- Introduced `isLoadingSession` prop to manage loading states in `ChatContainer` and `ChatMessagesContainer`.
- Updated `useCopilotPage` to handle session loading state and improve user experience during session creation.
- Refactored session management logic to streamline message hydration and session handling.
- Enhanced UI feedback with loading indicators when messages are being fetched or sessions are being created.
- Introduced a new endpoint `/api/chat/schema/tool-responses` to expose tool response models for frontend code generation.
- Defined a `ToolResponseUnion` type that aggregates various response models, enhancing type safety and clarity in API responses.
- Updated OpenAPI schema to include detailed descriptions and response structures for the new endpoint.
- Added `AgentDetailsResponse` and other related schemas to improve agent information handling.
- Fixes [SECRT-1851: \[Copilot\] `run_agent` tool doesn't filter
host-scoped credentials](https://linear.app/autogpt/issue/SECRT-1851)
- Follow-up to #11881
### Changes 🏗️
- Filter host-scoped credentials for `run_agent` tool
- Tighten validation on host input field in `HostScopedCredentialsModal`
- Use netloc (w/ port) rather than just hostname (w/o port) as host
scope
### Checklist 📋
#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- Create graph that requires host-scoped credentials to work
- Create host-scoped credentials with a *different* host
- Try to have Copilot run the graph
- [x] -> no matching credentials available
- Create new credentials
- [x] -> works
---------
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
- Implemented `to_sse` method in `StreamStart` class to convert response data into SSE format, excluding non-protocol fields.
- Removed redundant inputId declaration in ChatInput component for cleaner code.
## Summary
Update the CoPilot homepage to shift from "what do you want to
automate?" to "tell me about your problems." This lowers the barrier to
engagement by letting users describe their work frustrations instead of
requiring them to identify automations themselves.
## Changes
| Element | Before | After |
|---------|--------|-------|
| Headline | "What do you want to automate?" | "Tell me about your work
— I'll find what to automate." |
| Placeholder | "You can search or just ask - e.g. 'create a blog post
outline'" | "What's your role and what eats up most of your day? e.g.
'I'm a real estate agent and I hate...'" |
| Button 1 | "Show me what I can automate" | "I don't know where to
start, just ask me stuff" |
| Button 2 | "Design a custom workflow" | "I do the same thing every
week and it's killing me" |
| Button 3 | "Help me with content creation" | "Help me find where I'm
wasting my time" |
| Container | max-w-2xl | max-w-3xl |
> **Note on container width:** The `max-w-2xl` → `max-w-3xl` change is
just to keep the longer headline on one line. This works but may not be
the ideal solution — @lluis-xai should advise on the proper approach.
## Why This Matters
The current UX assumes users know what they want to automate. In
reality, most users know what frustrates them but can't identify
automations. The current screen blocks Otto from starting the discovery
conversation that leads to useful recommendations.
## Files Changed
- `autogpt_platform/frontend/src/app/(platform)/copilot/page.tsx` —
headline, placeholder, container width
- `autogpt_platform/frontend/src/app/(platform)/copilot/helpers.ts` —
quick action button text
Resolves: [SECRT-1876](https://linear.app/autogpt/issue/SECRT-1876)
---------
Co-authored-by: Lluis Agusti <hi@llu.lu>
## Summary
Fixes a reflected cross-site scripting (XSS) vulnerability in the OAuth
callback route.
**Security Issue:**
https://github.com/Significant-Gravitas/AutoGPT/security/code-scanning/202
### Vulnerability
The OAuth callback route at
`frontend/src/app/(platform)/auth/integrations/oauth_callback/route.ts`
was writing user-controlled data directly into an HTML response without
proper sanitization. This allowed potential attackers to inject
malicious scripts via OAuth callback parameters.
### Fix
Added a `safeJsonStringify()` function that escapes characters that
could break out of the script context:
- `<` → `\u003c`
- `>` → `\u003e`
- `&` → `\u0026`
This prevents any user-provided values from being interpreted as
HTML/script content when embedded in the response.
### References
- [OWASP XSS Prevention Cheat
Sheet](https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html)
- [CWE-79: Improper Neutralization of Input During Web Page
Generation](https://cwe.mitre.org/data/definitions/79.html)
## Checklist 📋
#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified the OAuth callback still functions correctly
- [x] Confirmed special characters in OAuth responses are properly
escaped
<!-- Clearly explain the need for these changes: -->
### Changes 🏗️
- Disable auto-opening Wallet for first time user and on credit increase
- Remove no longer needed `lastSeenCredits` state and storage
### Checklist 📋
#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Wallet doesn't open automatically
## Changes 🏗️
Adds Redis-based SSE reconnection support for long-running CoPilot
operations (like Agent Generator), enabling clients to reconnect and
resume receiving updates after disconnection.
### What this does:
- **Stream Registry** - Redis-backed task tracking with message
persistence via Redis Streams
- **SSE Reconnection** - Clients can reconnect to active tasks using
`task_id` and `last_message_id`
- **Duplicate Message Fix** - Filters out in-progress assistant messages
from session response when active stream exists
- **Completion Consumer** - Handles background task completion
notifications via Redis Streams
### Architecture:
```
1. User sends message → Backend creates task in Redis
2. SSE chunks written to Redis Stream for persistence
3. Client receives chunks via SSE subscription
4. If client disconnects → Task continues in background
5. Client reconnects → GET /sessions/{id} returns active_stream info
6. Client subscribes to /tasks/{task_id}/stream with last_message_id
7. Missed messages replayed from Redis Stream
```
### Key endpoints:
- `GET /sessions/{session_id}` - Returns `active_stream` info if task is
running
- `GET /tasks/{task_id}/stream?last_message_id=X` - SSE endpoint for
reconnection
- `GET /tasks/{task_id}` - Get task status
- `POST /operations/{op_id}/complete` - Webhook for external service
completion
### Duplicate message fix:
When `GET /sessions/{id}` detects an active stream:
1. Filters out the in-progress assistant message from response
2. Returns `last_message_id="0-0"` so client replays stream from
beginning
3. Client receives complete response only through SSE (single source of
truth)
### Frontend changes:
- Task persistence in localStorage for cross-tab reconnection
- Stream event dispatcher handles reconnection flow
- Deduplication logic prevents duplicate messages
### Testing:
- Manual testing of reconnection scenarios
- Verified duplicate message fix works correctly
## Related
- Resolves SSE timeout issues for Agent Generator
- Fixes duplicate message bug on reconnection
- Replaced custom expandable sections with ToolAccordion component in both FindAgents and SearchDocs tools.
- Simplified state management by removing unnecessary useState and useReducedMotion hooks.
- Enhanced accessibility and readability of agent and document search results with clearer descriptions and structured layouts.
- Updated the `FindBlocksTool` to utilize the new `MorphingTextAnimation` for improved visual feedback.
- Refactored `MorphingTextAnimation` to accept a `text` prop, simplifying its usage and enhancing flexibility.
- Improved the rendering logic in `ChatMessagesContainer` to ensure proper key assignment for dynamic elements.
These changes aim to enhance the user experience by providing better visual transitions and cleaner component interactions.
- Simplified the `handleMessageSubmit` function in the chat page for better readability.
- Refactored the `ChatMessagesContainer` to improve message rendering logic, including the addition of the `FindBlocksTool` for tool call outputs.
- Updated the `ChatSidebar` component for better organization and clarity in props definition.
- Introduced a new `MorphingTextAnimation` component to enhance visual feedback during message transitions.
- Removed the obsolete `chat-store.ts` file to streamline the codebase.
These changes aim to improve the overall functionality and user experience of the chat interface.
## Problem
When marketplace agents are included in the `library_agents` payload
sent to the Agent Generator service, they were missing required fields
(`graph_id`, `graph_version`, `input_schema`, `output_schema`). This
caused Pydantic validation to fail with HTTP 422 Unprocessable Entity.
**Root cause:** The `MarketplaceAgentSummary` TypedDict had a different
shape than `LibraryAgentInfo` expected by the Agent Generator:
- Agent Generator expects: `graph_id`, `graph_version`, `name`,
`description`, `input_schema`, `output_schema`
- MarketplaceAgentSummary had: `name`, `description`, `sub_heading`,
`creator`, `is_marketplace_agent`
## Solution
1. **Add `agent_graph_id` to `StoreAgent` model** - The field was
already in the database view but not exposed
2. **Include `agentGraphId` in hybrid search SQL query** - Carry the
field through the search CTEs
3. **Update `search_marketplace_agents_for_generation()`** - Now fetches
full graph schemas using `get_graph()` and returns `LibraryAgentSummary`
(same type as library agents)
4. **Update deduplication logic** - Use `graph_id` instead of name for
more accurate deduplication
## Changes
- `backend/api/features/store/model.py`: Add optional `agent_graph_id`
field to `StoreAgent`
- `backend/api/features/store/hybrid_search.py`: Include `agentGraphId`
in SQL query columns
- `backend/api/features/store/db.py`: Map `agentGraphId` when creating
`StoreAgent` objects
- `backend/api/features/chat/tools/agent_generator/core.py`: Update
`search_marketplace_agents_for_generation()` to fetch and include full
graph schemas
## Testing
- [ ] Agent creation on dev with marketplace agents in context
- [ ] Verify no 422 errors from Agent Generator
- [ ] Verify marketplace agents can be used as sub-agents
Fixes: SECRT-1817
---------
Co-authored-by: majdyz <majdyz@users.noreply.github.com>
Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
## Context
When users ask the chat to create agents, they may want to compose
workflows that reuse their existing agents as sub-agents. For this to
work, the Agent Generator service needs to know what agents the user has
available.
**Challenge:** Users can have large libraries with many agents. Fetching
all of them would be slow and provide too much context to the LLM.
## Solution
This PR implements **search-based library agent fetching** with a
**two-phase search** strategy:
1. **Phase 1 (Initial Search):** When the user describes their goal, we
search for relevant library agents using the goal as the search query
2. **Phase 2 (Step-Based Enrichment):** After the goal is decomposed
into steps, we extract keywords from those steps and search for
additional relevant agents
This ensures we find agents that are relevant to both the high-level
goal AND the specific steps identified.
### Example Flow
```
User goal: "Create an agent that fetches weather and sends a summary email"
Phase 1: Search for "weather email summary" → finds "Weather Fetcher" agent
Phase 2: After decomposition identifies steps like "send email notification"
→ searches "send email notification" → finds "Gmail Sender" agent
```
### Changes
**Library Agent Fetching:**
- `get_library_agents_for_generation()` - Search-based fetching from
user's library
- `search_marketplace_agents_for_generation()` - Search public
marketplace
- `get_all_relevant_agents_for_generation()` - Combines both with
deduplication
**Two-Phase Search:**
- `extract_search_terms_from_steps()` - Extracts keywords from
decomposed steps
- `enrich_library_agents_from_steps()` - Searches for additional agents
based on steps
- Integrated into `create_agent.py` as "Step 1.5" after goal
decomposition
**Type Safety:**
- Added `TypedDict` definitions: `LibraryAgentSummary`,
`MarketplaceAgentSummary`, `DecompositionStep`, `DecompositionResult`
### Design Decisions
- **Search-based, not fetch-all:** Scalable for large libraries
- **Library agents prioritized:** They have full schemas; marketplace
agents have basic info only
- **Deduplication by name and graph_id:** Prevents duplicates across
searches
- **Graceful degradation:** Failures don't block agent generation
- **Limited to 3 search terms:** Avoids excessive API calls during
enrichment
## Related PR
- Agent Generator:
https://github.com/Significant-Gravitas/AutoGPT-Agent-Generator/pull/103
## Test plan
- [x] `test_library_agents.py` - 19 tests covering all new functions
- [x] `test_service.py` - 4 tests for library_agents passthrough
- [ ] Integration test: Create agent with library sub-agent composition
### Changes 🏗️
Further improvements to LaunchDarkly initialisation and homepage
redirect...
### Checklist 📋
#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Run the app locally with the flag disabled/enabled, and the
redirects work
---------
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Ubbe <0ubbe@users.noreply.github.com>
## Changes 🏗️
Removes the `key` prop from `LDProvider` that was causing full remounts
when user context changed.
### The Problem
The `key={context.key}` prop was forcing React to unmount and remount
the entire LDProvider when switching from anonymous → logged in user:
```
1. Page loads, user loading → key="anonymous" → LD mounts → flags available ✅
2. User finishes loading → key="user-123" → React sees key changed
3. LDProvider UNMOUNTS → flags become undefined ❌
4. New LDProvider MOUNTS → initializes again → flags available ✅
```
This caused the flag values to cycle: `undefined → value → undefined →
value`
### The Fix
Remove the `key` prop. The LDProvider handles context changes internally
via the `context` prop, which triggers `identify()` without remounting
the provider.
## Checklist 📋
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [ ] I have tested my changes according to the test plan:
- [ ] Flag values don't flicker on page load
- [ ] Flag values update correctly when logging in/out
- [ ] No redirect race conditions
Related: SECRT-1845
- Added new dependencies for Streamdown components to improve rendering capabilities.
- Updated the chat page layout to utilize new conversation components, enhancing user experience.
- Refactored message handling to streamline input submission and improve message rendering logic.
These changes aim to enhance the overall functionality and usability of the chat interface.
### Changes 🏗️
The page used a client-side redirect (`useEffect` + `router.replace`)
which only works after JavaScript loads and hydrates. On deployed sites,
if there's any delay or failure in JS execution, users see an
empty/black page because the component returns null.
**Fix:** Converted to a server-side redirect using redirect() from
next/navigation. This is a server component now, so:
### Checklist 📋
#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Tested locally but will see it fully working once deployed
- Refactored the chat page to utilize a new `ChatSidebar` component for better organization and user experience.
- Improved message handling by simplifying session creation logic and ensuring proper state management.
- Updated UI elements for consistency, including button labels and input handling.
- Enhanced message rendering to support tool call outputs, improving the chat interaction flow.
These changes aim to streamline the chat interface and improve overall usability.
## Changes 🏗️
Fixes the hard refresh redirect bug (SECRT-1845) by removing the double
feature flag check.
### Before (buggy)
```
/ → checks flag → /copilot or /library
/copilot (layout) → checks flag → /library if OFF
```
On hard refresh, two sequential LD checks created a race condition
window.
### After (fixed)
```
/ → always redirects to /copilot
/copilot (layout) → single flag check via FeatureFlagPage
```
Single check point = no double-check race condition.
## Root Cause
As identified by @0ubbe: the root page and copilot layout were both
checking the feature flag. On hard refresh with network latency, the
second check could fire before LaunchDarkly fully initialized, causing
users to be bounced to `/library`.
## Test Plan
- [ ] Hard refresh on `/` → should go to `/copilot` (flag ON)
- [ ] Hard refresh on `/copilot` → should stay on `/copilot` (flag ON)
- [ ] With flag OFF → should redirect to `/library`
- [ ] Normal navigation still works
Fixes: SECRT-1845
cc @0ubbe
## Summary
Refocuses the chat input textarea after voice transcription finishes,
allowing users to immediately use `spacebar+enter` to record and send
their prompt.
## Changes
- Added `inputId` parameter to `useVoiceRecording` hook
- After transcription completes, the input is automatically focused
- This improves the voice input UX flow
## Testing
1. Click mic button or press spacebar to record voice
2. Record a message and stop
3. After transcription completes, the input should be focused
4. User can now press Enter to send or spacebar to record again
---------
Co-authored-by: Lluis Agusti <hi@llu.lu>
## Summary
Fixes flaky E2E marketplace and library tests that were causing PRs to
be removed from the merge queue.
## Root Cause
1. **Test data was probabilistic** - `e2e_test_data.py` used random
chances (40% approve, then 20-50% feature), which could result in 0
featured agents
2. **Library pagination threshold wrong** - Checked `>= 10`, but page
size is 20
3. **Fixed timeouts** - Used `waitForTimeout(2000)` /
`waitForTimeout(10000)` instead of proper waits
## Changes
### Backend (`e2e_test_data.py`)
- Add guaranteed minimums: 8 featured agents, 5 featured creators, 10
top agents
- First N submissions are deterministically approved and featured
- Increase agents per user from 15 → 25 (for pagination with
page_size=20)
- Fix library agent creation to use constants instead of hardcoded `10`
### Frontend Tests
- `library.spec.ts`: Fix pagination threshold to `PAGE_SIZE` (20)
- `library.page.ts`: Replace 2s timeout with `networkidle` +
`waitForFunction`
- `marketplace.page.ts`: Add `networkidle` wait, 30s waits in
`getFirst*` methods
- `marketplace.spec.ts`: Replace 10s timeout with `waitForFunction`
- `marketplace-creator.spec.ts`: Add `networkidle` + element waits
## Related
- Closes SECRT-1848, SECRT-1849
- Should unblock #11841 and other PRs in merge queue
---------
Co-authored-by: Ubbe <hi@ubbe.dev>
Split `autogpt_platform/CLAUDE.md` into project-specific files, to make
the scope of the instructions clearer.
Also, some minor improvements:
- Change references to other Markdown files to @file/path.md syntax that
Claude recognizes
- Update ambiguous/incorrect/outdated instructions
- Remove trailing slashes
- Fix broken file path references in other docs (including comments)
## Changes 🏗️
- Refactor homepage redirect logic to always point to `/`
- the `/` route handles whether to redirect to `/copilot` or `/library`
based on flag
- Simplify `useGetFlag` checks
- Add `<FeatureFlagRedirect />` and `<FeatureFlagPage />` wrapper
components
- helpers to do 1 thing or the other, depending on chat enabled/disabled
- avoids boilerplate code, checking flagss and redirects mistakes
(especially around race conditions with LD init )
## Checklist 📋
### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Log in / out of AutoGPT with flag disabled/enabled
- [x] Sign up to AutoGPT with flag disabled/enabled
- [x] Redirects to homepage always work `/`
- [x] Can't access Copilot with disabled flag
## Changes 🏗️https://github.com/user-attachments/assets/d9c12ac0-625c-4b38-8834-e494b5eda9c0
Add a "speech to text" feature in the Chat input fox of Copilot, similar
as what you have in ChatGPT.
## Checklist 📋
### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Run locally and try the speech to text feature as part of the chat
input box
### For configuration changes:
We need to add `OPENAI_API_KEY=` to Vercel ( used in the Front-end )
both in Dev and Prod.
- [x] `.env.default` is updated or already compatible with my changes
---------
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Implements persistent User Workspace storage for CoPilot, enabling
blocks to save and retrieve files across sessions. Files are stored in
session-scoped virtual paths (`/sessions/{session_id}/`).
Fixes SECRT-1833
### Changes 🏗️
**Database & Storage:**
- Add `UserWorkspace` and `UserWorkspaceFile` Prisma models
- Implement `WorkspaceStorageBackend` abstraction (GCS for cloud, local
filesystem for self-hosted)
- Add `workspace_id` and `session_id` fields to `ExecutionContext`
**Backend API:**
- Add REST endpoints: `GET/POST /api/workspace/files`, `GET/DELETE
/api/workspace/files/{id}`, `GET /api/workspace/files/{id}/download`
- Add CoPilot tools: `list_workspace_files`, `read_workspace_file`,
`write_workspace_file`
- Integrate workspace storage into `store_media_file()` - returns
`workspace://file-id` references
**Block Updates:**
- Refactor all file-handling blocks to use unified `ExecutionContext`
parameter
- Update media-generating blocks to persist outputs to workspace
(AIImageGenerator, AIImageCustomizer, FluxKontext, TalkingHead, FAL
video, Bannerbear, etc.)
**Frontend:**
- Render `workspace://` image references in chat via proxy endpoint
- Add "AI cannot see this image" overlay indicator
**CoPilot Context Mapping:**
- Session = Agent (graph_id) = Run (graph_exec_id)
- Files scoped to `/sessions/{session_id}/`
### Checklist 📋
#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [ ] I have tested my changes according to the test plan:
- [ ] Create CoPilot session, generate image with AIImageGeneratorBlock
- [ ] Verify image returns `workspace://file-id` (not base64)
- [ ] Verify image renders in chat with visibility indicator
- [ ] Verify workspace files persist across sessions
- [ ] Test list/read/write workspace files via CoPilot tools
- [ ] Test local storage backend for self-hosted deployments
#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)
🤖 Generated with [Claude Code](https://claude.ai/code)
<!-- CURSOR_SUMMARY -->
---
> [!NOTE]
> **Medium Risk**
> Introduces a new persistent file-storage surface area (DB tables,
storage backends, download API, and chat tools) and rewires
`store_media_file()`/block execution context across many blocks, so
regressions could impact file handling, access control, or storage
costs.
>
> **Overview**
> Adds a **persistent per-user Workspace** (new
`UserWorkspace`/`UserWorkspaceFile` models plus `WorkspaceManager` +
`WorkspaceStorageBackend` with GCS/local implementations) and wires it
into the API via a new `/api/workspace/files/{file_id}/download` route
(including header-sanitized `Content-Disposition`) and shutdown
lifecycle hooks.
>
> Extends `ExecutionContext` to carry execution identity +
`workspace_id`/`session_id`, updates executor tooling to clone
node-specific contexts, and updates `run_block` (CoPilot) to create a
session-scoped workspace and synthetic graph/run/node IDs.
>
> Refactors `store_media_file()` to require `execution_context` +
`return_format` and to support `workspace://` references; migrates many
media/file-handling blocks and related tests to the new API and to
persist generated media as `workspace://...` (or fall back to data URIs
outside CoPilot), and adds CoPilot chat tools for
listing/reading/writing/deleting workspace files with safeguards against
context bloat.
>
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
6abc70f793. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->
---------
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
## Summary
- Add `InvalidInputError` for validation errors (search term too long,
invalid pagination) - returns 400 instead of 500
- Remove redundant try/catch blocks in library routes - global exception
handlers already handle `ValueError`→400 and `NotFoundError`→404
- Aggregate embedding backfill errors and log once at the end instead of
per content type to prevent Sentry issue spam
## Test plan
- [x] Verify validation errors (search term >100 chars) return 400 Bad
Request
- [x] Verify NotFoundError still returns 404
- [x] Verify embedding errors are logged once at the end with aggregated
counts
Fixes AUTOGPT-SERVER-7K5, BUILDER-6NC
---------
Co-authored-by: Swifty <craigswift13@gmail.com>