted, + isOperationPending, + isOperationInProgress, } = useChatMessage(message); const displayContent = getDisplayContent(message, isUser); @@ -126,10 +130,6 @@ export function ChatMessage({ [displayContent, message], ); - function isLongResponse(content: string): boolean { - return content.split("\n").length > 5; - } - const handleTryAgain = useCallback(() => { if (message.type !== "message" || !onSendMessage) return; onSendMessage(message.content, message.role === "user"); @@ -156,11 +156,19 @@ export function ChatMessage({ } if (isClarificationNeeded && message.type === "clarification_needed") { + const hasUserReplyAfter = + index >= 0 && + messages + .slice(index + 1) + .some((m) => m.type === "message" && m.role === "user"); + return ( ); @@ -294,6 +302,42 @@ export function ChatMessage({ ); } + // Render operation_started messages (long-running background operations) + if (isOperationStarted && message.type === "operation_started") { + return ( + + ); + } + + // Render operation_pending messages (operations in progress when refreshing) + if (isOperationPending && message.type === "operation_pending") { + return ( + + ); + } + + // Render operation_in_progress messages (duplicate request while operation running) + if (isOperationInProgress && message.type === "operation_in_progress") { + return ( + + ); + } + // Render tool response messages (but skip agent_output if it's being rendered inside assistant message) if (isToolResponse && message.type === "tool_response") { return ( @@ -358,7 +402,7 @@ export function ChatMessage({ )} - {!isUser && isFinalMessage && isLongResponse(displayContent) && ( + {!isUser && isFinalMessage && !isStreaming && (