Compare commits

..

23 Commits

Author SHA1 Message Date
Zamil Majdy
1ad8fde75d fix: address PR review comments for agent generator
- Re-raise DatabaseError in get_library_agent_by_id to not swallow DB failures
- Add error details sanitization to strip sensitive info (paths, URLs, etc.)
- Clean up redundant inline comments in edit_agent.py
2026-01-30 07:59:11 -06:00
Zamil Majdy
aef705007b refactor: remove aggressive ERROR status filter from library agent search
The ERROR status filter was too aggressive - a single failed execution
would exclude an agent from sub-agent composition, even if it had many
successful runs. Removed the filter for now.

Future enhancement: Add quality filtering based on execution success rate
or correctness_score (stored in AgentGraphExecution stats) rather than
the binary ERROR status.
2026-01-30 07:45:00 -06:00
Zamil Majdy
be7e1ad9b6 feat: add quality filtering to exclude ERROR status library agents
Filter out library agents with ERROR status when searching for
sub-agent composition candidates. This prevents recommending broken
or draft agents that have failed executions.
2026-01-30 07:40:17 -06:00
Zamil Majdy
ce050abff9 feat: add include_library parameter to get_all_relevant_agents_for_generation
Add configurable include_library parameter (default True) to allow
controlling whether user's library agents are included in the search
results for sub-agent composition.
2026-01-30 07:36:39 -06:00
Zamil Majdy
79eb2889ab style: fix formatting in agent_generator/service.py 2026-01-30 07:29:32 -06:00
Zamil Majdy
5bc5e02dcb Merge branch 'dev' into feat/sub-agent-support 2026-01-30 07:24:08 -06:00
Zamil Majdy
f83366d08d fix: address PR review comments - remove inline comments, add stripInternalReasoning
- Remove remaining inline comments per style guidelines
- Add stripInternalReasoning to error case in formatToolResponse
2026-01-30 07:23:08 -06:00
Zamil Majdy
16ae8ddbe0 fix: correct library agent link path from /library to /library/agents
The "View in Library" link was returning 404 because the path was
missing the /agents/ segment. Fixed in both create_agent.py and
edit_agent.py to match the correct route used elsewhere.
2026-01-29 23:44:54 -06:00
Zamil Majdy
4b04ae2147 fix: address PR review comments
- Add null checks for .lower() on agent names that could be None
- Add isinstance guard for non-string step values in extract_search_terms
- Re-raise DatabaseError instead of swallowing it in agent_search
- Remove inline comments per style guidelines
2026-01-29 23:37:11 -06:00
Zamil Majdy
de71d6134a fix: display user-friendly error message instead of error code
Swap priority to check message field before error field so users see
helpful error messages instead of technical codes
2026-01-29 23:31:29 -06:00
Zamil Majdy
e6eb8a3f57 fix: improve error messages and LLM continuation for agent generation
- Add LLM continuation call when background tool execution fails with
  exception (previously users saw no explanation for errors)
- Improve validation error messages with more helpful guidance
- Add error_details parameter to include technical context in error
  responses when needed
- Update create_agent to pass error details for validation failures
2026-01-29 23:15:53 -06:00
Zamil Majdy
0d1d275e8d fix: improve library search to match any word instead of exact phrase
Previously, searching for "flight price drop alert" required that exact
phrase to be in the agent name/description. Now it splits into individual
words and matches agents containing ANY of: flight, price, drop, alert.

This fixes the issue where "flight price tracker" wasn't found when
searching for "flight price drop alert" even though they share keywords.
2026-01-29 22:28:49 -06:00
Zamil Majdy
dc92a7b520 chore: add debug logging for find_library_agent tool
Added logging to help diagnose library search issues:
- Log the query and user_id when tool is called
- Log the number of results returned from database
2026-01-29 22:15:19 -06:00
Zamil Majdy
d4047b5439 fix: support UUID lookup in find_library_agent tool
When users paste a library URL or agent UUID, the find_library_agent
tool now does direct ID lookup first (both by graph_id and library
agent ID) before falling back to text search.

This fixes the issue where searching by UUID would fail because
it was only doing text matching on agent names/descriptions.
2026-01-29 22:07:42 -06:00
Zamil Majdy
f00678fd1c fix: support lookup by library agent ID in addition to graph_id
When users paste library URLs (e.g., /library/agents/{id}), the ID is
the LibraryAgent primary key, not the graph_id. The previous code only
looked up by graph_id, causing "agent not found" errors.

Now get_library_agent_by_id() tries both lookup strategies:
1. First by graph_id (AgentGraph primary key)
2. Then by library agent ID (LibraryAgent primary key)

This fixes the issue where users couldn't reference agents by pasting
their library URLs in chat.
2026-01-29 22:02:46 -06:00
Zamil Majdy
aa175e0f4e feat: extract UUIDs from user input to fetch explicitly mentioned agents
When users mention agents by UUID in their goal description, we now:
1. Extract UUID v4 patterns from the search_query text
2. Fetch those agents directly by graph_id
3. Include them in the library_agents list for the LLM

This ensures explicitly referenced agents are always available to the
Agent Generator, even if text search wouldn't find them.

Added:
- extract_uuids_from_text(): extracts UUID v4 patterns from text
- get_library_agent_by_graph_id(): fetches a single agent by graph_id
- Integration in get_all_relevant_agents_for_generation()
2026-01-29 21:26:08 -06:00
Zamil Majdy
9a8838c69a refactor: move internal imports to top-level in core.py
- Move store_db, get_graph, get_graph_all_versions imports to top-level
- Catch specific NotFoundError instead of generic Exception
- Cleaner code organization following standard Python conventions
2026-01-29 21:18:47 -06:00
Zamil Majdy
41beae1122 fix: resolve library agent IDs to graph IDs in get_agent_as_json
get_agent_as_json claimed to accept both graph IDs and library agent IDs
but only tried direct graph lookup. When a library agent ID was passed,
the function would return None (agent_not_found error).

Now the function:
1. First tries direct graph lookup with the provided ID
2. If not found, resolves the ID as a library agent ID to get the graph_id
3. Then fetches the graph using the resolved graph_id
2026-01-29 21:16:20 -06:00
Zamil Majdy
e810f7b0d7 Merge branch 'dev' into feat/sub-agent-support 2026-01-29 19:13:37 -06:00
Zamil Majdy
9c3822fffe chore: remove obvious comments and alphabetize __all__ 2026-01-29 19:03:25 -06:00
Zamil Majdy
c039a2e3ad feat: add two-phase library search for better sub-agent discovery
- Add TypedDict types for agent summaries (LibraryAgentSummary, MarketplaceAgentSummary, DecompositionResult)
- Add extract_search_terms_from_steps() to extract keywords from decomposed instructions
- Add enrich_library_agents_from_steps() for two-phase search after decomposition
- Integrate enrichment into create_agent.py flow
- Add comprehensive tests for new functionality
2026-01-29 18:51:07 -06:00
Zamil Majdy
a3fe1ede55 fix: address PR review comments
- Add try/except error handling to get_library_agents_for_generation
  for graceful degradation (consistent with marketplace search)
- Add null checks when deduplicating agents by name to prevent
  AttributeError if agent name is None
- Use actual graph ID from current_agent in edit_agent.py to properly
  exclude the agent being edited (agent_id might be a library agent ID)
2026-01-29 18:22:12 -06:00
Zamil Majdy
552d069a9d feat: add search-based library agent fetching for sub-agent support
- Add get_library_agents_for_generation() with search_term support
- Add search_marketplace_agents_for_generation() for marketplace search
- Add get_all_relevant_agents_for_generation() combining both sources
- Update service.py to pass library_agents in all requests
- Update create_agent.py to fetch and pass relevant library agents
- Update edit_agent.py to fetch and pass relevant library agents
- Add tests for library agent fetching and passthrough
2026-01-29 17:10:42 -06:00
13 changed files with 1798 additions and 94 deletions

View File

@@ -1834,6 +1834,11 @@ async def _execute_long_running_tool(
tool_call_id=tool_call_id,
result=error_response.model_dump_json(),
)
# Generate LLM continuation so user sees explanation even for errors
try:
await _generate_llm_continuation(session_id=session_id, user_id=user_id)
except Exception as llm_err:
logger.warning(f"Failed to generate LLM continuation for error: {llm_err}")
finally:
await _mark_operation_completed(tool_call_id)

View File

@@ -2,30 +2,52 @@
from .core import (
AgentGeneratorNotConfiguredError,
AgentSummary,
DecompositionResult,
DecompositionStep,
LibraryAgentSummary,
MarketplaceAgentSummary,
decompose_goal,
enrich_library_agents_from_steps,
extract_search_terms_from_steps,
extract_uuids_from_text,
generate_agent,
generate_agent_patch,
get_agent_as_json,
get_all_relevant_agents_for_generation,
get_library_agent_by_graph_id,
get_library_agent_by_id,
get_library_agents_for_generation,
json_to_graph,
save_agent_to_library,
search_marketplace_agents_for_generation,
)
from .errors import get_user_message_for_error
from .service import health_check as check_external_service_health
from .service import is_external_service_configured
__all__ = [
# Core functions
"AgentGeneratorNotConfiguredError",
"AgentSummary",
"DecompositionResult",
"DecompositionStep",
"LibraryAgentSummary",
"MarketplaceAgentSummary",
"check_external_service_health",
"decompose_goal",
"enrich_library_agents_from_steps",
"extract_search_terms_from_steps",
"extract_uuids_from_text",
"generate_agent",
"generate_agent_patch",
"save_agent_to_library",
"get_agent_as_json",
"json_to_graph",
# Exceptions
"AgentGeneratorNotConfiguredError",
# Service
"is_external_service_configured",
"check_external_service_health",
# Error handling
"get_all_relevant_agents_for_generation",
"get_library_agent_by_graph_id",
"get_library_agent_by_id",
"get_library_agents_for_generation",
"get_user_message_for_error",
"is_external_service_configured",
"json_to_graph",
"save_agent_to_library",
"search_marketplace_agents_for_generation",
]

View File

@@ -1,11 +1,21 @@
"""Core agent generation functions."""
import logging
import re
import uuid
from typing import Any
from typing import Any, TypedDict
from backend.api.features.library import db as library_db
from backend.data.graph import Graph, Link, Node, create_graph
from backend.api.features.store import db as store_db
from backend.data.graph import (
Graph,
Link,
Node,
create_graph,
get_graph,
get_graph_all_versions,
)
from backend.util.exceptions import DatabaseError, NotFoundError
from .service import (
decompose_goal_external,
@@ -17,6 +27,60 @@ from .service import (
logger = logging.getLogger(__name__)
class LibraryAgentSummary(TypedDict):
"""Summary of a library agent for sub-agent composition."""
graph_id: str
graph_version: int
name: str
description: str
input_schema: dict[str, Any]
output_schema: dict[str, Any]
class MarketplaceAgentSummary(TypedDict):
"""Summary of a marketplace agent for sub-agent composition."""
name: str
description: str
sub_heading: str
creator: str
is_marketplace_agent: bool
class DecompositionStep(TypedDict, total=False):
"""A single step in decomposed instructions."""
description: str
action: str
block_name: str
tool: str
name: str
class DecompositionResult(TypedDict, total=False):
"""Result from decompose_goal - can be instructions, questions, or error."""
type: str # "instructions", "clarifying_questions", "error", etc.
steps: list[DecompositionStep]
questions: list[dict[str, Any]]
error: str
error_type: str
# Type alias for agent summaries (can be either library or marketplace)
AgentSummary = LibraryAgentSummary | MarketplaceAgentSummary | dict[str, Any]
def _to_dict_list(
agents: list[AgentSummary] | list[dict[str, Any]] | None,
) -> list[dict[str, Any]] | None:
"""Convert typed agent summaries to plain dicts for external service calls."""
if agents is None:
return None
return [dict(a) for a in agents]
class AgentGeneratorNotConfiguredError(Exception):
"""Raised when the external Agent Generator service is not configured."""
@@ -36,15 +100,394 @@ def _check_service_configured() -> None:
)
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
_UUID_PATTERN = re.compile(
r"[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}",
re.IGNORECASE,
)
def extract_uuids_from_text(text: str) -> list[str]:
"""Extract all UUID v4 strings from text.
Args:
text: Text that may contain UUIDs (e.g., user's goal description)
Returns:
List of unique UUIDs found in the text (lowercase)
"""
matches = _UUID_PATTERN.findall(text)
return list({m.lower() for m in matches})
async def get_library_agent_by_id(
user_id: str, agent_id: str
) -> LibraryAgentSummary | None:
"""Fetch a specific library agent by its ID (library agent ID or graph_id).
This function tries multiple lookup strategies:
1. First tries to find by graph_id (AgentGraph primary key)
2. If not found, tries to find by library agent ID (LibraryAgent primary key)
This handles both cases:
- User provides graph_id (e.g., from AgentExecutorBlock)
- User provides library agent ID (e.g., from library URL)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
LibraryAgentSummary if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except DatabaseError:
raise
except Exception as e:
logger.debug(f"Could not fetch library agent by graph_id {agent_id}: {e}")
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
# Alias for backward compatibility
get_library_agent_by_graph_id = get_library_agent_by_id
async def get_library_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
max_results: int = 15,
) -> list[LibraryAgentSummary]:
"""Fetch user's library agents formatted for Agent Generator.
Uses search-based fetching to return relevant agents instead of all agents.
This is more scalable for users with large libraries.
Args:
user_id: The user ID
search_query: Optional search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
max_results: Maximum number of agents to return (default 15)
Returns:
List of LibraryAgentSummary with schemas for sub-agent composition
Note:
Future enhancement: Add quality filtering based on execution success rate
or correctness_score from AgentGraphExecution stats. The current
LibraryAgentStatus.ERROR is too aggressive (1 failed run = ERROR).
Better approach: filter by success rate (e.g., >50% successful runs)
or require at least 1 successful execution.
"""
try:
response = await library_db.list_library_agents(
user_id=user_id,
search_term=search_query,
page=1,
page_size=max_results,
)
results: list[LibraryAgentSummary] = []
for agent in response.agents:
if exclude_graph_id is not None and agent.graph_id == exclude_graph_id:
continue
results.append(
LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
)
return results
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
return []
async def search_marketplace_agents_for_generation(
search_query: str,
max_results: int = 10,
) -> list[MarketplaceAgentSummary]:
"""Search marketplace agents formatted for Agent Generator.
Note: This returns basic agent info. Full input/output schemas would require
additional graph fetches and is a potential future enhancement.
Args:
search_query: Search term to find relevant public agents
max_results: Maximum number of agents to return (default 10)
Returns:
List of MarketplaceAgentSummary (without detailed schemas for now)
"""
try:
response = await store_db.get_store_agents(
search_query=search_query,
page=1,
page_size=max_results,
)
results: list[MarketplaceAgentSummary] = []
for agent in response.agents:
results.append(
MarketplaceAgentSummary(
name=agent.agent_name,
description=agent.description,
sub_heading=agent.sub_heading,
creator=agent.creator,
is_marketplace_agent=True,
)
)
return results
except Exception as e:
logger.warning(f"Failed to search marketplace agents: {e}")
return []
async def get_all_relevant_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
include_library: bool = True,
include_marketplace: bool = True,
max_library_results: int = 15,
max_marketplace_results: int = 10,
) -> list[AgentSummary]:
"""Fetch relevant agents from library and/or marketplace.
Searches both user's library and marketplace by default.
Explicitly mentioned UUIDs in the search query are always looked up.
Args:
user_id: The user ID
search_query: Search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
include_library: Whether to search user's library (default True)
include_marketplace: Whether to also search marketplace (default True)
max_library_results: Max library agents to return (default 15)
max_marketplace_results: Max marketplace agents to return (default 10)
Returns:
List of AgentSummary, library agents first (with full schemas),
then marketplace agents (basic info only)
"""
agents: list[AgentSummary] = []
seen_graph_ids: set[str] = set()
if search_query:
mentioned_uuids = extract_uuids_from_text(search_query)
for graph_id in mentioned_uuids:
if graph_id == exclude_graph_id:
continue
agent = await get_library_agent_by_graph_id(user_id, graph_id)
if agent and agent["graph_id"] not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(agent["graph_id"])
logger.debug(f"Found explicitly mentioned agent: {agent['name']}")
if include_library:
library_agents = await get_library_agents_for_generation(
user_id=user_id,
search_query=search_query,
exclude_graph_id=exclude_graph_id,
max_results=max_library_results,
)
for agent in library_agents:
if agent["graph_id"] not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(agent["graph_id"])
if include_marketplace and search_query:
marketplace_agents = await search_marketplace_agents_for_generation(
search_query=search_query,
max_results=max_marketplace_results,
)
library_names = {a["name"].lower() for a in agents if a.get("name")}
for agent in marketplace_agents:
agent_name = agent.get("name")
if agent_name and agent_name.lower() not in library_names:
agents.append(agent)
return agents
def extract_search_terms_from_steps(
decomposition_result: DecompositionResult | dict[str, Any],
) -> list[str]:
"""Extract search terms from decomposed instruction steps.
Analyzes the decomposition result to extract relevant keywords
for additional library agent searches.
Args:
decomposition_result: Result from decompose_goal containing steps
Returns:
List of unique search terms extracted from steps
"""
search_terms: list[str] = []
if decomposition_result.get("type") != "instructions":
return search_terms
steps = decomposition_result.get("steps", [])
if not steps:
return search_terms
step_keys: list[str] = ["description", "action", "block_name", "tool", "name"]
for step in steps:
for key in step_keys:
value = step.get(key) # type: ignore[union-attr]
if isinstance(value, str) and len(value) > 3:
search_terms.append(value)
seen: set[str] = set()
unique_terms: list[str] = []
for term in search_terms:
term_lower = term.lower()
if term_lower not in seen:
seen.add(term_lower)
unique_terms.append(term)
return unique_terms
async def enrich_library_agents_from_steps(
user_id: str,
decomposition_result: DecompositionResult | dict[str, Any],
existing_agents: list[AgentSummary] | list[dict[str, Any]],
exclude_graph_id: str | None = None,
include_marketplace: bool = True,
max_additional_results: int = 10,
) -> list[AgentSummary] | list[dict[str, Any]]:
"""Enrich library agents list with additional searches based on decomposed steps.
This implements two-phase search: after decomposition, we search for additional
relevant agents based on the specific steps identified.
Args:
user_id: The user ID
decomposition_result: Result from decompose_goal containing steps
existing_agents: Already fetched library agents from initial search
exclude_graph_id: Optional graph ID to exclude
include_marketplace: Whether to also search marketplace
max_additional_results: Max additional agents per search term (default 10)
Returns:
Combined list of library agents (existing + newly discovered)
"""
search_terms = extract_search_terms_from_steps(decomposition_result)
if not search_terms:
return existing_agents
existing_ids: set[str] = set()
existing_names: set[str] = set()
for agent in existing_agents:
agent_name = agent.get("name", "")
if agent_name:
existing_names.add(agent_name.lower())
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id:
existing_ids.add(graph_id)
all_agents: list[AgentSummary] | list[dict[str, Any]] = list(existing_agents)
for term in search_terms[:3]:
try:
additional_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=term,
exclude_graph_id=exclude_graph_id,
include_marketplace=include_marketplace,
max_library_results=max_additional_results,
max_marketplace_results=5,
)
for agent in additional_agents:
agent_name = agent.get("name", "")
if not agent_name:
continue
agent_name_lower = agent_name.lower()
if agent_name_lower in existing_names:
continue
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id and graph_id in existing_ids:
continue
all_agents.append(agent)
existing_names.add(agent_name_lower)
if graph_id:
existing_ids.add(graph_id)
except Exception as e:
logger.warning(
f"Failed to search for additional agents with term '{term}': {e}"
)
logger.debug(
f"Enriched library agents: {len(existing_agents)} initial + "
f"{len(all_agents) - len(existing_agents)} additional = {len(all_agents)} total"
)
return all_agents
async def decompose_goal(
description: str,
context: str = "",
library_agents: list[AgentSummary] | None = None,
) -> DecompositionResult | None:
"""Break down a goal into steps or return clarifying questions.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns:
Dict with either:
DecompositionResult with either:
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
Or None on error
@@ -54,14 +497,23 @@ async def decompose_goal(description: str, context: str = "") -> dict[str, Any]
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for decompose_goal")
return await decompose_goal_external(description, context)
# Convert typed dicts to plain dicts for external service
result = await decompose_goal_external(
description, context, _to_dict_list(library_agents)
)
# Cast the result to DecompositionResult (external service returns dict)
return result # type: ignore[return-value]
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
async def generate_agent(
instructions: DecompositionResult | dict[str, Any],
library_agents: list[AgentSummary] | list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None:
"""Generate agent JSON from instructions.
Args:
instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
Returns:
Agent JSON dict, error dict {"type": "error", ...}, or None on error
@@ -71,7 +523,10 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent")
result = await generate_agent_external(instructions)
# Convert typed dicts to plain dicts for external service
result = await generate_agent_external(
dict(instructions), _to_dict_list(library_agents)
)
if result:
# Check if it's an error response - pass through as-is
if isinstance(result, dict) and result.get("type") == "error":
@@ -162,8 +617,6 @@ async def save_agent_to_library(
Returns:
Tuple of (created Graph, LibraryAgent)
"""
from backend.data.graph import get_graph_all_versions
graph = json_to_graph(agent_json)
if is_update:
@@ -200,25 +653,31 @@ async def save_agent_to_library(
async def get_agent_as_json(
graph_id: str, user_id: str | None
agent_id: str, user_id: str | None
) -> dict[str, Any] | None:
"""Fetch an agent and convert to JSON format for editing.
Args:
graph_id: Graph ID or library agent ID
agent_id: Graph ID or library agent ID
user_id: User ID
Returns:
Agent as JSON dict or None if not found
"""
from backend.data.graph import get_graph
graph = await get_graph(agent_id, version=None, user_id=user_id)
if not graph and user_id:
try:
library_agent = await library_db.get_library_agent(agent_id, user_id)
graph = await get_graph(
library_agent.graph_id, version=None, user_id=user_id
)
except NotFoundError:
pass
# Try to get the graph (version=None gets the active version)
graph = await get_graph(graph_id, version=None, user_id=user_id)
if not graph:
return None
# Convert to JSON format
nodes = []
for node in graph.nodes:
nodes.append(
@@ -256,7 +715,9 @@ async def get_agent_as_json(
async def generate_agent_patch(
update_request: str, current_agent: dict[str, Any]
update_request: str,
current_agent: dict[str, Any],
library_agents: list[AgentSummary] | None = None,
) -> dict[str, Any] | None:
"""Update an existing agent using natural language.
@@ -268,6 +729,7 @@ async def generate_agent_patch(
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
Returns:
Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
@@ -278,4 +740,7 @@ async def generate_agent_patch(
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent_patch")
return await generate_agent_patch_external(update_request, current_agent)
# Convert typed dicts to plain dicts for external service
return await generate_agent_patch_external(
update_request, current_agent, _to_dict_list(library_agents)
)

View File

@@ -1,11 +1,49 @@
"""Error handling utilities for agent generator."""
import re
def _sanitize_error_details(details: str) -> str:
"""Sanitize error details to remove sensitive information.
Strips common patterns that could expose internal system info:
- File paths (Unix and Windows)
- Database connection strings
- URLs with credentials
- Stack trace internals
Args:
details: Raw error details string
Returns:
Sanitized error details safe for user display
"""
# Remove file paths (Unix-style)
sanitized = re.sub(
r"/[a-zA-Z0-9_./\-]+\.(py|js|ts|json|yaml|yml)", "[path]", details
)
# Remove file paths (Windows-style)
sanitized = re.sub(r"[A-Z]:\\[a-zA-Z0-9_\\.\\-]+", "[path]", sanitized)
# Remove database URLs
sanitized = re.sub(
r"(postgres|mysql|mongodb|redis)://[^\s]+", "[database_url]", sanitized
)
# Remove URLs with credentials
sanitized = re.sub(r"https?://[^:]+:[^@]+@[^\s]+", "[url]", sanitized)
# Remove line numbers from stack traces
sanitized = re.sub(r", line \d+", "", sanitized)
# Remove "File" references from stack traces
sanitized = re.sub(r'File "[^"]+",?', "", sanitized)
return sanitized.strip()
def get_user_message_for_error(
error_type: str,
operation: str = "process the request",
llm_parse_message: str | None = None,
validation_message: str | None = None,
error_details: str | None = None,
) -> str:
"""Get a user-friendly error message based on error type.
@@ -19,25 +57,48 @@ def get_user_message_for_error(
message (e.g., "analyze the goal", "generate the agent")
llm_parse_message: Custom message for llm_parse_error type
validation_message: Custom message for validation_error type
error_details: Optional additional details about the error
Returns:
User-friendly error message suitable for display to the user
"""
base_message = ""
if error_type == "llm_parse_error":
return (
base_message = (
llm_parse_message
or "The AI had trouble processing this request. Please try again."
)
elif error_type == "validation_error":
return (
base_message = (
validation_message
or "The request failed validation. Please try rephrasing."
or "The generated agent failed validation. "
"This usually happens when the agent structure doesn't match "
"what the platform expects. Please try simplifying your goal "
"or breaking it into smaller parts."
)
elif error_type == "patch_error":
return "Failed to apply the changes. Please try a different approach."
base_message = (
"Failed to apply the changes. The modification couldn't be "
"validated. Please try a different approach or simplify the change."
)
elif error_type in ("timeout", "llm_timeout"):
return "The request took too long. Please try again."
base_message = (
"The request took too long to process. This can happen with "
"complex agents. Please try again or simplify your goal."
)
elif error_type in ("rate_limit", "llm_rate_limit"):
return "The service is currently busy. Please try again in a moment."
base_message = "The service is currently busy. Please try again in a moment."
else:
return f"Failed to {operation}. Please try again."
base_message = f"Failed to {operation}. Please try again."
# Add error details if provided (sanitized and truncated)
if error_details:
# Sanitize to remove sensitive information
details = _sanitize_error_details(error_details)
# Truncate long error details
if len(details) > 200:
details = details[:200] + "..."
base_message += f"\n\nTechnical details: {details}"
return base_message

View File

@@ -117,13 +117,16 @@ def _get_client() -> httpx.AsyncClient:
async def decompose_goal_external(
description: str, context: str = ""
description: str,
context: str = "",
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None:
"""Call the external service to decompose a goal.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns:
Dict with either:
@@ -141,6 +144,8 @@ async def decompose_goal_external(
if context:
# The external service uses user_instruction for additional context
payload["user_instruction"] = context
if library_agents:
payload["library_agents"] = library_agents
try:
response = await client.post("/api/decompose-description", json=payload)
@@ -207,21 +212,25 @@ async def decompose_goal_external(
async def generate_agent_external(
instructions: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None:
"""Call the external service to generate an agent from instructions.
Args:
instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
Returns:
Agent JSON dict on success, or error dict {"type": "error", ...} on error
"""
client = _get_client()
payload: dict[str, Any] = {"instructions": instructions}
if library_agents:
payload["library_agents"] = library_agents
try:
response = await client.post(
"/api/generate-agent", json={"instructions": instructions}
)
response = await client.post("/api/generate-agent", json=payload)
response.raise_for_status()
data = response.json()
@@ -229,8 +238,7 @@ async def generate_agent_external(
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator generation failed: {error_msg} "
f"(type: {error_type})"
f"Agent Generator generation failed: {error_msg} (type: {error_type})"
)
return _create_error_response(error_msg, error_type)
@@ -251,27 +259,31 @@ async def generate_agent_external(
async def generate_agent_patch_external(
update_request: str, current_agent: dict[str, Any]
update_request: str,
current_agent: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None:
"""Call the external service to generate a patch for an existing agent.
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
Returns:
Updated agent JSON, clarifying questions dict, or error dict on error
"""
client = _get_client()
payload: dict[str, Any] = {
"update_request": update_request,
"current_agent_json": current_agent,
}
if library_agents:
payload["library_agents"] = library_agents
try:
response = await client.post(
"/api/update-agent",
json={
"update_request": update_request,
"current_agent_json": current_agent,
},
)
response = await client.post("/api/update-agent", json=payload)
response.raise_for_status()
data = response.json()

View File

@@ -1,6 +1,7 @@
"""Shared agent search functionality for find_agent and find_library_agent tools."""
import logging
import re
from typing import Literal
from backend.api.features.library import db as library_db
@@ -19,6 +20,86 @@ logger = logging.getLogger(__name__)
SearchSource = Literal["marketplace", "library"]
# UUID v4 pattern for direct agent ID lookup
_UUID_PATTERN = re.compile(
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$",
re.IGNORECASE,
)
def _is_uuid(text: str) -> bool:
"""Check if text is a valid UUID v4."""
return bool(_UUID_PATTERN.match(text.strip()))
async def _get_library_agent_by_id(user_id: str, agent_id: str) -> AgentInfo | None:
"""Fetch a library agent by ID (library agent ID or graph_id).
Tries multiple lookup strategies:
1. First by graph_id (AgentGraph primary key)
2. Then by library agent ID (LibraryAgent primary key)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
AgentInfo if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by graph_id {agent_id}: {e}",
exc_info=True,
)
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
async def search_agents(
query: str,
@@ -70,28 +151,38 @@ async def search_agents(
)
)
else: # library
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
# If query looks like a UUID, try direct lookup first
if _is_uuid(query):
logger.info(f"Query looks like UUID, trying direct lookup: {query}")
agent = await _get_library_agent_by_id(user_id, query) # type: ignore[arg-type]
if agent:
agents.append(agent)
logger.info(f"Found agent by direct ID lookup: {agent.name}")
# If no results from UUID lookup, do text search
if not agents:
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
)
logger.info(f"Found {len(agents)} agents in {source}")
except NotFoundError:
pass

View File

@@ -8,7 +8,9 @@ from backend.api.features.chat.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,
decompose_goal,
enrich_library_agents_from_steps,
generate_agent,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library,
)
@@ -103,9 +105,27 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Fetch relevant library and marketplace agents for sub-agent composition
library_agents = None
if user_id:
try:
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=description, # Use goal as search term
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
# Log but don't fail - agent generation can work without sub-agents
logger.warning(f"Failed to fetch library agents: {e}")
# Step 1: Decompose goal into steps
try:
decomposition_result = await decompose_goal(description, context)
decomposition_result = await decompose_goal(
description, context, library_agents
)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -190,9 +210,26 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Step 1.5: Enrich library agents with step-based search (two-phase search)
# After decomposition, search for additional relevant agents based on the steps
if user_id and library_agents is not None:
try:
library_agents = await enrich_library_agents_from_steps(
user_id=user_id,
decomposition_result=decomposition_result,
existing_agents=library_agents,
include_marketplace=True,
)
logger.debug(
f"After enrichment: {len(library_agents)} total agents for sub-agent composition"
)
except Exception as e:
# Log but don't fail - continue with existing agents
logger.warning(f"Failed to enrich library agents from steps: {e}")
# Step 2: Generate agent JSON (external service handles fixing and validation)
try:
agent_json = await generate_agent(decomposition_result)
agent_json = await generate_agent(decomposition_result, library_agents)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -219,7 +256,12 @@ class CreateAgentTool(BaseTool):
error_type,
operation="generate the agent",
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
validation_message="The generated agent failed validation. Please try rephrasing your goal.",
validation_message=(
"I wasn't able to create a valid agent for this request. "
"The generated workflow had some structural issues. "
"Please try simplifying your goal or breaking it into smaller steps."
),
error_details=error_msg if error_type == "validation_error" else None,
)
return ErrorResponse(
message=user_message,
@@ -270,7 +312,7 @@ class CreateAgentTool(BaseTool):
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/{library_agent.id}",
library_agent_link=f"/library/agents/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)

View File

@@ -9,6 +9,7 @@ from .agent_generator import (
AgentGeneratorNotConfiguredError,
generate_agent_patch,
get_agent_as_json,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library,
)
@@ -127,6 +128,22 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
library_agents = None
if user_id:
try:
exclude_id = current_agent.get("id") or agent_id
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=changes,
exclude_graph_id=exclude_id,
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
# Build the update request with context
update_request = changes
if context:
@@ -134,7 +151,9 @@ class EditAgentTool(BaseTool):
# Step 2: Generate updated agent (external service handles fixing and validation)
try:
result = await generate_agent_patch(update_request, current_agent)
result = await generate_agent_patch(
update_request, current_agent, library_agents
)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -236,7 +255,7 @@ class EditAgentTool(BaseTool):
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/{library_agent.id}",
library_agent_link=f"/library/agents/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)

View File

@@ -77,21 +77,32 @@ async def list_library_agents(
}
# Build search filter if applicable
# Split into words and match ANY word in name or description
if search_term:
where_clause["OR"] = [
{
"AgentGraph": {
"is": {"name": {"contains": search_term, "mode": "insensitive"}}
}
},
{
"AgentGraph": {
"is": {
"description": {"contains": search_term, "mode": "insensitive"}
words = [w.strip() for w in search_term.split() if len(w.strip()) >= 3]
if words:
or_conditions: list[prisma.types.LibraryAgentWhereInput] = []
for word in words:
or_conditions.append(
{
"AgentGraph": {
"is": {"name": {"contains": word, "mode": "insensitive"}}
}
}
}
},
]
)
or_conditions.append(
{
"AgentGraph": {
"is": {
"description": {
"contains": word,
"mode": "insensitive",
}
}
}
}
)
where_clause["OR"] = or_conditions
# Determine sorting
order_by: prisma.types.LibraryAgentOrderByInput | None = None

View File

@@ -57,7 +57,8 @@ class TestDecomposeGoal:
result = await core.decompose_goal("Build a chatbot")
mock_external.assert_called_once_with("Build a chatbot", "")
# library_agents defaults to None
mock_external.assert_called_once_with("Build a chatbot", "", None)
assert result == expected_result
@pytest.mark.asyncio
@@ -74,7 +75,8 @@ class TestDecomposeGoal:
await core.decompose_goal("Build a chatbot", "Use Python")
mock_external.assert_called_once_with("Build a chatbot", "Use Python")
# library_agents defaults to None
mock_external.assert_called_once_with("Build a chatbot", "Use Python", None)
@pytest.mark.asyncio
async def test_returns_none_on_service_failure(self):
@@ -109,7 +111,8 @@ class TestGenerateAgent:
instructions = {"type": "instructions", "steps": ["Step 1"]}
result = await core.generate_agent(instructions)
mock_external.assert_called_once_with(instructions)
# library_agents defaults to None
mock_external.assert_called_once_with(instructions, None)
# Result should have id, version, is_active added if not present
assert result is not None
assert result["name"] == "Test Agent"
@@ -174,7 +177,8 @@ class TestGenerateAgentPatch:
current_agent = {"nodes": [], "links": []}
result = await core.generate_agent_patch("Add a node", current_agent)
mock_external.assert_called_once_with("Add a node", current_agent)
# library_agents defaults to None
mock_external.assert_called_once_with("Add a node", current_agent, None)
assert result == expected_result
@pytest.mark.asyncio

View File

@@ -0,0 +1,838 @@
"""
Tests for library agent fetching functionality in agent generator.
This test suite verifies the search-based library agent fetching,
including the combination of library and marketplace agents.
"""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.agent_generator import core
class TestGetLibraryAgentsForGeneration:
"""Test get_library_agents_for_generation function."""
@pytest.mark.asyncio
async def test_fetches_agents_with_search_term(self):
"""Test that search_term is passed to the library db."""
# Create a mock agent with proper attribute values
mock_agent = MagicMock()
mock_agent.graph_id = "agent-123"
mock_agent.graph_version = 1
mock_agent.name = "Email Agent"
mock_agent.description = "Sends emails"
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
mock_response = MagicMock()
mock_response.agents = [mock_agent]
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_list:
result = await core.get_library_agents_for_generation(
user_id="user-123",
search_query="send email",
)
# Verify search_term was passed
mock_list.assert_called_once_with(
user_id="user-123",
search_term="send email",
page=1,
page_size=15,
)
# Verify result format
assert len(result) == 1
assert result[0]["graph_id"] == "agent-123"
assert result[0]["name"] == "Email Agent"
@pytest.mark.asyncio
async def test_excludes_specified_graph_id(self):
"""Test that agents with excluded graph_id are filtered out."""
mock_response = MagicMock()
mock_response.agents = [
MagicMock(
graph_id="agent-123",
graph_version=1,
name="Agent 1",
description="First agent",
input_schema={},
output_schema={},
),
MagicMock(
graph_id="agent-456",
graph_version=1,
name="Agent 2",
description="Second agent",
input_schema={},
output_schema={},
),
]
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
):
result = await core.get_library_agents_for_generation(
user_id="user-123",
exclude_graph_id="agent-123",
)
# Verify the excluded agent is not in results
assert len(result) == 1
assert result[0]["graph_id"] == "agent-456"
@pytest.mark.asyncio
async def test_respects_max_results(self):
"""Test that max_results parameter limits the page_size."""
mock_response = MagicMock()
mock_response.agents = []
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_list:
await core.get_library_agents_for_generation(
user_id="user-123",
max_results=5,
)
# Verify page_size was set to max_results
mock_list.assert_called_once_with(
user_id="user-123",
search_term=None,
page=1,
page_size=5,
)
class TestSearchMarketplaceAgentsForGeneration:
"""Test search_marketplace_agents_for_generation function."""
@pytest.mark.asyncio
async def test_searches_marketplace_with_query(self):
"""Test that marketplace is searched with the query."""
mock_response = MagicMock()
mock_response.agents = [
MagicMock(
agent_name="Public Agent",
description="A public agent",
sub_heading="Does something useful",
creator="creator-1",
)
]
# The store_db is dynamically imported, so patch the import path
with patch(
"backend.api.features.store.db.get_store_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_search:
result = await core.search_marketplace_agents_for_generation(
search_query="automation",
max_results=10,
)
mock_search.assert_called_once_with(
search_query="automation",
page=1,
page_size=10,
)
assert len(result) == 1
assert result[0]["name"] == "Public Agent"
assert result[0]["is_marketplace_agent"] is True
@pytest.mark.asyncio
async def test_handles_marketplace_error_gracefully(self):
"""Test that marketplace errors don't crash the function."""
with patch(
"backend.api.features.store.db.get_store_agents",
new_callable=AsyncMock,
side_effect=Exception("Marketplace unavailable"),
):
result = await core.search_marketplace_agents_for_generation(
search_query="test"
)
# Should return empty list, not raise exception
assert result == []
class TestGetAllRelevantAgentsForGeneration:
"""Test get_all_relevant_agents_for_generation function."""
@pytest.mark.asyncio
async def test_combines_library_and_marketplace_agents(self):
"""Test that agents from both sources are combined."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Library Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
marketplace_agents = [
{
"name": "Market Agent",
"description": "From marketplace",
"sub_heading": "Sub heading",
"creator": "creator-1",
"is_marketplace_agent": True,
}
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
return_value=marketplace_agents,
):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="test query",
include_marketplace=True,
)
# Library agents should come first
assert len(result) == 2
assert result[0]["name"] == "Library Agent"
assert result[1]["name"] == "Market Agent"
@pytest.mark.asyncio
async def test_deduplicates_by_name(self):
"""Test that marketplace agents with same name as library are excluded."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Shared Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
marketplace_agents = [
{
"name": "Shared Agent", # Same name, should be deduplicated
"description": "From marketplace",
"sub_heading": "Sub heading",
"creator": "creator-1",
"is_marketplace_agent": True,
},
{
"name": "Unique Agent",
"description": "Only in marketplace",
"sub_heading": "Sub heading",
"creator": "creator-2",
"is_marketplace_agent": True,
},
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
return_value=marketplace_agents,
):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="test",
include_marketplace=True,
)
# Shared Agent from marketplace should be excluded
assert len(result) == 2
names = [a["name"] for a in result]
assert "Shared Agent" in names
assert "Unique Agent" in names
@pytest.mark.asyncio
async def test_skips_marketplace_when_disabled(self):
"""Test that marketplace is not searched when include_marketplace=False."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Library Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
) as mock_marketplace:
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="test",
include_marketplace=False,
)
# Marketplace should not be called
mock_marketplace.assert_not_called()
assert len(result) == 1
@pytest.mark.asyncio
async def test_skips_marketplace_when_no_search_query(self):
"""Test that marketplace is not searched without a search query."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Library Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
) as mock_marketplace:
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query=None, # No search query
include_marketplace=True,
)
# Marketplace should not be called without search query
mock_marketplace.assert_not_called()
assert len(result) == 1
class TestExtractSearchTermsFromSteps:
"""Test extract_search_terms_from_steps function."""
def test_extracts_terms_from_instructions_type(self):
"""Test extraction from valid instructions decomposition result."""
decomposition_result = {
"type": "instructions",
"steps": [
{
"description": "Send an email notification",
"block_name": "GmailSendBlock",
},
{"description": "Fetch weather data", "action": "Get weather API"},
],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert "Send an email notification" in result
assert "GmailSendBlock" in result
assert "Fetch weather data" in result
assert "Get weather API" in result
def test_returns_empty_for_non_instructions_type(self):
"""Test that non-instructions types return empty list."""
decomposition_result = {
"type": "clarifying_questions",
"questions": [{"question": "What email?"}],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert result == []
def test_deduplicates_terms_case_insensitively(self):
"""Test that duplicate terms are removed (case-insensitive)."""
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "Send Email", "name": "send email"},
{"description": "Other task"},
],
}
result = core.extract_search_terms_from_steps(decomposition_result)
# Should only have one "send email" variant
email_terms = [t for t in result if "email" in t.lower()]
assert len(email_terms) == 1
def test_filters_short_terms(self):
"""Test that terms with 3 or fewer characters are filtered out."""
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "ab", "action": "xyz"}, # Both too short
{"description": "Valid term here"},
],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert "ab" not in result
assert "xyz" not in result
assert "Valid term here" in result
def test_handles_empty_steps(self):
"""Test handling of empty steps list."""
decomposition_result = {
"type": "instructions",
"steps": [],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert result == []
class TestEnrichLibraryAgentsFromSteps:
"""Test enrich_library_agents_from_steps function."""
@pytest.mark.asyncio
async def test_enriches_with_additional_agents(self):
"""Test that additional agents are found based on steps."""
existing_agents = [
{
"graph_id": "existing-123",
"graph_version": 1,
"name": "Existing Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
additional_agents = [
{
"graph_id": "new-456",
"graph_version": 1,
"name": "Email Agent",
"description": "For sending emails",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "Send email notification"},
],
}
with patch.object(
core,
"get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=additional_agents,
):
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should have both existing and new agents
assert len(result) == 2
names = [a["name"] for a in result]
assert "Existing Agent" in names
assert "Email Agent" in names
@pytest.mark.asyncio
async def test_deduplicates_by_graph_id(self):
"""Test that agents with same graph_id are not duplicated."""
existing_agents = [
{
"graph_id": "agent-123",
"graph_version": 1,
"name": "Existing Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
# Additional search returns same agent
additional_agents = [
{
"graph_id": "agent-123", # Same ID
"graph_version": 1,
"name": "Existing Agent Copy",
"description": "Same agent different name",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "instructions",
"steps": [{"description": "Some action"}],
}
with patch.object(
core,
"get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=additional_agents,
):
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should not duplicate
assert len(result) == 1
@pytest.mark.asyncio
async def test_deduplicates_by_name(self):
"""Test that agents with same name are not duplicated."""
existing_agents = [
{
"graph_id": "agent-123",
"graph_version": 1,
"name": "Email Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
# Additional search returns agent with same name but different ID
additional_agents = [
{
"graph_id": "agent-456", # Different ID
"graph_version": 1,
"name": "Email Agent", # Same name
"description": "Different agent same name",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "instructions",
"steps": [{"description": "Send email"}],
}
with patch.object(
core,
"get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=additional_agents,
):
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should not duplicate by name
assert len(result) == 1
assert result[0].get("graph_id") == "agent-123" # Original kept
@pytest.mark.asyncio
async def test_returns_existing_when_no_steps(self):
"""Test that existing agents are returned when no search terms extracted."""
existing_agents = [
{
"graph_id": "existing-123",
"graph_version": 1,
"name": "Existing Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "clarifying_questions", # Not instructions type
"questions": [],
}
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should return existing unchanged
assert result == existing_agents
@pytest.mark.asyncio
async def test_limits_search_terms_to_three(self):
"""Test that only first 3 search terms are used."""
existing_agents = []
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "First action"},
{"description": "Second action"},
{"description": "Third action"},
{"description": "Fourth action"},
{"description": "Fifth action"},
],
}
call_count = 0
async def mock_get_agents(*args, **kwargs):
nonlocal call_count
call_count += 1
return []
with patch.object(
core,
"get_all_relevant_agents_for_generation",
side_effect=mock_get_agents,
):
await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should only make 3 calls (limited to first 3 terms)
assert call_count == 3
class TestExtractUuidsFromText:
"""Test extract_uuids_from_text function."""
def test_extracts_single_uuid(self):
"""Test extraction of a single UUID from text."""
text = "Use my agent 46631191-e8a8-486f-ad90-84f89738321d for this task"
result = core.extract_uuids_from_text(text)
assert len(result) == 1
assert "46631191-e8a8-486f-ad90-84f89738321d" in result
def test_extracts_multiple_uuids(self):
"""Test extraction of multiple UUIDs from text."""
text = (
"Combine agents 11111111-1111-4111-8111-111111111111 "
"and 22222222-2222-4222-9222-222222222222"
)
result = core.extract_uuids_from_text(text)
assert len(result) == 2
assert "11111111-1111-4111-8111-111111111111" in result
assert "22222222-2222-4222-9222-222222222222" in result
def test_deduplicates_uuids(self):
"""Test that duplicate UUIDs are deduplicated."""
text = (
"Use 46631191-e8a8-486f-ad90-84f89738321d twice: "
"46631191-e8a8-486f-ad90-84f89738321d"
)
result = core.extract_uuids_from_text(text)
assert len(result) == 1
def test_normalizes_to_lowercase(self):
"""Test that UUIDs are normalized to lowercase."""
text = "Use 46631191-E8A8-486F-AD90-84F89738321D"
result = core.extract_uuids_from_text(text)
assert result[0] == "46631191-e8a8-486f-ad90-84f89738321d"
def test_returns_empty_for_no_uuids(self):
"""Test that empty list is returned when no UUIDs found."""
text = "Create an email agent that sends notifications"
result = core.extract_uuids_from_text(text)
assert result == []
def test_ignores_invalid_uuids(self):
"""Test that invalid UUID-like strings are ignored."""
text = "Not a valid UUID: 12345678-1234-1234-1234-123456789abc"
result = core.extract_uuids_from_text(text)
# UUID v4 requires specific patterns (4 in third group, 8/9/a/b in fourth)
assert len(result) == 0
class TestGetLibraryAgentById:
"""Test get_library_agent_by_id function (and its alias get_library_agent_by_graph_id)."""
@pytest.mark.asyncio
async def test_returns_agent_when_found_by_graph_id(self):
"""Test that agent is returned when found by graph_id."""
mock_agent = MagicMock()
mock_agent.graph_id = "agent-123"
mock_agent.graph_version = 1
mock_agent.name = "Test Agent"
mock_agent.description = "Test description"
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
with patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=mock_agent,
):
result = await core.get_library_agent_by_id("user-123", "agent-123")
assert result is not None
assert result["graph_id"] == "agent-123"
assert result["name"] == "Test Agent"
@pytest.mark.asyncio
async def test_falls_back_to_library_agent_id(self):
"""Test that lookup falls back to library agent ID when graph_id not found."""
mock_agent = MagicMock()
mock_agent.graph_id = "graph-456" # Different from the lookup ID
mock_agent.graph_version = 1
mock_agent.name = "Library Agent"
mock_agent.description = "Found by library ID"
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=None, # Not found by graph_id
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
return_value=mock_agent, # Found by library ID
),
):
result = await core.get_library_agent_by_id("user-123", "library-id-123")
assert result is not None
assert result["graph_id"] == "graph-456"
assert result["name"] == "Library Agent"
@pytest.mark.asyncio
async def test_returns_none_when_not_found_by_either_method(self):
"""Test that None is returned when agent not found by either method."""
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=None,
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
side_effect=core.NotFoundError("Not found"),
),
):
result = await core.get_library_agent_by_id("user-123", "nonexistent")
assert result is None
@pytest.mark.asyncio
async def test_returns_none_on_exception(self):
"""Test that None is returned when exception occurs in both lookups."""
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
side_effect=Exception("Database error"),
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
side_effect=Exception("Database error"),
),
):
result = await core.get_library_agent_by_id("user-123", "agent-123")
assert result is None
@pytest.mark.asyncio
async def test_alias_works(self):
"""Test that get_library_agent_by_graph_id is an alias for get_library_agent_by_id."""
assert core.get_library_agent_by_graph_id is core.get_library_agent_by_id
class TestGetAllRelevantAgentsWithUuids:
"""Test UUID extraction in get_all_relevant_agents_for_generation."""
@pytest.mark.asyncio
async def test_fetches_explicitly_mentioned_agents(self):
"""Test that agents mentioned by UUID are fetched directly."""
mock_agent = MagicMock()
mock_agent.graph_id = "46631191-e8a8-486f-ad90-84f89738321d"
mock_agent.graph_version = 1
mock_agent.name = "Mentioned Agent"
mock_agent.description = "Explicitly mentioned"
mock_agent.input_schema = {}
mock_agent.output_schema = {}
mock_response = MagicMock()
mock_response.agents = []
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=mock_agent,
),
patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
),
):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="Use agent 46631191-e8a8-486f-ad90-84f89738321d",
include_marketplace=False,
)
assert len(result) == 1
assert result[0].get("graph_id") == "46631191-e8a8-486f-ad90-84f89738321d"
assert result[0].get("name") == "Mentioned Agent"
if __name__ == "__main__":
pytest.main([__file__, "-v"])

View File

@@ -433,5 +433,139 @@ class TestGetBlocksExternal:
assert result is None
class TestLibraryAgentsPassthrough:
"""Test that library_agents are passed correctly in all requests."""
def setup_method(self):
"""Reset client singleton before each test."""
service._settings = None
service._client = None
@pytest.mark.asyncio
async def test_decompose_goal_passes_library_agents(self):
"""Test that library_agents are included in decompose goal payload."""
library_agents = [
{
"graph_id": "agent-123",
"graph_version": 1,
"name": "Email Sender",
"description": "Sends emails",
"input_schema": {"properties": {"to": {"type": "string"}}},
"output_schema": {"properties": {"sent": {"type": "boolean"}}},
},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"type": "instructions",
"steps": ["Step 1"],
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.decompose_goal_external(
"Send an email",
library_agents=library_agents,
)
# Verify library_agents was passed in the payload
call_args = mock_client.post.call_args
assert call_args[1]["json"]["library_agents"] == library_agents
@pytest.mark.asyncio
async def test_generate_agent_passes_library_agents(self):
"""Test that library_agents are included in generate agent payload."""
library_agents = [
{
"graph_id": "agent-456",
"graph_version": 2,
"name": "Data Fetcher",
"description": "Fetches data from API",
"input_schema": {"properties": {"url": {"type": "string"}}},
"output_schema": {"properties": {"data": {"type": "object"}}},
},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"agent_json": {"name": "Test Agent", "nodes": []},
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.generate_agent_external(
{"steps": ["Step 1"]},
library_agents=library_agents,
)
# Verify library_agents was passed in the payload
call_args = mock_client.post.call_args
assert call_args[1]["json"]["library_agents"] == library_agents
@pytest.mark.asyncio
async def test_generate_agent_patch_passes_library_agents(self):
"""Test that library_agents are included in patch generation payload."""
library_agents = [
{
"graph_id": "agent-789",
"graph_version": 1,
"name": "Slack Notifier",
"description": "Sends Slack messages",
"input_schema": {"properties": {"message": {"type": "string"}}},
"output_schema": {"properties": {"success": {"type": "boolean"}}},
},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"agent_json": {"name": "Updated Agent", "nodes": []},
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.generate_agent_patch_external(
"Add error handling",
{"name": "Original Agent", "nodes": []},
library_agents=library_agents,
)
# Verify library_agents was passed in the payload
call_args = mock_client.post.call_args
assert call_args[1]["json"]["library_agents"] == library_agents
@pytest.mark.asyncio
async def test_decompose_goal_without_library_agents(self):
"""Test that decompose goal works without library_agents."""
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"type": "instructions",
"steps": ["Step 1"],
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.decompose_goal_external("Build a workflow")
# Verify library_agents was NOT passed when not provided
call_args = mock_client.post.call_args
assert "library_agents" not in call_args[1]["json"]
if __name__ == "__main__":
pytest.main([__file__, "-v"])

View File

@@ -30,9 +30,9 @@ export function getErrorMessage(result: unknown): string {
}
if (typeof result === "object" && result !== null) {
const response = result as Record<string, unknown>;
if (response.error) return stripInternalReasoning(String(response.error));
if (response.message)
return stripInternalReasoning(String(response.message));
if (response.error) return stripInternalReasoning(String(response.error));
}
return "An error occurred";
}
@@ -363,8 +363,8 @@ export function formatToolResponse(result: unknown, toolName: string): string {
case "error":
const errorMsg =
(response.error as string) || response.message || "An error occurred";
return `Error: ${errorMsg}`;
(response.message as string) || response.error || "An error occurred";
return stripInternalReasoning(String(errorMsg));
case "no_results":
const suggestions = (response.suggestions as string[]) || [];