mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-02-05 04:15:08 -05:00
Convert to python module named autogpt.
Also fixed the Dockerfile. Converting to module makes development easier. Fixes coverage script in CI and test imports.
This commit is contained in:
committed by
Merwane Hamadi
parent
a17a850b25
commit
d64f866bfa
@@ -1,331 +1,15 @@
|
||||
import json
|
||||
import random
|
||||
import commands as cmd
|
||||
import utils
|
||||
from memory import get_memory, get_supported_memory_backends
|
||||
import chat
|
||||
from colorama import Fore, Style
|
||||
from spinner import Spinner
|
||||
import time
|
||||
import speak
|
||||
from config import Config
|
||||
from json_parser import fix_and_parse_json
|
||||
from ai_config import AIConfig
|
||||
import json
|
||||
import traceback
|
||||
import yaml
|
||||
import argparse
|
||||
from tkinter.ttk import Style
|
||||
|
||||
from colorama import Fore
|
||||
|
||||
import chat
|
||||
from config import Config
|
||||
from logger import logger
|
||||
import logging
|
||||
from prompt import get_prompt
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
def check_openai_api_key():
|
||||
"""Check if the OpenAI API key is set in config.py or as an environment variable."""
|
||||
if not cfg.openai_api_key:
|
||||
print(
|
||||
Fore.RED +
|
||||
"Please set your OpenAI API key in .env or as an environment variable."
|
||||
)
|
||||
print("You can get your key from https://beta.openai.com/account/api-keys")
|
||||
exit(1)
|
||||
|
||||
|
||||
def attempt_to_fix_json_by_finding_outermost_brackets(json_string):
|
||||
if cfg.speak_mode and cfg.debug_mode:
|
||||
speak.say_text("I have received an invalid JSON response from the OpenAI API. Trying to fix it now.")
|
||||
logger.typewriter_log("Attempting to fix JSON by finding outermost brackets\n")
|
||||
|
||||
try:
|
||||
# Use regex to search for JSON objects
|
||||
import regex
|
||||
json_pattern = regex.compile(r"\{(?:[^{}]|(?R))*\}")
|
||||
json_match = json_pattern.search(json_string)
|
||||
|
||||
if json_match:
|
||||
# Extract the valid JSON object from the string
|
||||
json_string = json_match.group(0)
|
||||
logger.typewriter_log(title="Apparently json was fixed.", title_color=Fore.GREEN)
|
||||
if cfg.speak_mode and cfg.debug_mode:
|
||||
speak.say_text("Apparently json was fixed.")
|
||||
else:
|
||||
raise ValueError("No valid JSON object found")
|
||||
|
||||
except (json.JSONDecodeError, ValueError) as e:
|
||||
if cfg.speak_mode:
|
||||
speak.say_text("Didn't work. I will have to ignore this response then.")
|
||||
logger.error("Error: Invalid JSON, setting it to empty JSON now.\n")
|
||||
json_string = {}
|
||||
|
||||
return json_string
|
||||
|
||||
|
||||
def print_assistant_thoughts(assistant_reply):
|
||||
"""Prints the assistant's thoughts to the console"""
|
||||
global ai_name
|
||||
global cfg
|
||||
try:
|
||||
try:
|
||||
# Parse and print Assistant response
|
||||
assistant_reply_json = fix_and_parse_json(assistant_reply)
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error("Error: Invalid JSON in assistant thoughts\n", assistant_reply)
|
||||
assistant_reply_json = attempt_to_fix_json_by_finding_outermost_brackets(assistant_reply)
|
||||
assistant_reply_json = fix_and_parse_json(assistant_reply_json)
|
||||
|
||||
# Check if assistant_reply_json is a string and attempt to parse it into a JSON object
|
||||
if isinstance(assistant_reply_json, str):
|
||||
try:
|
||||
assistant_reply_json = json.loads(assistant_reply_json)
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error("Error: Invalid JSON\n", assistant_reply)
|
||||
assistant_reply_json = attempt_to_fix_json_by_finding_outermost_brackets(assistant_reply_json)
|
||||
|
||||
assistant_thoughts_reasoning = None
|
||||
assistant_thoughts_plan = None
|
||||
assistant_thoughts_speak = None
|
||||
assistant_thoughts_criticism = None
|
||||
assistant_thoughts = assistant_reply_json.get("thoughts", {})
|
||||
assistant_thoughts_text = assistant_thoughts.get("text")
|
||||
|
||||
if assistant_thoughts:
|
||||
assistant_thoughts_reasoning = assistant_thoughts.get("reasoning")
|
||||
assistant_thoughts_plan = assistant_thoughts.get("plan")
|
||||
assistant_thoughts_criticism = assistant_thoughts.get("criticism")
|
||||
assistant_thoughts_speak = assistant_thoughts.get("speak")
|
||||
|
||||
logger.typewriter_log(f"{ai_name.upper()} THOUGHTS:", Fore.YELLOW, assistant_thoughts_text)
|
||||
logger.typewriter_log("REASONING:", Fore.YELLOW, assistant_thoughts_reasoning)
|
||||
|
||||
if assistant_thoughts_plan:
|
||||
logger.typewriter_log("PLAN:", Fore.YELLOW, "")
|
||||
# If it's a list, join it into a string
|
||||
if isinstance(assistant_thoughts_plan, list):
|
||||
assistant_thoughts_plan = "\n".join(assistant_thoughts_plan)
|
||||
elif isinstance(assistant_thoughts_plan, dict):
|
||||
assistant_thoughts_plan = str(assistant_thoughts_plan)
|
||||
|
||||
# Split the input_string using the newline character and dashes
|
||||
lines = assistant_thoughts_plan.split('\n')
|
||||
for line in lines:
|
||||
line = line.lstrip("- ")
|
||||
logger.typewriter_log("- ", Fore.GREEN, line.strip())
|
||||
|
||||
logger.typewriter_log("CRITICISM:", Fore.YELLOW, assistant_thoughts_criticism)
|
||||
# Speak the assistant's thoughts
|
||||
if cfg.speak_mode and assistant_thoughts_speak:
|
||||
speak.say_text(assistant_thoughts_speak)
|
||||
|
||||
return assistant_reply_json
|
||||
except json.decoder.JSONDecodeError as e:
|
||||
logger.error("Error: Invalid JSON\n", assistant_reply)
|
||||
if cfg.speak_mode:
|
||||
speak.say_text("I have received an invalid JSON response from the OpenAI API. I cannot ignore this response.")
|
||||
|
||||
# All other errors, return "Error: + error message"
|
||||
except Exception as e:
|
||||
call_stack = traceback.format_exc()
|
||||
logger.error("Error: \n", call_stack)
|
||||
|
||||
|
||||
def construct_prompt():
|
||||
"""Construct the prompt for the AI to respond to"""
|
||||
config = AIConfig.load(cfg.ai_settings_file)
|
||||
if cfg.skip_reprompt and config.ai_name:
|
||||
logger.typewriter_log("Name :", Fore.GREEN, config.ai_name)
|
||||
logger.typewriter_log("Role :", Fore.GREEN, config.ai_role)
|
||||
logger.typewriter_log("Goals:", Fore.GREEN, config.ai_goals)
|
||||
elif config.ai_name:
|
||||
logger.typewriter_log(
|
||||
f"Welcome back! ",
|
||||
Fore.GREEN,
|
||||
f"Would you like me to return to being {config.ai_name}?",
|
||||
speak_text=True)
|
||||
should_continue = utils.clean_input(f"""Continue with the last settings?
|
||||
Name: {config.ai_name}
|
||||
Role: {config.ai_role}
|
||||
Goals: {config.ai_goals}
|
||||
Continue (y/n): """)
|
||||
if should_continue.lower() == "n":
|
||||
config = AIConfig()
|
||||
|
||||
if not config.ai_name:
|
||||
config = prompt_user()
|
||||
config.save()
|
||||
|
||||
# Get rid of this global:
|
||||
global ai_name
|
||||
ai_name = config.ai_name
|
||||
|
||||
full_prompt = config.construct_full_prompt()
|
||||
return full_prompt
|
||||
|
||||
|
||||
def prompt_user():
|
||||
"""Prompt the user for input"""
|
||||
ai_name = ""
|
||||
# Construct the prompt
|
||||
logger.typewriter_log(
|
||||
"Welcome to Auto-GPT! ",
|
||||
Fore.GREEN,
|
||||
"Enter the name of your AI and its role below. Entering nothing will load defaults.",
|
||||
speak_text=True)
|
||||
|
||||
# Get AI Name from User
|
||||
logger.typewriter_log(
|
||||
"Name your AI: ",
|
||||
Fore.GREEN,
|
||||
"For example, 'Entrepreneur-GPT'")
|
||||
ai_name = utils.clean_input("AI Name: ")
|
||||
if ai_name == "":
|
||||
ai_name = "Entrepreneur-GPT"
|
||||
|
||||
logger.typewriter_log(
|
||||
f"{ai_name} here!",
|
||||
Fore.LIGHTBLUE_EX,
|
||||
"I am at your service.",
|
||||
speak_text=True)
|
||||
|
||||
# Get AI Role from User
|
||||
logger.typewriter_log(
|
||||
"Describe your AI's role: ",
|
||||
Fore.GREEN,
|
||||
"For example, 'an AI designed to autonomously develop and run businesses with the sole goal of increasing your net worth.'")
|
||||
ai_role = utils.clean_input(f"{ai_name} is: ")
|
||||
if ai_role == "":
|
||||
ai_role = "an AI designed to autonomously develop and run businesses with the sole goal of increasing your net worth."
|
||||
|
||||
# Enter up to 5 goals for the AI
|
||||
logger.typewriter_log(
|
||||
"Enter up to 5 goals for your AI: ",
|
||||
Fore.GREEN,
|
||||
"For example: \nIncrease net worth, Grow Twitter Account, Develop and manage multiple businesses autonomously'")
|
||||
print("Enter nothing to load defaults, enter nothing when finished.", flush=True)
|
||||
ai_goals = []
|
||||
for i in range(5):
|
||||
ai_goal = utils.clean_input(f"{Fore.LIGHTBLUE_EX}Goal{Style.RESET_ALL} {i+1}: ")
|
||||
if ai_goal == "":
|
||||
break
|
||||
ai_goals.append(ai_goal)
|
||||
if len(ai_goals) == 0:
|
||||
ai_goals = ["Increase net worth", "Grow Twitter Account",
|
||||
"Develop and manage multiple businesses autonomously"]
|
||||
|
||||
config = AIConfig(ai_name, ai_role, ai_goals)
|
||||
return config
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
"""Parses the arguments passed to the script"""
|
||||
global cfg
|
||||
cfg.set_debug_mode(False)
|
||||
cfg.set_continuous_mode(False)
|
||||
cfg.set_speak_mode(False)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Process arguments.')
|
||||
parser.add_argument('--continuous', '-c', action='store_true', help='Enable Continuous Mode')
|
||||
parser.add_argument('--continuous-limit', '-l', type=int, dest="continuous_limit", help='Defines the number of times to run in continuous mode')
|
||||
parser.add_argument('--speak', action='store_true', help='Enable Speak Mode')
|
||||
parser.add_argument('--debug', action='store_true', help='Enable Debug Mode')
|
||||
parser.add_argument('--gpt3only', action='store_true', help='Enable GPT3.5 Only Mode')
|
||||
parser.add_argument('--gpt4only', action='store_true', help='Enable GPT4 Only Mode')
|
||||
parser.add_argument('--use-memory', '-m', dest="memory_type", help='Defines which Memory backend to use')
|
||||
parser.add_argument('--skip-reprompt', '-y', dest='skip_reprompt', action='store_true', help='Skips the re-prompting messages at the beginning of the script')
|
||||
parser.add_argument('--ai-settings', '-C', dest='ai_settings_file', help="Specifies which ai_settings.yaml file to use, will also automatically skip the re-prompt.")
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.debug:
|
||||
logger.typewriter_log("Debug Mode: ", Fore.GREEN, "ENABLED")
|
||||
cfg.set_debug_mode(True)
|
||||
|
||||
if args.continuous:
|
||||
logger.typewriter_log("Continuous Mode: ", Fore.RED, "ENABLED")
|
||||
logger.typewriter_log(
|
||||
"WARNING: ",
|
||||
Fore.RED,
|
||||
"Continuous mode is not recommended. It is potentially dangerous and may cause your AI to run forever or carry out actions you would not usually authorise. Use at your own risk.")
|
||||
cfg.set_continuous_mode(True)
|
||||
|
||||
if args.continuous_limit:
|
||||
logger.typewriter_log(
|
||||
"Continuous Limit: ",
|
||||
Fore.GREEN,
|
||||
f"{args.continuous_limit}")
|
||||
cfg.set_continuous_limit(args.continuous_limit)
|
||||
|
||||
# Check if continuous limit is used without continuous mode
|
||||
if args.continuous_limit and not args.continuous:
|
||||
parser.error("--continuous-limit can only be used with --continuous")
|
||||
|
||||
if args.speak:
|
||||
logger.typewriter_log("Speak Mode: ", Fore.GREEN, "ENABLED")
|
||||
cfg.set_speak_mode(True)
|
||||
|
||||
if args.gpt3only:
|
||||
logger.typewriter_log("GPT3.5 Only Mode: ", Fore.GREEN, "ENABLED")
|
||||
cfg.set_smart_llm_model(cfg.fast_llm_model)
|
||||
|
||||
if args.gpt4only:
|
||||
logger.typewriter_log("GPT4 Only Mode: ", Fore.GREEN, "ENABLED")
|
||||
cfg.set_fast_llm_model(cfg.smart_llm_model)
|
||||
|
||||
if args.memory_type:
|
||||
supported_memory = get_supported_memory_backends()
|
||||
chosen = args.memory_type
|
||||
if not chosen in supported_memory:
|
||||
logger.typewriter_log("ONLY THE FOLLOWING MEMORY BACKENDS ARE SUPPORTED: ", Fore.RED, f'{supported_memory}')
|
||||
logger.typewriter_log(f"Defaulting to: ", Fore.YELLOW, cfg.memory_backend)
|
||||
else:
|
||||
cfg.memory_backend = chosen
|
||||
|
||||
if args.skip_reprompt:
|
||||
logger.typewriter_log("Skip Re-prompt: ", Fore.GREEN, "ENABLED")
|
||||
cfg.skip_reprompt = True
|
||||
|
||||
if args.ai_settings_file:
|
||||
file = args.ai_settings_file
|
||||
|
||||
# Validate file
|
||||
(validated, message) = utils.validate_yaml_file(file)
|
||||
if not validated:
|
||||
logger.typewriter_log("FAILED FILE VALIDATION", Fore.RED, message)
|
||||
logger.double_check()
|
||||
exit(1)
|
||||
|
||||
logger.typewriter_log("Using AI Settings File:", Fore.GREEN, file)
|
||||
cfg.ai_settings_file = file
|
||||
cfg.skip_reprompt = True
|
||||
|
||||
|
||||
def main():
|
||||
global ai_name, memory
|
||||
# TODO: fill in llm values here
|
||||
check_openai_api_key()
|
||||
parse_arguments()
|
||||
logger.set_level(logging.DEBUG if cfg.debug_mode else logging.INFO)
|
||||
ai_name = ""
|
||||
prompt = construct_prompt()
|
||||
# print(prompt)
|
||||
# Initialize variables
|
||||
full_message_history = []
|
||||
result = None
|
||||
next_action_count = 0
|
||||
# Make a constant:
|
||||
user_input = "Determine which next command to use, and respond using the format specified above:"
|
||||
# Initialize memory and make sure it is empty.
|
||||
# this is particularly important for indexing and referencing pinecone memory
|
||||
memory = get_memory(cfg, init=True)
|
||||
print('Using memory of type: ' + memory.__class__.__name__)
|
||||
agent = Agent(
|
||||
ai_name=ai_name,
|
||||
memory=memory,
|
||||
full_message_history=full_message_history,
|
||||
next_action_count=next_action_count,
|
||||
prompt=prompt,
|
||||
user_input=user_input
|
||||
)
|
||||
agent.start_interaction_loop()
|
||||
import speak
|
||||
from spinner import Spinner
|
||||
|
||||
|
||||
class Agent:
|
||||
@@ -356,6 +40,7 @@ class Agent:
|
||||
|
||||
def start_interaction_loop(self):
|
||||
# Interaction Loop
|
||||
cfg = Config()
|
||||
loop_count = 0
|
||||
while True:
|
||||
# Discontinue if continuous limit is reached
|
||||
@@ -461,5 +146,100 @@ class Agent:
|
||||
logger.typewriter_log("SYSTEM: ", Fore.YELLOW, "Unable to execute command")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
def attempt_to_fix_json_by_finding_outermost_brackets(json_string):
|
||||
cfg = Config()
|
||||
if cfg.speak_mode and cfg.debug_mode:
|
||||
speak.say_text("I have received an invalid JSON response from the OpenAI API. Trying to fix it now.")
|
||||
logger.typewriter_log("Attempting to fix JSON by finding outermost brackets\n")
|
||||
|
||||
try:
|
||||
# Use regex to search for JSON objects
|
||||
import regex
|
||||
json_pattern = regex.compile(r"\{(?:[^{}]|(?R))*\}")
|
||||
json_match = json_pattern.search(json_string)
|
||||
|
||||
if json_match:
|
||||
# Extract the valid JSON object from the string
|
||||
json_string = json_match.group(0)
|
||||
logger.typewriter_log(title="Apparently json was fixed.", title_color=Fore.GREEN)
|
||||
if cfg.speak_mode and cfg.debug_mode:
|
||||
speak.say_text("Apparently json was fixed.")
|
||||
else:
|
||||
raise ValueError("No valid JSON object found")
|
||||
|
||||
except (json.JSONDecodeError, ValueError) as e:
|
||||
if cfg.speak_mode:
|
||||
speak.say_text("Didn't work. I will have to ignore this response then.")
|
||||
logger.error("Error: Invalid JSON, setting it to empty JSON now.\n")
|
||||
json_string = {}
|
||||
|
||||
return json_string
|
||||
|
||||
|
||||
def print_assistant_thoughts(assistant_reply):
|
||||
"""Prints the assistant's thoughts to the console"""
|
||||
global ai_name
|
||||
global cfg
|
||||
cfg = Config()
|
||||
try:
|
||||
try:
|
||||
# Parse and print Assistant response
|
||||
assistant_reply_json = fix_and_parse_json(assistant_reply)
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error("Error: Invalid JSON in assistant thoughts\n", assistant_reply)
|
||||
assistant_reply_json = attempt_to_fix_json_by_finding_outermost_brackets(assistant_reply)
|
||||
assistant_reply_json = fix_and_parse_json(assistant_reply_json)
|
||||
|
||||
# Check if assistant_reply_json is a string and attempt to parse it into a JSON object
|
||||
if isinstance(assistant_reply_json, str):
|
||||
try:
|
||||
assistant_reply_json = json.loads(assistant_reply_json)
|
||||
except json.JSONDecodeError as e:
|
||||
logger.error("Error: Invalid JSON\n", assistant_reply)
|
||||
assistant_reply_json = attempt_to_fix_json_by_finding_outermost_brackets(assistant_reply_json)
|
||||
|
||||
assistant_thoughts_reasoning = None
|
||||
assistant_thoughts_plan = None
|
||||
assistant_thoughts_speak = None
|
||||
assistant_thoughts_criticism = None
|
||||
assistant_thoughts = assistant_reply_json.get("thoughts", {})
|
||||
assistant_thoughts_text = assistant_thoughts.get("text")
|
||||
|
||||
if assistant_thoughts:
|
||||
assistant_thoughts_reasoning = assistant_thoughts.get("reasoning")
|
||||
assistant_thoughts_plan = assistant_thoughts.get("plan")
|
||||
assistant_thoughts_criticism = assistant_thoughts.get("criticism")
|
||||
assistant_thoughts_speak = assistant_thoughts.get("speak")
|
||||
|
||||
logger.typewriter_log(f"{ai_name.upper()} THOUGHTS:", Fore.YELLOW, assistant_thoughts_text)
|
||||
logger.typewriter_log("REASONING:", Fore.YELLOW, assistant_thoughts_reasoning)
|
||||
|
||||
if assistant_thoughts_plan:
|
||||
logger.typewriter_log("PLAN:", Fore.YELLOW, "")
|
||||
# If it's a list, join it into a string
|
||||
if isinstance(assistant_thoughts_plan, list):
|
||||
assistant_thoughts_plan = "\n".join(assistant_thoughts_plan)
|
||||
elif isinstance(assistant_thoughts_plan, dict):
|
||||
assistant_thoughts_plan = str(assistant_thoughts_plan)
|
||||
|
||||
# Split the input_string using the newline character and dashes
|
||||
lines = assistant_thoughts_plan.split('\n')
|
||||
for line in lines:
|
||||
line = line.lstrip("- ")
|
||||
logger.typewriter_log("- ", Fore.GREEN, line.strip())
|
||||
|
||||
logger.typewriter_log("CRITICISM:", Fore.YELLOW, assistant_thoughts_criticism)
|
||||
# Speak the assistant's thoughts
|
||||
if cfg.speak_mode and assistant_thoughts_speak:
|
||||
speak.say_text(assistant_thoughts_speak)
|
||||
|
||||
return assistant_reply_json
|
||||
except json.decoder.JSONDecodeError as e:
|
||||
logger.error("Error: Invalid JSON\n", assistant_reply)
|
||||
if cfg.speak_mode:
|
||||
speak.say_text("I have received an invalid JSON response from the OpenAI API. I cannot ignore this response.")
|
||||
|
||||
# All other errors, return "Error: + error message"
|
||||
except Exception as e:
|
||||
call_stack = traceback.format_exc()
|
||||
logger.error("Error: \n", call_stack)
|
||||
@@ -1,73 +0,0 @@
|
||||
from llm_utils import create_chat_completion
|
||||
|
||||
next_key = 0
|
||||
agents = {} # key, (task, full_message_history, model)
|
||||
|
||||
# Create new GPT agent
|
||||
# TODO: Centralise use of create_chat_completion() to globally enforce token limit
|
||||
|
||||
|
||||
def create_agent(task, prompt, model):
|
||||
"""Create a new agent and return its key"""
|
||||
global next_key
|
||||
global agents
|
||||
|
||||
messages = [{"role": "user", "content": prompt}, ]
|
||||
|
||||
# Start GPT instance
|
||||
agent_reply = create_chat_completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
)
|
||||
|
||||
# Update full message history
|
||||
messages.append({"role": "assistant", "content": agent_reply})
|
||||
|
||||
key = next_key
|
||||
# This is done instead of len(agents) to make keys unique even if agents
|
||||
# are deleted
|
||||
next_key += 1
|
||||
|
||||
agents[key] = (task, messages, model)
|
||||
|
||||
return key, agent_reply
|
||||
|
||||
|
||||
def message_agent(key, message):
|
||||
"""Send a message to an agent and return its response"""
|
||||
global agents
|
||||
|
||||
task, messages, model = agents[int(key)]
|
||||
|
||||
# Add user message to message history before sending to agent
|
||||
messages.append({"role": "user", "content": message})
|
||||
|
||||
# Start GPT instance
|
||||
agent_reply = create_chat_completion(
|
||||
model=model,
|
||||
messages=messages,
|
||||
)
|
||||
|
||||
# Update full message history
|
||||
messages.append({"role": "assistant", "content": agent_reply})
|
||||
|
||||
return agent_reply
|
||||
|
||||
|
||||
def list_agents():
|
||||
"""Return a list of all agents"""
|
||||
global agents
|
||||
|
||||
# Return a list of agent keys and their tasks
|
||||
return [(key, task) for key, (task, _, _) in agents.items()]
|
||||
|
||||
|
||||
def delete_agent(key):
|
||||
"""Delete an agent and return True if successful, False otherwise"""
|
||||
global agents
|
||||
|
||||
try:
|
||||
del agents[int(key)]
|
||||
return True
|
||||
except KeyError:
|
||||
return False
|
||||
@@ -1,95 +0,0 @@
|
||||
import yaml
|
||||
import os
|
||||
from prompt import get_prompt
|
||||
|
||||
|
||||
class AIConfig:
|
||||
"""
|
||||
A class object that contains the configuration information for the AI
|
||||
|
||||
Attributes:
|
||||
ai_name (str): The name of the AI.
|
||||
ai_role (str): The description of the AI's role.
|
||||
ai_goals (list): The list of objectives the AI is supposed to complete.
|
||||
"""
|
||||
|
||||
def __init__(self, ai_name: str="", ai_role: str="", ai_goals: list=[]) -> None:
|
||||
"""
|
||||
Initialize a class instance
|
||||
|
||||
Parameters:
|
||||
ai_name (str): The name of the AI.
|
||||
ai_role (str): The description of the AI's role.
|
||||
ai_goals (list): The list of objectives the AI is supposed to complete.
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
|
||||
self.ai_name = ai_name
|
||||
self.ai_role = ai_role
|
||||
self.ai_goals = ai_goals
|
||||
|
||||
# Soon this will go in a folder where it remembers more stuff about the run(s)
|
||||
SAVE_FILE = os.path.join(os.path.dirname(__file__), '..', 'ai_settings.yaml')
|
||||
|
||||
@classmethod
|
||||
def load(cls: object, config_file: str=SAVE_FILE) -> object:
|
||||
"""
|
||||
Returns class object with parameters (ai_name, ai_role, ai_goals) loaded from yaml file if yaml file exists,
|
||||
else returns class with no parameters.
|
||||
|
||||
Parameters:
|
||||
cls (class object): An AIConfig Class object.
|
||||
config_file (int): The path to the config yaml file. DEFAULT: "../ai_settings.yaml"
|
||||
|
||||
Returns:
|
||||
cls (object): An instance of given cls object
|
||||
"""
|
||||
|
||||
try:
|
||||
with open(config_file, encoding='utf-8') as file:
|
||||
config_params = yaml.load(file, Loader=yaml.FullLoader)
|
||||
except FileNotFoundError:
|
||||
config_params = {}
|
||||
|
||||
ai_name = config_params.get("ai_name", "")
|
||||
ai_role = config_params.get("ai_role", "")
|
||||
ai_goals = config_params.get("ai_goals", [])
|
||||
|
||||
return cls(ai_name, ai_role, ai_goals)
|
||||
|
||||
def save(self, config_file: str=SAVE_FILE) -> None:
|
||||
"""
|
||||
Saves the class parameters to the specified file yaml file path as a yaml file.
|
||||
|
||||
Parameters:
|
||||
config_file(str): The path to the config yaml file. DEFAULT: "../ai_settings.yaml"
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
|
||||
config = {"ai_name": self.ai_name, "ai_role": self.ai_role, "ai_goals": self.ai_goals}
|
||||
with open(config_file, "w", encoding='utf-8') as file:
|
||||
yaml.dump(config, file, allow_unicode=True)
|
||||
|
||||
def construct_full_prompt(self) -> str:
|
||||
"""
|
||||
Returns a prompt to the user with the class information in an organized fashion.
|
||||
|
||||
Parameters:
|
||||
None
|
||||
|
||||
Returns:
|
||||
full_prompt (str): A string containing the initial prompt for the user including the ai_name, ai_role and ai_goals.
|
||||
"""
|
||||
|
||||
prompt_start = """Your decisions must always be made independently without seeking user assistance. Play to your strengths as an LLM and pursue simple strategies with no legal complications."""
|
||||
|
||||
# Construct full prompt
|
||||
full_prompt = f"You are {self.ai_name}, {self.ai_role}\n{prompt_start}\n\nGOALS:\n\n"
|
||||
for i, goal in enumerate(self.ai_goals):
|
||||
full_prompt += f"{i+1}. {goal}\n"
|
||||
|
||||
full_prompt += f"\n\n{get_prompt()}"
|
||||
return full_prompt
|
||||
@@ -1,66 +0,0 @@
|
||||
from typing import List
|
||||
import json
|
||||
from config import Config
|
||||
from call_ai_function import call_ai_function
|
||||
cfg = Config()
|
||||
|
||||
|
||||
def evaluate_code(code: str) -> List[str]:
|
||||
"""
|
||||
A function that takes in a string and returns a response from create chat completion api call.
|
||||
|
||||
Parameters:
|
||||
code (str): Code to be evaluated.
|
||||
Returns:
|
||||
A result string from create chat completion. A list of suggestions to improve the code.
|
||||
"""
|
||||
|
||||
function_string = "def analyze_code(code: str) -> List[str]:"
|
||||
args = [code]
|
||||
description_string = """Analyzes the given code and returns a list of suggestions for improvements."""
|
||||
|
||||
result_string = call_ai_function(function_string, args, description_string)
|
||||
|
||||
return result_string
|
||||
|
||||
|
||||
def improve_code(suggestions: List[str], code: str) -> str:
|
||||
"""
|
||||
A function that takes in code and suggestions and returns a response from create chat completion api call.
|
||||
|
||||
Parameters:
|
||||
suggestions (List): A list of suggestions around what needs to be improved.
|
||||
code (str): Code to be improved.
|
||||
Returns:
|
||||
A result string from create chat completion. Improved code in response.
|
||||
"""
|
||||
|
||||
function_string = (
|
||||
"def generate_improved_code(suggestions: List[str], code: str) -> str:"
|
||||
)
|
||||
args = [json.dumps(suggestions), code]
|
||||
description_string = """Improves the provided code based on the suggestions provided, making no other changes."""
|
||||
|
||||
result_string = call_ai_function(function_string, args, description_string)
|
||||
return result_string
|
||||
|
||||
|
||||
def write_tests(code: str, focus: List[str]) -> str:
|
||||
"""
|
||||
A function that takes in code and focus topics and returns a response from create chat completion api call.
|
||||
|
||||
Parameters:
|
||||
focus (List): A list of suggestions around what needs to be improved.
|
||||
code (str): Code for test cases to be generated against.
|
||||
Returns:
|
||||
A result string from create chat completion. Test cases for the submitted code in response.
|
||||
"""
|
||||
|
||||
function_string = (
|
||||
"def create_test_cases(code: str, focus: Optional[str] = None) -> str:"
|
||||
)
|
||||
args = [code, json.dumps(focus)]
|
||||
description_string = """Generates test cases for the existing code, focusing on specific areas if required."""
|
||||
|
||||
result_string = call_ai_function(function_string, args, description_string)
|
||||
return result_string
|
||||
@@ -1,187 +0,0 @@
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from memory import get_memory
|
||||
from config import Config
|
||||
from llm_utils import create_chat_completion
|
||||
from urllib.parse import urlparse, urljoin
|
||||
|
||||
cfg = Config()
|
||||
memory = get_memory(cfg)
|
||||
|
||||
session = requests.Session()
|
||||
session.headers.update({'User-Agent': cfg.user_agent})
|
||||
|
||||
|
||||
# Function to check if the URL is valid
|
||||
def is_valid_url(url):
|
||||
try:
|
||||
result = urlparse(url)
|
||||
return all([result.scheme, result.netloc])
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
|
||||
# Function to sanitize the URL
|
||||
def sanitize_url(url):
|
||||
return urljoin(url, urlparse(url).path)
|
||||
|
||||
|
||||
# Define and check for local file address prefixes
|
||||
def check_local_file_access(url):
|
||||
local_prefixes = ['file:///', 'file://localhost', 'http://localhost', 'https://localhost']
|
||||
return any(url.startswith(prefix) for prefix in local_prefixes)
|
||||
|
||||
|
||||
def get_response(url, timeout=10):
|
||||
try:
|
||||
# Restrict access to local files
|
||||
if check_local_file_access(url):
|
||||
raise ValueError('Access to local files is restricted')
|
||||
|
||||
# Most basic check if the URL is valid:
|
||||
if not url.startswith('http://') and not url.startswith('https://'):
|
||||
raise ValueError('Invalid URL format')
|
||||
|
||||
sanitized_url = sanitize_url(url)
|
||||
|
||||
response = session.get(sanitized_url, timeout=timeout)
|
||||
|
||||
# Check if the response contains an HTTP error
|
||||
if response.status_code >= 400:
|
||||
return None, "Error: HTTP " + str(response.status_code) + " error"
|
||||
|
||||
return response, None
|
||||
except ValueError as ve:
|
||||
# Handle invalid URL format
|
||||
return None, "Error: " + str(ve)
|
||||
|
||||
except requests.exceptions.RequestException as re:
|
||||
# Handle exceptions related to the HTTP request (e.g., connection errors, timeouts, etc.)
|
||||
return None, "Error: " + str(re)
|
||||
|
||||
|
||||
def scrape_text(url):
|
||||
"""Scrape text from a webpage"""
|
||||
response, error_message = get_response(url)
|
||||
if error_message:
|
||||
return error_message
|
||||
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
|
||||
for script in soup(["script", "style"]):
|
||||
script.extract()
|
||||
|
||||
text = soup.get_text()
|
||||
lines = (line.strip() for line in text.splitlines())
|
||||
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
||||
text = '\n'.join(chunk for chunk in chunks if chunk)
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def extract_hyperlinks(soup):
|
||||
"""Extract hyperlinks from a BeautifulSoup object"""
|
||||
hyperlinks = []
|
||||
for link in soup.find_all('a', href=True):
|
||||
hyperlinks.append((link.text, link['href']))
|
||||
return hyperlinks
|
||||
|
||||
|
||||
def format_hyperlinks(hyperlinks):
|
||||
"""Format hyperlinks into a list of strings"""
|
||||
formatted_links = []
|
||||
for link_text, link_url in hyperlinks:
|
||||
formatted_links.append(f"{link_text} ({link_url})")
|
||||
return formatted_links
|
||||
|
||||
|
||||
def scrape_links(url):
|
||||
"""Scrape links from a webpage"""
|
||||
response, error_message = get_response(url)
|
||||
if error_message:
|
||||
return error_message
|
||||
|
||||
soup = BeautifulSoup(response.text, "html.parser")
|
||||
|
||||
for script in soup(["script", "style"]):
|
||||
script.extract()
|
||||
|
||||
hyperlinks = extract_hyperlinks(soup)
|
||||
|
||||
return format_hyperlinks(hyperlinks)
|
||||
|
||||
|
||||
def split_text(text, max_length=cfg.browse_chunk_max_length):
|
||||
"""Split text into chunks of a maximum length"""
|
||||
paragraphs = text.split("\n")
|
||||
current_length = 0
|
||||
current_chunk = []
|
||||
|
||||
for paragraph in paragraphs:
|
||||
if current_length + len(paragraph) + 1 <= max_length:
|
||||
current_chunk.append(paragraph)
|
||||
current_length += len(paragraph) + 1
|
||||
else:
|
||||
yield "\n".join(current_chunk)
|
||||
current_chunk = [paragraph]
|
||||
current_length = len(paragraph) + 1
|
||||
|
||||
if current_chunk:
|
||||
yield "\n".join(current_chunk)
|
||||
|
||||
|
||||
def create_message(chunk, question):
|
||||
"""Create a message for the user to summarize a chunk of text"""
|
||||
return {
|
||||
"role": "user",
|
||||
"content": f"\"\"\"{chunk}\"\"\" Using the above text, please answer the following question: \"{question}\" -- if the question cannot be answered using the text, please summarize the text."
|
||||
}
|
||||
|
||||
|
||||
def summarize_text(url, text, question):
|
||||
"""Summarize text using the LLM model"""
|
||||
if not text:
|
||||
return "Error: No text to summarize"
|
||||
|
||||
text_length = len(text)
|
||||
print(f"Text length: {text_length} characters")
|
||||
|
||||
summaries = []
|
||||
chunks = list(split_text(text))
|
||||
|
||||
for i, chunk in enumerate(chunks):
|
||||
print(f"Adding chunk {i + 1} / {len(chunks)} to memory")
|
||||
|
||||
memory_to_add = f"Source: {url}\n" \
|
||||
f"Raw content part#{i + 1}: {chunk}"
|
||||
|
||||
memory.add(memory_to_add)
|
||||
|
||||
print(f"Summarizing chunk {i + 1} / {len(chunks)}")
|
||||
messages = [create_message(chunk, question)]
|
||||
|
||||
summary = create_chat_completion(
|
||||
model=cfg.fast_llm_model,
|
||||
messages=messages,
|
||||
max_tokens=cfg.browse_summary_max_token,
|
||||
)
|
||||
summaries.append(summary)
|
||||
print(f"Added chunk {i + 1} summary to memory")
|
||||
|
||||
memory_to_add = f"Source: {url}\n" \
|
||||
f"Content summary part#{i + 1}: {summary}"
|
||||
|
||||
memory.add(memory_to_add)
|
||||
|
||||
print(f"Summarized {len(chunks)} chunks.")
|
||||
|
||||
combined_summary = "\n".join(summaries)
|
||||
messages = [create_message(combined_summary, question)]
|
||||
|
||||
final_summary = create_chat_completion(
|
||||
model=cfg.fast_llm_model,
|
||||
messages=messages,
|
||||
max_tokens=cfg.browse_summary_max_token,
|
||||
)
|
||||
|
||||
return final_summary
|
||||
@@ -1,30 +0,0 @@
|
||||
from config import Config
|
||||
|
||||
cfg = Config()
|
||||
|
||||
from llm_utils import create_chat_completion
|
||||
|
||||
|
||||
# This is a magic function that can do anything with no-code. See
|
||||
# https://github.com/Torantulino/AI-Functions for more info.
|
||||
def call_ai_function(function, args, description, model=None):
|
||||
"""Call an AI function"""
|
||||
if model is None:
|
||||
model = cfg.smart_llm_model
|
||||
# For each arg, if any are None, convert to "None":
|
||||
args = [str(arg) if arg is not None else "None" for arg in args]
|
||||
# parse args to comma separated string
|
||||
args = ", ".join(args)
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": f"You are now the following python function: ```# {description}\n{function}```\n\nOnly respond with your `return` value.",
|
||||
},
|
||||
{"role": "user", "content": args},
|
||||
]
|
||||
|
||||
response = create_chat_completion(
|
||||
model=model, messages=messages, temperature=0
|
||||
)
|
||||
|
||||
return response
|
||||
144
scripts/chat.py
144
scripts/chat.py
@@ -1,144 +0,0 @@
|
||||
import time
|
||||
import openai
|
||||
from dotenv import load_dotenv
|
||||
from config import Config
|
||||
import token_counter
|
||||
from llm_utils import create_chat_completion
|
||||
from logger import logger
|
||||
import logging
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
def create_chat_message(role, content):
|
||||
"""
|
||||
Create a chat message with the given role and content.
|
||||
|
||||
Args:
|
||||
role (str): The role of the message sender, e.g., "system", "user", or "assistant".
|
||||
content (str): The content of the message.
|
||||
|
||||
Returns:
|
||||
dict: A dictionary containing the role and content of the message.
|
||||
"""
|
||||
return {"role": role, "content": content}
|
||||
|
||||
|
||||
def generate_context(prompt, relevant_memory, full_message_history, model):
|
||||
current_context = [
|
||||
create_chat_message(
|
||||
"system", prompt),
|
||||
create_chat_message(
|
||||
"system", f"The current time and date is {time.strftime('%c')}"),
|
||||
create_chat_message(
|
||||
"system", f"This reminds you of these events from your past:\n{relevant_memory}\n\n")]
|
||||
|
||||
# Add messages from the full message history until we reach the token limit
|
||||
next_message_to_add_index = len(full_message_history) - 1
|
||||
insertion_index = len(current_context)
|
||||
# Count the currently used tokens
|
||||
current_tokens_used = token_counter.count_message_tokens(current_context, model)
|
||||
return next_message_to_add_index, current_tokens_used, insertion_index, current_context
|
||||
|
||||
|
||||
# TODO: Change debug from hardcode to argument
|
||||
def chat_with_ai(
|
||||
prompt,
|
||||
user_input,
|
||||
full_message_history,
|
||||
permanent_memory,
|
||||
token_limit):
|
||||
"""Interact with the OpenAI API, sending the prompt, user input, message history, and permanent memory."""
|
||||
while True:
|
||||
try:
|
||||
"""
|
||||
Interact with the OpenAI API, sending the prompt, user input, message history, and permanent memory.
|
||||
|
||||
Args:
|
||||
prompt (str): The prompt explaining the rules to the AI.
|
||||
user_input (str): The input from the user.
|
||||
full_message_history (list): The list of all messages sent between the user and the AI.
|
||||
permanent_memory (Obj): The memory object containing the permanent memory.
|
||||
token_limit (int): The maximum number of tokens allowed in the API call.
|
||||
|
||||
Returns:
|
||||
str: The AI's response.
|
||||
"""
|
||||
model = cfg.fast_llm_model # TODO: Change model from hardcode to argument
|
||||
# Reserve 1000 tokens for the response
|
||||
|
||||
logger.debug(f"Token limit: {token_limit}")
|
||||
send_token_limit = token_limit - 1000
|
||||
|
||||
relevant_memory = '' if len(full_message_history) ==0 else permanent_memory.get_relevant(str(full_message_history[-9:]), 10)
|
||||
|
||||
logger.debug(f'Memory Stats: {permanent_memory.get_stats()}')
|
||||
|
||||
next_message_to_add_index, current_tokens_used, insertion_index, current_context = generate_context(
|
||||
prompt, relevant_memory, full_message_history, model)
|
||||
|
||||
while current_tokens_used > 2500:
|
||||
# remove memories until we are under 2500 tokens
|
||||
relevant_memory = relevant_memory[1:]
|
||||
next_message_to_add_index, current_tokens_used, insertion_index, current_context = generate_context(
|
||||
prompt, relevant_memory, full_message_history, model)
|
||||
|
||||
current_tokens_used += token_counter.count_message_tokens([create_chat_message("user", user_input)], model) # Account for user input (appended later)
|
||||
|
||||
while next_message_to_add_index >= 0:
|
||||
# print (f"CURRENT TOKENS USED: {current_tokens_used}")
|
||||
message_to_add = full_message_history[next_message_to_add_index]
|
||||
|
||||
tokens_to_add = token_counter.count_message_tokens([message_to_add], model)
|
||||
if current_tokens_used + tokens_to_add > send_token_limit:
|
||||
break
|
||||
|
||||
# Add the most recent message to the start of the current context, after the two system prompts.
|
||||
current_context.insert(insertion_index, full_message_history[next_message_to_add_index])
|
||||
|
||||
# Count the currently used tokens
|
||||
current_tokens_used += tokens_to_add
|
||||
|
||||
# Move to the next most recent message in the full message history
|
||||
next_message_to_add_index -= 1
|
||||
|
||||
# Append user input, the length of this is accounted for above
|
||||
current_context.extend([create_chat_message("user", user_input)])
|
||||
|
||||
# Calculate remaining tokens
|
||||
tokens_remaining = token_limit - current_tokens_used
|
||||
# assert tokens_remaining >= 0, "Tokens remaining is negative. This should never happen, please submit a bug report at https://www.github.com/Torantulino/Auto-GPT"
|
||||
|
||||
# Debug print the current context
|
||||
logger.debug(f"Token limit: {token_limit}")
|
||||
logger.debug(f"Send Token Count: {current_tokens_used}")
|
||||
logger.debug(f"Tokens remaining for response: {tokens_remaining}")
|
||||
logger.debug("------------ CONTEXT SENT TO AI ---------------")
|
||||
for message in current_context:
|
||||
# Skip printing the prompt
|
||||
if message["role"] == "system" and message["content"] == prompt:
|
||||
continue
|
||||
logger.debug(f"{message['role'].capitalize()}: {message['content']}")
|
||||
logger.debug("")
|
||||
logger.debug("----------- END OF CONTEXT ----------------")
|
||||
|
||||
# TODO: use a model defined elsewhere, so that model can contain temperature and other settings we care about
|
||||
assistant_reply = create_chat_completion(
|
||||
model=model,
|
||||
messages=current_context,
|
||||
max_tokens=tokens_remaining,
|
||||
)
|
||||
|
||||
# Update full message history
|
||||
full_message_history.append(
|
||||
create_chat_message(
|
||||
"user", user_input))
|
||||
full_message_history.append(
|
||||
create_chat_message(
|
||||
"assistant", assistant_reply))
|
||||
|
||||
return assistant_reply
|
||||
except openai.error.RateLimitError:
|
||||
# TODO: When we switch to langchain, this is built in
|
||||
print("Error: ", "API Rate Limit Reached. Waiting 10 seconds...")
|
||||
time.sleep(10)
|
||||
@@ -1,309 +0,0 @@
|
||||
import browse
|
||||
import json
|
||||
from memory import get_memory
|
||||
import datetime
|
||||
import agent_manager as agents
|
||||
import speak
|
||||
from config import Config
|
||||
import ai_functions as ai
|
||||
from file_operations import read_file, write_to_file, append_to_file, delete_file, search_files
|
||||
from execute_code import execute_python_file, execute_shell
|
||||
from json_parser import fix_and_parse_json
|
||||
from image_gen import generate_image
|
||||
from duckduckgo_search import ddg
|
||||
from googleapiclient.discovery import build
|
||||
from googleapiclient.errors import HttpError
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
def is_valid_int(value):
|
||||
try:
|
||||
int(value)
|
||||
return True
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
|
||||
def get_command(response):
|
||||
"""Parse the response and return the command name and arguments"""
|
||||
try:
|
||||
response_json = fix_and_parse_json(response)
|
||||
|
||||
if "command" not in response_json:
|
||||
return "Error:" , "Missing 'command' object in JSON"
|
||||
|
||||
command = response_json["command"]
|
||||
|
||||
if "name" not in command:
|
||||
return "Error:", "Missing 'name' field in 'command' object"
|
||||
|
||||
command_name = command["name"]
|
||||
|
||||
# Use an empty dictionary if 'args' field is not present in 'command' object
|
||||
arguments = command.get("args", {})
|
||||
|
||||
return command_name, arguments
|
||||
except json.decoder.JSONDecodeError:
|
||||
return "Error:", "Invalid JSON"
|
||||
# All other errors, return "Error: + error message"
|
||||
except Exception as e:
|
||||
return "Error:", str(e)
|
||||
|
||||
|
||||
def execute_command(command_name, arguments):
|
||||
"""Execute the command and return the result"""
|
||||
memory = get_memory(cfg)
|
||||
|
||||
try:
|
||||
if command_name == "google":
|
||||
|
||||
# Check if the Google API key is set and use the official search method
|
||||
# If the API key is not set or has only whitespaces, use the unofficial search method
|
||||
if cfg.google_api_key and (cfg.google_api_key.strip() if cfg.google_api_key else None):
|
||||
return google_official_search(arguments["input"])
|
||||
else:
|
||||
return google_search(arguments["input"])
|
||||
elif command_name == "memory_add":
|
||||
return memory.add(arguments["string"])
|
||||
elif command_name == "start_agent":
|
||||
return start_agent(
|
||||
arguments["name"],
|
||||
arguments["task"],
|
||||
arguments["prompt"])
|
||||
elif command_name == "message_agent":
|
||||
return message_agent(arguments["key"], arguments["message"])
|
||||
elif command_name == "list_agents":
|
||||
return list_agents()
|
||||
elif command_name == "delete_agent":
|
||||
return delete_agent(arguments["key"])
|
||||
elif command_name == "get_text_summary":
|
||||
return get_text_summary(arguments["url"], arguments["question"])
|
||||
elif command_name == "get_hyperlinks":
|
||||
return get_hyperlinks(arguments["url"])
|
||||
elif command_name == "read_file":
|
||||
return read_file(arguments["file"])
|
||||
elif command_name == "write_to_file":
|
||||
return write_to_file(arguments["file"], arguments["text"])
|
||||
elif command_name == "append_to_file":
|
||||
return append_to_file(arguments["file"], arguments["text"])
|
||||
elif command_name == "delete_file":
|
||||
return delete_file(arguments["file"])
|
||||
elif command_name == "search_files":
|
||||
return search_files(arguments["directory"])
|
||||
elif command_name == "browse_website":
|
||||
return browse_website(arguments["url"], arguments["question"])
|
||||
# TODO: Change these to take in a file rather than pasted code, if
|
||||
# non-file is given, return instructions "Input should be a python
|
||||
# filepath, write your code to file and try again"
|
||||
elif command_name == "evaluate_code":
|
||||
return ai.evaluate_code(arguments["code"])
|
||||
elif command_name == "improve_code":
|
||||
return ai.improve_code(arguments["suggestions"], arguments["code"])
|
||||
elif command_name == "write_tests":
|
||||
return ai.write_tests(arguments["code"], arguments.get("focus"))
|
||||
elif command_name == "execute_python_file": # Add this command
|
||||
return execute_python_file(arguments["file"])
|
||||
elif command_name == "execute_shell":
|
||||
if cfg.execute_local_commands:
|
||||
return execute_shell(arguments["command_line"])
|
||||
else:
|
||||
return "You are not allowed to run local shell commands. To execute shell commands, EXECUTE_LOCAL_COMMANDS must be set to 'True' in your config. Do not attempt to bypass the restriction."
|
||||
elif command_name == "generate_image":
|
||||
return generate_image(arguments["prompt"])
|
||||
elif command_name == "do_nothing":
|
||||
return "No action performed."
|
||||
elif command_name == "task_complete":
|
||||
shutdown()
|
||||
else:
|
||||
return f"Unknown command '{command_name}'. Please refer to the 'COMMANDS' list for available commands and only respond in the specified JSON format."
|
||||
# All errors, return "Error: + error message"
|
||||
except Exception as e:
|
||||
return "Error: " + str(e)
|
||||
|
||||
|
||||
def get_datetime():
|
||||
"""Return the current date and time"""
|
||||
return "Current date and time: " + \
|
||||
datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||
|
||||
|
||||
def google_search(query, num_results=8):
|
||||
"""Return the results of a google search"""
|
||||
search_results = []
|
||||
for j in ddg(query, max_results=num_results):
|
||||
search_results.append(j)
|
||||
|
||||
return json.dumps(search_results, ensure_ascii=False, indent=4)
|
||||
|
||||
|
||||
def google_official_search(query, num_results=8):
|
||||
"""Return the results of a google search using the official Google API"""
|
||||
from googleapiclient.discovery import build
|
||||
from googleapiclient.errors import HttpError
|
||||
import json
|
||||
|
||||
try:
|
||||
# Get the Google API key and Custom Search Engine ID from the config file
|
||||
api_key = cfg.google_api_key
|
||||
custom_search_engine_id = cfg.custom_search_engine_id
|
||||
|
||||
# Initialize the Custom Search API service
|
||||
service = build("customsearch", "v1", developerKey=api_key)
|
||||
|
||||
# Send the search query and retrieve the results
|
||||
result = service.cse().list(q=query, cx=custom_search_engine_id, num=num_results).execute()
|
||||
|
||||
# Extract the search result items from the response
|
||||
search_results = result.get("items", [])
|
||||
|
||||
# Create a list of only the URLs from the search results
|
||||
search_results_links = [item["link"] for item in search_results]
|
||||
|
||||
except HttpError as e:
|
||||
# Handle errors in the API call
|
||||
error_details = json.loads(e.content.decode())
|
||||
|
||||
# Check if the error is related to an invalid or missing API key
|
||||
if error_details.get("error", {}).get("code") == 403 and "invalid API key" in error_details.get("error", {}).get("message", ""):
|
||||
return "Error: The provided Google API key is invalid or missing."
|
||||
else:
|
||||
return f"Error: {e}"
|
||||
|
||||
# Return the list of search result URLs
|
||||
return search_results_links
|
||||
|
||||
|
||||
def browse_website(url, question):
|
||||
"""Browse a website and return the summary and links"""
|
||||
summary = get_text_summary(url, question)
|
||||
links = get_hyperlinks(url)
|
||||
|
||||
# Limit links to 5
|
||||
if len(links) > 5:
|
||||
links = links[:5]
|
||||
|
||||
result = f"""Website Content Summary: {summary}\n\nLinks: {links}"""
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def get_text_summary(url, question):
|
||||
"""Return the results of a google search"""
|
||||
text = browse.scrape_text(url)
|
||||
summary = browse.summarize_text(url, text, question)
|
||||
return """ "Result" : """ + summary
|
||||
|
||||
|
||||
def get_hyperlinks(url):
|
||||
"""Return the results of a google search"""
|
||||
link_list = browse.scrape_links(url)
|
||||
return link_list
|
||||
|
||||
|
||||
def commit_memory(string):
|
||||
"""Commit a string to memory"""
|
||||
_text = f"""Committing memory with string "{string}" """
|
||||
mem.permanent_memory.append(string)
|
||||
return _text
|
||||
|
||||
|
||||
def delete_memory(key):
|
||||
"""Delete a memory with a given key"""
|
||||
if key >= 0 and key < len(mem.permanent_memory):
|
||||
_text = "Deleting memory with key " + str(key)
|
||||
del mem.permanent_memory[key]
|
||||
print(_text)
|
||||
return _text
|
||||
else:
|
||||
print("Invalid key, cannot delete memory.")
|
||||
return None
|
||||
|
||||
|
||||
def overwrite_memory(key, string):
|
||||
"""Overwrite a memory with a given key and string"""
|
||||
# Check if the key is a valid integer
|
||||
if is_valid_int(key):
|
||||
key_int = int(key)
|
||||
# Check if the integer key is within the range of the permanent_memory list
|
||||
if 0 <= key_int < len(mem.permanent_memory):
|
||||
_text = "Overwriting memory with key " + str(key) + " and string " + string
|
||||
# Overwrite the memory slot with the given integer key and string
|
||||
mem.permanent_memory[key_int] = string
|
||||
print(_text)
|
||||
return _text
|
||||
else:
|
||||
print(f"Invalid key '{key}', out of range.")
|
||||
return None
|
||||
# Check if the key is a valid string
|
||||
elif isinstance(key, str):
|
||||
_text = "Overwriting memory with key " + key + " and string " + string
|
||||
# Overwrite the memory slot with the given string key and string
|
||||
mem.permanent_memory[key] = string
|
||||
print(_text)
|
||||
return _text
|
||||
else:
|
||||
print(f"Invalid key '{key}', must be an integer or a string.")
|
||||
return None
|
||||
|
||||
|
||||
def shutdown():
|
||||
"""Shut down the program"""
|
||||
print("Shutting down...")
|
||||
quit()
|
||||
|
||||
|
||||
def start_agent(name, task, prompt, model=cfg.fast_llm_model):
|
||||
"""Start an agent with a given name, task, and prompt"""
|
||||
global cfg
|
||||
|
||||
# Remove underscores from name
|
||||
voice_name = name.replace("_", " ")
|
||||
|
||||
first_message = f"""You are {name}. Respond with: "Acknowledged"."""
|
||||
agent_intro = f"{voice_name} here, Reporting for duty!"
|
||||
|
||||
# Create agent
|
||||
if cfg.speak_mode:
|
||||
speak.say_text(agent_intro, 1)
|
||||
key, ack = agents.create_agent(task, first_message, model)
|
||||
|
||||
if cfg.speak_mode:
|
||||
speak.say_text(f"Hello {voice_name}. Your task is as follows. {task}.")
|
||||
|
||||
# Assign task (prompt), get response
|
||||
agent_response = message_agent(key, prompt)
|
||||
|
||||
return f"Agent {name} created with key {key}. First response: {agent_response}"
|
||||
|
||||
|
||||
def message_agent(key, message):
|
||||
"""Message an agent with a given key and message"""
|
||||
global cfg
|
||||
|
||||
# Check if the key is a valid integer
|
||||
if is_valid_int(key):
|
||||
agent_response = agents.message_agent(int(key), message)
|
||||
# Check if the key is a valid string
|
||||
elif isinstance(key, str):
|
||||
agent_response = agents.message_agent(key, message)
|
||||
else:
|
||||
return "Invalid key, must be an integer or a string."
|
||||
|
||||
# Speak response
|
||||
if cfg.speak_mode:
|
||||
speak.say_text(agent_response, 1)
|
||||
return agent_response
|
||||
|
||||
|
||||
def list_agents():
|
||||
"""List all agents"""
|
||||
return agents.list_agents()
|
||||
|
||||
|
||||
def delete_agent(key):
|
||||
"""Delete an agent with a given key"""
|
||||
result = agents.delete_agent(key)
|
||||
if not result:
|
||||
return f"Agent {key} does not exist."
|
||||
return f"Agent {key} deleted."
|
||||
@@ -1,206 +0,0 @@
|
||||
import abc
|
||||
import os
|
||||
import openai
|
||||
import yaml
|
||||
from dotenv import load_dotenv
|
||||
# Load environment variables from .env file
|
||||
load_dotenv()
|
||||
|
||||
|
||||
class Singleton(abc.ABCMeta, type):
|
||||
"""
|
||||
Singleton metaclass for ensuring only one instance of a class.
|
||||
"""
|
||||
|
||||
_instances = {}
|
||||
|
||||
def __call__(cls, *args, **kwargs):
|
||||
"""Call method for the singleton metaclass."""
|
||||
if cls not in cls._instances:
|
||||
cls._instances[cls] = super(
|
||||
Singleton, cls).__call__(
|
||||
*args, **kwargs)
|
||||
return cls._instances[cls]
|
||||
|
||||
|
||||
class AbstractSingleton(abc.ABC, metaclass=Singleton):
|
||||
pass
|
||||
|
||||
|
||||
class Config(metaclass=Singleton):
|
||||
"""
|
||||
Configuration class to store the state of bools for different scripts access.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize the Config class"""
|
||||
self.debug_mode = False
|
||||
self.continuous_mode = False
|
||||
self.continuous_limit = 0
|
||||
self.speak_mode = False
|
||||
self.skip_reprompt = False
|
||||
|
||||
self.ai_settings_file = os.getenv("AI_SETTINGS_FILE", "ai_settings.yaml")
|
||||
self.fast_llm_model = os.getenv("FAST_LLM_MODEL", "gpt-3.5-turbo")
|
||||
self.smart_llm_model = os.getenv("SMART_LLM_MODEL", "gpt-4")
|
||||
self.fast_token_limit = int(os.getenv("FAST_TOKEN_LIMIT", 4000))
|
||||
self.smart_token_limit = int(os.getenv("SMART_TOKEN_LIMIT", 8000))
|
||||
self.browse_chunk_max_length = int(os.getenv("BROWSE_CHUNK_MAX_LENGTH", 8192))
|
||||
self.browse_summary_max_token = int(os.getenv("BROWSE_SUMMARY_MAX_TOKEN", 300))
|
||||
|
||||
self.openai_api_key = os.getenv("OPENAI_API_KEY")
|
||||
self.temperature = float(os.getenv("TEMPERATURE", "1"))
|
||||
self.use_azure = os.getenv("USE_AZURE") == 'True'
|
||||
self.execute_local_commands = os.getenv('EXECUTE_LOCAL_COMMANDS', 'False') == 'True'
|
||||
|
||||
if self.use_azure:
|
||||
self.load_azure_config()
|
||||
openai.api_type = self.openai_api_type
|
||||
openai.api_base = self.openai_api_base
|
||||
openai.api_version = self.openai_api_version
|
||||
|
||||
self.elevenlabs_api_key = os.getenv("ELEVENLABS_API_KEY")
|
||||
self.elevenlabs_voice_1_id = os.getenv("ELEVENLABS_VOICE_1_ID")
|
||||
self.elevenlabs_voice_2_id = os.getenv("ELEVENLABS_VOICE_2_ID")
|
||||
|
||||
self.use_mac_os_tts = False
|
||||
self.use_mac_os_tts = os.getenv("USE_MAC_OS_TTS")
|
||||
|
||||
self.use_brian_tts = False
|
||||
self.use_brian_tts = os.getenv("USE_BRIAN_TTS")
|
||||
|
||||
self.google_api_key = os.getenv("GOOGLE_API_KEY")
|
||||
self.custom_search_engine_id = os.getenv("CUSTOM_SEARCH_ENGINE_ID")
|
||||
|
||||
self.pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
||||
self.pinecone_region = os.getenv("PINECONE_ENV")
|
||||
|
||||
self.image_provider = os.getenv("IMAGE_PROVIDER")
|
||||
self.huggingface_api_token = os.getenv("HUGGINGFACE_API_TOKEN")
|
||||
|
||||
# User agent headers to use when browsing web
|
||||
# Some websites might just completely deny request with an error code if no user agent was found.
|
||||
self.user_agent = os.getenv("USER_AGENT", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36")
|
||||
self.redis_host = os.getenv("REDIS_HOST", "localhost")
|
||||
self.redis_port = os.getenv("REDIS_PORT", "6379")
|
||||
self.redis_password = os.getenv("REDIS_PASSWORD", "")
|
||||
self.wipe_redis_on_start = os.getenv("WIPE_REDIS_ON_START", "True") == 'True'
|
||||
self.memory_index = os.getenv("MEMORY_INDEX", 'auto-gpt')
|
||||
# Note that indexes must be created on db 0 in redis, this is not configurable.
|
||||
|
||||
self.memory_backend = os.getenv("MEMORY_BACKEND", 'local')
|
||||
# Initialize the OpenAI API client
|
||||
openai.api_key = self.openai_api_key
|
||||
|
||||
def get_azure_deployment_id_for_model(self, model: str) -> str:
|
||||
"""
|
||||
Returns the relevant deployment id for the model specified.
|
||||
|
||||
Parameters:
|
||||
model(str): The model to map to the deployment id.
|
||||
|
||||
Returns:
|
||||
The matching deployment id if found, otherwise an empty string.
|
||||
"""
|
||||
if model == self.fast_llm_model:
|
||||
return self.azure_model_to_deployment_id_map["fast_llm_model_deployment_id"]
|
||||
elif model == self.smart_llm_model:
|
||||
return self.azure_model_to_deployment_id_map["smart_llm_model_deployment_id"]
|
||||
elif model == "text-embedding-ada-002":
|
||||
return self.azure_model_to_deployment_id_map["embedding_model_deployment_id"]
|
||||
else:
|
||||
return ""
|
||||
|
||||
AZURE_CONFIG_FILE = os.path.join(os.path.dirname(__file__), '..', 'azure.yaml')
|
||||
|
||||
def load_azure_config(self, config_file: str=AZURE_CONFIG_FILE) -> None:
|
||||
"""
|
||||
Loads the configuration parameters for Azure hosting from the specified file path as a yaml file.
|
||||
|
||||
Parameters:
|
||||
config_file(str): The path to the config yaml file. DEFAULT: "../azure.yaml"
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
try:
|
||||
with open(config_file) as file:
|
||||
config_params = yaml.load(file, Loader=yaml.FullLoader)
|
||||
except FileNotFoundError:
|
||||
config_params = {}
|
||||
self.openai_api_type = os.getenv("OPENAI_API_TYPE", config_params.get("azure_api_type", "azure"))
|
||||
self.openai_api_base = os.getenv("OPENAI_AZURE_API_BASE", config_params.get("azure_api_base", ""))
|
||||
self.openai_api_version = os.getenv("OPENAI_AZURE_API_VERSION", config_params.get("azure_api_version", ""))
|
||||
self.azure_model_to_deployment_id_map = config_params.get("azure_model_map", [])
|
||||
|
||||
def set_continuous_mode(self, value: bool):
|
||||
"""Set the continuous mode value."""
|
||||
self.continuous_mode = value
|
||||
|
||||
def set_continuous_limit(self, value: int):
|
||||
"""Set the continuous limit value."""
|
||||
self.continuous_limit = value
|
||||
|
||||
def set_speak_mode(self, value: bool):
|
||||
"""Set the speak mode value."""
|
||||
self.speak_mode = value
|
||||
|
||||
def set_fast_llm_model(self, value: str):
|
||||
"""Set the fast LLM model value."""
|
||||
self.fast_llm_model = value
|
||||
|
||||
def set_smart_llm_model(self, value: str):
|
||||
"""Set the smart LLM model value."""
|
||||
self.smart_llm_model = value
|
||||
|
||||
def set_fast_token_limit(self, value: int):
|
||||
"""Set the fast token limit value."""
|
||||
self.fast_token_limit = value
|
||||
|
||||
def set_smart_token_limit(self, value: int):
|
||||
"""Set the smart token limit value."""
|
||||
self.smart_token_limit = value
|
||||
|
||||
def set_browse_chunk_max_length(self, value: int):
|
||||
"""Set the browse_website command chunk max length value."""
|
||||
self.browse_chunk_max_length = value
|
||||
|
||||
def set_browse_summary_max_token(self, value: int):
|
||||
"""Set the browse_website command summary max token value."""
|
||||
self.browse_summary_max_token = value
|
||||
|
||||
def set_openai_api_key(self, value: str):
|
||||
"""Set the OpenAI API key value."""
|
||||
self.openai_api_key = value
|
||||
|
||||
def set_elevenlabs_api_key(self, value: str):
|
||||
"""Set the ElevenLabs API key value."""
|
||||
self.elevenlabs_api_key = value
|
||||
|
||||
def set_elevenlabs_voice_1_id(self, value: str):
|
||||
"""Set the ElevenLabs Voice 1 ID value."""
|
||||
self.elevenlabs_voice_1_id = value
|
||||
|
||||
def set_elevenlabs_voice_2_id(self, value: str):
|
||||
"""Set the ElevenLabs Voice 2 ID value."""
|
||||
self.elevenlabs_voice_2_id = value
|
||||
|
||||
def set_google_api_key(self, value: str):
|
||||
"""Set the Google API key value."""
|
||||
self.google_api_key = value
|
||||
|
||||
def set_custom_search_engine_id(self, value: str):
|
||||
"""Set the custom search engine id value."""
|
||||
self.custom_search_engine_id = value
|
||||
|
||||
def set_pinecone_api_key(self, value: str):
|
||||
"""Set the Pinecone API key value."""
|
||||
self.pinecone_api_key = value
|
||||
|
||||
def set_pinecone_region(self, value: str):
|
||||
"""Set the Pinecone region value."""
|
||||
self.pinecone_region = value
|
||||
|
||||
def set_debug_mode(self, value: bool):
|
||||
"""Set the debug mode value."""
|
||||
self.debug_mode = value
|
||||
@@ -1,70 +0,0 @@
|
||||
import argparse
|
||||
import logging
|
||||
from config import Config
|
||||
from memory import get_memory
|
||||
from file_operations import ingest_file, search_files
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
def configure_logging():
|
||||
logging.basicConfig(filename='log-ingestion.txt',
|
||||
filemode='a',
|
||||
format='%(asctime)s,%(msecs)d %(name)s %(levelname)s %(message)s',
|
||||
datefmt='%H:%M:%S',
|
||||
level=logging.DEBUG)
|
||||
return logging.getLogger('AutoGPT-Ingestion')
|
||||
|
||||
|
||||
def ingest_directory(directory, memory, args):
|
||||
"""
|
||||
Ingest all files in a directory by calling the ingest_file function for each file.
|
||||
|
||||
:param directory: The directory containing the files to ingest
|
||||
:param memory: An object with an add() method to store the chunks in memory
|
||||
"""
|
||||
try:
|
||||
files = search_files(directory)
|
||||
for file in files:
|
||||
ingest_file(file, memory, args.max_length, args.overlap)
|
||||
except Exception as e:
|
||||
print(f"Error while ingesting directory '{directory}': {str(e)}")
|
||||
|
||||
|
||||
def main():
|
||||
logger = configure_logging()
|
||||
|
||||
parser = argparse.ArgumentParser(description="Ingest a file or a directory with multiple files into memory. Make sure to set your .env before running this script.")
|
||||
group = parser.add_mutually_exclusive_group(required=True)
|
||||
group.add_argument("--file", type=str, help="The file to ingest.")
|
||||
group.add_argument("--dir", type=str, help="The directory containing the files to ingest.")
|
||||
parser.add_argument("--init", action='store_true', help="Init the memory and wipe its content (default: False)", default=False)
|
||||
parser.add_argument("--overlap", type=int, help="The overlap size between chunks when ingesting files (default: 200)", default=200)
|
||||
parser.add_argument("--max_length", type=int, help="The max_length of each chunk when ingesting files (default: 4000)", default=4000)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Initialize memory
|
||||
memory = get_memory(cfg, init=args.init)
|
||||
print('Using memory of type: ' + memory.__class__.__name__)
|
||||
|
||||
if args.file:
|
||||
try:
|
||||
ingest_file(args.file, memory, args.max_length, args.overlap)
|
||||
print(f"File '{args.file}' ingested successfully.")
|
||||
except Exception as e:
|
||||
logger.error(f"Error while ingesting file '{args.file}': {str(e)}")
|
||||
print(f"Error while ingesting file '{args.file}': {str(e)}")
|
||||
elif args.dir:
|
||||
try:
|
||||
ingest_directory(args.dir, memory, args)
|
||||
print(f"Directory '{args.dir}' ingested successfully.")
|
||||
except Exception as e:
|
||||
logger.error(f"Error while ingesting directory '{args.dir}': {str(e)}")
|
||||
print(f"Error while ingesting directory '{args.dir}': {str(e)}")
|
||||
else:
|
||||
print("Please provide either a file path (--file) or a directory name (--dir) inside the auto_gpt_workspace directory as input.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,99 +0,0 @@
|
||||
import docker
|
||||
import os
|
||||
import subprocess
|
||||
|
||||
|
||||
WORKSPACE_FOLDER = "auto_gpt_workspace"
|
||||
|
||||
|
||||
def execute_python_file(file):
|
||||
"""Execute a Python file in a Docker container and return the output"""
|
||||
|
||||
print (f"Executing file '{file}' in workspace '{WORKSPACE_FOLDER}'")
|
||||
|
||||
if not file.endswith(".py"):
|
||||
return "Error: Invalid file type. Only .py files are allowed."
|
||||
|
||||
file_path = os.path.join(WORKSPACE_FOLDER, file)
|
||||
|
||||
if not os.path.isfile(file_path):
|
||||
return f"Error: File '{file}' does not exist."
|
||||
|
||||
if we_are_running_in_a_docker_container():
|
||||
result = subprocess.run(f'python {file_path}', capture_output=True, encoding="utf8", shell=True)
|
||||
if result.returncode == 0:
|
||||
return result.stdout
|
||||
else:
|
||||
return f"Error: {result.stderr}"
|
||||
else:
|
||||
try:
|
||||
client = docker.from_env()
|
||||
|
||||
image_name = 'python:3.10'
|
||||
try:
|
||||
client.images.get(image_name)
|
||||
print(f"Image '{image_name}' found locally")
|
||||
except docker.errors.ImageNotFound:
|
||||
print(f"Image '{image_name}' not found locally, pulling from Docker Hub")
|
||||
# Use the low-level API to stream the pull response
|
||||
low_level_client = docker.APIClient()
|
||||
for line in low_level_client.pull(image_name, stream=True, decode=True):
|
||||
# Print the status and progress, if available
|
||||
status = line.get('status')
|
||||
progress = line.get('progress')
|
||||
if status and progress:
|
||||
print(f"{status}: {progress}")
|
||||
elif status:
|
||||
print(status)
|
||||
|
||||
# You can replace 'python:3.8' with the desired Python image/version
|
||||
# You can find available Python images on Docker Hub:
|
||||
# https://hub.docker.com/_/python
|
||||
container = client.containers.run(
|
||||
image_name,
|
||||
f'python {file}',
|
||||
volumes={
|
||||
os.path.abspath(WORKSPACE_FOLDER): {
|
||||
'bind': '/workspace',
|
||||
'mode': 'ro'}},
|
||||
working_dir='/workspace',
|
||||
stderr=True,
|
||||
stdout=True,
|
||||
detach=True,
|
||||
)
|
||||
|
||||
output = container.wait()
|
||||
logs = container.logs().decode('utf-8')
|
||||
container.remove()
|
||||
|
||||
# print(f"Execution complete. Output: {output}")
|
||||
# print(f"Logs: {logs}")
|
||||
|
||||
return logs
|
||||
|
||||
except Exception as e:
|
||||
return f"Error: {str(e)}"
|
||||
|
||||
|
||||
def execute_shell(command_line):
|
||||
|
||||
current_dir = os.getcwd()
|
||||
|
||||
if not WORKSPACE_FOLDER in current_dir: # Change dir into workspace if necessary
|
||||
work_dir = os.path.join(os.getcwd(), WORKSPACE_FOLDER)
|
||||
os.chdir(work_dir)
|
||||
|
||||
print (f"Executing command '{command_line}' in working directory '{os.getcwd()}'")
|
||||
|
||||
result = subprocess.run(command_line, capture_output=True, shell=True)
|
||||
output = f"STDOUT:\n{result.stdout}\nSTDERR:\n{result.stderr}"
|
||||
|
||||
# Change back to whatever the prior working dir was
|
||||
|
||||
os.chdir(current_dir)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def we_are_running_in_a_docker_container():
|
||||
os.path.exists('/.dockerenv')
|
||||
@@ -1,138 +0,0 @@
|
||||
import os
|
||||
import os.path
|
||||
|
||||
# Set a dedicated folder for file I/O
|
||||
working_directory = "auto_gpt_workspace"
|
||||
|
||||
# Create the directory if it doesn't exist
|
||||
if not os.path.exists(working_directory):
|
||||
os.makedirs(working_directory)
|
||||
|
||||
|
||||
def safe_join(base, *paths):
|
||||
"""Join one or more path components intelligently."""
|
||||
new_path = os.path.join(base, *paths)
|
||||
norm_new_path = os.path.normpath(new_path)
|
||||
|
||||
if os.path.commonprefix([base, norm_new_path]) != base:
|
||||
raise ValueError("Attempted to access outside of working directory.")
|
||||
|
||||
return norm_new_path
|
||||
|
||||
|
||||
def split_file(content, max_length=4000, overlap=0):
|
||||
"""
|
||||
Split text into chunks of a specified maximum length with a specified overlap
|
||||
between chunks.
|
||||
|
||||
:param text: The input text to be split into chunks
|
||||
:param max_length: The maximum length of each chunk, default is 4000 (about 1k token)
|
||||
:param overlap: The number of overlapping characters between chunks, default is no overlap
|
||||
:return: A generator yielding chunks of text
|
||||
"""
|
||||
start = 0
|
||||
content_length = len(content)
|
||||
|
||||
while start < content_length:
|
||||
end = start + max_length
|
||||
if end + overlap < content_length:
|
||||
chunk = content[start:end+overlap]
|
||||
else:
|
||||
chunk = content[start:content_length]
|
||||
yield chunk
|
||||
start += max_length - overlap
|
||||
|
||||
|
||||
def read_file(filename):
|
||||
"""Read a file and return the contents"""
|
||||
try:
|
||||
filepath = safe_join(working_directory, filename)
|
||||
with open(filepath, "r", encoding='utf-8') as f:
|
||||
content = f.read()
|
||||
return content
|
||||
except Exception as e:
|
||||
return "Error: " + str(e)
|
||||
|
||||
|
||||
def ingest_file(filename, memory, max_length=4000, overlap=200):
|
||||
"""
|
||||
Ingest a file by reading its content, splitting it into chunks with a specified
|
||||
maximum length and overlap, and adding the chunks to the memory storage.
|
||||
|
||||
:param filename: The name of the file to ingest
|
||||
:param memory: An object with an add() method to store the chunks in memory
|
||||
:param max_length: The maximum length of each chunk, default is 4000
|
||||
:param overlap: The number of overlapping characters between chunks, default is 200
|
||||
"""
|
||||
try:
|
||||
print(f"Working with file {filename}")
|
||||
content = read_file(filename)
|
||||
content_length = len(content)
|
||||
print(f"File length: {content_length} characters")
|
||||
|
||||
chunks = list(split_file(content, max_length=max_length, overlap=overlap))
|
||||
|
||||
num_chunks = len(chunks)
|
||||
for i, chunk in enumerate(chunks):
|
||||
print(f"Ingesting chunk {i + 1} / {num_chunks} into memory")
|
||||
memory_to_add = f"Filename: {filename}\n" \
|
||||
f"Content part#{i + 1}/{num_chunks}: {chunk}"
|
||||
|
||||
memory.add(memory_to_add)
|
||||
|
||||
print(f"Done ingesting {num_chunks} chunks from {filename}.")
|
||||
except Exception as e:
|
||||
print(f"Error while ingesting file '{filename}': {str(e)}")
|
||||
|
||||
|
||||
def write_to_file(filename, text):
|
||||
"""Write text to a file"""
|
||||
try:
|
||||
filepath = safe_join(working_directory, filename)
|
||||
directory = os.path.dirname(filepath)
|
||||
if not os.path.exists(directory):
|
||||
os.makedirs(directory)
|
||||
with open(filepath, "w", encoding='utf-8') as f:
|
||||
f.write(text)
|
||||
return "File written to successfully."
|
||||
except Exception as e:
|
||||
return "Error: " + str(e)
|
||||
|
||||
|
||||
def append_to_file(filename, text):
|
||||
"""Append text to a file"""
|
||||
try:
|
||||
filepath = safe_join(working_directory, filename)
|
||||
with open(filepath, "a") as f:
|
||||
f.write(text)
|
||||
return "Text appended successfully."
|
||||
except Exception as e:
|
||||
return "Error: " + str(e)
|
||||
|
||||
|
||||
def delete_file(filename):
|
||||
"""Delete a file"""
|
||||
try:
|
||||
filepath = safe_join(working_directory, filename)
|
||||
os.remove(filepath)
|
||||
return "File deleted successfully."
|
||||
except Exception as e:
|
||||
return "Error: " + str(e)
|
||||
|
||||
|
||||
def search_files(directory):
|
||||
found_files = []
|
||||
|
||||
if directory == "" or directory == "/":
|
||||
search_directory = working_directory
|
||||
else:
|
||||
search_directory = safe_join(working_directory, directory)
|
||||
|
||||
for root, _, files in os.walk(search_directory):
|
||||
for file in files:
|
||||
if file.startswith('.'):
|
||||
continue
|
||||
relative_path = os.path.relpath(os.path.join(root, file), working_directory)
|
||||
found_files.append(relative_path)
|
||||
|
||||
return found_files
|
||||
@@ -1,58 +0,0 @@
|
||||
import requests
|
||||
import io
|
||||
import os.path
|
||||
from PIL import Image
|
||||
from config import Config
|
||||
import uuid
|
||||
import openai
|
||||
from base64 import b64decode
|
||||
|
||||
cfg = Config()
|
||||
|
||||
working_directory = "auto_gpt_workspace"
|
||||
|
||||
|
||||
def generate_image(prompt):
|
||||
|
||||
filename = str(uuid.uuid4()) + ".jpg"
|
||||
|
||||
# DALL-E
|
||||
if cfg.image_provider == 'dalle':
|
||||
|
||||
openai.api_key = cfg.openai_api_key
|
||||
|
||||
response = openai.Image.create(
|
||||
prompt=prompt,
|
||||
n=1,
|
||||
size="256x256",
|
||||
response_format="b64_json",
|
||||
)
|
||||
|
||||
print("Image Generated for prompt:" + prompt)
|
||||
|
||||
image_data = b64decode(response["data"][0]["b64_json"])
|
||||
|
||||
with open(working_directory + "/" + filename, mode="wb") as png:
|
||||
png.write(image_data)
|
||||
|
||||
return "Saved to disk:" + filename
|
||||
|
||||
# STABLE DIFFUSION
|
||||
elif cfg.image_provider == 'sd':
|
||||
|
||||
API_URL = "https://api-inference.huggingface.co/models/CompVis/stable-diffusion-v1-4"
|
||||
headers = {"Authorization": "Bearer " + cfg.huggingface_api_token}
|
||||
|
||||
response = requests.post(API_URL, headers=headers, json={
|
||||
"inputs": prompt,
|
||||
})
|
||||
|
||||
image = Image.open(io.BytesIO(response.content))
|
||||
print("Image Generated for prompt:" + prompt)
|
||||
|
||||
image.save(os.path.join(working_directory, filename))
|
||||
|
||||
return "Saved to disk:" + filename
|
||||
|
||||
else:
|
||||
return "No Image Provider Set"
|
||||
@@ -1,109 +0,0 @@
|
||||
import json
|
||||
from typing import Any, Dict, Union
|
||||
from call_ai_function import call_ai_function
|
||||
from config import Config
|
||||
from json_utils import correct_json
|
||||
from logger import logger
|
||||
|
||||
cfg = Config()
|
||||
|
||||
JSON_SCHEMA = """
|
||||
{
|
||||
"command": {
|
||||
"name": "command name",
|
||||
"args":{
|
||||
"arg name": "value"
|
||||
}
|
||||
},
|
||||
"thoughts":
|
||||
{
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
|
||||
"criticism": "constructive self-criticism",
|
||||
"speak": "thoughts summary to say to user"
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
def fix_and_parse_json(
|
||||
json_str: str,
|
||||
try_to_fix_with_gpt: bool = True
|
||||
) -> Union[str, Dict[Any, Any]]:
|
||||
"""Fix and parse JSON string"""
|
||||
try:
|
||||
json_str = json_str.replace('\t', '')
|
||||
return json.loads(json_str)
|
||||
except json.JSONDecodeError as _: # noqa: F841
|
||||
try:
|
||||
json_str = correct_json(json_str)
|
||||
return json.loads(json_str)
|
||||
except json.JSONDecodeError as _: # noqa: F841
|
||||
pass
|
||||
# Let's do something manually:
|
||||
# sometimes GPT responds with something BEFORE the braces:
|
||||
# "I'm sorry, I don't understand. Please try again."
|
||||
# {"text": "I'm sorry, I don't understand. Please try again.",
|
||||
# "confidence": 0.0}
|
||||
# So let's try to find the first brace and then parse the rest
|
||||
# of the string
|
||||
try:
|
||||
brace_index = json_str.index("{")
|
||||
json_str = json_str[brace_index:]
|
||||
last_brace_index = json_str.rindex("}")
|
||||
json_str = json_str[:last_brace_index+1]
|
||||
return json.loads(json_str)
|
||||
# Can throw a ValueError if there is no "{" or "}" in the json_str
|
||||
except (json.JSONDecodeError, ValueError) as e: # noqa: F841
|
||||
if try_to_fix_with_gpt:
|
||||
logger.warn("Warning: Failed to parse AI output, attempting to fix."
|
||||
"\n If you see this warning frequently, it's likely that"
|
||||
" your prompt is confusing the AI. Try changing it up"
|
||||
" slightly.")
|
||||
# Now try to fix this up using the ai_functions
|
||||
ai_fixed_json = fix_json(json_str, JSON_SCHEMA)
|
||||
|
||||
if ai_fixed_json != "failed":
|
||||
return json.loads(ai_fixed_json)
|
||||
else:
|
||||
# This allows the AI to react to the error message,
|
||||
# which usually results in it correcting its ways.
|
||||
logger.error("Failed to fix AI output, telling the AI.")
|
||||
return json_str
|
||||
else:
|
||||
raise e
|
||||
|
||||
|
||||
def fix_json(json_str: str, schema: str) -> str:
|
||||
"""Fix the given JSON string to make it parseable and fully compliant with the provided schema."""
|
||||
# Try to fix the JSON using GPT:
|
||||
function_string = "def fix_json(json_str: str, schema:str=None) -> str:"
|
||||
args = [f"'''{json_str}'''", f"'''{schema}'''"]
|
||||
description_string = "Fixes the provided JSON string to make it parseable"\
|
||||
" and fully compliant with the provided schema.\n If an object or"\
|
||||
" field specified in the schema isn't contained within the correct"\
|
||||
" JSON, it is omitted.\n This function is brilliant at guessing"\
|
||||
" when the format is incorrect."
|
||||
|
||||
# If it doesn't already start with a "`", add one:
|
||||
if not json_str.startswith("`"):
|
||||
json_str = "```json\n" + json_str + "\n```"
|
||||
result_string = call_ai_function(
|
||||
function_string, args, description_string, model=cfg.fast_llm_model
|
||||
)
|
||||
logger.debug("------------ JSON FIX ATTEMPT ---------------")
|
||||
logger.debug(f"Original JSON: {json_str}")
|
||||
logger.debug("-----------")
|
||||
logger.debug(f"Fixed JSON: {result_string}")
|
||||
logger.debug("----------- END OF FIX ATTEMPT ----------------")
|
||||
|
||||
try:
|
||||
json.loads(result_string) # just check the validity
|
||||
return result_string
|
||||
except: # noqa: E722
|
||||
# Get the call stack:
|
||||
# import traceback
|
||||
# call_stack = traceback.format_exc()
|
||||
# print(f"Failed to fix JSON: '{json_str}' "+call_stack)
|
||||
return "failed"
|
||||
@@ -1,127 +0,0 @@
|
||||
import re
|
||||
import json
|
||||
from config import Config
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
def extract_char_position(error_message: str) -> int:
|
||||
"""Extract the character position from the JSONDecodeError message.
|
||||
|
||||
Args:
|
||||
error_message (str): The error message from the JSONDecodeError
|
||||
exception.
|
||||
|
||||
Returns:
|
||||
int: The character position.
|
||||
"""
|
||||
import re
|
||||
|
||||
char_pattern = re.compile(r'\(char (\d+)\)')
|
||||
if match := char_pattern.search(error_message):
|
||||
return int(match[1])
|
||||
else:
|
||||
raise ValueError("Character position not found in the error message.")
|
||||
|
||||
|
||||
def add_quotes_to_property_names(json_string: str) -> str:
|
||||
"""
|
||||
Add quotes to property names in a JSON string.
|
||||
|
||||
Args:
|
||||
json_string (str): The JSON string.
|
||||
|
||||
Returns:
|
||||
str: The JSON string with quotes added to property names.
|
||||
"""
|
||||
|
||||
def replace_func(match):
|
||||
return f'"{match.group(1)}":'
|
||||
|
||||
property_name_pattern = re.compile(r'(\w+):')
|
||||
corrected_json_string = property_name_pattern.sub(
|
||||
replace_func,
|
||||
json_string)
|
||||
|
||||
try:
|
||||
json.loads(corrected_json_string)
|
||||
return corrected_json_string
|
||||
except json.JSONDecodeError as e:
|
||||
raise e
|
||||
|
||||
|
||||
def balance_braces(json_string: str) -> str:
|
||||
"""
|
||||
Balance the braces in a JSON string.
|
||||
|
||||
Args:
|
||||
json_string (str): The JSON string.
|
||||
|
||||
Returns:
|
||||
str: The JSON string with braces balanced.
|
||||
"""
|
||||
|
||||
open_braces_count = json_string.count('{')
|
||||
close_braces_count = json_string.count('}')
|
||||
|
||||
while open_braces_count > close_braces_count:
|
||||
json_string += '}'
|
||||
close_braces_count += 1
|
||||
|
||||
while close_braces_count > open_braces_count:
|
||||
json_string = json_string.rstrip('}')
|
||||
close_braces_count -= 1
|
||||
|
||||
try:
|
||||
json.loads(json_string)
|
||||
return json_string
|
||||
except json.JSONDecodeError as e:
|
||||
pass
|
||||
|
||||
|
||||
def fix_invalid_escape(json_str: str, error_message: str) -> str:
|
||||
while error_message.startswith('Invalid \\escape'):
|
||||
bad_escape_location = extract_char_position(error_message)
|
||||
json_str = json_str[:bad_escape_location] + \
|
||||
json_str[bad_escape_location + 1:]
|
||||
try:
|
||||
json.loads(json_str)
|
||||
return json_str
|
||||
except json.JSONDecodeError as e:
|
||||
if cfg.debug_mode:
|
||||
print('json loads error - fix invalid escape', e)
|
||||
error_message = str(e)
|
||||
return json_str
|
||||
|
||||
|
||||
def correct_json(json_str: str) -> str:
|
||||
"""
|
||||
Correct common JSON errors.
|
||||
|
||||
Args:
|
||||
json_str (str): The JSON string.
|
||||
"""
|
||||
|
||||
try:
|
||||
if cfg.debug_mode:
|
||||
print("json", json_str)
|
||||
json.loads(json_str)
|
||||
return json_str
|
||||
except json.JSONDecodeError as e:
|
||||
if cfg.debug_mode:
|
||||
print('json loads error', e)
|
||||
error_message = str(e)
|
||||
if error_message.startswith('Invalid \\escape'):
|
||||
json_str = fix_invalid_escape(json_str, error_message)
|
||||
if error_message.startswith('Expecting property name enclosed in double quotes'):
|
||||
json_str = add_quotes_to_property_names(json_str)
|
||||
try:
|
||||
json.loads(json_str)
|
||||
return json_str
|
||||
except json.JSONDecodeError as e:
|
||||
if cfg.debug_mode:
|
||||
print('json loads error - add quotes', e)
|
||||
error_message = str(e)
|
||||
if balanced_str := balance_braces(json_str):
|
||||
return balanced_str
|
||||
return json_str
|
||||
@@ -1,52 +0,0 @@
|
||||
import time
|
||||
import openai
|
||||
from colorama import Fore
|
||||
from config import Config
|
||||
|
||||
cfg = Config()
|
||||
|
||||
openai.api_key = cfg.openai_api_key
|
||||
|
||||
|
||||
# Overly simple abstraction until we create something better
|
||||
# simple retry mechanism when getting a rate error or a bad gateway
|
||||
def create_chat_completion(messages, model=None, temperature=cfg.temperature, max_tokens=None)->str:
|
||||
"""Create a chat completion using the OpenAI API"""
|
||||
response = None
|
||||
num_retries = 5
|
||||
for attempt in range(num_retries):
|
||||
try:
|
||||
if cfg.use_azure:
|
||||
response = openai.ChatCompletion.create(
|
||||
deployment_id=cfg.get_azure_deployment_id_for_model(model),
|
||||
model=model,
|
||||
messages=messages,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens
|
||||
)
|
||||
else:
|
||||
response = openai.ChatCompletion.create(
|
||||
model=model,
|
||||
messages=messages,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens
|
||||
)
|
||||
break
|
||||
except openai.error.RateLimitError:
|
||||
if cfg.debug_mode:
|
||||
print(Fore.RED + "Error: ", "API Rate Limit Reached. Waiting 20 seconds..." + Fore.RESET)
|
||||
time.sleep(20)
|
||||
except openai.error.APIError as e:
|
||||
if e.http_status == 502:
|
||||
if cfg.debug_mode:
|
||||
print(Fore.RED + "Error: ", "API Bad gateway. Waiting 20 seconds..." + Fore.RESET)
|
||||
time.sleep(20)
|
||||
else:
|
||||
raise
|
||||
if attempt == num_retries - 1:
|
||||
raise
|
||||
|
||||
if response is None:
|
||||
raise RuntimeError("Failed to get response after 5 retries")
|
||||
|
||||
return response.choices[0].message["content"]
|
||||
@@ -1,193 +0,0 @@
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
import time
|
||||
from logging import LogRecord
|
||||
from colorama import Fore
|
||||
|
||||
from colorama import Style
|
||||
|
||||
import speak
|
||||
from config import Config
|
||||
from config import Singleton
|
||||
|
||||
cfg = Config()
|
||||
|
||||
'''
|
||||
Logger that handle titles in different colors.
|
||||
Outputs logs in console, activity.log, and errors.log
|
||||
For console handler: simulates typing
|
||||
'''
|
||||
|
||||
|
||||
class Logger(metaclass=Singleton):
|
||||
def __init__(self):
|
||||
# create log directory if it doesn't exist
|
||||
this_files_dir_path = os.path.dirname(__file__)
|
||||
log_dir = os.path.join(this_files_dir_path, '../logs')
|
||||
if not os.path.exists(log_dir):
|
||||
os.makedirs(log_dir)
|
||||
|
||||
log_file = "activity.log"
|
||||
error_file = "error.log"
|
||||
|
||||
console_formatter = AutoGptFormatter('%(title_color)s %(message)s')
|
||||
|
||||
# Create a handler for console which simulate typing
|
||||
self.typing_console_handler = TypingConsoleHandler()
|
||||
self.typing_console_handler.setLevel(logging.INFO)
|
||||
self.typing_console_handler.setFormatter(console_formatter)
|
||||
|
||||
# Create a handler for console without typing simulation
|
||||
self.console_handler = ConsoleHandler()
|
||||
self.console_handler.setLevel(logging.DEBUG)
|
||||
self.console_handler.setFormatter(console_formatter)
|
||||
|
||||
# Info handler in activity.log
|
||||
self.file_handler = logging.FileHandler(os.path.join(log_dir, log_file))
|
||||
self.file_handler.setLevel(logging.DEBUG)
|
||||
info_formatter = AutoGptFormatter('%(asctime)s %(levelname)s %(title)s %(message_no_color)s')
|
||||
self.file_handler.setFormatter(info_formatter)
|
||||
|
||||
# Error handler error.log
|
||||
error_handler = logging.FileHandler(os.path.join(log_dir, error_file))
|
||||
error_handler.setLevel(logging.ERROR)
|
||||
error_formatter = AutoGptFormatter(
|
||||
'%(asctime)s %(levelname)s %(module)s:%(funcName)s:%(lineno)d %(title)s %(message_no_color)s')
|
||||
error_handler.setFormatter(error_formatter)
|
||||
|
||||
self.typing_logger = logging.getLogger('TYPER')
|
||||
self.typing_logger.addHandler(self.typing_console_handler)
|
||||
self.typing_logger.addHandler(self.file_handler)
|
||||
self.typing_logger.addHandler(error_handler)
|
||||
self.typing_logger.setLevel(logging.DEBUG)
|
||||
|
||||
self.logger = logging.getLogger('LOGGER')
|
||||
self.logger.addHandler(self.console_handler)
|
||||
self.logger.addHandler(self.file_handler)
|
||||
self.logger.addHandler(error_handler)
|
||||
self.logger.setLevel(logging.DEBUG)
|
||||
|
||||
def typewriter_log(
|
||||
self,
|
||||
title='',
|
||||
title_color='',
|
||||
content='',
|
||||
speak_text=False,
|
||||
level=logging.INFO):
|
||||
if speak_text and cfg.speak_mode:
|
||||
speak.say_text(f"{title}. {content}")
|
||||
|
||||
if content:
|
||||
if isinstance(content, list):
|
||||
content = " ".join(content)
|
||||
else:
|
||||
content = ""
|
||||
|
||||
self.typing_logger.log(level, content, extra={'title': title, 'color': title_color})
|
||||
|
||||
def debug(
|
||||
self,
|
||||
message,
|
||||
title='',
|
||||
title_color='',
|
||||
):
|
||||
self._log(title, title_color, message, logging.DEBUG)
|
||||
|
||||
def warn(
|
||||
self,
|
||||
message,
|
||||
title='',
|
||||
title_color='',
|
||||
):
|
||||
self._log(title, title_color, message, logging.WARN)
|
||||
|
||||
def error(
|
||||
self,
|
||||
title,
|
||||
message=''
|
||||
):
|
||||
self._log(title, Fore.RED, message, logging.ERROR)
|
||||
|
||||
def _log(
|
||||
self,
|
||||
title='',
|
||||
title_color='',
|
||||
message='',
|
||||
level=logging.INFO):
|
||||
if message:
|
||||
if isinstance(message, list):
|
||||
message = " ".join(message)
|
||||
self.logger.log(level, message, extra={'title': title, 'color': title_color})
|
||||
|
||||
def set_level(self, level):
|
||||
self.logger.setLevel(level)
|
||||
self.typing_logger.setLevel(level)
|
||||
|
||||
def double_check(self, additionalText=None):
|
||||
if not additionalText:
|
||||
additionalText = "Please ensure you've setup and configured everything correctly. Read https://github.com/Torantulino/Auto-GPT#readme to double check. You can also create a github issue or join the discord and ask there!"
|
||||
|
||||
self.typewriter_log("DOUBLE CHECK CONFIGURATION", Fore.YELLOW, additionalText)
|
||||
|
||||
|
||||
'''
|
||||
Output stream to console using simulated typing
|
||||
'''
|
||||
|
||||
|
||||
class TypingConsoleHandler(logging.StreamHandler):
|
||||
def emit(self, record):
|
||||
min_typing_speed = 0.05
|
||||
max_typing_speed = 0.01
|
||||
|
||||
msg = self.format(record)
|
||||
try:
|
||||
words = msg.split()
|
||||
for i, word in enumerate(words):
|
||||
print(word, end="", flush=True)
|
||||
if i < len(words) - 1:
|
||||
print(" ", end="", flush=True)
|
||||
typing_speed = random.uniform(min_typing_speed, max_typing_speed)
|
||||
time.sleep(typing_speed)
|
||||
# type faster after each word
|
||||
min_typing_speed = min_typing_speed * 0.95
|
||||
max_typing_speed = max_typing_speed * 0.95
|
||||
print()
|
||||
except Exception:
|
||||
self.handleError(record)
|
||||
|
||||
|
||||
class ConsoleHandler(logging.StreamHandler):
|
||||
def emit(self, record):
|
||||
msg = self.format(record)
|
||||
try:
|
||||
print(msg)
|
||||
except Exception:
|
||||
self.handleError(record)
|
||||
|
||||
|
||||
class AutoGptFormatter(logging.Formatter):
|
||||
"""
|
||||
Allows to handle custom placeholders 'title_color' and 'message_no_color'.
|
||||
To use this formatter, make sure to pass 'color', 'title' as log extras.
|
||||
"""
|
||||
def format(self, record: LogRecord) -> str:
|
||||
if (hasattr(record, 'color')):
|
||||
record.title_color = getattr(record, 'color') + getattr(record, 'title') + " " + Style.RESET_ALL
|
||||
else:
|
||||
record.title_color = getattr(record, 'title')
|
||||
if hasattr(record, 'msg'):
|
||||
record.message_no_color = remove_color_codes(getattr(record, 'msg'))
|
||||
else:
|
||||
record.message_no_color = ''
|
||||
return super().format(record)
|
||||
|
||||
|
||||
def remove_color_codes(s: str) -> str:
|
||||
ansi_escape = re.compile(r'\x1B(?:[@-Z\\-_]|\[[0-?]*[ -/]*[@-~])')
|
||||
return ansi_escape.sub('', s)
|
||||
|
||||
|
||||
logger = Logger()
|
||||
@@ -1,59 +0,0 @@
|
||||
from memory.local import LocalCache
|
||||
from memory.no_memory import NoMemory
|
||||
|
||||
# List of supported memory backends
|
||||
# Add a backend to this list if the import attempt is successful
|
||||
supported_memory = ['local', 'no_memory']
|
||||
|
||||
try:
|
||||
from memory.redismem import RedisMemory
|
||||
supported_memory.append('redis')
|
||||
except ImportError:
|
||||
print("Redis not installed. Skipping import.")
|
||||
RedisMemory = None
|
||||
|
||||
try:
|
||||
from memory.pinecone import PineconeMemory
|
||||
supported_memory.append('pinecone')
|
||||
except ImportError:
|
||||
print("Pinecone not installed. Skipping import.")
|
||||
PineconeMemory = None
|
||||
|
||||
|
||||
def get_memory(cfg, init=False):
|
||||
memory = None
|
||||
if cfg.memory_backend == "pinecone":
|
||||
if not PineconeMemory:
|
||||
print("Error: Pinecone is not installed. Please install pinecone"
|
||||
" to use Pinecone as a memory backend.")
|
||||
else:
|
||||
memory = PineconeMemory(cfg)
|
||||
if init:
|
||||
memory.clear()
|
||||
elif cfg.memory_backend == "redis":
|
||||
if not RedisMemory:
|
||||
print("Error: Redis is not installed. Please install redis-py to"
|
||||
" use Redis as a memory backend.")
|
||||
else:
|
||||
memory = RedisMemory(cfg)
|
||||
elif cfg.memory_backend == "no_memory":
|
||||
memory = NoMemory(cfg)
|
||||
|
||||
if memory is None:
|
||||
memory = LocalCache(cfg)
|
||||
if init:
|
||||
memory.clear()
|
||||
return memory
|
||||
|
||||
|
||||
def get_supported_memory_backends():
|
||||
return supported_memory
|
||||
|
||||
|
||||
__all__ = [
|
||||
"get_memory",
|
||||
"LocalCache",
|
||||
"RedisMemory",
|
||||
"PineconeMemory",
|
||||
"NoMemory"
|
||||
]
|
||||
@@ -1,36 +0,0 @@
|
||||
"""Base class for memory providers."""
|
||||
import abc
|
||||
from config import AbstractSingleton, Config
|
||||
import openai
|
||||
|
||||
cfg = Config()
|
||||
|
||||
|
||||
def get_ada_embedding(text):
|
||||
text = text.replace("\n", " ")
|
||||
if cfg.use_azure:
|
||||
return openai.Embedding.create(input=[text], engine=cfg.get_azure_deployment_id_for_model("text-embedding-ada-002"))["data"][0]["embedding"]
|
||||
else:
|
||||
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")["data"][0]["embedding"]
|
||||
|
||||
|
||||
class MemoryProviderSingleton(AbstractSingleton):
|
||||
@abc.abstractmethod
|
||||
def add(self, data):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def get(self, data):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def clear(self):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def get_relevant(self, data, num_relevant=5):
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def get_stats(self):
|
||||
pass
|
||||
@@ -1,124 +0,0 @@
|
||||
import dataclasses
|
||||
import orjson
|
||||
from typing import Any, List, Optional
|
||||
import numpy as np
|
||||
import os
|
||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
|
||||
|
||||
EMBED_DIM = 1536
|
||||
SAVE_OPTIONS = orjson.OPT_SERIALIZE_NUMPY | orjson.OPT_SERIALIZE_DATACLASS
|
||||
|
||||
|
||||
def create_default_embeddings():
|
||||
return np.zeros((0, EMBED_DIM)).astype(np.float32)
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class CacheContent:
|
||||
texts: List[str] = dataclasses.field(default_factory=list)
|
||||
embeddings: np.ndarray = dataclasses.field(
|
||||
default_factory=create_default_embeddings
|
||||
)
|
||||
|
||||
|
||||
class LocalCache(MemoryProviderSingleton):
|
||||
|
||||
# on load, load our database
|
||||
def __init__(self, cfg) -> None:
|
||||
self.filename = f"{cfg.memory_index}.json"
|
||||
if os.path.exists(self.filename):
|
||||
try:
|
||||
with open(self.filename, 'w+b') as f:
|
||||
file_content = f.read()
|
||||
if not file_content.strip():
|
||||
file_content = b'{}'
|
||||
f.write(file_content)
|
||||
|
||||
loaded = orjson.loads(file_content)
|
||||
self.data = CacheContent(**loaded)
|
||||
except orjson.JSONDecodeError:
|
||||
print(f"Error: The file '{self.filename}' is not in JSON format.")
|
||||
self.data = CacheContent()
|
||||
else:
|
||||
print(f"Warning: The file '{self.filename}' does not exist. Local memory would not be saved to a file.")
|
||||
self.data = CacheContent()
|
||||
|
||||
def add(self, text: str):
|
||||
"""
|
||||
Add text to our list of texts, add embedding as row to our
|
||||
embeddings-matrix
|
||||
|
||||
Args:
|
||||
text: str
|
||||
|
||||
Returns: None
|
||||
"""
|
||||
if 'Command Error:' in text:
|
||||
return ""
|
||||
self.data.texts.append(text)
|
||||
|
||||
embedding = get_ada_embedding(text)
|
||||
|
||||
vector = np.array(embedding).astype(np.float32)
|
||||
vector = vector[np.newaxis, :]
|
||||
self.data.embeddings = np.concatenate(
|
||||
[
|
||||
self.data.embeddings,
|
||||
vector,
|
||||
],
|
||||
axis=0,
|
||||
)
|
||||
|
||||
with open(self.filename, 'wb') as f:
|
||||
out = orjson.dumps(
|
||||
self.data,
|
||||
option=SAVE_OPTIONS
|
||||
)
|
||||
f.write(out)
|
||||
return text
|
||||
|
||||
def clear(self) -> str:
|
||||
"""
|
||||
Clears the redis server.
|
||||
|
||||
Returns: A message indicating that the memory has been cleared.
|
||||
"""
|
||||
self.data = CacheContent()
|
||||
return "Obliviated"
|
||||
|
||||
def get(self, data: str) -> Optional[List[Any]]:
|
||||
"""
|
||||
Gets the data from the memory that is most relevant to the given data.
|
||||
|
||||
Args:
|
||||
data: The data to compare to.
|
||||
|
||||
Returns: The most relevant data.
|
||||
"""
|
||||
return self.get_relevant(data, 1)
|
||||
|
||||
def get_relevant(self, text: str, k: int) -> List[Any]:
|
||||
""""
|
||||
matrix-vector mult to find score-for-each-row-of-matrix
|
||||
get indices for top-k winning scores
|
||||
return texts for those indices
|
||||
Args:
|
||||
text: str
|
||||
k: int
|
||||
|
||||
Returns: List[str]
|
||||
"""
|
||||
embedding = get_ada_embedding(text)
|
||||
|
||||
scores = np.dot(self.data.embeddings, embedding)
|
||||
|
||||
top_k_indices = np.argsort(scores)[-k:][::-1]
|
||||
|
||||
return [self.data.texts[i] for i in top_k_indices]
|
||||
|
||||
def get_stats(self):
|
||||
"""
|
||||
Returns: The stats of the local cache.
|
||||
"""
|
||||
return len(self.data.texts), self.data.embeddings.shape
|
||||
@@ -1,66 +0,0 @@
|
||||
from typing import Optional, List, Any
|
||||
|
||||
from memory.base import MemoryProviderSingleton
|
||||
|
||||
|
||||
class NoMemory(MemoryProviderSingleton):
|
||||
def __init__(self, cfg):
|
||||
"""
|
||||
Initializes the NoMemory provider.
|
||||
|
||||
Args:
|
||||
cfg: The config object.
|
||||
|
||||
Returns: None
|
||||
"""
|
||||
pass
|
||||
|
||||
def add(self, data: str) -> str:
|
||||
"""
|
||||
Adds a data point to the memory. No action is taken in NoMemory.
|
||||
|
||||
Args:
|
||||
data: The data to add.
|
||||
|
||||
Returns: An empty string.
|
||||
"""
|
||||
return ""
|
||||
|
||||
def get(self, data: str) -> Optional[List[Any]]:
|
||||
"""
|
||||
Gets the data from the memory that is most relevant to the given data.
|
||||
NoMemory always returns None.
|
||||
|
||||
Args:
|
||||
data: The data to compare to.
|
||||
|
||||
Returns: None
|
||||
"""
|
||||
return None
|
||||
|
||||
def clear(self) -> str:
|
||||
"""
|
||||
Clears the memory. No action is taken in NoMemory.
|
||||
|
||||
Returns: An empty string.
|
||||
"""
|
||||
return ""
|
||||
|
||||
def get_relevant(self, data: str, num_relevant: int = 5) -> Optional[List[Any]]:
|
||||
"""
|
||||
Returns all the data in the memory that is relevant to the given data.
|
||||
NoMemory always returns None.
|
||||
|
||||
Args:
|
||||
data: The data to compare to.
|
||||
num_relevant: The number of relevant data to return.
|
||||
|
||||
Returns: None
|
||||
"""
|
||||
return None
|
||||
|
||||
def get_stats(self):
|
||||
"""
|
||||
Returns: An empty dictionary as there are no stats in NoMemory.
|
||||
"""
|
||||
return {}
|
||||
@@ -1,62 +0,0 @@
|
||||
|
||||
import pinecone
|
||||
|
||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
from logger import logger
|
||||
from colorama import Fore, Style
|
||||
|
||||
|
||||
class PineconeMemory(MemoryProviderSingleton):
|
||||
def __init__(self, cfg):
|
||||
pinecone_api_key = cfg.pinecone_api_key
|
||||
pinecone_region = cfg.pinecone_region
|
||||
pinecone.init(api_key=pinecone_api_key, environment=pinecone_region)
|
||||
dimension = 1536
|
||||
metric = "cosine"
|
||||
pod_type = "p1"
|
||||
table_name = "auto-gpt"
|
||||
# this assumes we don't start with memory.
|
||||
# for now this works.
|
||||
# we'll need a more complicated and robust system if we want to start with memory.
|
||||
self.vec_num = 0
|
||||
|
||||
try:
|
||||
pinecone.whoami()
|
||||
except Exception as e:
|
||||
logger.typewriter_log("FAILED TO CONNECT TO PINECONE", Fore.RED, Style.BRIGHT + str(e) + Style.RESET_ALL)
|
||||
logger.double_check("Please ensure you have setup and configured Pinecone properly for use. " +
|
||||
f"You can check out {Fore.CYAN + Style.BRIGHT}https://github.com/Torantulino/Auto-GPT#-pinecone-api-key-setup{Style.RESET_ALL} to ensure you've set up everything correctly.")
|
||||
exit(1)
|
||||
|
||||
if table_name not in pinecone.list_indexes():
|
||||
pinecone.create_index(table_name, dimension=dimension, metric=metric, pod_type=pod_type)
|
||||
self.index = pinecone.Index(table_name)
|
||||
|
||||
def add(self, data):
|
||||
vector = get_ada_embedding(data)
|
||||
# no metadata here. We may wish to change that long term.
|
||||
resp = self.index.upsert([(str(self.vec_num), vector, {"raw_text": data})])
|
||||
_text = f"Inserting data into memory at index: {self.vec_num}:\n data: {data}"
|
||||
self.vec_num += 1
|
||||
return _text
|
||||
|
||||
def get(self, data):
|
||||
return self.get_relevant(data, 1)
|
||||
|
||||
def clear(self):
|
||||
self.index.delete(deleteAll=True)
|
||||
return "Obliviated"
|
||||
|
||||
def get_relevant(self, data, num_relevant=5):
|
||||
"""
|
||||
Returns all the data in the memory that is relevant to the given data.
|
||||
:param data: The data to compare to.
|
||||
:param num_relevant: The number of relevant data to return. Defaults to 5
|
||||
"""
|
||||
query_embedding = get_ada_embedding(data)
|
||||
results = self.index.query(query_embedding, top_k=num_relevant, include_metadata=True)
|
||||
sorted_results = sorted(results.matches, key=lambda x: x.score)
|
||||
return [str(item['metadata']["raw_text"]) for item in sorted_results]
|
||||
|
||||
def get_stats(self):
|
||||
return self.index.describe_index_stats()
|
||||
@@ -1,155 +0,0 @@
|
||||
"""Redis memory provider."""
|
||||
from typing import Any, List, Optional
|
||||
import redis
|
||||
from redis.commands.search.field import VectorField, TextField
|
||||
from redis.commands.search.query import Query
|
||||
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
|
||||
import numpy as np
|
||||
|
||||
from memory.base import MemoryProviderSingleton, get_ada_embedding
|
||||
from logger import logger
|
||||
from colorama import Fore, Style
|
||||
|
||||
|
||||
SCHEMA = [
|
||||
TextField("data"),
|
||||
VectorField(
|
||||
"embedding",
|
||||
"HNSW",
|
||||
{
|
||||
"TYPE": "FLOAT32",
|
||||
"DIM": 1536,
|
||||
"DISTANCE_METRIC": "COSINE"
|
||||
}
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
class RedisMemory(MemoryProviderSingleton):
|
||||
def __init__(self, cfg):
|
||||
"""
|
||||
Initializes the Redis memory provider.
|
||||
|
||||
Args:
|
||||
cfg: The config object.
|
||||
|
||||
Returns: None
|
||||
"""
|
||||
redis_host = cfg.redis_host
|
||||
redis_port = cfg.redis_port
|
||||
redis_password = cfg.redis_password
|
||||
self.dimension = 1536
|
||||
self.redis = redis.Redis(
|
||||
host=redis_host,
|
||||
port=redis_port,
|
||||
password=redis_password,
|
||||
db=0 # Cannot be changed
|
||||
)
|
||||
self.cfg = cfg
|
||||
|
||||
# Check redis connection
|
||||
try:
|
||||
self.redis.ping()
|
||||
except redis.ConnectionError as e:
|
||||
logger.typewriter_log("FAILED TO CONNECT TO REDIS", Fore.RED, Style.BRIGHT + str(e) + Style.RESET_ALL)
|
||||
logger.double_check("Please ensure you have setup and configured Redis properly for use. " +
|
||||
f"You can check out {Fore.CYAN + Style.BRIGHT}https://github.com/Torantulino/Auto-GPT#redis-setup{Style.RESET_ALL} to ensure you've set up everything correctly.")
|
||||
exit(1)
|
||||
|
||||
if cfg.wipe_redis_on_start:
|
||||
self.redis.flushall()
|
||||
try:
|
||||
self.redis.ft(f"{cfg.memory_index}").create_index(
|
||||
fields=SCHEMA,
|
||||
definition=IndexDefinition(
|
||||
prefix=[f"{cfg.memory_index}:"],
|
||||
index_type=IndexType.HASH
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
print("Error creating Redis search index: ", e)
|
||||
existing_vec_num = self.redis.get(f'{cfg.memory_index}-vec_num')
|
||||
self.vec_num = int(existing_vec_num.decode('utf-8')) if\
|
||||
existing_vec_num else 0
|
||||
|
||||
def add(self, data: str) -> str:
|
||||
"""
|
||||
Adds a data point to the memory.
|
||||
|
||||
Args:
|
||||
data: The data to add.
|
||||
|
||||
Returns: Message indicating that the data has been added.
|
||||
"""
|
||||
if 'Command Error:' in data:
|
||||
return ""
|
||||
vector = get_ada_embedding(data)
|
||||
vector = np.array(vector).astype(np.float32).tobytes()
|
||||
data_dict = {
|
||||
b"data": data,
|
||||
"embedding": vector
|
||||
}
|
||||
pipe = self.redis.pipeline()
|
||||
pipe.hset(f"{self.cfg.memory_index}:{self.vec_num}", mapping=data_dict)
|
||||
_text = f"Inserting data into memory at index: {self.vec_num}:\n"\
|
||||
f"data: {data}"
|
||||
self.vec_num += 1
|
||||
pipe.set(f'{self.cfg.memory_index}-vec_num', self.vec_num)
|
||||
pipe.execute()
|
||||
return _text
|
||||
|
||||
def get(self, data: str) -> Optional[List[Any]]:
|
||||
"""
|
||||
Gets the data from the memory that is most relevant to the given data.
|
||||
|
||||
Args:
|
||||
data: The data to compare to.
|
||||
|
||||
Returns: The most relevant data.
|
||||
"""
|
||||
return self.get_relevant(data, 1)
|
||||
|
||||
def clear(self) -> str:
|
||||
"""
|
||||
Clears the redis server.
|
||||
|
||||
Returns: A message indicating that the memory has been cleared.
|
||||
"""
|
||||
self.redis.flushall()
|
||||
return "Obliviated"
|
||||
|
||||
def get_relevant(
|
||||
self,
|
||||
data: str,
|
||||
num_relevant: int = 5
|
||||
) -> Optional[List[Any]]:
|
||||
"""
|
||||
Returns all the data in the memory that is relevant to the given data.
|
||||
Args:
|
||||
data: The data to compare to.
|
||||
num_relevant: The number of relevant data to return.
|
||||
|
||||
Returns: A list of the most relevant data.
|
||||
"""
|
||||
query_embedding = get_ada_embedding(data)
|
||||
base_query = f"*=>[KNN {num_relevant} @embedding $vector AS vector_score]"
|
||||
query = Query(base_query).return_fields(
|
||||
"data",
|
||||
"vector_score"
|
||||
).sort_by("vector_score").dialect(2)
|
||||
query_vector = np.array(query_embedding).astype(np.float32).tobytes()
|
||||
|
||||
try:
|
||||
results = self.redis.ft(f"{self.cfg.memory_index}").search(
|
||||
query, query_params={"vector": query_vector}
|
||||
)
|
||||
except Exception as e:
|
||||
print("Error calling Redis search: ", e)
|
||||
return None
|
||||
return [result.data for result in results.docs]
|
||||
|
||||
def get_stats(self):
|
||||
"""
|
||||
Returns: The stats of the memory index.
|
||||
"""
|
||||
return self.redis.ft(f"{self.cfg.memory_index}").info()
|
||||
@@ -1,63 +0,0 @@
|
||||
from promptgenerator import PromptGenerator
|
||||
|
||||
|
||||
def get_prompt():
|
||||
"""
|
||||
This function generates a prompt string that includes various constraints, commands, resources, and performance evaluations.
|
||||
|
||||
Returns:
|
||||
str: The generated prompt string.
|
||||
"""
|
||||
|
||||
# Initialize the PromptGenerator object
|
||||
prompt_generator = PromptGenerator()
|
||||
|
||||
# Add constraints to the PromptGenerator object
|
||||
prompt_generator.add_constraint("~4000 word limit for short term memory. Your short term memory is short, so immediately save important information to files.")
|
||||
prompt_generator.add_constraint("If you are unsure how you previously did something or want to recall past events, thinking about similar events will help you remember.")
|
||||
prompt_generator.add_constraint("No user assistance")
|
||||
prompt_generator.add_constraint('Exclusively use the commands listed in double quotes e.g. "command name"')
|
||||
|
||||
# Define the command list
|
||||
commands = [
|
||||
("Google Search", "google", {"input": "<search>"}),
|
||||
("Browse Website", "browse_website", {"url": "<url>", "question": "<what_you_want_to_find_on_website>"}),
|
||||
("Start GPT Agent", "start_agent", {"name": "<name>", "task": "<short_task_desc>", "prompt": "<prompt>"}),
|
||||
("Message GPT Agent", "message_agent", {"key": "<key>", "message": "<message>"}),
|
||||
("List GPT Agents", "list_agents", {}),
|
||||
("Delete GPT Agent", "delete_agent", {"key": "<key>"}),
|
||||
("Write to file", "write_to_file", {"file": "<file>", "text": "<text>"}),
|
||||
("Read file", "read_file", {"file": "<file>"}),
|
||||
("Append to file", "append_to_file", {"file": "<file>", "text": "<text>"}),
|
||||
("Delete file", "delete_file", {"file": "<file>"}),
|
||||
("Search Files", "search_files", {"directory": "<directory>"}),
|
||||
("Evaluate Code", "evaluate_code", {"code": "<full_code_string>"}),
|
||||
("Get Improved Code", "improve_code", {"suggestions": "<list_of_suggestions>", "code": "<full_code_string>"}),
|
||||
("Write Tests", "write_tests", {"code": "<full_code_string>", "focus": "<list_of_focus_areas>"}),
|
||||
("Execute Python File", "execute_python_file", {"file": "<file>"}),
|
||||
("Execute Shell Command, non-interactive commands only", "execute_shell", { "command_line": "<command_line>"}),
|
||||
("Task Complete (Shutdown)", "task_complete", {"reason": "<reason>"}),
|
||||
("Generate Image", "generate_image", {"prompt": "<prompt>"}),
|
||||
("Do Nothing", "do_nothing", {}),
|
||||
]
|
||||
|
||||
# Add commands to the PromptGenerator object
|
||||
for command_label, command_name, args in commands:
|
||||
prompt_generator.add_command(command_label, command_name, args)
|
||||
|
||||
# Add resources to the PromptGenerator object
|
||||
prompt_generator.add_resource("Internet access for searches and information gathering.")
|
||||
prompt_generator.add_resource("Long Term memory management.")
|
||||
prompt_generator.add_resource("GPT-3.5 powered Agents for delegation of simple tasks.")
|
||||
prompt_generator.add_resource("File output.")
|
||||
|
||||
# Add performance evaluations to the PromptGenerator object
|
||||
prompt_generator.add_performance_evaluation("Continuously review and analyze your actions to ensure you are performing to the best of your abilities.")
|
||||
prompt_generator.add_performance_evaluation("Constructively self-criticize your big-picture behavior constantly.")
|
||||
prompt_generator.add_performance_evaluation("Reflect on past decisions and strategies to refine your approach.")
|
||||
prompt_generator.add_performance_evaluation("Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.")
|
||||
|
||||
# Generate the prompt string
|
||||
prompt_string = prompt_generator.generate_prompt_string()
|
||||
|
||||
return prompt_string
|
||||
@@ -1,129 +0,0 @@
|
||||
import json
|
||||
|
||||
|
||||
class PromptGenerator:
|
||||
"""
|
||||
A class for generating custom prompt strings based on constraints, commands, resources, and performance evaluations.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
Initialize the PromptGenerator object with empty lists of constraints, commands, resources, and performance evaluations.
|
||||
"""
|
||||
self.constraints = []
|
||||
self.commands = []
|
||||
self.resources = []
|
||||
self.performance_evaluation = []
|
||||
self.response_format = {
|
||||
"thoughts": {
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
|
||||
"criticism": "constructive self-criticism",
|
||||
"speak": "thoughts summary to say to user"
|
||||
},
|
||||
"command": {
|
||||
"name": "command name",
|
||||
"args": {
|
||||
"arg name": "value"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
def add_constraint(self, constraint):
|
||||
"""
|
||||
Add a constraint to the constraints list.
|
||||
|
||||
Args:
|
||||
constraint (str): The constraint to be added.
|
||||
"""
|
||||
self.constraints.append(constraint)
|
||||
|
||||
def add_command(self, command_label, command_name, args=None):
|
||||
"""
|
||||
Add a command to the commands list with a label, name, and optional arguments.
|
||||
|
||||
Args:
|
||||
command_label (str): The label of the command.
|
||||
command_name (str): The name of the command.
|
||||
args (dict, optional): A dictionary containing argument names and their values. Defaults to None.
|
||||
"""
|
||||
if args is None:
|
||||
args = {}
|
||||
|
||||
command_args = {arg_key: arg_value for arg_key,
|
||||
arg_value in args.items()}
|
||||
|
||||
command = {
|
||||
"label": command_label,
|
||||
"name": command_name,
|
||||
"args": command_args,
|
||||
}
|
||||
|
||||
self.commands.append(command)
|
||||
|
||||
def _generate_command_string(self, command):
|
||||
"""
|
||||
Generate a formatted string representation of a command.
|
||||
|
||||
Args:
|
||||
command (dict): A dictionary containing command information.
|
||||
|
||||
Returns:
|
||||
str: The formatted command string.
|
||||
"""
|
||||
args_string = ', '.join(
|
||||
f'"{key}": "{value}"' for key, value in command['args'].items())
|
||||
return f'{command["label"]}: "{command["name"]}", args: {args_string}'
|
||||
|
||||
def add_resource(self, resource):
|
||||
"""
|
||||
Add a resource to the resources list.
|
||||
|
||||
Args:
|
||||
resource (str): The resource to be added.
|
||||
"""
|
||||
self.resources.append(resource)
|
||||
|
||||
def add_performance_evaluation(self, evaluation):
|
||||
"""
|
||||
Add a performance evaluation item to the performance_evaluation list.
|
||||
|
||||
Args:
|
||||
evaluation (str): The evaluation item to be added.
|
||||
"""
|
||||
self.performance_evaluation.append(evaluation)
|
||||
|
||||
def _generate_numbered_list(self, items, item_type='list'):
|
||||
"""
|
||||
Generate a numbered list from given items based on the item_type.
|
||||
|
||||
Args:
|
||||
items (list): A list of items to be numbered.
|
||||
item_type (str, optional): The type of items in the list. Defaults to 'list'.
|
||||
|
||||
Returns:
|
||||
str: The formatted numbered list.
|
||||
"""
|
||||
if item_type == 'command':
|
||||
return "\n".join(f"{i+1}. {self._generate_command_string(item)}" for i, item in enumerate(items))
|
||||
else:
|
||||
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items))
|
||||
|
||||
def generate_prompt_string(self):
|
||||
"""
|
||||
Generate a prompt string based on the constraints, commands, resources, and performance evaluations.
|
||||
|
||||
Returns:
|
||||
str: The generated prompt string.
|
||||
"""
|
||||
formatted_response_format = json.dumps(self.response_format, indent=4)
|
||||
prompt_string = (
|
||||
f"Constraints:\n{self._generate_numbered_list(self.constraints)}\n\n"
|
||||
f"Commands:\n{self._generate_numbered_list(self.commands, item_type='command')}\n\n"
|
||||
f"Resources:\n{self._generate_numbered_list(self.resources)}\n\n"
|
||||
f"Performance Evaluation:\n{self._generate_numbered_list(self.performance_evaluation)}\n\n"
|
||||
f"You should only respond in JSON format as described below \nResponse Format: \n{formatted_response_format} \nEnsure the response can be parsed by Python json.loads"
|
||||
)
|
||||
|
||||
return prompt_string
|
||||
113
scripts/speak.py
113
scripts/speak.py
@@ -1,113 +0,0 @@
|
||||
import os
|
||||
from playsound import playsound
|
||||
import requests
|
||||
from config import Config
|
||||
cfg = Config()
|
||||
import gtts
|
||||
import threading
|
||||
from threading import Lock, Semaphore
|
||||
|
||||
# Default voice IDs
|
||||
default_voices = ["ErXwobaYiN019PkySvjV", "EXAVITQu4vr4xnSDxMaL"]
|
||||
|
||||
# Retrieve custom voice IDs from the Config class
|
||||
custom_voice_1 = cfg.elevenlabs_voice_1_id
|
||||
custom_voice_2 = cfg.elevenlabs_voice_2_id
|
||||
|
||||
# Placeholder values that should be treated as empty
|
||||
placeholders = {"your-voice-id"}
|
||||
|
||||
# Use custom voice IDs if provided and not placeholders, otherwise use default voice IDs
|
||||
voices = [
|
||||
custom_voice_1 if custom_voice_1 and custom_voice_1 not in placeholders else default_voices[0],
|
||||
custom_voice_2 if custom_voice_2 and custom_voice_2 not in placeholders else default_voices[1]
|
||||
]
|
||||
|
||||
tts_headers = {
|
||||
"Content-Type": "application/json",
|
||||
"xi-api-key": cfg.elevenlabs_api_key
|
||||
}
|
||||
|
||||
mutex_lock = Lock() # Ensure only one sound is played at a time
|
||||
queue_semaphore = Semaphore(1) # The amount of sounds to queue before blocking the main thread
|
||||
|
||||
|
||||
def eleven_labs_speech(text, voice_index=0):
|
||||
"""Speak text using elevenlabs.io's API"""
|
||||
tts_url = "https://api.elevenlabs.io/v1/text-to-speech/{voice_id}".format(
|
||||
voice_id=voices[voice_index])
|
||||
formatted_message = {"text": text}
|
||||
response = requests.post(
|
||||
tts_url, headers=tts_headers, json=formatted_message)
|
||||
|
||||
if response.status_code == 200:
|
||||
with mutex_lock:
|
||||
with open("speech.mpeg", "wb") as f:
|
||||
f.write(response.content)
|
||||
playsound("speech.mpeg", True)
|
||||
os.remove("speech.mpeg")
|
||||
return True
|
||||
else:
|
||||
print("Request failed with status code:", response.status_code)
|
||||
print("Response content:", response.content)
|
||||
return False
|
||||
|
||||
|
||||
def brian_speech(text):
|
||||
"""Speak text using Brian with the streamelements API"""
|
||||
tts_url = f"https://api.streamelements.com/kappa/v2/speech?voice=Brian&text={text}"
|
||||
response = requests.get(tts_url)
|
||||
|
||||
if response.status_code == 200:
|
||||
with mutex_lock:
|
||||
with open("speech.mp3", "wb") as f:
|
||||
f.write(response.content)
|
||||
playsound("speech.mp3")
|
||||
os.remove("speech.mp3")
|
||||
return True
|
||||
else:
|
||||
print("Request failed with status code:", response.status_code)
|
||||
print("Response content:", response.content)
|
||||
return False
|
||||
|
||||
|
||||
def gtts_speech(text):
|
||||
tts = gtts.gTTS(text)
|
||||
with mutex_lock:
|
||||
tts.save("speech.mp3")
|
||||
playsound("speech.mp3", True)
|
||||
os.remove("speech.mp3")
|
||||
|
||||
|
||||
def macos_tts_speech(text, voice_index=0):
|
||||
if voice_index == 0:
|
||||
os.system(f'say "{text}"')
|
||||
else:
|
||||
if voice_index == 1:
|
||||
os.system(f'say -v "Ava (Premium)" "{text}"')
|
||||
else:
|
||||
os.system(f'say -v Samantha "{text}"')
|
||||
|
||||
|
||||
def say_text(text, voice_index=0):
|
||||
|
||||
def speak():
|
||||
if not cfg.elevenlabs_api_key:
|
||||
if cfg.use_mac_os_tts == 'True':
|
||||
macos_tts_speech(text)
|
||||
elif cfg.use_brian_tts == 'True':
|
||||
success = brian_speech(text)
|
||||
if not success:
|
||||
gtts_speech(text)
|
||||
else:
|
||||
gtts_speech(text)
|
||||
else:
|
||||
success = eleven_labs_speech(text, voice_index)
|
||||
if not success:
|
||||
gtts_speech(text)
|
||||
|
||||
queue_semaphore.release()
|
||||
|
||||
queue_semaphore.acquire(True)
|
||||
thread = threading.Thread(target=speak)
|
||||
thread.start()
|
||||
@@ -1,36 +0,0 @@
|
||||
import sys
|
||||
import threading
|
||||
import itertools
|
||||
import time
|
||||
|
||||
|
||||
class Spinner:
|
||||
"""A simple spinner class"""
|
||||
def __init__(self, message="Loading...", delay=0.1):
|
||||
"""Initialize the spinner class"""
|
||||
self.spinner = itertools.cycle(['-', '/', '|', '\\'])
|
||||
self.delay = delay
|
||||
self.message = message
|
||||
self.running = False
|
||||
self.spinner_thread = None
|
||||
|
||||
def spin(self):
|
||||
"""Spin the spinner"""
|
||||
while self.running:
|
||||
sys.stdout.write(f"{next(self.spinner)} {self.message}\r")
|
||||
sys.stdout.flush()
|
||||
time.sleep(self.delay)
|
||||
sys.stdout.write(f"\r{' ' * (len(self.message) + 2)}\r")
|
||||
|
||||
def __enter__(self):
|
||||
"""Start the spinner"""
|
||||
self.running = True
|
||||
self.spinner_thread = threading.Thread(target=self.spin)
|
||||
self.spinner_thread.start()
|
||||
|
||||
def __exit__(self, exc_type, exc_value, exc_traceback):
|
||||
"""Stop the spinner"""
|
||||
self.running = False
|
||||
self.spinner_thread.join()
|
||||
sys.stdout.write(f"\r{' ' * (len(self.message) + 2)}\r")
|
||||
sys.stdout.flush()
|
||||
@@ -1,59 +0,0 @@
|
||||
import tiktoken
|
||||
from typing import List, Dict
|
||||
|
||||
|
||||
def count_message_tokens(messages : List[Dict[str, str]], model : str = "gpt-3.5-turbo-0301") -> int:
|
||||
"""
|
||||
Returns the number of tokens used by a list of messages.
|
||||
|
||||
Args:
|
||||
messages (list): A list of messages, each of which is a dictionary containing the role and content of the message.
|
||||
model (str): The name of the model to use for tokenization. Defaults to "gpt-3.5-turbo-0301".
|
||||
|
||||
Returns:
|
||||
int: The number of tokens used by the list of messages.
|
||||
"""
|
||||
try:
|
||||
encoding = tiktoken.encoding_for_model(model)
|
||||
except KeyError:
|
||||
logger.warn("Warning: model not found. Using cl100k_base encoding.")
|
||||
encoding = tiktoken.get_encoding("cl100k_base")
|
||||
if model == "gpt-3.5-turbo":
|
||||
# !Node: gpt-3.5-turbo may change over time. Returning num tokens assuming gpt-3.5-turbo-0301.")
|
||||
return count_message_tokens(messages, model="gpt-3.5-turbo-0301")
|
||||
elif model == "gpt-4":
|
||||
# !Note: gpt-4 may change over time. Returning num tokens assuming gpt-4-0314.")
|
||||
return count_message_tokens(messages, model="gpt-4-0314")
|
||||
elif model == "gpt-3.5-turbo-0301":
|
||||
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
|
||||
tokens_per_name = -1 # if there's a name, the role is omitted
|
||||
elif model == "gpt-4-0314":
|
||||
tokens_per_message = 3
|
||||
tokens_per_name = 1
|
||||
else:
|
||||
raise NotImplementedError(f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
|
||||
num_tokens = 0
|
||||
for message in messages:
|
||||
num_tokens += tokens_per_message
|
||||
for key, value in message.items():
|
||||
num_tokens += len(encoding.encode(value))
|
||||
if key == "name":
|
||||
num_tokens += tokens_per_name
|
||||
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
|
||||
return num_tokens
|
||||
|
||||
|
||||
def count_string_tokens(string: str, model_name: str) -> int:
|
||||
"""
|
||||
Returns the number of tokens in a text string.
|
||||
|
||||
Args:
|
||||
string (str): The text string.
|
||||
model_name (str): The name of the encoding to use. (e.g., "gpt-3.5-turbo")
|
||||
|
||||
Returns:
|
||||
int: The number of tokens in the text string.
|
||||
"""
|
||||
encoding = tiktoken.encoding_for_model(model_name)
|
||||
num_tokens = len(encoding.encode(string))
|
||||
return num_tokens
|
||||
@@ -1,23 +0,0 @@
|
||||
import yaml
|
||||
from colorama import Fore
|
||||
|
||||
|
||||
def clean_input(prompt: str=''):
|
||||
try:
|
||||
return input(prompt)
|
||||
except KeyboardInterrupt:
|
||||
print("You interrupted Auto-GPT")
|
||||
print("Quitting...")
|
||||
exit(0)
|
||||
|
||||
|
||||
def validate_yaml_file(file: str):
|
||||
try:
|
||||
with open(file) as file:
|
||||
yaml.load(file, Loader=yaml.FullLoader)
|
||||
except FileNotFoundError:
|
||||
return (False, f"The file {Fore.CYAN}`{file}`{Fore.RESET} wasn't found")
|
||||
except yaml.YAMLError as e:
|
||||
return (False, f"There was an issue while trying to read with your AI Settings file: {e}")
|
||||
|
||||
return (True, f"Successfully validated {Fore.CYAN}`{file}`{Fore.RESET}!")
|
||||
Reference in New Issue
Block a user