mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-02-03 03:14:57 -05:00
Compare commits
1 Commits
dev
...
fix/copilo
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d488bfdda7 |
@@ -3,8 +3,7 @@ import logging
|
|||||||
import time
|
import time
|
||||||
from asyncio import CancelledError
|
from asyncio import CancelledError
|
||||||
from collections.abc import AsyncGenerator
|
from collections.abc import AsyncGenerator
|
||||||
from dataclasses import dataclass
|
from typing import Any
|
||||||
from typing import Any, cast
|
|
||||||
|
|
||||||
import openai
|
import openai
|
||||||
import orjson
|
import orjson
|
||||||
@@ -16,14 +15,7 @@ from openai import (
|
|||||||
PermissionDeniedError,
|
PermissionDeniedError,
|
||||||
RateLimitError,
|
RateLimitError,
|
||||||
)
|
)
|
||||||
from openai.types.chat import (
|
from openai.types.chat import ChatCompletionChunk, ChatCompletionToolParam
|
||||||
ChatCompletionAssistantMessageParam,
|
|
||||||
ChatCompletionChunk,
|
|
||||||
ChatCompletionMessageParam,
|
|
||||||
ChatCompletionStreamOptionsParam,
|
|
||||||
ChatCompletionSystemMessageParam,
|
|
||||||
ChatCompletionToolParam,
|
|
||||||
)
|
|
||||||
|
|
||||||
from backend.data.redis_client import get_redis_async
|
from backend.data.redis_client import get_redis_async
|
||||||
from backend.data.understanding import (
|
from backend.data.understanding import (
|
||||||
@@ -31,7 +23,6 @@ from backend.data.understanding import (
|
|||||||
get_business_understanding,
|
get_business_understanding,
|
||||||
)
|
)
|
||||||
from backend.util.exceptions import NotFoundError
|
from backend.util.exceptions import NotFoundError
|
||||||
from backend.util.prompt import estimate_token_count
|
|
||||||
from backend.util.settings import Settings
|
from backend.util.settings import Settings
|
||||||
|
|
||||||
from . import db as chat_db
|
from . import db as chat_db
|
||||||
@@ -616,6 +607,9 @@ async def stream_chat_completion(
|
|||||||
total_tokens=chunk.totalTokens,
|
total_tokens=chunk.totalTokens,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
elif isinstance(chunk, StreamHeartbeat):
|
||||||
|
# Pass through heartbeat to keep SSE connection alive
|
||||||
|
yield chunk
|
||||||
else:
|
else:
|
||||||
logger.error(f"Unknown chunk type: {type(chunk)}", exc_info=True)
|
logger.error(f"Unknown chunk type: {type(chunk)}", exc_info=True)
|
||||||
|
|
||||||
@@ -803,201 +797,6 @@ def _is_region_blocked_error(error: Exception) -> bool:
|
|||||||
return "not available in your region" in str(error).lower()
|
return "not available in your region" in str(error).lower()
|
||||||
|
|
||||||
|
|
||||||
# Context window management constants
|
|
||||||
TOKEN_THRESHOLD = 120_000
|
|
||||||
KEEP_RECENT_MESSAGES = 15
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class ContextWindowResult:
|
|
||||||
"""Result of context window management."""
|
|
||||||
|
|
||||||
messages: list[dict[str, Any]]
|
|
||||||
token_count: int
|
|
||||||
was_compacted: bool
|
|
||||||
error: str | None = None
|
|
||||||
|
|
||||||
|
|
||||||
def _messages_to_dicts(messages: list) -> list[dict[str, Any]]:
|
|
||||||
"""Convert message objects to dicts, filtering None values.
|
|
||||||
|
|
||||||
Handles both TypedDict (dict-like) and other message formats.
|
|
||||||
"""
|
|
||||||
result = []
|
|
||||||
for msg in messages:
|
|
||||||
if msg is None:
|
|
||||||
continue
|
|
||||||
if isinstance(msg, dict):
|
|
||||||
msg_dict = {k: v for k, v in msg.items() if v is not None}
|
|
||||||
else:
|
|
||||||
msg_dict = dict(msg)
|
|
||||||
result.append(msg_dict)
|
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
async def _manage_context_window(
|
|
||||||
messages: list,
|
|
||||||
model: str,
|
|
||||||
api_key: str | None = None,
|
|
||||||
base_url: str | None = None,
|
|
||||||
) -> ContextWindowResult:
|
|
||||||
"""
|
|
||||||
Manage context window by summarizing old messages if token count exceeds threshold.
|
|
||||||
|
|
||||||
This function handles context compaction for LLM calls by:
|
|
||||||
1. Counting tokens in the message list
|
|
||||||
2. If over threshold, summarizing old messages while keeping recent ones
|
|
||||||
3. Ensuring tool_call/tool_response pairs stay intact
|
|
||||||
4. Progressively reducing message count if still over limit
|
|
||||||
|
|
||||||
Args:
|
|
||||||
messages: List of messages in OpenAI format (with system prompt if present)
|
|
||||||
model: Model name for token counting
|
|
||||||
api_key: API key for summarization calls
|
|
||||||
base_url: Base URL for summarization calls
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
ContextWindowResult with compacted messages and metadata
|
|
||||||
"""
|
|
||||||
if not messages:
|
|
||||||
return ContextWindowResult([], 0, False, "No messages to compact")
|
|
||||||
|
|
||||||
messages_dict = _messages_to_dicts(messages)
|
|
||||||
|
|
||||||
# Normalize model name for token counting (tiktoken only supports OpenAI models)
|
|
||||||
token_count_model = model.split("/")[-1] if "/" in model else model
|
|
||||||
if "claude" in token_count_model.lower() or not any(
|
|
||||||
known in token_count_model.lower()
|
|
||||||
for known in ["gpt", "o1", "chatgpt", "text-"]
|
|
||||||
):
|
|
||||||
token_count_model = "gpt-4o"
|
|
||||||
|
|
||||||
try:
|
|
||||||
token_count = estimate_token_count(messages_dict, model=token_count_model)
|
|
||||||
except Exception as e:
|
|
||||||
logger.warning(f"Token counting failed: {e}. Using gpt-4o approximation.")
|
|
||||||
token_count_model = "gpt-4o"
|
|
||||||
token_count = estimate_token_count(messages_dict, model=token_count_model)
|
|
||||||
|
|
||||||
if token_count <= TOKEN_THRESHOLD:
|
|
||||||
return ContextWindowResult(messages, token_count, False)
|
|
||||||
|
|
||||||
has_system_prompt = messages[0].get("role") == "system"
|
|
||||||
slice_start = max(0, len(messages_dict) - KEEP_RECENT_MESSAGES)
|
|
||||||
recent_messages = _ensure_tool_pairs_intact(
|
|
||||||
messages_dict[-KEEP_RECENT_MESSAGES:], messages_dict, slice_start
|
|
||||||
)
|
|
||||||
|
|
||||||
# Determine old messages to summarize (explicit bounds to avoid slice edge cases)
|
|
||||||
system_msg = messages[0] if has_system_prompt else None
|
|
||||||
if has_system_prompt:
|
|
||||||
old_messages_dict = (
|
|
||||||
messages_dict[1:-KEEP_RECENT_MESSAGES]
|
|
||||||
if len(messages_dict) > KEEP_RECENT_MESSAGES + 1
|
|
||||||
else []
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
old_messages_dict = (
|
|
||||||
messages_dict[:-KEEP_RECENT_MESSAGES]
|
|
||||||
if len(messages_dict) > KEEP_RECENT_MESSAGES
|
|
||||||
else []
|
|
||||||
)
|
|
||||||
|
|
||||||
# Try to summarize old messages, fall back to truncation on failure
|
|
||||||
summary_msg = None
|
|
||||||
if old_messages_dict:
|
|
||||||
try:
|
|
||||||
summary_text = await _summarize_messages(
|
|
||||||
old_messages_dict, model=model, api_key=api_key, base_url=base_url
|
|
||||||
)
|
|
||||||
summary_msg = ChatCompletionAssistantMessageParam(
|
|
||||||
role="assistant",
|
|
||||||
content=f"[Previous conversation summary — for context only]: {summary_text}",
|
|
||||||
)
|
|
||||||
base = [system_msg, summary_msg] if has_system_prompt else [summary_msg]
|
|
||||||
messages = base + recent_messages
|
|
||||||
logger.info(
|
|
||||||
f"Context summarized: {token_count} tokens, "
|
|
||||||
f"summarized {len(old_messages_dict)} msgs, kept {KEEP_RECENT_MESSAGES}"
|
|
||||||
)
|
|
||||||
except Exception as e:
|
|
||||||
logger.warning(f"Summarization failed, falling back to truncation: {e}")
|
|
||||||
messages = (
|
|
||||||
[system_msg] + recent_messages if has_system_prompt else recent_messages
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
logger.warning(
|
|
||||||
f"Token count {token_count} exceeds threshold but no old messages to summarize"
|
|
||||||
)
|
|
||||||
|
|
||||||
new_token_count = estimate_token_count(
|
|
||||||
_messages_to_dicts(messages), model=token_count_model
|
|
||||||
)
|
|
||||||
|
|
||||||
# Progressive truncation if still over limit
|
|
||||||
if new_token_count > TOKEN_THRESHOLD:
|
|
||||||
logger.warning(
|
|
||||||
f"Still over limit: {new_token_count} tokens. Reducing messages."
|
|
||||||
)
|
|
||||||
base_msgs = (
|
|
||||||
recent_messages
|
|
||||||
if old_messages_dict
|
|
||||||
else (messages_dict[1:] if has_system_prompt else messages_dict)
|
|
||||||
)
|
|
||||||
|
|
||||||
def build_messages(recent: list) -> list:
|
|
||||||
"""Build message list with optional system prompt and summary."""
|
|
||||||
prefix = []
|
|
||||||
if has_system_prompt and system_msg:
|
|
||||||
prefix.append(system_msg)
|
|
||||||
if summary_msg:
|
|
||||||
prefix.append(summary_msg)
|
|
||||||
return prefix + recent
|
|
||||||
|
|
||||||
for keep_count in [12, 10, 8, 5, 3, 2, 1, 0]:
|
|
||||||
if keep_count == 0:
|
|
||||||
messages = build_messages([])
|
|
||||||
if not messages:
|
|
||||||
continue
|
|
||||||
elif len(base_msgs) < keep_count:
|
|
||||||
continue
|
|
||||||
else:
|
|
||||||
reduced = _ensure_tool_pairs_intact(
|
|
||||||
base_msgs[-keep_count:],
|
|
||||||
base_msgs,
|
|
||||||
max(0, len(base_msgs) - keep_count),
|
|
||||||
)
|
|
||||||
messages = build_messages(reduced)
|
|
||||||
|
|
||||||
new_token_count = estimate_token_count(
|
|
||||||
_messages_to_dicts(messages), model=token_count_model
|
|
||||||
)
|
|
||||||
if new_token_count <= TOKEN_THRESHOLD:
|
|
||||||
logger.info(
|
|
||||||
f"Reduced to {keep_count} messages, {new_token_count} tokens"
|
|
||||||
)
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
logger.error(
|
|
||||||
f"Cannot reduce below threshold. Final: {new_token_count} tokens"
|
|
||||||
)
|
|
||||||
if has_system_prompt and len(messages) > 1:
|
|
||||||
messages = messages[1:]
|
|
||||||
logger.critical("Dropped system prompt as last resort")
|
|
||||||
return ContextWindowResult(
|
|
||||||
messages, new_token_count, True, "System prompt dropped"
|
|
||||||
)
|
|
||||||
# No system prompt to drop - return error so callers don't proceed with oversized context
|
|
||||||
return ContextWindowResult(
|
|
||||||
messages,
|
|
||||||
new_token_count,
|
|
||||||
True,
|
|
||||||
"Unable to reduce context below token limit",
|
|
||||||
)
|
|
||||||
|
|
||||||
return ContextWindowResult(messages, new_token_count, True)
|
|
||||||
|
|
||||||
|
|
||||||
async def _summarize_messages(
|
async def _summarize_messages(
|
||||||
messages: list,
|
messages: list,
|
||||||
model: str,
|
model: str,
|
||||||
@@ -1226,8 +1025,11 @@ async def _stream_chat_chunks(
|
|||||||
|
|
||||||
logger.info("Starting pure chat stream")
|
logger.info("Starting pure chat stream")
|
||||||
|
|
||||||
|
# Build messages with system prompt prepended
|
||||||
messages = session.to_openai_messages()
|
messages = session.to_openai_messages()
|
||||||
if system_prompt:
|
if system_prompt:
|
||||||
|
from openai.types.chat import ChatCompletionSystemMessageParam
|
||||||
|
|
||||||
system_message = ChatCompletionSystemMessageParam(
|
system_message = ChatCompletionSystemMessageParam(
|
||||||
role="system",
|
role="system",
|
||||||
content=system_prompt,
|
content=system_prompt,
|
||||||
@@ -1235,38 +1037,314 @@ async def _stream_chat_chunks(
|
|||||||
messages = [system_message] + messages
|
messages = [system_message] + messages
|
||||||
|
|
||||||
# Apply context window management
|
# Apply context window management
|
||||||
context_result = await _manage_context_window(
|
token_count = 0 # Initialize for exception handler
|
||||||
messages=messages,
|
try:
|
||||||
model=model,
|
from backend.util.prompt import estimate_token_count
|
||||||
api_key=config.api_key,
|
|
||||||
base_url=config.base_url,
|
|
||||||
)
|
|
||||||
|
|
||||||
if context_result.error:
|
# Convert to dict for token counting
|
||||||
if "System prompt dropped" in context_result.error:
|
# OpenAI message types are TypedDicts, so they're already dict-like
|
||||||
# Warning only - continue with reduced context
|
messages_dict = []
|
||||||
yield StreamError(
|
for msg in messages:
|
||||||
errorText=(
|
# TypedDict objects are already dicts, just filter None values
|
||||||
"Warning: System prompt dropped due to size constraints. "
|
if isinstance(msg, dict):
|
||||||
"Assistant behavior may be affected."
|
msg_dict = {k: v for k, v in msg.items() if v is not None}
|
||||||
)
|
else:
|
||||||
|
# Fallback for unexpected types
|
||||||
|
msg_dict = dict(msg)
|
||||||
|
messages_dict.append(msg_dict)
|
||||||
|
|
||||||
|
# Estimate tokens using appropriate tokenizer
|
||||||
|
# Normalize model name for token counting (tiktoken only supports OpenAI models)
|
||||||
|
token_count_model = model
|
||||||
|
if "/" in model:
|
||||||
|
# Strip provider prefix (e.g., "anthropic/claude-opus-4.5" -> "claude-opus-4.5")
|
||||||
|
token_count_model = model.split("/")[-1]
|
||||||
|
|
||||||
|
# For Claude and other non-OpenAI models, approximate with gpt-4o tokenizer
|
||||||
|
# Most modern LLMs have similar tokenization (~1 token per 4 chars)
|
||||||
|
if "claude" in token_count_model.lower() or not any(
|
||||||
|
known in token_count_model.lower()
|
||||||
|
for known in ["gpt", "o1", "chatgpt", "text-"]
|
||||||
|
):
|
||||||
|
token_count_model = "gpt-4o"
|
||||||
|
|
||||||
|
# Attempt token counting with error handling
|
||||||
|
try:
|
||||||
|
token_count = estimate_token_count(messages_dict, model=token_count_model)
|
||||||
|
except Exception as token_error:
|
||||||
|
# If token counting fails, use gpt-4o as fallback approximation
|
||||||
|
logger.warning(
|
||||||
|
f"Token counting failed for model {token_count_model}: {token_error}. "
|
||||||
|
"Using gpt-4o approximation."
|
||||||
)
|
)
|
||||||
else:
|
token_count = estimate_token_count(messages_dict, model="gpt-4o")
|
||||||
# Any other error - abort to prevent failed LLM calls
|
|
||||||
|
# If over threshold, summarize old messages
|
||||||
|
if token_count > 120_000:
|
||||||
|
KEEP_RECENT = 15
|
||||||
|
|
||||||
|
# Check if we have a system prompt at the start
|
||||||
|
has_system_prompt = (
|
||||||
|
len(messages) > 0 and messages[0].get("role") == "system"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Always attempt mitigation when over limit, even with few messages
|
||||||
|
if messages:
|
||||||
|
# Split messages based on whether system prompt exists
|
||||||
|
# Calculate start index for the slice
|
||||||
|
slice_start = max(0, len(messages_dict) - KEEP_RECENT)
|
||||||
|
recent_messages = messages_dict[-KEEP_RECENT:]
|
||||||
|
|
||||||
|
# Ensure tool_call/tool_response pairs stay together
|
||||||
|
# This prevents API errors from orphan tool responses
|
||||||
|
recent_messages = _ensure_tool_pairs_intact(
|
||||||
|
recent_messages, messages_dict, slice_start
|
||||||
|
)
|
||||||
|
|
||||||
|
if has_system_prompt:
|
||||||
|
# Keep system prompt separate, summarize everything between system and recent
|
||||||
|
system_msg = messages[0]
|
||||||
|
old_messages_dict = messages_dict[1:-KEEP_RECENT]
|
||||||
|
else:
|
||||||
|
# No system prompt, summarize everything except recent
|
||||||
|
system_msg = None
|
||||||
|
old_messages_dict = messages_dict[:-KEEP_RECENT]
|
||||||
|
|
||||||
|
# Summarize any non-empty old messages (no minimum threshold)
|
||||||
|
# If we're over the token limit, we need to compress whatever we can
|
||||||
|
if old_messages_dict:
|
||||||
|
# Summarize old messages using the same model as chat
|
||||||
|
summary_text = await _summarize_messages(
|
||||||
|
old_messages_dict,
|
||||||
|
model=model,
|
||||||
|
api_key=config.api_key,
|
||||||
|
base_url=config.base_url,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Build new message list
|
||||||
|
# Use assistant role (not system) to prevent privilege escalation
|
||||||
|
# of user-influenced content to instruction-level authority
|
||||||
|
from openai.types.chat import ChatCompletionAssistantMessageParam
|
||||||
|
|
||||||
|
summary_msg = ChatCompletionAssistantMessageParam(
|
||||||
|
role="assistant",
|
||||||
|
content=(
|
||||||
|
"[Previous conversation summary — for context only]: "
|
||||||
|
f"{summary_text}"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Rebuild messages based on whether we have a system prompt
|
||||||
|
if has_system_prompt:
|
||||||
|
# system_prompt + summary + recent_messages
|
||||||
|
messages = [system_msg, summary_msg] + recent_messages
|
||||||
|
else:
|
||||||
|
# summary + recent_messages (no original system prompt)
|
||||||
|
messages = [summary_msg] + recent_messages
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"Context summarized: {token_count} tokens, "
|
||||||
|
f"summarized {len(old_messages_dict)} old messages, "
|
||||||
|
f"kept last {KEEP_RECENT} messages"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Fallback: If still over limit after summarization, progressively drop recent messages
|
||||||
|
# This handles edge cases where recent messages are extremely large
|
||||||
|
new_messages_dict = []
|
||||||
|
for msg in messages:
|
||||||
|
if isinstance(msg, dict):
|
||||||
|
msg_dict = {k: v for k, v in msg.items() if v is not None}
|
||||||
|
else:
|
||||||
|
msg_dict = dict(msg)
|
||||||
|
new_messages_dict.append(msg_dict)
|
||||||
|
|
||||||
|
new_token_count = estimate_token_count(
|
||||||
|
new_messages_dict, model=token_count_model
|
||||||
|
)
|
||||||
|
|
||||||
|
if new_token_count > 120_000:
|
||||||
|
# Still over limit - progressively reduce KEEP_RECENT
|
||||||
|
logger.warning(
|
||||||
|
f"Still over limit after summarization: {new_token_count} tokens. "
|
||||||
|
"Reducing number of recent messages kept."
|
||||||
|
)
|
||||||
|
|
||||||
|
for keep_count in [12, 10, 8, 5, 3, 2, 1, 0]:
|
||||||
|
if keep_count == 0:
|
||||||
|
# Try with just system prompt + summary (no recent messages)
|
||||||
|
if has_system_prompt:
|
||||||
|
messages = [system_msg, summary_msg]
|
||||||
|
else:
|
||||||
|
messages = [summary_msg]
|
||||||
|
logger.info(
|
||||||
|
"Trying with 0 recent messages (system + summary only)"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# Slice from ORIGINAL recent_messages to avoid duplicating summary
|
||||||
|
reduced_recent = (
|
||||||
|
recent_messages[-keep_count:]
|
||||||
|
if len(recent_messages) >= keep_count
|
||||||
|
else recent_messages
|
||||||
|
)
|
||||||
|
# Ensure tool pairs stay intact in the reduced slice
|
||||||
|
reduced_slice_start = max(
|
||||||
|
0, len(recent_messages) - keep_count
|
||||||
|
)
|
||||||
|
reduced_recent = _ensure_tool_pairs_intact(
|
||||||
|
reduced_recent, recent_messages, reduced_slice_start
|
||||||
|
)
|
||||||
|
if has_system_prompt:
|
||||||
|
messages = [
|
||||||
|
system_msg,
|
||||||
|
summary_msg,
|
||||||
|
] + reduced_recent
|
||||||
|
else:
|
||||||
|
messages = [summary_msg] + reduced_recent
|
||||||
|
|
||||||
|
new_messages_dict = []
|
||||||
|
for msg in messages:
|
||||||
|
if isinstance(msg, dict):
|
||||||
|
msg_dict = {
|
||||||
|
k: v for k, v in msg.items() if v is not None
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
msg_dict = dict(msg)
|
||||||
|
new_messages_dict.append(msg_dict)
|
||||||
|
|
||||||
|
new_token_count = estimate_token_count(
|
||||||
|
new_messages_dict, model=token_count_model
|
||||||
|
)
|
||||||
|
|
||||||
|
if new_token_count <= 120_000:
|
||||||
|
logger.info(
|
||||||
|
f"Reduced to {keep_count} recent messages, "
|
||||||
|
f"now {new_token_count} tokens"
|
||||||
|
)
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
logger.error(
|
||||||
|
f"Unable to reduce token count below threshold even with 0 messages. "
|
||||||
|
f"Final count: {new_token_count} tokens"
|
||||||
|
)
|
||||||
|
# ABSOLUTE LAST RESORT: Drop system prompt
|
||||||
|
# This should only happen if summary itself is massive
|
||||||
|
if has_system_prompt and len(messages) > 1:
|
||||||
|
messages = messages[1:] # Drop system prompt
|
||||||
|
logger.critical(
|
||||||
|
"CRITICAL: Dropped system prompt as absolute last resort. "
|
||||||
|
"Behavioral consistency may be affected."
|
||||||
|
)
|
||||||
|
# Yield error to user
|
||||||
|
yield StreamError(
|
||||||
|
errorText=(
|
||||||
|
"Warning: System prompt dropped due to size constraints. "
|
||||||
|
"Assistant behavior may be affected."
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# No old messages to summarize - all messages are "recent"
|
||||||
|
# Apply progressive truncation to reduce token count
|
||||||
|
logger.warning(
|
||||||
|
f"Token count {token_count} exceeds threshold but no old messages to summarize. "
|
||||||
|
f"Applying progressive truncation to recent messages."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create a base list excluding system prompt to avoid duplication
|
||||||
|
# This is the pool of messages we'll slice from in the loop
|
||||||
|
# Use messages_dict for type consistency with _ensure_tool_pairs_intact
|
||||||
|
base_msgs = (
|
||||||
|
messages_dict[1:] if has_system_prompt else messages_dict
|
||||||
|
)
|
||||||
|
|
||||||
|
# Try progressively smaller keep counts
|
||||||
|
new_token_count = token_count # Initialize with current count
|
||||||
|
for keep_count in [12, 10, 8, 5, 3, 2, 1, 0]:
|
||||||
|
if keep_count == 0:
|
||||||
|
# Try with just system prompt (no recent messages)
|
||||||
|
if has_system_prompt:
|
||||||
|
messages = [system_msg]
|
||||||
|
logger.info(
|
||||||
|
"Trying with 0 recent messages (system prompt only)"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# No system prompt and no recent messages = empty messages list
|
||||||
|
# This is invalid, skip this iteration
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
if len(base_msgs) < keep_count:
|
||||||
|
continue # Skip if we don't have enough messages
|
||||||
|
|
||||||
|
# Slice from base_msgs to get recent messages (without system prompt)
|
||||||
|
recent_messages = base_msgs[-keep_count:]
|
||||||
|
|
||||||
|
# Ensure tool pairs stay intact in the reduced slice
|
||||||
|
reduced_slice_start = max(0, len(base_msgs) - keep_count)
|
||||||
|
recent_messages = _ensure_tool_pairs_intact(
|
||||||
|
recent_messages, base_msgs, reduced_slice_start
|
||||||
|
)
|
||||||
|
|
||||||
|
if has_system_prompt:
|
||||||
|
messages = [system_msg] + recent_messages
|
||||||
|
else:
|
||||||
|
messages = recent_messages
|
||||||
|
|
||||||
|
new_messages_dict = []
|
||||||
|
for msg in messages:
|
||||||
|
if msg is None:
|
||||||
|
continue # Skip None messages (type safety)
|
||||||
|
if isinstance(msg, dict):
|
||||||
|
msg_dict = {
|
||||||
|
k: v for k, v in msg.items() if v is not None
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
msg_dict = dict(msg)
|
||||||
|
new_messages_dict.append(msg_dict)
|
||||||
|
|
||||||
|
new_token_count = estimate_token_count(
|
||||||
|
new_messages_dict, model=token_count_model
|
||||||
|
)
|
||||||
|
|
||||||
|
if new_token_count <= 120_000:
|
||||||
|
logger.info(
|
||||||
|
f"Reduced to {keep_count} recent messages, "
|
||||||
|
f"now {new_token_count} tokens"
|
||||||
|
)
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
# Even with 0 messages still over limit
|
||||||
|
logger.error(
|
||||||
|
f"Unable to reduce token count below threshold even with 0 messages. "
|
||||||
|
f"Final count: {new_token_count} tokens. Messages may be extremely large."
|
||||||
|
)
|
||||||
|
# ABSOLUTE LAST RESORT: Drop system prompt
|
||||||
|
if has_system_prompt and len(messages) > 1:
|
||||||
|
messages = messages[1:] # Drop system prompt
|
||||||
|
logger.critical(
|
||||||
|
"CRITICAL: Dropped system prompt as absolute last resort. "
|
||||||
|
"Behavioral consistency may be affected."
|
||||||
|
)
|
||||||
|
# Yield error to user
|
||||||
|
yield StreamError(
|
||||||
|
errorText=(
|
||||||
|
"Warning: System prompt dropped due to size constraints. "
|
||||||
|
"Assistant behavior may be affected."
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Context summarization failed: {e}", exc_info=True)
|
||||||
|
# If we were over the token limit, yield error to user
|
||||||
|
# Don't silently continue with oversized messages that will fail
|
||||||
|
if token_count > 120_000:
|
||||||
yield StreamError(
|
yield StreamError(
|
||||||
errorText=(
|
errorText=(
|
||||||
f"Context window management failed: {context_result.error}. "
|
f"Unable to manage context window (token limit exceeded: {token_count} tokens). "
|
||||||
"Please start a new conversation."
|
"Context summarization failed. Please start a new conversation."
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
yield StreamFinish()
|
yield StreamFinish()
|
||||||
return
|
return
|
||||||
|
# Otherwise, continue with original messages (under limit)
|
||||||
messages = context_result.messages
|
|
||||||
if context_result.was_compacted:
|
|
||||||
logger.info(
|
|
||||||
f"Context compacted for streaming: {context_result.token_count} tokens"
|
|
||||||
)
|
|
||||||
|
|
||||||
# Loop to handle tool calls and continue conversation
|
# Loop to handle tool calls and continue conversation
|
||||||
while True:
|
while True:
|
||||||
@@ -1294,6 +1372,14 @@ async def _stream_chat_chunks(
|
|||||||
:128
|
:128
|
||||||
] # OpenRouter limit
|
] # OpenRouter limit
|
||||||
|
|
||||||
|
# Create the stream with proper types
|
||||||
|
from typing import cast
|
||||||
|
|
||||||
|
from openai.types.chat import (
|
||||||
|
ChatCompletionMessageParam,
|
||||||
|
ChatCompletionStreamOptionsParam,
|
||||||
|
)
|
||||||
|
|
||||||
stream = await client.chat.completions.create(
|
stream = await client.chat.completions.create(
|
||||||
model=model,
|
model=model,
|
||||||
messages=cast(list[ChatCompletionMessageParam], messages),
|
messages=cast(list[ChatCompletionMessageParam], messages),
|
||||||
@@ -1817,36 +1903,17 @@ async def _generate_llm_continuation(
|
|||||||
# Build system prompt
|
# Build system prompt
|
||||||
system_prompt, _ = await _build_system_prompt(user_id)
|
system_prompt, _ = await _build_system_prompt(user_id)
|
||||||
|
|
||||||
|
# Build messages in OpenAI format
|
||||||
messages = session.to_openai_messages()
|
messages = session.to_openai_messages()
|
||||||
if system_prompt:
|
if system_prompt:
|
||||||
|
from openai.types.chat import ChatCompletionSystemMessageParam
|
||||||
|
|
||||||
system_message = ChatCompletionSystemMessageParam(
|
system_message = ChatCompletionSystemMessageParam(
|
||||||
role="system",
|
role="system",
|
||||||
content=system_prompt,
|
content=system_prompt,
|
||||||
)
|
)
|
||||||
messages = [system_message] + messages
|
messages = [system_message] + messages
|
||||||
|
|
||||||
# Apply context window management to prevent oversized requests
|
|
||||||
context_result = await _manage_context_window(
|
|
||||||
messages=messages,
|
|
||||||
model=config.model,
|
|
||||||
api_key=config.api_key,
|
|
||||||
base_url=config.base_url,
|
|
||||||
)
|
|
||||||
|
|
||||||
if context_result.error and "System prompt dropped" not in context_result.error:
|
|
||||||
logger.error(
|
|
||||||
f"Context window management failed for session {session_id}: "
|
|
||||||
f"{context_result.error} (tokens={context_result.token_count})"
|
|
||||||
)
|
|
||||||
return
|
|
||||||
|
|
||||||
messages = context_result.messages
|
|
||||||
if context_result.was_compacted:
|
|
||||||
logger.info(
|
|
||||||
f"Context compacted for LLM continuation: "
|
|
||||||
f"{context_result.token_count} tokens"
|
|
||||||
)
|
|
||||||
|
|
||||||
# Build extra_body for tracing
|
# Build extra_body for tracing
|
||||||
extra_body: dict[str, Any] = {
|
extra_body: dict[str, Any] = {
|
||||||
"posthogProperties": {
|
"posthogProperties": {
|
||||||
@@ -1859,54 +1926,19 @@ async def _generate_llm_continuation(
|
|||||||
if session_id:
|
if session_id:
|
||||||
extra_body["session_id"] = session_id[:128]
|
extra_body["session_id"] = session_id[:128]
|
||||||
|
|
||||||
retry_count = 0
|
# Make non-streaming LLM call (no tools - just text response)
|
||||||
last_error: Exception | None = None
|
from typing import cast
|
||||||
response = None
|
|
||||||
|
|
||||||
while retry_count <= MAX_RETRIES:
|
from openai.types.chat import ChatCompletionMessageParam
|
||||||
try:
|
|
||||||
logger.info(
|
|
||||||
f"Generating LLM continuation for session {session_id}"
|
|
||||||
f"{f' (retry {retry_count}/{MAX_RETRIES})' if retry_count > 0 else ''}"
|
|
||||||
)
|
|
||||||
|
|
||||||
response = await client.chat.completions.create(
|
# No tools parameter = text-only response (no tool calls)
|
||||||
model=config.model,
|
response = await client.chat.completions.create(
|
||||||
messages=cast(list[ChatCompletionMessageParam], messages),
|
model=config.model,
|
||||||
extra_body=extra_body,
|
messages=cast(list[ChatCompletionMessageParam], messages),
|
||||||
)
|
extra_body=extra_body,
|
||||||
last_error = None # Clear any previous error on success
|
)
|
||||||
break # Success, exit retry loop
|
|
||||||
except Exception as e:
|
|
||||||
last_error = e
|
|
||||||
if _is_retryable_error(e) and retry_count < MAX_RETRIES:
|
|
||||||
retry_count += 1
|
|
||||||
delay = min(
|
|
||||||
BASE_DELAY_SECONDS * (2 ** (retry_count - 1)),
|
|
||||||
MAX_DELAY_SECONDS,
|
|
||||||
)
|
|
||||||
logger.warning(
|
|
||||||
f"Retryable error in LLM continuation: {e!s}. "
|
|
||||||
f"Retrying in {delay:.1f}s (attempt {retry_count}/{MAX_RETRIES})"
|
|
||||||
)
|
|
||||||
await asyncio.sleep(delay)
|
|
||||||
continue
|
|
||||||
else:
|
|
||||||
# Non-retryable error - log and exit gracefully
|
|
||||||
logger.error(
|
|
||||||
f"Non-retryable error in LLM continuation: {e!s}",
|
|
||||||
exc_info=True,
|
|
||||||
)
|
|
||||||
return
|
|
||||||
|
|
||||||
if last_error:
|
if response.choices and response.choices[0].message.content:
|
||||||
logger.error(
|
|
||||||
f"Max retries ({MAX_RETRIES}) exceeded for LLM continuation. "
|
|
||||||
f"Last error: {last_error!s}"
|
|
||||||
)
|
|
||||||
return
|
|
||||||
|
|
||||||
if response and response.choices and response.choices[0].message.content:
|
|
||||||
assistant_content = response.choices[0].message.content
|
assistant_content = response.choices[0].message.content
|
||||||
|
|
||||||
# Reload session from DB to avoid race condition with user messages
|
# Reload session from DB to avoid race condition with user messages
|
||||||
|
|||||||
@@ -139,10 +139,11 @@ async def decompose_goal_external(
|
|||||||
"""
|
"""
|
||||||
client = _get_client()
|
client = _get_client()
|
||||||
|
|
||||||
if context:
|
# Build the request payload
|
||||||
description = f"{description}\n\nAdditional context from user:\n{context}"
|
|
||||||
|
|
||||||
payload: dict[str, Any] = {"description": description}
|
payload: dict[str, Any] = {"description": description}
|
||||||
|
if context:
|
||||||
|
# The external service uses user_instruction for additional context
|
||||||
|
payload["user_instruction"] = context
|
||||||
if library_agents:
|
if library_agents:
|
||||||
payload["library_agents"] = library_agents
|
payload["library_agents"] = library_agents
|
||||||
|
|
||||||
|
|||||||
@@ -102,7 +102,7 @@ class TestDecomposeGoalExternal:
|
|||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_decompose_goal_with_context(self):
|
async def test_decompose_goal_with_context(self):
|
||||||
"""Test decomposition with additional context enriched into description."""
|
"""Test decomposition with additional context."""
|
||||||
mock_response = MagicMock()
|
mock_response = MagicMock()
|
||||||
mock_response.json.return_value = {
|
mock_response.json.return_value = {
|
||||||
"success": True,
|
"success": True,
|
||||||
@@ -119,12 +119,9 @@ class TestDecomposeGoalExternal:
|
|||||||
"Build a chatbot", context="Use Python"
|
"Build a chatbot", context="Use Python"
|
||||||
)
|
)
|
||||||
|
|
||||||
expected_description = (
|
|
||||||
"Build a chatbot\n\nAdditional context from user:\nUse Python"
|
|
||||||
)
|
|
||||||
mock_client.post.assert_called_once_with(
|
mock_client.post.assert_called_once_with(
|
||||||
"/api/decompose-description",
|
"/api/decompose-description",
|
||||||
json={"description": expected_description},
|
json={"description": "Build a chatbot", "user_instruction": "Use Python"},
|
||||||
)
|
)
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
|
|||||||
Reference in New Issue
Block a user