mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-02-06 04:45:10 -05:00
Compare commits
47 Commits
docker/opt
...
feat/copit
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5efb80d47b | ||
|
|
b49d8e2cba | ||
|
|
452544530d | ||
|
|
32ee7e6cf8 | ||
|
|
670663c406 | ||
|
|
0dbe4cf51e | ||
|
|
29ee85c86f | ||
|
|
85b6520710 | ||
|
|
bfa942e032 | ||
|
|
11256076d8 | ||
|
|
3ca2387631 | ||
|
|
ed07f02738 | ||
|
|
b121030c94 | ||
|
|
c22c18374d | ||
|
|
e40233a3ac | ||
|
|
3ae5eabf9d | ||
|
|
a077ba9f03 | ||
|
|
5401d54eaa | ||
|
|
5ac89d7c0b | ||
|
|
4f908d5cb3 | ||
|
|
c1aa684743 | ||
|
|
7e5b84cc5c | ||
|
|
09cb313211 | ||
|
|
c026485023 | ||
|
|
1eabc60484 | ||
|
|
f4bf492f24 | ||
|
|
81e48c00a4 | ||
|
|
7dc53071e8 | ||
|
|
4878665c66 | ||
|
|
678ddde751 | ||
|
|
aef6f57cfd | ||
|
|
14cee1670a | ||
|
|
d81d1ce024 | ||
|
|
2dd341c369 | ||
|
|
f7350c797a | ||
|
|
1081590384 | ||
|
|
7e37de8e30 | ||
|
|
2abbb7fbc8 | ||
|
|
05b60db554 | ||
|
|
cc4839bedb | ||
|
|
dbbff04616 | ||
|
|
e6438b9a76 | ||
|
|
e10ff8d37f | ||
|
|
9538992eaf | ||
|
|
27b72062f2 | ||
|
|
9a79a8d257 | ||
|
|
a9bf08748b |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -180,3 +180,4 @@ autogpt_platform/backend/settings.py
|
|||||||
.claude/settings.local.json
|
.claude/settings.local.json
|
||||||
CLAUDE.local.md
|
CLAUDE.local.md
|
||||||
/autogpt_platform/backend/logs
|
/autogpt_platform/backend/logs
|
||||||
|
.next
|
||||||
@@ -152,6 +152,7 @@ REPLICATE_API_KEY=
|
|||||||
REVID_API_KEY=
|
REVID_API_KEY=
|
||||||
SCREENSHOTONE_API_KEY=
|
SCREENSHOTONE_API_KEY=
|
||||||
UNREAL_SPEECH_API_KEY=
|
UNREAL_SPEECH_API_KEY=
|
||||||
|
ELEVENLABS_API_KEY=
|
||||||
|
|
||||||
# Data & Search Services
|
# Data & Search Services
|
||||||
E2B_API_KEY=
|
E2B_API_KEY=
|
||||||
|
|||||||
3
autogpt_platform/backend/.gitignore
vendored
3
autogpt_platform/backend/.gitignore
vendored
@@ -19,3 +19,6 @@ load-tests/*.json
|
|||||||
load-tests/*.log
|
load-tests/*.log
|
||||||
load-tests/node_modules/*
|
load-tests/node_modules/*
|
||||||
migrations/*/rollback*.sql
|
migrations/*/rollback*.sql
|
||||||
|
|
||||||
|
# Workspace files
|
||||||
|
workspaces/
|
||||||
|
|||||||
@@ -62,10 +62,12 @@ ENV POETRY_HOME=/opt/poetry \
|
|||||||
DEBIAN_FRONTEND=noninteractive
|
DEBIAN_FRONTEND=noninteractive
|
||||||
ENV PATH=/opt/poetry/bin:$PATH
|
ENV PATH=/opt/poetry/bin:$PATH
|
||||||
|
|
||||||
# Install Python without upgrading system-managed packages
|
# Install Python, FFmpeg, and ImageMagick (required for video processing blocks)
|
||||||
RUN apt-get update && apt-get install -y \
|
RUN apt-get update && apt-get install -y \
|
||||||
python3.13 \
|
python3.13 \
|
||||||
python3-pip \
|
python3-pip \
|
||||||
|
ffmpeg \
|
||||||
|
imagemagick \
|
||||||
&& rm -rf /var/lib/apt/lists/*
|
&& rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
# Copy only necessary files from builder
|
# Copy only necessary files from builder
|
||||||
|
|||||||
@@ -0,0 +1,368 @@
|
|||||||
|
"""Redis Streams consumer for operation completion messages.
|
||||||
|
|
||||||
|
This module provides a consumer (ChatCompletionConsumer) that listens for
|
||||||
|
completion notifications (OperationCompleteMessage) from external services
|
||||||
|
(like Agent Generator) and triggers the appropriate stream registry and
|
||||||
|
chat service updates via process_operation_success/process_operation_failure.
|
||||||
|
|
||||||
|
Why Redis Streams instead of RabbitMQ?
|
||||||
|
--------------------------------------
|
||||||
|
While the project typically uses RabbitMQ for async task queues (e.g., execution
|
||||||
|
queue), Redis Streams was chosen for chat completion notifications because:
|
||||||
|
|
||||||
|
1. **Unified Infrastructure**: The SSE reconnection feature already uses Redis
|
||||||
|
Streams (via stream_registry) for message persistence and replay. Using Redis
|
||||||
|
Streams for completion notifications keeps all chat streaming infrastructure
|
||||||
|
in one system, simplifying operations and reducing cross-system coordination.
|
||||||
|
|
||||||
|
2. **Message Replay**: Redis Streams support XREAD with arbitrary message IDs,
|
||||||
|
allowing consumers to replay missed messages after reconnection. This aligns
|
||||||
|
with the SSE reconnection pattern where clients can resume from last_message_id.
|
||||||
|
|
||||||
|
3. **Consumer Groups with XAUTOCLAIM**: Redis consumer groups provide automatic
|
||||||
|
load balancing across pods with explicit message claiming (XAUTOCLAIM) for
|
||||||
|
recovering from dead consumers - ideal for the completion callback pattern.
|
||||||
|
|
||||||
|
4. **Lower Latency**: For real-time SSE updates, Redis (already in-memory for
|
||||||
|
stream_registry) provides lower latency than an additional RabbitMQ hop.
|
||||||
|
|
||||||
|
5. **Atomicity with Task State**: Completion processing often needs to update
|
||||||
|
task metadata stored in Redis. Keeping both in Redis enables simpler
|
||||||
|
transactional semantics without distributed coordination.
|
||||||
|
|
||||||
|
The consumer uses Redis Streams with consumer groups for reliable message
|
||||||
|
processing across multiple platform pods, with XAUTOCLAIM for reclaiming
|
||||||
|
stale pending messages from dead consumers.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import asyncio
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import uuid
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
import orjson
|
||||||
|
from prisma import Prisma
|
||||||
|
from pydantic import BaseModel
|
||||||
|
from redis.exceptions import ResponseError
|
||||||
|
|
||||||
|
from backend.data.redis_client import get_redis_async
|
||||||
|
|
||||||
|
from . import stream_registry
|
||||||
|
from .completion_handler import process_operation_failure, process_operation_success
|
||||||
|
from .config import ChatConfig
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
config = ChatConfig()
|
||||||
|
|
||||||
|
|
||||||
|
class OperationCompleteMessage(BaseModel):
|
||||||
|
"""Message format for operation completion notifications."""
|
||||||
|
|
||||||
|
operation_id: str
|
||||||
|
task_id: str
|
||||||
|
success: bool
|
||||||
|
result: dict | str | None = None
|
||||||
|
error: str | None = None
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionConsumer:
|
||||||
|
"""Consumer for chat operation completion messages from Redis Streams.
|
||||||
|
|
||||||
|
This consumer initializes its own Prisma client in start() to ensure
|
||||||
|
database operations work correctly within this async context.
|
||||||
|
|
||||||
|
Uses Redis consumer groups to allow multiple platform pods to consume
|
||||||
|
messages reliably with automatic redelivery on failure.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self._consumer_task: asyncio.Task | None = None
|
||||||
|
self._running = False
|
||||||
|
self._prisma: Prisma | None = None
|
||||||
|
self._consumer_name = f"consumer-{uuid.uuid4().hex[:8]}"
|
||||||
|
|
||||||
|
async def start(self) -> None:
|
||||||
|
"""Start the completion consumer."""
|
||||||
|
if self._running:
|
||||||
|
logger.warning("Completion consumer already running")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Create consumer group if it doesn't exist
|
||||||
|
try:
|
||||||
|
redis = await get_redis_async()
|
||||||
|
await redis.xgroup_create(
|
||||||
|
config.stream_completion_name,
|
||||||
|
config.stream_consumer_group,
|
||||||
|
id="0",
|
||||||
|
mkstream=True,
|
||||||
|
)
|
||||||
|
logger.info(
|
||||||
|
f"Created consumer group '{config.stream_consumer_group}' "
|
||||||
|
f"on stream '{config.stream_completion_name}'"
|
||||||
|
)
|
||||||
|
except ResponseError as e:
|
||||||
|
if "BUSYGROUP" in str(e):
|
||||||
|
logger.debug(
|
||||||
|
f"Consumer group '{config.stream_consumer_group}' already exists"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise
|
||||||
|
|
||||||
|
self._running = True
|
||||||
|
self._consumer_task = asyncio.create_task(self._consume_messages())
|
||||||
|
logger.info(
|
||||||
|
f"Chat completion consumer started (consumer: {self._consumer_name})"
|
||||||
|
)
|
||||||
|
|
||||||
|
async def _ensure_prisma(self) -> Prisma:
|
||||||
|
"""Lazily initialize Prisma client on first use."""
|
||||||
|
if self._prisma is None:
|
||||||
|
database_url = os.getenv("DATABASE_URL", "postgresql://localhost:5432")
|
||||||
|
self._prisma = Prisma(datasource={"url": database_url})
|
||||||
|
await self._prisma.connect()
|
||||||
|
logger.info("[COMPLETION] Consumer Prisma client connected (lazy init)")
|
||||||
|
return self._prisma
|
||||||
|
|
||||||
|
async def stop(self) -> None:
|
||||||
|
"""Stop the completion consumer."""
|
||||||
|
self._running = False
|
||||||
|
|
||||||
|
if self._consumer_task:
|
||||||
|
self._consumer_task.cancel()
|
||||||
|
try:
|
||||||
|
await self._consumer_task
|
||||||
|
except asyncio.CancelledError:
|
||||||
|
pass
|
||||||
|
self._consumer_task = None
|
||||||
|
|
||||||
|
if self._prisma:
|
||||||
|
await self._prisma.disconnect()
|
||||||
|
self._prisma = None
|
||||||
|
logger.info("[COMPLETION] Consumer Prisma client disconnected")
|
||||||
|
|
||||||
|
logger.info("Chat completion consumer stopped")
|
||||||
|
|
||||||
|
async def _consume_messages(self) -> None:
|
||||||
|
"""Main message consumption loop with retry logic."""
|
||||||
|
max_retries = 10
|
||||||
|
retry_delay = 5 # seconds
|
||||||
|
retry_count = 0
|
||||||
|
block_timeout = 5000 # milliseconds
|
||||||
|
|
||||||
|
while self._running and retry_count < max_retries:
|
||||||
|
try:
|
||||||
|
redis = await get_redis_async()
|
||||||
|
|
||||||
|
# Reset retry count on successful connection
|
||||||
|
retry_count = 0
|
||||||
|
|
||||||
|
while self._running:
|
||||||
|
# First, claim any stale pending messages from dead consumers
|
||||||
|
# Redis does NOT auto-redeliver pending messages; we must explicitly
|
||||||
|
# claim them using XAUTOCLAIM
|
||||||
|
try:
|
||||||
|
claimed_result = await redis.xautoclaim(
|
||||||
|
name=config.stream_completion_name,
|
||||||
|
groupname=config.stream_consumer_group,
|
||||||
|
consumername=self._consumer_name,
|
||||||
|
min_idle_time=config.stream_claim_min_idle_ms,
|
||||||
|
start_id="0-0",
|
||||||
|
count=10,
|
||||||
|
)
|
||||||
|
# xautoclaim returns: (next_start_id, [(id, data), ...], [deleted_ids])
|
||||||
|
if claimed_result and len(claimed_result) >= 2:
|
||||||
|
claimed_entries = claimed_result[1]
|
||||||
|
if claimed_entries:
|
||||||
|
logger.info(
|
||||||
|
f"Claimed {len(claimed_entries)} stale pending messages"
|
||||||
|
)
|
||||||
|
for entry_id, data in claimed_entries:
|
||||||
|
if not self._running:
|
||||||
|
return
|
||||||
|
await self._process_entry(redis, entry_id, data)
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"XAUTOCLAIM failed (non-fatal): {e}")
|
||||||
|
|
||||||
|
# Read new messages from the stream
|
||||||
|
messages = await redis.xreadgroup(
|
||||||
|
groupname=config.stream_consumer_group,
|
||||||
|
consumername=self._consumer_name,
|
||||||
|
streams={config.stream_completion_name: ">"},
|
||||||
|
block=block_timeout,
|
||||||
|
count=10,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not messages:
|
||||||
|
continue
|
||||||
|
|
||||||
|
for stream_name, entries in messages:
|
||||||
|
for entry_id, data in entries:
|
||||||
|
if not self._running:
|
||||||
|
return
|
||||||
|
await self._process_entry(redis, entry_id, data)
|
||||||
|
|
||||||
|
except asyncio.CancelledError:
|
||||||
|
logger.info("Consumer cancelled")
|
||||||
|
return
|
||||||
|
except Exception as e:
|
||||||
|
retry_count += 1
|
||||||
|
logger.error(
|
||||||
|
f"Consumer error (retry {retry_count}/{max_retries}): {e}",
|
||||||
|
exc_info=True,
|
||||||
|
)
|
||||||
|
if self._running and retry_count < max_retries:
|
||||||
|
await asyncio.sleep(retry_delay)
|
||||||
|
else:
|
||||||
|
logger.error("Max retries reached, stopping consumer")
|
||||||
|
return
|
||||||
|
|
||||||
|
async def _process_entry(
|
||||||
|
self, redis: Any, entry_id: str, data: dict[str, Any]
|
||||||
|
) -> None:
|
||||||
|
"""Process a single stream entry and acknowledge it on success.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
redis: Redis client connection
|
||||||
|
entry_id: The stream entry ID
|
||||||
|
data: The entry data dict
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# Handle the message
|
||||||
|
message_data = data.get("data")
|
||||||
|
if message_data:
|
||||||
|
await self._handle_message(
|
||||||
|
message_data.encode()
|
||||||
|
if isinstance(message_data, str)
|
||||||
|
else message_data
|
||||||
|
)
|
||||||
|
|
||||||
|
# Acknowledge the message after successful processing
|
||||||
|
await redis.xack(
|
||||||
|
config.stream_completion_name,
|
||||||
|
config.stream_consumer_group,
|
||||||
|
entry_id,
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(
|
||||||
|
f"Error processing completion message {entry_id}: {e}",
|
||||||
|
exc_info=True,
|
||||||
|
)
|
||||||
|
# Message remains in pending state and will be claimed by
|
||||||
|
# XAUTOCLAIM after min_idle_time expires
|
||||||
|
|
||||||
|
async def _handle_message(self, body: bytes) -> None:
|
||||||
|
"""Handle a completion message using our own Prisma client."""
|
||||||
|
try:
|
||||||
|
data = orjson.loads(body)
|
||||||
|
message = OperationCompleteMessage(**data)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to parse completion message: {e}")
|
||||||
|
return
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"[COMPLETION] Received completion for operation {message.operation_id} "
|
||||||
|
f"(task_id={message.task_id}, success={message.success})"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Find task in registry
|
||||||
|
task = await stream_registry.find_task_by_operation_id(message.operation_id)
|
||||||
|
if task is None:
|
||||||
|
task = await stream_registry.get_task(message.task_id)
|
||||||
|
|
||||||
|
if task is None:
|
||||||
|
logger.warning(
|
||||||
|
f"[COMPLETION] Task not found for operation {message.operation_id} "
|
||||||
|
f"(task_id={message.task_id})"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"[COMPLETION] Found task: task_id={task.task_id}, "
|
||||||
|
f"session_id={task.session_id}, tool_call_id={task.tool_call_id}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Guard against empty task fields
|
||||||
|
if not task.task_id or not task.session_id or not task.tool_call_id:
|
||||||
|
logger.error(
|
||||||
|
f"[COMPLETION] Task has empty critical fields! "
|
||||||
|
f"task_id={task.task_id!r}, session_id={task.session_id!r}, "
|
||||||
|
f"tool_call_id={task.tool_call_id!r}"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
|
if message.success:
|
||||||
|
await self._handle_success(task, message)
|
||||||
|
else:
|
||||||
|
await self._handle_failure(task, message)
|
||||||
|
|
||||||
|
async def _handle_success(
|
||||||
|
self,
|
||||||
|
task: stream_registry.ActiveTask,
|
||||||
|
message: OperationCompleteMessage,
|
||||||
|
) -> None:
|
||||||
|
"""Handle successful operation completion."""
|
||||||
|
prisma = await self._ensure_prisma()
|
||||||
|
await process_operation_success(task, message.result, prisma)
|
||||||
|
|
||||||
|
async def _handle_failure(
|
||||||
|
self,
|
||||||
|
task: stream_registry.ActiveTask,
|
||||||
|
message: OperationCompleteMessage,
|
||||||
|
) -> None:
|
||||||
|
"""Handle failed operation completion."""
|
||||||
|
prisma = await self._ensure_prisma()
|
||||||
|
await process_operation_failure(task, message.error, prisma)
|
||||||
|
|
||||||
|
|
||||||
|
# Module-level consumer instance
|
||||||
|
_consumer: ChatCompletionConsumer | None = None
|
||||||
|
|
||||||
|
|
||||||
|
async def start_completion_consumer() -> None:
|
||||||
|
"""Start the global completion consumer."""
|
||||||
|
global _consumer
|
||||||
|
if _consumer is None:
|
||||||
|
_consumer = ChatCompletionConsumer()
|
||||||
|
await _consumer.start()
|
||||||
|
|
||||||
|
|
||||||
|
async def stop_completion_consumer() -> None:
|
||||||
|
"""Stop the global completion consumer."""
|
||||||
|
global _consumer
|
||||||
|
if _consumer:
|
||||||
|
await _consumer.stop()
|
||||||
|
_consumer = None
|
||||||
|
|
||||||
|
|
||||||
|
async def publish_operation_complete(
|
||||||
|
operation_id: str,
|
||||||
|
task_id: str,
|
||||||
|
success: bool,
|
||||||
|
result: dict | str | None = None,
|
||||||
|
error: str | None = None,
|
||||||
|
) -> None:
|
||||||
|
"""Publish an operation completion message to Redis Streams.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
operation_id: The operation ID that completed.
|
||||||
|
task_id: The task ID associated with the operation.
|
||||||
|
success: Whether the operation succeeded.
|
||||||
|
result: The result data (for success).
|
||||||
|
error: The error message (for failure).
|
||||||
|
"""
|
||||||
|
message = OperationCompleteMessage(
|
||||||
|
operation_id=operation_id,
|
||||||
|
task_id=task_id,
|
||||||
|
success=success,
|
||||||
|
result=result,
|
||||||
|
error=error,
|
||||||
|
)
|
||||||
|
|
||||||
|
redis = await get_redis_async()
|
||||||
|
await redis.xadd(
|
||||||
|
config.stream_completion_name,
|
||||||
|
{"data": message.model_dump_json()},
|
||||||
|
maxlen=config.stream_max_length,
|
||||||
|
)
|
||||||
|
logger.info(f"Published completion for operation {operation_id}")
|
||||||
@@ -0,0 +1,344 @@
|
|||||||
|
"""Shared completion handling for operation success and failure.
|
||||||
|
|
||||||
|
This module provides common logic for handling operation completion from both:
|
||||||
|
- The Redis Streams consumer (completion_consumer.py)
|
||||||
|
- The HTTP webhook endpoint (routes.py)
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
import orjson
|
||||||
|
from prisma import Prisma
|
||||||
|
|
||||||
|
from . import service as chat_service
|
||||||
|
from . import stream_registry
|
||||||
|
from .response_model import StreamError, StreamToolOutputAvailable
|
||||||
|
from .tools.models import ErrorResponse
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# Tools that produce agent_json that needs to be saved to library
|
||||||
|
AGENT_GENERATION_TOOLS = {"create_agent", "edit_agent"}
|
||||||
|
|
||||||
|
# Keys that should be stripped from agent_json when returning in error responses
|
||||||
|
SENSITIVE_KEYS = frozenset(
|
||||||
|
{
|
||||||
|
"api_key",
|
||||||
|
"apikey",
|
||||||
|
"api_secret",
|
||||||
|
"password",
|
||||||
|
"secret",
|
||||||
|
"credentials",
|
||||||
|
"credential",
|
||||||
|
"token",
|
||||||
|
"access_token",
|
||||||
|
"refresh_token",
|
||||||
|
"private_key",
|
||||||
|
"privatekey",
|
||||||
|
"auth",
|
||||||
|
"authorization",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def _sanitize_agent_json(obj: Any) -> Any:
|
||||||
|
"""Recursively sanitize agent_json by removing sensitive keys.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
obj: The object to sanitize (dict, list, or primitive)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Sanitized copy with sensitive keys removed/redacted
|
||||||
|
"""
|
||||||
|
if isinstance(obj, dict):
|
||||||
|
return {
|
||||||
|
k: "[REDACTED]" if k.lower() in SENSITIVE_KEYS else _sanitize_agent_json(v)
|
||||||
|
for k, v in obj.items()
|
||||||
|
}
|
||||||
|
elif isinstance(obj, list):
|
||||||
|
return [_sanitize_agent_json(item) for item in obj]
|
||||||
|
else:
|
||||||
|
return obj
|
||||||
|
|
||||||
|
|
||||||
|
class ToolMessageUpdateError(Exception):
|
||||||
|
"""Raised when updating a tool message in the database fails."""
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
async def _update_tool_message(
|
||||||
|
session_id: str,
|
||||||
|
tool_call_id: str,
|
||||||
|
content: str,
|
||||||
|
prisma_client: Prisma | None,
|
||||||
|
) -> None:
|
||||||
|
"""Update tool message in database.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
session_id: The session ID
|
||||||
|
tool_call_id: The tool call ID to update
|
||||||
|
content: The new content for the message
|
||||||
|
prisma_client: Optional Prisma client. If None, uses chat_service.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ToolMessageUpdateError: If the database update fails. The caller should
|
||||||
|
handle this to avoid marking the task as completed with inconsistent state.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
if prisma_client:
|
||||||
|
# Use provided Prisma client (for consumer with its own connection)
|
||||||
|
updated_count = await prisma_client.chatmessage.update_many(
|
||||||
|
where={
|
||||||
|
"sessionId": session_id,
|
||||||
|
"toolCallId": tool_call_id,
|
||||||
|
},
|
||||||
|
data={"content": content},
|
||||||
|
)
|
||||||
|
# Check if any rows were updated - 0 means message not found
|
||||||
|
if updated_count == 0:
|
||||||
|
raise ToolMessageUpdateError(
|
||||||
|
f"No message found with tool_call_id={tool_call_id} in session {session_id}"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# Use service function (for webhook endpoint)
|
||||||
|
await chat_service._update_pending_operation(
|
||||||
|
session_id=session_id,
|
||||||
|
tool_call_id=tool_call_id,
|
||||||
|
result=content,
|
||||||
|
)
|
||||||
|
except ToolMessageUpdateError:
|
||||||
|
raise
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"[COMPLETION] Failed to update tool message: {e}", exc_info=True)
|
||||||
|
raise ToolMessageUpdateError(
|
||||||
|
f"Failed to update tool message for tool_call_id={tool_call_id}: {e}"
|
||||||
|
) from e
|
||||||
|
|
||||||
|
|
||||||
|
def serialize_result(result: dict | list | str | int | float | bool | None) -> str:
|
||||||
|
"""Serialize result to JSON string with sensible defaults.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
result: The result to serialize. Can be a dict, list, string,
|
||||||
|
number, boolean, or None.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
JSON string representation of the result. Returns '{"status": "completed"}'
|
||||||
|
only when result is explicitly None.
|
||||||
|
"""
|
||||||
|
if isinstance(result, str):
|
||||||
|
return result
|
||||||
|
if result is None:
|
||||||
|
return '{"status": "completed"}'
|
||||||
|
return orjson.dumps(result).decode("utf-8")
|
||||||
|
|
||||||
|
|
||||||
|
async def _save_agent_from_result(
|
||||||
|
result: dict[str, Any],
|
||||||
|
user_id: str | None,
|
||||||
|
tool_name: str,
|
||||||
|
) -> dict[str, Any]:
|
||||||
|
"""Save agent to library if result contains agent_json.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
result: The result dict that may contain agent_json
|
||||||
|
user_id: The user ID to save the agent for
|
||||||
|
tool_name: The tool name (create_agent or edit_agent)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Updated result dict with saved agent details, or original result if no agent_json
|
||||||
|
"""
|
||||||
|
if not user_id:
|
||||||
|
logger.warning("[COMPLETION] Cannot save agent: no user_id in task")
|
||||||
|
return result
|
||||||
|
|
||||||
|
agent_json = result.get("agent_json")
|
||||||
|
if not agent_json:
|
||||||
|
logger.warning(
|
||||||
|
f"[COMPLETION] {tool_name} completed but no agent_json in result"
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
|
try:
|
||||||
|
from .tools.agent_generator import save_agent_to_library
|
||||||
|
|
||||||
|
is_update = tool_name == "edit_agent"
|
||||||
|
created_graph, library_agent = await save_agent_to_library(
|
||||||
|
agent_json, user_id, is_update=is_update
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"[COMPLETION] Saved agent '{created_graph.name}' to library "
|
||||||
|
f"(graph_id={created_graph.id}, library_agent_id={library_agent.id})"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Return a response similar to AgentSavedResponse
|
||||||
|
return {
|
||||||
|
"type": "agent_saved",
|
||||||
|
"message": f"Agent '{created_graph.name}' has been saved to your library!",
|
||||||
|
"agent_id": created_graph.id,
|
||||||
|
"agent_name": created_graph.name,
|
||||||
|
"library_agent_id": library_agent.id,
|
||||||
|
"library_agent_link": f"/library/agents/{library_agent.id}",
|
||||||
|
"agent_page_link": f"/build?flowID={created_graph.id}",
|
||||||
|
}
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(
|
||||||
|
f"[COMPLETION] Failed to save agent to library: {e}",
|
||||||
|
exc_info=True,
|
||||||
|
)
|
||||||
|
# Return error but don't fail the whole operation
|
||||||
|
# Sanitize agent_json to remove sensitive keys before returning
|
||||||
|
return {
|
||||||
|
"type": "error",
|
||||||
|
"message": f"Agent was generated but failed to save: {str(e)}",
|
||||||
|
"error": str(e),
|
||||||
|
"agent_json": _sanitize_agent_json(agent_json),
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
async def process_operation_success(
|
||||||
|
task: stream_registry.ActiveTask,
|
||||||
|
result: dict | str | None,
|
||||||
|
prisma_client: Prisma | None = None,
|
||||||
|
) -> None:
|
||||||
|
"""Handle successful operation completion.
|
||||||
|
|
||||||
|
Publishes the result to the stream registry, updates the database,
|
||||||
|
generates LLM continuation, and marks the task as completed.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task: The active task that completed
|
||||||
|
result: The result data from the operation
|
||||||
|
prisma_client: Optional Prisma client for database operations.
|
||||||
|
If None, uses chat_service._update_pending_operation instead.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ToolMessageUpdateError: If the database update fails. The task will be
|
||||||
|
marked as failed instead of completed to avoid inconsistent state.
|
||||||
|
"""
|
||||||
|
# For agent generation tools, save the agent to library
|
||||||
|
if task.tool_name in AGENT_GENERATION_TOOLS and isinstance(result, dict):
|
||||||
|
result = await _save_agent_from_result(result, task.user_id, task.tool_name)
|
||||||
|
|
||||||
|
# Serialize result for output (only substitute default when result is exactly None)
|
||||||
|
result_output = result if result is not None else {"status": "completed"}
|
||||||
|
output_str = (
|
||||||
|
result_output
|
||||||
|
if isinstance(result_output, str)
|
||||||
|
else orjson.dumps(result_output).decode("utf-8")
|
||||||
|
)
|
||||||
|
|
||||||
|
# Publish result to stream registry
|
||||||
|
await stream_registry.publish_chunk(
|
||||||
|
task.task_id,
|
||||||
|
StreamToolOutputAvailable(
|
||||||
|
toolCallId=task.tool_call_id,
|
||||||
|
toolName=task.tool_name,
|
||||||
|
output=output_str,
|
||||||
|
success=True,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Update pending operation in database
|
||||||
|
# If this fails, we must not continue to mark the task as completed
|
||||||
|
result_str = serialize_result(result)
|
||||||
|
try:
|
||||||
|
await _update_tool_message(
|
||||||
|
session_id=task.session_id,
|
||||||
|
tool_call_id=task.tool_call_id,
|
||||||
|
content=result_str,
|
||||||
|
prisma_client=prisma_client,
|
||||||
|
)
|
||||||
|
except ToolMessageUpdateError:
|
||||||
|
# DB update failed - mark task as failed to avoid inconsistent state
|
||||||
|
logger.error(
|
||||||
|
f"[COMPLETION] DB update failed for task {task.task_id}, "
|
||||||
|
"marking as failed instead of completed"
|
||||||
|
)
|
||||||
|
await stream_registry.publish_chunk(
|
||||||
|
task.task_id,
|
||||||
|
StreamError(errorText="Failed to save operation result to database"),
|
||||||
|
)
|
||||||
|
await stream_registry.mark_task_completed(task.task_id, status="failed")
|
||||||
|
raise
|
||||||
|
|
||||||
|
# Generate LLM continuation with streaming
|
||||||
|
try:
|
||||||
|
await chat_service._generate_llm_continuation_with_streaming(
|
||||||
|
session_id=task.session_id,
|
||||||
|
user_id=task.user_id,
|
||||||
|
task_id=task.task_id,
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(
|
||||||
|
f"[COMPLETION] Failed to generate LLM continuation: {e}",
|
||||||
|
exc_info=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Mark task as completed and release Redis lock
|
||||||
|
await stream_registry.mark_task_completed(task.task_id, status="completed")
|
||||||
|
try:
|
||||||
|
await chat_service._mark_operation_completed(task.tool_call_id)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"[COMPLETION] Failed to mark operation completed: {e}")
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"[COMPLETION] Successfully processed completion for task {task.task_id}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def process_operation_failure(
|
||||||
|
task: stream_registry.ActiveTask,
|
||||||
|
error: str | None,
|
||||||
|
prisma_client: Prisma | None = None,
|
||||||
|
) -> None:
|
||||||
|
"""Handle failed operation completion.
|
||||||
|
|
||||||
|
Publishes the error to the stream registry, updates the database with
|
||||||
|
the error response, and marks the task as failed.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task: The active task that failed
|
||||||
|
error: The error message from the operation
|
||||||
|
prisma_client: Optional Prisma client for database operations.
|
||||||
|
If None, uses chat_service._update_pending_operation instead.
|
||||||
|
"""
|
||||||
|
error_msg = error or "Operation failed"
|
||||||
|
|
||||||
|
# Publish error to stream registry
|
||||||
|
await stream_registry.publish_chunk(
|
||||||
|
task.task_id,
|
||||||
|
StreamError(errorText=error_msg),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Update pending operation with error
|
||||||
|
# If this fails, we still continue to mark the task as failed
|
||||||
|
error_response = ErrorResponse(
|
||||||
|
message=error_msg,
|
||||||
|
error=error,
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
await _update_tool_message(
|
||||||
|
session_id=task.session_id,
|
||||||
|
tool_call_id=task.tool_call_id,
|
||||||
|
content=error_response.model_dump_json(),
|
||||||
|
prisma_client=prisma_client,
|
||||||
|
)
|
||||||
|
except ToolMessageUpdateError:
|
||||||
|
# DB update failed - log but continue with cleanup
|
||||||
|
logger.error(
|
||||||
|
f"[COMPLETION] DB update failed while processing failure for task {task.task_id}, "
|
||||||
|
"continuing with cleanup"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Mark task as failed and release Redis lock
|
||||||
|
await stream_registry.mark_task_completed(task.task_id, status="failed")
|
||||||
|
try:
|
||||||
|
await chat_service._mark_operation_completed(task.tool_call_id)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"[COMPLETION] Failed to mark operation completed: {e}")
|
||||||
|
|
||||||
|
logger.info(f"[COMPLETION] Processed failure for task {task.task_id}: {error_msg}")
|
||||||
@@ -11,7 +11,7 @@ class ChatConfig(BaseSettings):
|
|||||||
|
|
||||||
# OpenAI API Configuration
|
# OpenAI API Configuration
|
||||||
model: str = Field(
|
model: str = Field(
|
||||||
default="anthropic/claude-opus-4.5", description="Default model to use"
|
default="anthropic/claude-opus-4.6", description="Default model to use"
|
||||||
)
|
)
|
||||||
title_model: str = Field(
|
title_model: str = Field(
|
||||||
default="openai/gpt-4o-mini",
|
default="openai/gpt-4o-mini",
|
||||||
@@ -27,12 +27,20 @@ class ChatConfig(BaseSettings):
|
|||||||
session_ttl: int = Field(default=43200, description="Session TTL in seconds")
|
session_ttl: int = Field(default=43200, description="Session TTL in seconds")
|
||||||
|
|
||||||
# Streaming Configuration
|
# Streaming Configuration
|
||||||
|
# Note: When using Claude Agent SDK, context management is handled automatically
|
||||||
|
# via the SDK's built-in compaction. This is mainly used for the fallback path.
|
||||||
max_context_messages: int = Field(
|
max_context_messages: int = Field(
|
||||||
default=50, ge=1, le=200, description="Maximum context messages"
|
default=100,
|
||||||
|
ge=1,
|
||||||
|
le=500,
|
||||||
|
description="Max context messages (SDK handles compaction automatically)",
|
||||||
)
|
)
|
||||||
|
|
||||||
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
|
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
|
||||||
max_retries: int = Field(default=3, description="Maximum number of retries")
|
max_retries: int = Field(
|
||||||
|
default=3,
|
||||||
|
description="Max retries for fallback path (SDK handles retries internally)",
|
||||||
|
)
|
||||||
max_agent_runs: int = Field(default=30, description="Maximum number of agent runs")
|
max_agent_runs: int = Field(default=30, description="Maximum number of agent runs")
|
||||||
max_agent_schedules: int = Field(
|
max_agent_schedules: int = Field(
|
||||||
default=30, description="Maximum number of agent schedules"
|
default=30, description="Maximum number of agent schedules"
|
||||||
@@ -44,6 +52,48 @@ class ChatConfig(BaseSettings):
|
|||||||
description="TTL in seconds for long-running operation tracking in Redis (safety net if pod dies)",
|
description="TTL in seconds for long-running operation tracking in Redis (safety net if pod dies)",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Stream registry configuration for SSE reconnection
|
||||||
|
stream_ttl: int = Field(
|
||||||
|
default=3600,
|
||||||
|
description="TTL in seconds for stream data in Redis (1 hour)",
|
||||||
|
)
|
||||||
|
stream_max_length: int = Field(
|
||||||
|
default=10000,
|
||||||
|
description="Maximum number of messages to store per stream",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Redis Streams configuration for completion consumer
|
||||||
|
stream_completion_name: str = Field(
|
||||||
|
default="chat:completions",
|
||||||
|
description="Redis Stream name for operation completions",
|
||||||
|
)
|
||||||
|
stream_consumer_group: str = Field(
|
||||||
|
default="chat_consumers",
|
||||||
|
description="Consumer group name for completion stream",
|
||||||
|
)
|
||||||
|
stream_claim_min_idle_ms: int = Field(
|
||||||
|
default=60000,
|
||||||
|
description="Minimum idle time in milliseconds before claiming pending messages from dead consumers",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Redis key prefixes for stream registry
|
||||||
|
task_meta_prefix: str = Field(
|
||||||
|
default="chat:task:meta:",
|
||||||
|
description="Prefix for task metadata hash keys",
|
||||||
|
)
|
||||||
|
task_stream_prefix: str = Field(
|
||||||
|
default="chat:stream:",
|
||||||
|
description="Prefix for task message stream keys",
|
||||||
|
)
|
||||||
|
task_op_prefix: str = Field(
|
||||||
|
default="chat:task:op:",
|
||||||
|
description="Prefix for operation ID to task ID mapping keys",
|
||||||
|
)
|
||||||
|
internal_api_key: str | None = Field(
|
||||||
|
default=None,
|
||||||
|
description="API key for internal webhook callbacks (env: CHAT_INTERNAL_API_KEY)",
|
||||||
|
)
|
||||||
|
|
||||||
# Langfuse Prompt Management Configuration
|
# Langfuse Prompt Management Configuration
|
||||||
# Note: Langfuse credentials are in Settings().secrets (settings.py)
|
# Note: Langfuse credentials are in Settings().secrets (settings.py)
|
||||||
langfuse_prompt_name: str = Field(
|
langfuse_prompt_name: str = Field(
|
||||||
@@ -51,6 +101,12 @@ class ChatConfig(BaseSettings):
|
|||||||
description="Name of the prompt in Langfuse to fetch",
|
description="Name of the prompt in Langfuse to fetch",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Claude Agent SDK Configuration
|
||||||
|
use_claude_agent_sdk: bool = Field(
|
||||||
|
default=True,
|
||||||
|
description="Use Claude Agent SDK for chat completions",
|
||||||
|
)
|
||||||
|
|
||||||
@field_validator("api_key", mode="before")
|
@field_validator("api_key", mode="before")
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_api_key(cls, v):
|
def get_api_key(cls, v):
|
||||||
@@ -82,6 +138,25 @@ class ChatConfig(BaseSettings):
|
|||||||
v = "https://openrouter.ai/api/v1"
|
v = "https://openrouter.ai/api/v1"
|
||||||
return v
|
return v
|
||||||
|
|
||||||
|
@field_validator("internal_api_key", mode="before")
|
||||||
|
@classmethod
|
||||||
|
def get_internal_api_key(cls, v):
|
||||||
|
"""Get internal API key from environment if not provided."""
|
||||||
|
if v is None:
|
||||||
|
v = os.getenv("CHAT_INTERNAL_API_KEY")
|
||||||
|
return v
|
||||||
|
|
||||||
|
@field_validator("use_claude_agent_sdk", mode="before")
|
||||||
|
@classmethod
|
||||||
|
def get_use_claude_agent_sdk(cls, v):
|
||||||
|
"""Get use_claude_agent_sdk from environment if not provided."""
|
||||||
|
# Check environment variable - default to True if not set
|
||||||
|
env_val = os.getenv("CHAT_USE_CLAUDE_AGENT_SDK", "").lower()
|
||||||
|
if env_val:
|
||||||
|
return env_val in ("true", "1", "yes", "on")
|
||||||
|
# Default to True (SDK enabled by default)
|
||||||
|
return True if v is None else v
|
||||||
|
|
||||||
# Prompt paths for different contexts
|
# Prompt paths for different contexts
|
||||||
PROMPT_PATHS: dict[str, str] = {
|
PROMPT_PATHS: dict[str, str] = {
|
||||||
"default": "prompts/chat_system.md",
|
"default": "prompts/chat_system.md",
|
||||||
|
|||||||
@@ -273,9 +273,8 @@ async def _get_session_from_cache(session_id: str) -> ChatSession | None:
|
|||||||
try:
|
try:
|
||||||
session = ChatSession.model_validate_json(raw_session)
|
session = ChatSession.model_validate_json(raw_session)
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Loading session {session_id} from cache: "
|
f"[CACHE] Loaded session {session_id}: {len(session.messages)} messages, "
|
||||||
f"message_count={len(session.messages)}, "
|
f"last_roles={[m.role for m in session.messages[-3:]]}" # Last 3 roles
|
||||||
f"roles={[m.role for m in session.messages]}"
|
|
||||||
)
|
)
|
||||||
return session
|
return session
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@@ -317,11 +316,9 @@ async def _get_session_from_db(session_id: str) -> ChatSession | None:
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
messages = prisma_session.Messages
|
messages = prisma_session.Messages
|
||||||
logger.info(
|
logger.debug(
|
||||||
f"Loading session {session_id} from DB: "
|
f"[DB] Loaded session {session_id}: {len(messages) if messages else 0} messages, "
|
||||||
f"has_messages={messages is not None}, "
|
f"roles={[m.role for m in messages[-3:]] if messages else []}" # Last 3 roles
|
||||||
f"message_count={len(messages) if messages else 0}, "
|
|
||||||
f"roles={[m.role for m in messages] if messages else []}"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
return ChatSession.from_db(prisma_session, messages)
|
return ChatSession.from_db(prisma_session, messages)
|
||||||
@@ -372,10 +369,9 @@ async def _save_session_to_db(
|
|||||||
"function_call": msg.function_call,
|
"function_call": msg.function_call,
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
logger.info(
|
logger.debug(
|
||||||
f"Saving {len(new_messages)} new messages to DB for session {session.session_id}: "
|
f"[DB] Saving {len(new_messages)} messages to session {session.session_id}, "
|
||||||
f"roles={[m['role'] for m in messages_data]}, "
|
f"roles={[m['role'] for m in messages_data]}"
|
||||||
f"start_sequence={existing_message_count}"
|
|
||||||
)
|
)
|
||||||
await chat_db.add_chat_messages_batch(
|
await chat_db.add_chat_messages_batch(
|
||||||
session_id=session.session_id,
|
session_id=session.session_id,
|
||||||
@@ -415,7 +411,7 @@ async def get_chat_session(
|
|||||||
logger.warning(f"Unexpected cache error for session {session_id}: {e}")
|
logger.warning(f"Unexpected cache error for session {session_id}: {e}")
|
||||||
|
|
||||||
# Fall back to database
|
# Fall back to database
|
||||||
logger.info(f"Session {session_id} not in cache, checking database")
|
logger.debug(f"Session {session_id} not in cache, checking database")
|
||||||
session = await _get_session_from_db(session_id)
|
session = await _get_session_from_db(session_id)
|
||||||
|
|
||||||
if session is None:
|
if session is None:
|
||||||
@@ -432,7 +428,6 @@ async def get_chat_session(
|
|||||||
# Cache the session from DB
|
# Cache the session from DB
|
||||||
try:
|
try:
|
||||||
await _cache_session(session)
|
await _cache_session(session)
|
||||||
logger.info(f"Cached session {session_id} from database")
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.warning(f"Failed to cache session {session_id}: {e}")
|
logger.warning(f"Failed to cache session {session_id}: {e}")
|
||||||
|
|
||||||
@@ -603,13 +598,19 @@ async def update_session_title(session_id: str, title: str) -> bool:
|
|||||||
logger.warning(f"Session {session_id} not found for title update")
|
logger.warning(f"Session {session_id} not found for title update")
|
||||||
return False
|
return False
|
||||||
|
|
||||||
# Invalidate cache so next fetch gets updated title
|
# Update title in cache if it exists (instead of invalidating).
|
||||||
|
# This prevents race conditions where cache invalidation causes
|
||||||
|
# the frontend to see stale DB data while streaming is still in progress.
|
||||||
try:
|
try:
|
||||||
redis_key = _get_session_cache_key(session_id)
|
cached = await _get_session_from_cache(session_id)
|
||||||
async_redis = await get_redis_async()
|
if cached:
|
||||||
await async_redis.delete(redis_key)
|
cached.title = title
|
||||||
|
await _cache_session(cached)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.warning(f"Failed to invalidate cache for session {session_id}: {e}")
|
# Not critical - title will be correct on next full cache refresh
|
||||||
|
logger.warning(
|
||||||
|
f"Failed to update title in cache for session {session_id}: {e}"
|
||||||
|
)
|
||||||
|
|
||||||
return True
|
return True
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
|||||||
@@ -52,6 +52,10 @@ class StreamStart(StreamBaseResponse):
|
|||||||
|
|
||||||
type: ResponseType = ResponseType.START
|
type: ResponseType = ResponseType.START
|
||||||
messageId: str = Field(..., description="Unique message ID")
|
messageId: str = Field(..., description="Unique message ID")
|
||||||
|
taskId: str | None = Field(
|
||||||
|
default=None,
|
||||||
|
description="Task ID for SSE reconnection. Clients can reconnect using GET /tasks/{taskId}/stream",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class StreamFinish(StreamBaseResponse):
|
class StreamFinish(StreamBaseResponse):
|
||||||
|
|||||||
@@ -1,19 +1,33 @@
|
|||||||
"""Chat API routes for chat session management and streaming via SSE."""
|
"""Chat API routes for chat session management and streaming via SSE."""
|
||||||
|
|
||||||
|
import asyncio
|
||||||
import logging
|
import logging
|
||||||
|
import uuid as uuid_module
|
||||||
from collections.abc import AsyncGenerator
|
from collections.abc import AsyncGenerator
|
||||||
from typing import Annotated
|
from typing import Annotated
|
||||||
|
|
||||||
from autogpt_libs import auth
|
from autogpt_libs import auth
|
||||||
from fastapi import APIRouter, Depends, Query, Security
|
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Security
|
||||||
from fastapi.responses import StreamingResponse
|
from fastapi.responses import StreamingResponse
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
|
||||||
from backend.util.exceptions import NotFoundError
|
from backend.util.exceptions import NotFoundError
|
||||||
|
|
||||||
from . import service as chat_service
|
from . import service as chat_service
|
||||||
|
from . import stream_registry
|
||||||
|
from .completion_handler import process_operation_failure, process_operation_success
|
||||||
from .config import ChatConfig
|
from .config import ChatConfig
|
||||||
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
|
from .model import (
|
||||||
|
ChatMessage,
|
||||||
|
ChatSession,
|
||||||
|
create_chat_session,
|
||||||
|
get_chat_session,
|
||||||
|
get_user_sessions,
|
||||||
|
upsert_chat_session,
|
||||||
|
)
|
||||||
|
from .response_model import StreamFinish, StreamHeartbeat, StreamStart
|
||||||
|
from .sdk import service as sdk_service
|
||||||
|
from .tracking import track_user_message
|
||||||
|
|
||||||
config = ChatConfig()
|
config = ChatConfig()
|
||||||
|
|
||||||
@@ -55,6 +69,15 @@ class CreateSessionResponse(BaseModel):
|
|||||||
user_id: str | None
|
user_id: str | None
|
||||||
|
|
||||||
|
|
||||||
|
class ActiveStreamInfo(BaseModel):
|
||||||
|
"""Information about an active stream for reconnection."""
|
||||||
|
|
||||||
|
task_id: str
|
||||||
|
last_message_id: str # Redis Stream message ID for resumption
|
||||||
|
operation_id: str # Operation ID for completion tracking
|
||||||
|
tool_name: str # Name of the tool being executed
|
||||||
|
|
||||||
|
|
||||||
class SessionDetailResponse(BaseModel):
|
class SessionDetailResponse(BaseModel):
|
||||||
"""Response model providing complete details for a chat session, including messages."""
|
"""Response model providing complete details for a chat session, including messages."""
|
||||||
|
|
||||||
@@ -63,6 +86,7 @@ class SessionDetailResponse(BaseModel):
|
|||||||
updated_at: str
|
updated_at: str
|
||||||
user_id: str | None
|
user_id: str | None
|
||||||
messages: list[dict]
|
messages: list[dict]
|
||||||
|
active_stream: ActiveStreamInfo | None = None # Present if stream is still active
|
||||||
|
|
||||||
|
|
||||||
class SessionSummaryResponse(BaseModel):
|
class SessionSummaryResponse(BaseModel):
|
||||||
@@ -81,6 +105,14 @@ class ListSessionsResponse(BaseModel):
|
|||||||
total: int
|
total: int
|
||||||
|
|
||||||
|
|
||||||
|
class OperationCompleteRequest(BaseModel):
|
||||||
|
"""Request model for external completion webhook."""
|
||||||
|
|
||||||
|
success: bool
|
||||||
|
result: dict | str | None = None
|
||||||
|
error: str | None = None
|
||||||
|
|
||||||
|
|
||||||
# ========== Routes ==========
|
# ========== Routes ==========
|
||||||
|
|
||||||
|
|
||||||
@@ -166,13 +198,14 @@ async def get_session(
|
|||||||
Retrieve the details of a specific chat session.
|
Retrieve the details of a specific chat session.
|
||||||
|
|
||||||
Looks up a chat session by ID for the given user (if authenticated) and returns all session data including messages.
|
Looks up a chat session by ID for the given user (if authenticated) and returns all session data including messages.
|
||||||
|
If there's an active stream for this session, returns the task_id for reconnection.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
session_id: The unique identifier for the desired chat session.
|
session_id: The unique identifier for the desired chat session.
|
||||||
user_id: The optional authenticated user ID, or None for anonymous access.
|
user_id: The optional authenticated user ID, or None for anonymous access.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
SessionDetailResponse: Details for the requested session, or None if not found.
|
SessionDetailResponse: Details for the requested session, including active_stream info if applicable.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
session = await get_chat_session(session_id, user_id)
|
session = await get_chat_session(session_id, user_id)
|
||||||
@@ -180,11 +213,32 @@ async def get_session(
|
|||||||
raise NotFoundError(f"Session {session_id} not found.")
|
raise NotFoundError(f"Session {session_id} not found.")
|
||||||
|
|
||||||
messages = [message.model_dump() for message in session.messages]
|
messages = [message.model_dump() for message in session.messages]
|
||||||
logger.info(
|
|
||||||
f"Returning session {session_id}: "
|
# Check if there's an active stream for this session
|
||||||
f"message_count={len(messages)}, "
|
active_stream_info = None
|
||||||
f"roles={[m.get('role') for m in messages]}"
|
active_task, last_message_id = await stream_registry.get_active_task_for_session(
|
||||||
|
session_id, user_id
|
||||||
)
|
)
|
||||||
|
logger.info(
|
||||||
|
f"[GET_SESSION] session={session_id}, active_task={active_task is not None}, "
|
||||||
|
f"msg_count={len(messages)}, last_role={messages[-1].get('role') if messages else 'none'}"
|
||||||
|
)
|
||||||
|
if active_task:
|
||||||
|
# Filter out the in-progress assistant message from the session response.
|
||||||
|
# The client will receive the complete assistant response through the SSE
|
||||||
|
# stream replay instead, preventing duplicate content.
|
||||||
|
if messages and messages[-1].get("role") == "assistant":
|
||||||
|
messages = messages[:-1]
|
||||||
|
|
||||||
|
# Use "0-0" as last_message_id to replay the stream from the beginning.
|
||||||
|
# Since we filtered out the cached assistant message, the client needs
|
||||||
|
# the full stream to reconstruct the response.
|
||||||
|
active_stream_info = ActiveStreamInfo(
|
||||||
|
task_id=active_task.task_id,
|
||||||
|
last_message_id="0-0",
|
||||||
|
operation_id=active_task.operation_id,
|
||||||
|
tool_name=active_task.tool_name,
|
||||||
|
)
|
||||||
|
|
||||||
return SessionDetailResponse(
|
return SessionDetailResponse(
|
||||||
id=session.session_id,
|
id=session.session_id,
|
||||||
@@ -192,6 +246,7 @@ async def get_session(
|
|||||||
updated_at=session.updated_at.isoformat(),
|
updated_at=session.updated_at.isoformat(),
|
||||||
user_id=session.user_id or None,
|
user_id=session.user_id or None,
|
||||||
messages=messages,
|
messages=messages,
|
||||||
|
active_stream=active_stream_info,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@@ -211,49 +266,147 @@ async def stream_chat_post(
|
|||||||
- Tool call UI elements (if invoked)
|
- Tool call UI elements (if invoked)
|
||||||
- Tool execution results
|
- Tool execution results
|
||||||
|
|
||||||
|
The AI generation runs in a background task that continues even if the client disconnects.
|
||||||
|
All chunks are written to Redis for reconnection support. If the client disconnects,
|
||||||
|
they can reconnect using GET /tasks/{task_id}/stream to resume from where they left off.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
session_id: The chat session identifier to associate with the streamed messages.
|
session_id: The chat session identifier to associate with the streamed messages.
|
||||||
request: Request body containing message, is_user_message, and optional context.
|
request: Request body containing message, is_user_message, and optional context.
|
||||||
user_id: Optional authenticated user ID.
|
user_id: Optional authenticated user ID.
|
||||||
Returns:
|
Returns:
|
||||||
StreamingResponse: SSE-formatted response chunks.
|
StreamingResponse: SSE-formatted response chunks. First chunk is a "start" event
|
||||||
|
containing the task_id for reconnection.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
session = await _validate_and_get_session(session_id, user_id)
|
session = await _validate_and_get_session(session_id, user_id)
|
||||||
|
|
||||||
async def event_generator() -> AsyncGenerator[str, None]:
|
# Add user message to session BEFORE creating task to avoid race condition
|
||||||
chunk_count = 0
|
# where GET_SESSION sees the task as "running" but the message isn't saved yet
|
||||||
first_chunk_type: str | None = None
|
if request.message:
|
||||||
async for chunk in chat_service.stream_chat_completion(
|
session.messages.append(
|
||||||
session_id,
|
ChatMessage(
|
||||||
request.message,
|
role="user" if request.is_user_message else "assistant",
|
||||||
is_user_message=request.is_user_message,
|
content=request.message,
|
||||||
user_id=user_id,
|
)
|
||||||
session=session, # Pass pre-fetched session to avoid double-fetch
|
|
||||||
context=request.context,
|
|
||||||
):
|
|
||||||
if chunk_count < 3:
|
|
||||||
logger.info(
|
|
||||||
"Chat stream chunk",
|
|
||||||
extra={
|
|
||||||
"session_id": session_id,
|
|
||||||
"chunk_type": str(chunk.type),
|
|
||||||
},
|
|
||||||
)
|
|
||||||
if not first_chunk_type:
|
|
||||||
first_chunk_type = str(chunk.type)
|
|
||||||
chunk_count += 1
|
|
||||||
yield chunk.to_sse()
|
|
||||||
logger.info(
|
|
||||||
"Chat stream completed",
|
|
||||||
extra={
|
|
||||||
"session_id": session_id,
|
|
||||||
"chunk_count": chunk_count,
|
|
||||||
"first_chunk_type": first_chunk_type,
|
|
||||||
},
|
|
||||||
)
|
)
|
||||||
# AI SDK protocol termination
|
if request.is_user_message:
|
||||||
yield "data: [DONE]\n\n"
|
track_user_message(
|
||||||
|
user_id=user_id,
|
||||||
|
session_id=session_id,
|
||||||
|
message_length=len(request.message),
|
||||||
|
)
|
||||||
|
logger.info(
|
||||||
|
f"[STREAM] Saving user message to session {session_id}, "
|
||||||
|
f"msg_count={len(session.messages)}"
|
||||||
|
)
|
||||||
|
session = await upsert_chat_session(session)
|
||||||
|
logger.info(f"[STREAM] User message saved for session {session_id}")
|
||||||
|
|
||||||
|
# Create a task in the stream registry for reconnection support
|
||||||
|
task_id = str(uuid_module.uuid4())
|
||||||
|
operation_id = str(uuid_module.uuid4())
|
||||||
|
await stream_registry.create_task(
|
||||||
|
task_id=task_id,
|
||||||
|
session_id=session_id,
|
||||||
|
user_id=user_id,
|
||||||
|
tool_call_id="chat_stream", # Not a tool call, but needed for the model
|
||||||
|
tool_name="chat",
|
||||||
|
operation_id=operation_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Background task that runs the AI generation independently of SSE connection
|
||||||
|
async def run_ai_generation():
|
||||||
|
chunk_count = 0
|
||||||
|
try:
|
||||||
|
# Emit a start event with task_id for reconnection
|
||||||
|
start_chunk = StreamStart(messageId=task_id, taskId=task_id)
|
||||||
|
await stream_registry.publish_chunk(task_id, start_chunk)
|
||||||
|
|
||||||
|
# Choose service based on configuration
|
||||||
|
use_sdk = config.use_claude_agent_sdk
|
||||||
|
stream_fn = (
|
||||||
|
sdk_service.stream_chat_completion_sdk
|
||||||
|
if use_sdk
|
||||||
|
else chat_service.stream_chat_completion
|
||||||
|
)
|
||||||
|
# Pass message=None since we already added it to the session above
|
||||||
|
async for chunk in stream_fn(
|
||||||
|
session_id,
|
||||||
|
None, # Message already in session
|
||||||
|
is_user_message=request.is_user_message,
|
||||||
|
user_id=user_id,
|
||||||
|
session=session, # Pass session with message already added
|
||||||
|
context=request.context,
|
||||||
|
):
|
||||||
|
chunk_count += 1
|
||||||
|
# Write to Redis (subscribers will receive via XREAD)
|
||||||
|
await stream_registry.publish_chunk(task_id, chunk)
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"[BG_TASK] AI generation completed for session {session_id}: {chunk_count} chunks, marking task {task_id} as completed"
|
||||||
|
)
|
||||||
|
# Mark task as completed (also publishes StreamFinish)
|
||||||
|
completed = await stream_registry.mark_task_completed(task_id, "completed")
|
||||||
|
logger.info(f"[BG_TASK] mark_task_completed returned: {completed}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(
|
||||||
|
f"Error in background AI generation for session {session_id}: {e}"
|
||||||
|
)
|
||||||
|
await stream_registry.mark_task_completed(task_id, "failed")
|
||||||
|
|
||||||
|
# Start the AI generation in a background task
|
||||||
|
bg_task = asyncio.create_task(run_ai_generation())
|
||||||
|
await stream_registry.set_task_asyncio_task(task_id, bg_task)
|
||||||
|
|
||||||
|
# SSE endpoint that subscribes to the task's stream
|
||||||
|
async def event_generator() -> AsyncGenerator[str, None]:
|
||||||
|
subscriber_queue = None
|
||||||
|
try:
|
||||||
|
# Subscribe to the task stream (replays + live updates)
|
||||||
|
subscriber_queue = await stream_registry.subscribe_to_task(
|
||||||
|
task_id=task_id,
|
||||||
|
user_id=user_id,
|
||||||
|
last_message_id="0-0", # Get all messages from the beginning
|
||||||
|
)
|
||||||
|
|
||||||
|
if subscriber_queue is None:
|
||||||
|
logger.warning(f"Failed to subscribe to task {task_id}")
|
||||||
|
yield StreamFinish().to_sse()
|
||||||
|
yield "data: [DONE]\n\n"
|
||||||
|
return
|
||||||
|
|
||||||
|
# Read from the subscriber queue and yield to SSE
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
|
||||||
|
yield chunk.to_sse()
|
||||||
|
|
||||||
|
# Check for finish signal
|
||||||
|
if isinstance(chunk, StreamFinish):
|
||||||
|
break
|
||||||
|
except asyncio.TimeoutError:
|
||||||
|
# Send heartbeat to keep connection alive
|
||||||
|
yield StreamHeartbeat().to_sse()
|
||||||
|
|
||||||
|
except GeneratorExit:
|
||||||
|
pass # Client disconnected - normal behavior
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in SSE stream for task {task_id}: {e}")
|
||||||
|
finally:
|
||||||
|
# Unsubscribe when client disconnects or stream ends
|
||||||
|
if subscriber_queue is not None:
|
||||||
|
try:
|
||||||
|
await stream_registry.unsubscribe_from_task(
|
||||||
|
task_id, subscriber_queue
|
||||||
|
)
|
||||||
|
except Exception as unsub_err:
|
||||||
|
logger.error(
|
||||||
|
f"Error unsubscribing from task {task_id}: {unsub_err}",
|
||||||
|
exc_info=True,
|
||||||
|
)
|
||||||
|
# AI SDK protocol termination - always yield even if unsubscribe fails
|
||||||
|
yield "data: [DONE]\n\n"
|
||||||
|
|
||||||
return StreamingResponse(
|
return StreamingResponse(
|
||||||
event_generator(),
|
event_generator(),
|
||||||
@@ -296,35 +449,21 @@ async def stream_chat_get(
|
|||||||
session = await _validate_and_get_session(session_id, user_id)
|
session = await _validate_and_get_session(session_id, user_id)
|
||||||
|
|
||||||
async def event_generator() -> AsyncGenerator[str, None]:
|
async def event_generator() -> AsyncGenerator[str, None]:
|
||||||
chunk_count = 0
|
# Choose service based on configuration
|
||||||
first_chunk_type: str | None = None
|
use_sdk = config.use_claude_agent_sdk
|
||||||
async for chunk in chat_service.stream_chat_completion(
|
stream_fn = (
|
||||||
|
sdk_service.stream_chat_completion_sdk
|
||||||
|
if use_sdk
|
||||||
|
else chat_service.stream_chat_completion
|
||||||
|
)
|
||||||
|
async for chunk in stream_fn(
|
||||||
session_id,
|
session_id,
|
||||||
message,
|
message,
|
||||||
is_user_message=is_user_message,
|
is_user_message=is_user_message,
|
||||||
user_id=user_id,
|
user_id=user_id,
|
||||||
session=session, # Pass pre-fetched session to avoid double-fetch
|
session=session, # Pass pre-fetched session to avoid double-fetch
|
||||||
):
|
):
|
||||||
if chunk_count < 3:
|
|
||||||
logger.info(
|
|
||||||
"Chat stream chunk",
|
|
||||||
extra={
|
|
||||||
"session_id": session_id,
|
|
||||||
"chunk_type": str(chunk.type),
|
|
||||||
},
|
|
||||||
)
|
|
||||||
if not first_chunk_type:
|
|
||||||
first_chunk_type = str(chunk.type)
|
|
||||||
chunk_count += 1
|
|
||||||
yield chunk.to_sse()
|
yield chunk.to_sse()
|
||||||
logger.info(
|
|
||||||
"Chat stream completed",
|
|
||||||
extra={
|
|
||||||
"session_id": session_id,
|
|
||||||
"chunk_count": chunk_count,
|
|
||||||
"first_chunk_type": first_chunk_type,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
# AI SDK protocol termination
|
# AI SDK protocol termination
|
||||||
yield "data: [DONE]\n\n"
|
yield "data: [DONE]\n\n"
|
||||||
|
|
||||||
@@ -366,6 +505,249 @@ async def session_assign_user(
|
|||||||
return {"status": "ok"}
|
return {"status": "ok"}
|
||||||
|
|
||||||
|
|
||||||
|
# ========== Task Streaming (SSE Reconnection) ==========
|
||||||
|
|
||||||
|
|
||||||
|
@router.get(
|
||||||
|
"/tasks/{task_id}/stream",
|
||||||
|
)
|
||||||
|
async def stream_task(
|
||||||
|
task_id: str,
|
||||||
|
user_id: str | None = Depends(auth.get_user_id),
|
||||||
|
last_message_id: str = Query(
|
||||||
|
default="0-0",
|
||||||
|
description="Last Redis Stream message ID received (e.g., '1706540123456-0'). Use '0-0' for full replay.",
|
||||||
|
),
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Reconnect to a long-running task's SSE stream.
|
||||||
|
|
||||||
|
When a long-running operation (like agent generation) starts, the client
|
||||||
|
receives a task_id. If the connection drops, the client can reconnect
|
||||||
|
using this endpoint to resume receiving updates.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_id: The task ID from the operation_started response.
|
||||||
|
user_id: Authenticated user ID for ownership validation.
|
||||||
|
last_message_id: Last Redis Stream message ID received ("0-0" for full replay).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
StreamingResponse: SSE-formatted response chunks starting after last_message_id.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
HTTPException: 404 if task not found, 410 if task expired, 403 if access denied.
|
||||||
|
"""
|
||||||
|
# Check task existence and expiry before subscribing
|
||||||
|
task, error_code = await stream_registry.get_task_with_expiry_info(task_id)
|
||||||
|
|
||||||
|
if error_code == "TASK_EXPIRED":
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=410,
|
||||||
|
detail={
|
||||||
|
"code": "TASK_EXPIRED",
|
||||||
|
"message": "This operation has expired. Please try again.",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
if error_code == "TASK_NOT_FOUND":
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=404,
|
||||||
|
detail={
|
||||||
|
"code": "TASK_NOT_FOUND",
|
||||||
|
"message": f"Task {task_id} not found.",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
# Validate ownership if task has an owner
|
||||||
|
if task and task.user_id and user_id != task.user_id:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=403,
|
||||||
|
detail={
|
||||||
|
"code": "ACCESS_DENIED",
|
||||||
|
"message": "You do not have access to this task.",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
# Get subscriber queue from stream registry
|
||||||
|
subscriber_queue = await stream_registry.subscribe_to_task(
|
||||||
|
task_id=task_id,
|
||||||
|
user_id=user_id,
|
||||||
|
last_message_id=last_message_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
if subscriber_queue is None:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=404,
|
||||||
|
detail={
|
||||||
|
"code": "TASK_NOT_FOUND",
|
||||||
|
"message": f"Task {task_id} not found or access denied.",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
async def event_generator() -> AsyncGenerator[str, None]:
|
||||||
|
heartbeat_interval = 15.0 # Send heartbeat every 15 seconds
|
||||||
|
try:
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# Wait for next chunk with timeout for heartbeats
|
||||||
|
chunk = await asyncio.wait_for(
|
||||||
|
subscriber_queue.get(), timeout=heartbeat_interval
|
||||||
|
)
|
||||||
|
yield chunk.to_sse()
|
||||||
|
|
||||||
|
# Check for finish signal
|
||||||
|
if isinstance(chunk, StreamFinish):
|
||||||
|
break
|
||||||
|
except asyncio.TimeoutError:
|
||||||
|
# Send heartbeat to keep connection alive
|
||||||
|
yield StreamHeartbeat().to_sse()
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in task stream {task_id}: {e}", exc_info=True)
|
||||||
|
finally:
|
||||||
|
# Unsubscribe when client disconnects or stream ends
|
||||||
|
try:
|
||||||
|
await stream_registry.unsubscribe_from_task(task_id, subscriber_queue)
|
||||||
|
except Exception as unsub_err:
|
||||||
|
logger.error(
|
||||||
|
f"Error unsubscribing from task {task_id}: {unsub_err}",
|
||||||
|
exc_info=True,
|
||||||
|
)
|
||||||
|
# AI SDK protocol termination - always yield even if unsubscribe fails
|
||||||
|
yield "data: [DONE]\n\n"
|
||||||
|
|
||||||
|
return StreamingResponse(
|
||||||
|
event_generator(),
|
||||||
|
media_type="text/event-stream",
|
||||||
|
headers={
|
||||||
|
"Cache-Control": "no-cache",
|
||||||
|
"Connection": "keep-alive",
|
||||||
|
"X-Accel-Buffering": "no",
|
||||||
|
"x-vercel-ai-ui-message-stream": "v1",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@router.get(
|
||||||
|
"/tasks/{task_id}",
|
||||||
|
)
|
||||||
|
async def get_task_status(
|
||||||
|
task_id: str,
|
||||||
|
user_id: str | None = Depends(auth.get_user_id),
|
||||||
|
) -> dict:
|
||||||
|
"""
|
||||||
|
Get the status of a long-running task.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_id: The task ID to check.
|
||||||
|
user_id: Authenticated user ID for ownership validation.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dict: Task status including task_id, status, tool_name, and operation_id.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
NotFoundError: If task_id is not found or user doesn't have access.
|
||||||
|
"""
|
||||||
|
task = await stream_registry.get_task(task_id)
|
||||||
|
|
||||||
|
if task is None:
|
||||||
|
raise NotFoundError(f"Task {task_id} not found.")
|
||||||
|
|
||||||
|
# Validate ownership - if task has an owner, requester must match
|
||||||
|
if task.user_id and user_id != task.user_id:
|
||||||
|
raise NotFoundError(f"Task {task_id} not found.")
|
||||||
|
|
||||||
|
return {
|
||||||
|
"task_id": task.task_id,
|
||||||
|
"session_id": task.session_id,
|
||||||
|
"status": task.status,
|
||||||
|
"tool_name": task.tool_name,
|
||||||
|
"operation_id": task.operation_id,
|
||||||
|
"created_at": task.created_at.isoformat(),
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
# ========== External Completion Webhook ==========
|
||||||
|
|
||||||
|
|
||||||
|
@router.post(
|
||||||
|
"/operations/{operation_id}/complete",
|
||||||
|
status_code=200,
|
||||||
|
)
|
||||||
|
async def complete_operation(
|
||||||
|
operation_id: str,
|
||||||
|
request: OperationCompleteRequest,
|
||||||
|
x_api_key: str | None = Header(default=None),
|
||||||
|
) -> dict:
|
||||||
|
"""
|
||||||
|
External completion webhook for long-running operations.
|
||||||
|
|
||||||
|
Called by Agent Generator (or other services) when an operation completes.
|
||||||
|
This triggers the stream registry to publish completion and continue LLM generation.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
operation_id: The operation ID to complete.
|
||||||
|
request: Completion payload with success status and result/error.
|
||||||
|
x_api_key: Internal API key for authentication.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dict: Status of the completion.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
HTTPException: If API key is invalid or operation not found.
|
||||||
|
"""
|
||||||
|
# Validate internal API key - reject if not configured or invalid
|
||||||
|
if not config.internal_api_key:
|
||||||
|
logger.error(
|
||||||
|
"Operation complete webhook rejected: CHAT_INTERNAL_API_KEY not configured"
|
||||||
|
)
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=503,
|
||||||
|
detail="Webhook not available: internal API key not configured",
|
||||||
|
)
|
||||||
|
if x_api_key != config.internal_api_key:
|
||||||
|
raise HTTPException(status_code=401, detail="Invalid API key")
|
||||||
|
|
||||||
|
# Find task by operation_id
|
||||||
|
task = await stream_registry.find_task_by_operation_id(operation_id)
|
||||||
|
if task is None:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=404,
|
||||||
|
detail=f"Operation {operation_id} not found",
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"Received completion webhook for operation {operation_id} "
|
||||||
|
f"(task_id={task.task_id}, success={request.success})"
|
||||||
|
)
|
||||||
|
|
||||||
|
if request.success:
|
||||||
|
await process_operation_success(task, request.result)
|
||||||
|
else:
|
||||||
|
await process_operation_failure(task, request.error)
|
||||||
|
|
||||||
|
return {"status": "ok", "task_id": task.task_id}
|
||||||
|
|
||||||
|
|
||||||
|
# ========== Configuration ==========
|
||||||
|
|
||||||
|
|
||||||
|
@router.get("/config/ttl", status_code=200)
|
||||||
|
async def get_ttl_config() -> dict:
|
||||||
|
"""
|
||||||
|
Get the stream TTL configuration.
|
||||||
|
|
||||||
|
Returns the Time-To-Live settings for chat streams, which determines
|
||||||
|
how long clients can reconnect to an active stream.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dict: TTL configuration with seconds and milliseconds values.
|
||||||
|
"""
|
||||||
|
return {
|
||||||
|
"stream_ttl_seconds": config.stream_ttl,
|
||||||
|
"stream_ttl_ms": config.stream_ttl * 1000,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
# ========== Health Check ==========
|
# ========== Health Check ==========
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -0,0 +1,14 @@
|
|||||||
|
"""Claude Agent SDK integration for CoPilot.
|
||||||
|
|
||||||
|
This module provides the integration layer between the Claude Agent SDK
|
||||||
|
and the existing CoPilot tool system, enabling drop-in replacement of
|
||||||
|
the current LLM orchestration with the battle-tested Claude Agent SDK.
|
||||||
|
"""
|
||||||
|
|
||||||
|
from .service import stream_chat_completion_sdk
|
||||||
|
from .tool_adapter import create_copilot_mcp_server
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"stream_chat_completion_sdk",
|
||||||
|
"create_copilot_mcp_server",
|
||||||
|
]
|
||||||
@@ -0,0 +1,348 @@
|
|||||||
|
"""Anthropic SDK fallback implementation.
|
||||||
|
|
||||||
|
This module provides the fallback streaming implementation using the Anthropic SDK
|
||||||
|
directly when the Claude Agent SDK is not available.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import uuid
|
||||||
|
from collections.abc import AsyncGenerator
|
||||||
|
from typing import Any, cast
|
||||||
|
|
||||||
|
from ..model import ChatMessage, ChatSession
|
||||||
|
from ..response_model import (
|
||||||
|
StreamBaseResponse,
|
||||||
|
StreamError,
|
||||||
|
StreamFinish,
|
||||||
|
StreamTextDelta,
|
||||||
|
StreamTextEnd,
|
||||||
|
StreamTextStart,
|
||||||
|
StreamToolInputAvailable,
|
||||||
|
StreamToolInputStart,
|
||||||
|
StreamToolOutputAvailable,
|
||||||
|
StreamUsage,
|
||||||
|
)
|
||||||
|
from .tool_adapter import get_tool_definitions, get_tool_handlers
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
async def stream_with_anthropic(
|
||||||
|
session: ChatSession,
|
||||||
|
system_prompt: str,
|
||||||
|
text_block_id: str,
|
||||||
|
) -> AsyncGenerator[StreamBaseResponse, None]:
|
||||||
|
"""Stream using Anthropic SDK directly with tool calling support.
|
||||||
|
|
||||||
|
This function accumulates messages into the session for persistence.
|
||||||
|
The caller should NOT yield an additional StreamFinish - this function handles it.
|
||||||
|
"""
|
||||||
|
import anthropic
|
||||||
|
|
||||||
|
# Only use ANTHROPIC_API_KEY - don't fall back to OpenRouter keys
|
||||||
|
api_key = os.getenv("ANTHROPIC_API_KEY")
|
||||||
|
if not api_key:
|
||||||
|
yield StreamError(
|
||||||
|
errorText="ANTHROPIC_API_KEY not configured for fallback",
|
||||||
|
code="config_error",
|
||||||
|
)
|
||||||
|
yield StreamFinish()
|
||||||
|
return
|
||||||
|
|
||||||
|
client = anthropic.AsyncAnthropic(api_key=api_key)
|
||||||
|
tool_definitions = get_tool_definitions()
|
||||||
|
tool_handlers = get_tool_handlers()
|
||||||
|
|
||||||
|
anthropic_tools = [
|
||||||
|
{
|
||||||
|
"name": t["name"],
|
||||||
|
"description": t["description"],
|
||||||
|
"input_schema": t["inputSchema"],
|
||||||
|
}
|
||||||
|
for t in tool_definitions
|
||||||
|
]
|
||||||
|
|
||||||
|
anthropic_messages = _convert_session_to_anthropic(session)
|
||||||
|
|
||||||
|
if not anthropic_messages or anthropic_messages[-1]["role"] != "user":
|
||||||
|
anthropic_messages.append(
|
||||||
|
{"role": "user", "content": "Continue with the task."}
|
||||||
|
)
|
||||||
|
|
||||||
|
has_started_text = False
|
||||||
|
max_iterations = 10
|
||||||
|
accumulated_text = ""
|
||||||
|
accumulated_tool_calls: list[dict[str, Any]] = []
|
||||||
|
|
||||||
|
for _ in range(max_iterations):
|
||||||
|
try:
|
||||||
|
async with client.messages.stream(
|
||||||
|
model="claude-sonnet-4-20250514",
|
||||||
|
max_tokens=4096,
|
||||||
|
system=system_prompt,
|
||||||
|
messages=cast(Any, anthropic_messages),
|
||||||
|
tools=cast(Any, anthropic_tools) if anthropic_tools else [],
|
||||||
|
) as stream:
|
||||||
|
async for event in stream:
|
||||||
|
if event.type == "content_block_start":
|
||||||
|
block = event.content_block
|
||||||
|
if hasattr(block, "type"):
|
||||||
|
if block.type == "text" and not has_started_text:
|
||||||
|
yield StreamTextStart(id=text_block_id)
|
||||||
|
has_started_text = True
|
||||||
|
elif block.type == "tool_use":
|
||||||
|
yield StreamToolInputStart(
|
||||||
|
toolCallId=block.id, toolName=block.name
|
||||||
|
)
|
||||||
|
|
||||||
|
elif event.type == "content_block_delta":
|
||||||
|
delta = event.delta
|
||||||
|
if hasattr(delta, "type") and delta.type == "text_delta":
|
||||||
|
accumulated_text += delta.text
|
||||||
|
yield StreamTextDelta(id=text_block_id, delta=delta.text)
|
||||||
|
|
||||||
|
final_message = await stream.get_final_message()
|
||||||
|
|
||||||
|
if final_message.stop_reason == "tool_use":
|
||||||
|
if has_started_text:
|
||||||
|
yield StreamTextEnd(id=text_block_id)
|
||||||
|
has_started_text = False
|
||||||
|
text_block_id = str(uuid.uuid4())
|
||||||
|
|
||||||
|
tool_results = []
|
||||||
|
assistant_content: list[dict[str, Any]] = []
|
||||||
|
|
||||||
|
for block in final_message.content:
|
||||||
|
if block.type == "text":
|
||||||
|
assistant_content.append(
|
||||||
|
{"type": "text", "text": block.text}
|
||||||
|
)
|
||||||
|
elif block.type == "tool_use":
|
||||||
|
assistant_content.append(
|
||||||
|
{
|
||||||
|
"type": "tool_use",
|
||||||
|
"id": block.id,
|
||||||
|
"name": block.name,
|
||||||
|
"input": block.input,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# Track tool call for session persistence
|
||||||
|
accumulated_tool_calls.append(
|
||||||
|
{
|
||||||
|
"id": block.id,
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": block.name,
|
||||||
|
"arguments": json.dumps(
|
||||||
|
block.input
|
||||||
|
if isinstance(block.input, dict)
|
||||||
|
else {}
|
||||||
|
),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
yield StreamToolInputAvailable(
|
||||||
|
toolCallId=block.id,
|
||||||
|
toolName=block.name,
|
||||||
|
input=(
|
||||||
|
block.input if isinstance(block.input, dict) else {}
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
output, is_error = await _execute_tool(
|
||||||
|
block.name, block.input, tool_handlers
|
||||||
|
)
|
||||||
|
|
||||||
|
yield StreamToolOutputAvailable(
|
||||||
|
toolCallId=block.id,
|
||||||
|
toolName=block.name,
|
||||||
|
output=output,
|
||||||
|
success=not is_error,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Save tool result to session
|
||||||
|
session.messages.append(
|
||||||
|
ChatMessage(
|
||||||
|
role="tool",
|
||||||
|
content=output,
|
||||||
|
tool_call_id=block.id,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
tool_results.append(
|
||||||
|
{
|
||||||
|
"type": "tool_result",
|
||||||
|
"tool_use_id": block.id,
|
||||||
|
"content": output,
|
||||||
|
"is_error": is_error,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# Save assistant message with tool calls to session
|
||||||
|
session.messages.append(
|
||||||
|
ChatMessage(
|
||||||
|
role="assistant",
|
||||||
|
content=accumulated_text or None,
|
||||||
|
tool_calls=(
|
||||||
|
accumulated_tool_calls
|
||||||
|
if accumulated_tool_calls
|
||||||
|
else None
|
||||||
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
# Reset for next iteration
|
||||||
|
accumulated_text = ""
|
||||||
|
accumulated_tool_calls = []
|
||||||
|
|
||||||
|
anthropic_messages.append(
|
||||||
|
{"role": "assistant", "content": assistant_content}
|
||||||
|
)
|
||||||
|
anthropic_messages.append({"role": "user", "content": tool_results})
|
||||||
|
continue
|
||||||
|
|
||||||
|
else:
|
||||||
|
if has_started_text:
|
||||||
|
yield StreamTextEnd(id=text_block_id)
|
||||||
|
|
||||||
|
# Save final assistant response to session
|
||||||
|
if accumulated_text:
|
||||||
|
session.messages.append(
|
||||||
|
ChatMessage(role="assistant", content=accumulated_text)
|
||||||
|
)
|
||||||
|
|
||||||
|
yield StreamUsage(
|
||||||
|
promptTokens=final_message.usage.input_tokens,
|
||||||
|
completionTokens=final_message.usage.output_tokens,
|
||||||
|
totalTokens=final_message.usage.input_tokens
|
||||||
|
+ final_message.usage.output_tokens,
|
||||||
|
)
|
||||||
|
yield StreamFinish()
|
||||||
|
return
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"[Anthropic Fallback] Error: {e}", exc_info=True)
|
||||||
|
yield StreamError(
|
||||||
|
errorText="An error occurred. Please try again.",
|
||||||
|
code="anthropic_error",
|
||||||
|
)
|
||||||
|
yield StreamFinish()
|
||||||
|
return
|
||||||
|
|
||||||
|
yield StreamError(errorText="Max tool iterations reached", code="max_iterations")
|
||||||
|
yield StreamFinish()
|
||||||
|
|
||||||
|
|
||||||
|
def _convert_session_to_anthropic(session: ChatSession) -> list[dict[str, Any]]:
|
||||||
|
"""Convert session messages to Anthropic format.
|
||||||
|
|
||||||
|
Handles merging consecutive same-role messages (Anthropic requires alternating roles).
|
||||||
|
"""
|
||||||
|
messages: list[dict[str, Any]] = []
|
||||||
|
|
||||||
|
for msg in session.messages:
|
||||||
|
if msg.role == "user":
|
||||||
|
new_msg = {"role": "user", "content": msg.content or ""}
|
||||||
|
elif msg.role == "assistant":
|
||||||
|
content: list[dict[str, Any]] = []
|
||||||
|
if msg.content:
|
||||||
|
content.append({"type": "text", "text": msg.content})
|
||||||
|
if msg.tool_calls:
|
||||||
|
for tc in msg.tool_calls:
|
||||||
|
func = tc.get("function", {})
|
||||||
|
args = func.get("arguments", {})
|
||||||
|
if isinstance(args, str):
|
||||||
|
try:
|
||||||
|
args = json.loads(args)
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
args = {}
|
||||||
|
content.append(
|
||||||
|
{
|
||||||
|
"type": "tool_use",
|
||||||
|
"id": tc.get("id", str(uuid.uuid4())),
|
||||||
|
"name": func.get("name", ""),
|
||||||
|
"input": args,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
if content:
|
||||||
|
new_msg = {"role": "assistant", "content": content}
|
||||||
|
else:
|
||||||
|
continue # Skip empty assistant messages
|
||||||
|
elif msg.role == "tool":
|
||||||
|
new_msg = {
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "tool_result",
|
||||||
|
"tool_use_id": msg.tool_call_id or "",
|
||||||
|
"content": msg.content or "",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
|
||||||
|
messages.append(new_msg)
|
||||||
|
|
||||||
|
# Merge consecutive same-role messages (Anthropic requires alternating roles)
|
||||||
|
return _merge_consecutive_roles(messages)
|
||||||
|
|
||||||
|
|
||||||
|
def _merge_consecutive_roles(messages: list[dict[str, Any]]) -> list[dict[str, Any]]:
|
||||||
|
"""Merge consecutive messages with the same role.
|
||||||
|
|
||||||
|
Anthropic API requires alternating user/assistant roles.
|
||||||
|
"""
|
||||||
|
if not messages:
|
||||||
|
return []
|
||||||
|
|
||||||
|
merged: list[dict[str, Any]] = []
|
||||||
|
for msg in messages:
|
||||||
|
if merged and merged[-1]["role"] == msg["role"]:
|
||||||
|
# Merge with previous message
|
||||||
|
prev_content = merged[-1]["content"]
|
||||||
|
new_content = msg["content"]
|
||||||
|
|
||||||
|
# Normalize both to list-of-blocks form
|
||||||
|
if isinstance(prev_content, str):
|
||||||
|
prev_content = [{"type": "text", "text": prev_content}]
|
||||||
|
if isinstance(new_content, str):
|
||||||
|
new_content = [{"type": "text", "text": new_content}]
|
||||||
|
|
||||||
|
# Ensure both are lists
|
||||||
|
if not isinstance(prev_content, list):
|
||||||
|
prev_content = [prev_content]
|
||||||
|
if not isinstance(new_content, list):
|
||||||
|
new_content = [new_content]
|
||||||
|
|
||||||
|
merged[-1]["content"] = prev_content + new_content
|
||||||
|
else:
|
||||||
|
merged.append(msg)
|
||||||
|
|
||||||
|
return merged
|
||||||
|
|
||||||
|
|
||||||
|
async def _execute_tool(
|
||||||
|
tool_name: str, tool_input: Any, handlers: dict[str, Any]
|
||||||
|
) -> tuple[str, bool]:
|
||||||
|
"""Execute a tool and return (output, is_error)."""
|
||||||
|
handler = handlers.get(tool_name)
|
||||||
|
if not handler:
|
||||||
|
return f"Unknown tool: {tool_name}", True
|
||||||
|
|
||||||
|
try:
|
||||||
|
result = await handler(tool_input)
|
||||||
|
# Safely extract output - handle empty or missing content
|
||||||
|
content = result.get("content") or []
|
||||||
|
if content and isinstance(content, list) and len(content) > 0:
|
||||||
|
first_item = content[0]
|
||||||
|
output = first_item.get("text", "") if isinstance(first_item, dict) else ""
|
||||||
|
else:
|
||||||
|
output = ""
|
||||||
|
is_error = result.get("isError", False)
|
||||||
|
return output, is_error
|
||||||
|
except Exception as e:
|
||||||
|
return f"Error: {str(e)}", True
|
||||||
@@ -0,0 +1,300 @@
|
|||||||
|
"""Response adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
|
||||||
|
|
||||||
|
This module provides the adapter layer that converts streaming messages from
|
||||||
|
the Claude Agent SDK into the Vercel AI SDK UI Stream Protocol format that
|
||||||
|
the frontend expects.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
import uuid
|
||||||
|
from typing import Any, AsyncGenerator
|
||||||
|
|
||||||
|
from backend.api.features.chat.response_model import (
|
||||||
|
StreamBaseResponse,
|
||||||
|
StreamError,
|
||||||
|
StreamFinish,
|
||||||
|
StreamHeartbeat,
|
||||||
|
StreamStart,
|
||||||
|
StreamTextDelta,
|
||||||
|
StreamTextEnd,
|
||||||
|
StreamTextStart,
|
||||||
|
StreamToolInputAvailable,
|
||||||
|
StreamToolInputStart,
|
||||||
|
StreamToolOutputAvailable,
|
||||||
|
StreamUsage,
|
||||||
|
)
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class SDKResponseAdapter:
|
||||||
|
"""Adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
|
||||||
|
|
||||||
|
This class maintains state during a streaming session to properly track
|
||||||
|
text blocks, tool calls, and message lifecycle.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, message_id: str | None = None):
|
||||||
|
"""Initialize the adapter.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
message_id: Optional message ID. If not provided, one will be generated.
|
||||||
|
"""
|
||||||
|
self.message_id = message_id or str(uuid.uuid4())
|
||||||
|
self.text_block_id = str(uuid.uuid4())
|
||||||
|
self.has_started_text = False
|
||||||
|
self.has_ended_text = False
|
||||||
|
self.current_tool_calls: dict[str, dict[str, Any]] = {}
|
||||||
|
self.task_id: str | None = None
|
||||||
|
|
||||||
|
def set_task_id(self, task_id: str) -> None:
|
||||||
|
"""Set the task ID for reconnection support."""
|
||||||
|
self.task_id = task_id
|
||||||
|
|
||||||
|
def convert_message(self, sdk_message: Any) -> list[StreamBaseResponse]:
|
||||||
|
"""Convert a single SDK message to Vercel AI SDK format.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
sdk_message: A message from the Claude Agent SDK.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of StreamBaseResponse objects (may be empty or multiple).
|
||||||
|
"""
|
||||||
|
responses: list[StreamBaseResponse] = []
|
||||||
|
|
||||||
|
# Handle different SDK message types - use class name since SDK uses dataclasses
|
||||||
|
class_name = type(sdk_message).__name__
|
||||||
|
msg_subtype = getattr(sdk_message, "subtype", None)
|
||||||
|
|
||||||
|
if class_name == "SystemMessage":
|
||||||
|
if msg_subtype == "init":
|
||||||
|
# Session initialization - emit start
|
||||||
|
responses.append(
|
||||||
|
StreamStart(
|
||||||
|
messageId=self.message_id,
|
||||||
|
taskId=self.task_id,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
elif class_name == "AssistantMessage":
|
||||||
|
# Assistant message with content blocks
|
||||||
|
content = getattr(sdk_message, "content", [])
|
||||||
|
for block in content:
|
||||||
|
# Check block type by class name (SDK uses dataclasses) or dict type
|
||||||
|
block_class = type(block).__name__
|
||||||
|
block_type = block.get("type") if isinstance(block, dict) else None
|
||||||
|
|
||||||
|
if block_class == "TextBlock" or block_type == "text":
|
||||||
|
# Text content
|
||||||
|
text = getattr(block, "text", None) or (
|
||||||
|
block.get("text") if isinstance(block, dict) else ""
|
||||||
|
)
|
||||||
|
|
||||||
|
if text:
|
||||||
|
# Start text block if needed (or restart after tool calls)
|
||||||
|
if not self.has_started_text or self.has_ended_text:
|
||||||
|
# Generate new text block ID for text after tools
|
||||||
|
if self.has_ended_text:
|
||||||
|
self.text_block_id = str(uuid.uuid4())
|
||||||
|
self.has_ended_text = False
|
||||||
|
responses.append(StreamTextStart(id=self.text_block_id))
|
||||||
|
self.has_started_text = True
|
||||||
|
|
||||||
|
# Emit text delta
|
||||||
|
responses.append(
|
||||||
|
StreamTextDelta(
|
||||||
|
id=self.text_block_id,
|
||||||
|
delta=text,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
elif block_class == "ToolUseBlock" or block_type == "tool_use":
|
||||||
|
# Tool call
|
||||||
|
tool_id_raw = getattr(block, "id", None) or (
|
||||||
|
block.get("id") if isinstance(block, dict) else None
|
||||||
|
)
|
||||||
|
tool_id: str = (
|
||||||
|
str(tool_id_raw) if tool_id_raw else str(uuid.uuid4())
|
||||||
|
)
|
||||||
|
|
||||||
|
tool_name_raw = getattr(block, "name", None) or (
|
||||||
|
block.get("name") if isinstance(block, dict) else None
|
||||||
|
)
|
||||||
|
tool_name: str = str(tool_name_raw) if tool_name_raw else "unknown"
|
||||||
|
|
||||||
|
tool_input = getattr(block, "input", None) or (
|
||||||
|
block.get("input") if isinstance(block, dict) else {}
|
||||||
|
)
|
||||||
|
|
||||||
|
# End text block if we were streaming text
|
||||||
|
if self.has_started_text and not self.has_ended_text:
|
||||||
|
responses.append(StreamTextEnd(id=self.text_block_id))
|
||||||
|
self.has_ended_text = True
|
||||||
|
|
||||||
|
# Emit tool input start
|
||||||
|
responses.append(
|
||||||
|
StreamToolInputStart(
|
||||||
|
toolCallId=tool_id,
|
||||||
|
toolName=tool_name,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Emit tool input available with full input
|
||||||
|
responses.append(
|
||||||
|
StreamToolInputAvailable(
|
||||||
|
toolCallId=tool_id,
|
||||||
|
toolName=tool_name,
|
||||||
|
input=tool_input if isinstance(tool_input, dict) else {},
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Track the tool call
|
||||||
|
self.current_tool_calls[tool_id] = {
|
||||||
|
"name": tool_name,
|
||||||
|
"input": tool_input,
|
||||||
|
}
|
||||||
|
|
||||||
|
elif class_name in ("ToolResultMessage", "UserMessage"):
|
||||||
|
# Tool result - check for tool_result content
|
||||||
|
content = getattr(sdk_message, "content", [])
|
||||||
|
|
||||||
|
for block in content:
|
||||||
|
block_class = type(block).__name__
|
||||||
|
block_type = block.get("type") if isinstance(block, dict) else None
|
||||||
|
|
||||||
|
if block_class == "ToolResultBlock" or block_type == "tool_result":
|
||||||
|
tool_use_id = getattr(block, "tool_use_id", None) or (
|
||||||
|
block.get("tool_use_id") if isinstance(block, dict) else None
|
||||||
|
)
|
||||||
|
result_content = getattr(block, "content", None) or (
|
||||||
|
block.get("content") if isinstance(block, dict) else ""
|
||||||
|
)
|
||||||
|
is_error = getattr(block, "is_error", False) or (
|
||||||
|
block.get("is_error", False)
|
||||||
|
if isinstance(block, dict)
|
||||||
|
else False
|
||||||
|
)
|
||||||
|
|
||||||
|
if tool_use_id:
|
||||||
|
tool_info = self.current_tool_calls.get(tool_use_id, {})
|
||||||
|
tool_name = tool_info.get("name", "unknown")
|
||||||
|
|
||||||
|
# Format the output
|
||||||
|
if isinstance(result_content, list):
|
||||||
|
# Extract text from content blocks
|
||||||
|
output_text = ""
|
||||||
|
for item in result_content:
|
||||||
|
if (
|
||||||
|
isinstance(item, dict)
|
||||||
|
and item.get("type") == "text"
|
||||||
|
):
|
||||||
|
output_text += item.get("text", "")
|
||||||
|
elif hasattr(item, "text"):
|
||||||
|
output_text += getattr(item, "text", "")
|
||||||
|
output = output_text
|
||||||
|
elif isinstance(result_content, str):
|
||||||
|
output = result_content
|
||||||
|
else:
|
||||||
|
output = json.dumps(result_content)
|
||||||
|
|
||||||
|
responses.append(
|
||||||
|
StreamToolOutputAvailable(
|
||||||
|
toolCallId=tool_use_id,
|
||||||
|
toolName=tool_name,
|
||||||
|
output=output,
|
||||||
|
success=not is_error,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
elif class_name == "ResultMessage":
|
||||||
|
# Final result
|
||||||
|
if msg_subtype == "success":
|
||||||
|
# End text block if still open
|
||||||
|
if self.has_started_text and not self.has_ended_text:
|
||||||
|
responses.append(StreamTextEnd(id=self.text_block_id))
|
||||||
|
self.has_ended_text = True
|
||||||
|
|
||||||
|
# Emit finish
|
||||||
|
responses.append(StreamFinish())
|
||||||
|
|
||||||
|
elif msg_subtype in ("error", "error_during_execution"):
|
||||||
|
error_msg = getattr(sdk_message, "error", "Unknown error")
|
||||||
|
responses.append(
|
||||||
|
StreamError(
|
||||||
|
errorText=str(error_msg),
|
||||||
|
code="sdk_error",
|
||||||
|
)
|
||||||
|
)
|
||||||
|
responses.append(StreamFinish())
|
||||||
|
|
||||||
|
elif class_name == "ErrorMessage":
|
||||||
|
# Error message
|
||||||
|
error_msg = getattr(sdk_message, "message", None) or getattr(
|
||||||
|
sdk_message, "error", "Unknown error"
|
||||||
|
)
|
||||||
|
responses.append(
|
||||||
|
StreamError(
|
||||||
|
errorText=str(error_msg),
|
||||||
|
code="sdk_error",
|
||||||
|
)
|
||||||
|
)
|
||||||
|
responses.append(StreamFinish())
|
||||||
|
|
||||||
|
return responses
|
||||||
|
|
||||||
|
def create_heartbeat(self, tool_call_id: str | None = None) -> StreamHeartbeat:
|
||||||
|
"""Create a heartbeat response."""
|
||||||
|
return StreamHeartbeat(toolCallId=tool_call_id)
|
||||||
|
|
||||||
|
def create_usage(
|
||||||
|
self,
|
||||||
|
prompt_tokens: int,
|
||||||
|
completion_tokens: int,
|
||||||
|
) -> StreamUsage:
|
||||||
|
"""Create a usage statistics response."""
|
||||||
|
return StreamUsage(
|
||||||
|
promptTokens=prompt_tokens,
|
||||||
|
completionTokens=completion_tokens,
|
||||||
|
totalTokens=prompt_tokens + completion_tokens,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def adapt_sdk_stream(
|
||||||
|
sdk_stream: AsyncGenerator[Any, None],
|
||||||
|
message_id: str | None = None,
|
||||||
|
task_id: str | None = None,
|
||||||
|
) -> AsyncGenerator[StreamBaseResponse, None]:
|
||||||
|
"""Adapt a Claude Agent SDK stream to Vercel AI SDK format.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
sdk_stream: The async generator from the Claude Agent SDK.
|
||||||
|
message_id: Optional message ID for the response.
|
||||||
|
task_id: Optional task ID for reconnection support.
|
||||||
|
|
||||||
|
Yields:
|
||||||
|
StreamBaseResponse objects in Vercel AI SDK format.
|
||||||
|
"""
|
||||||
|
adapter = SDKResponseAdapter(message_id=message_id)
|
||||||
|
if task_id:
|
||||||
|
adapter.set_task_id(task_id)
|
||||||
|
|
||||||
|
# Emit start immediately
|
||||||
|
yield StreamStart(messageId=adapter.message_id, taskId=task_id)
|
||||||
|
|
||||||
|
try:
|
||||||
|
async for sdk_message in sdk_stream:
|
||||||
|
responses = adapter.convert_message(sdk_message)
|
||||||
|
for response in responses:
|
||||||
|
# Skip duplicate start messages
|
||||||
|
if isinstance(response, StreamStart):
|
||||||
|
continue
|
||||||
|
yield response
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in SDK stream: {e}", exc_info=True)
|
||||||
|
yield StreamError(
|
||||||
|
errorText=f"Stream error: {str(e)}",
|
||||||
|
code="stream_error",
|
||||||
|
)
|
||||||
|
yield StreamFinish()
|
||||||
@@ -0,0 +1,278 @@
|
|||||||
|
"""Security hooks for Claude Agent SDK integration.
|
||||||
|
|
||||||
|
This module provides security hooks that validate tool calls before execution,
|
||||||
|
ensuring multi-user isolation and preventing unauthorized operations.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import re
|
||||||
|
from typing import Any, cast
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# Tools that are blocked entirely (CLI/system access)
|
||||||
|
BLOCKED_TOOLS = {
|
||||||
|
"Bash",
|
||||||
|
"bash",
|
||||||
|
"shell",
|
||||||
|
"exec",
|
||||||
|
"terminal",
|
||||||
|
"command",
|
||||||
|
"Read", # Block raw file read - use workspace tools instead
|
||||||
|
"Write", # Block raw file write - use workspace tools instead
|
||||||
|
"Edit", # Block raw file edit - use workspace tools instead
|
||||||
|
"Glob", # Block raw file glob - use workspace tools instead
|
||||||
|
"Grep", # Block raw file grep - use workspace tools instead
|
||||||
|
}
|
||||||
|
|
||||||
|
# Dangerous patterns in tool inputs
|
||||||
|
DANGEROUS_PATTERNS = [
|
||||||
|
r"sudo",
|
||||||
|
r"rm\s+-rf",
|
||||||
|
r"dd\s+if=",
|
||||||
|
r"/etc/passwd",
|
||||||
|
r"/etc/shadow",
|
||||||
|
r"chmod\s+777",
|
||||||
|
r"curl\s+.*\|.*sh",
|
||||||
|
r"wget\s+.*\|.*sh",
|
||||||
|
r"eval\s*\(",
|
||||||
|
r"exec\s*\(",
|
||||||
|
r"__import__",
|
||||||
|
r"os\.system",
|
||||||
|
r"subprocess",
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def _validate_tool_access(tool_name: str, tool_input: dict[str, Any]) -> dict[str, Any]:
|
||||||
|
"""Validate that a tool call is allowed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Empty dict to allow, or dict with hookSpecificOutput to deny
|
||||||
|
"""
|
||||||
|
# Block forbidden tools
|
||||||
|
if tool_name in BLOCKED_TOOLS:
|
||||||
|
logger.warning(f"Blocked tool access attempt: {tool_name}")
|
||||||
|
return {
|
||||||
|
"hookSpecificOutput": {
|
||||||
|
"hookEventName": "PreToolUse",
|
||||||
|
"permissionDecision": "deny",
|
||||||
|
"permissionDecisionReason": (
|
||||||
|
f"Tool '{tool_name}' is not available. "
|
||||||
|
"Use the CoPilot-specific tools instead."
|
||||||
|
),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
# Check for dangerous patterns in tool input
|
||||||
|
input_str = str(tool_input)
|
||||||
|
|
||||||
|
for pattern in DANGEROUS_PATTERNS:
|
||||||
|
if re.search(pattern, input_str, re.IGNORECASE):
|
||||||
|
logger.warning(
|
||||||
|
f"Blocked dangerous pattern in tool input: {pattern} in {tool_name}"
|
||||||
|
)
|
||||||
|
return {
|
||||||
|
"hookSpecificOutput": {
|
||||||
|
"hookEventName": "PreToolUse",
|
||||||
|
"permissionDecision": "deny",
|
||||||
|
"permissionDecisionReason": "Input contains blocked pattern",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return {}
|
||||||
|
|
||||||
|
|
||||||
|
def _validate_user_isolation(
|
||||||
|
tool_name: str, tool_input: dict[str, Any], user_id: str | None
|
||||||
|
) -> dict[str, Any]:
|
||||||
|
"""Validate that tool calls respect user isolation."""
|
||||||
|
# For workspace file tools, ensure path doesn't escape
|
||||||
|
if "workspace" in tool_name.lower():
|
||||||
|
path = tool_input.get("path", "") or tool_input.get("file_path", "")
|
||||||
|
if path:
|
||||||
|
# Check for path traversal
|
||||||
|
if ".." in path or path.startswith("/"):
|
||||||
|
logger.warning(
|
||||||
|
f"Blocked path traversal attempt: {path} by user {user_id}"
|
||||||
|
)
|
||||||
|
return {
|
||||||
|
"hookSpecificOutput": {
|
||||||
|
"hookEventName": "PreToolUse",
|
||||||
|
"permissionDecision": "deny",
|
||||||
|
"permissionDecisionReason": "Path traversal not allowed",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return {}
|
||||||
|
|
||||||
|
|
||||||
|
def create_security_hooks(user_id: str | None) -> dict[str, Any]:
|
||||||
|
"""Create the security hooks configuration for Claude Agent SDK.
|
||||||
|
|
||||||
|
Includes security validation and observability hooks:
|
||||||
|
- PreToolUse: Security validation before tool execution
|
||||||
|
- PostToolUse: Log successful tool executions
|
||||||
|
- PostToolUseFailure: Log and handle failed tool executions
|
||||||
|
- PreCompact: Log context compaction events (SDK handles compaction automatically)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
user_id: Current user ID for isolation validation
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Hooks configuration dict for ClaudeAgentOptions
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
from claude_agent_sdk import HookMatcher
|
||||||
|
from claude_agent_sdk.types import HookContext, HookInput, SyncHookJSONOutput
|
||||||
|
|
||||||
|
async def pre_tool_use_hook(
|
||||||
|
input_data: HookInput,
|
||||||
|
tool_use_id: str | None,
|
||||||
|
context: HookContext,
|
||||||
|
) -> SyncHookJSONOutput:
|
||||||
|
"""Combined pre-tool-use validation hook."""
|
||||||
|
_ = context # unused but required by signature
|
||||||
|
tool_name = cast(str, input_data.get("tool_name", ""))
|
||||||
|
tool_input = cast(dict[str, Any], input_data.get("tool_input", {}))
|
||||||
|
|
||||||
|
# Validate basic tool access
|
||||||
|
result = _validate_tool_access(tool_name, tool_input)
|
||||||
|
if result:
|
||||||
|
return cast(SyncHookJSONOutput, result)
|
||||||
|
|
||||||
|
# Validate user isolation
|
||||||
|
result = _validate_user_isolation(tool_name, tool_input, user_id)
|
||||||
|
if result:
|
||||||
|
return cast(SyncHookJSONOutput, result)
|
||||||
|
|
||||||
|
logger.debug(f"[SDK] Tool start: {tool_name}, user={user_id}")
|
||||||
|
return cast(SyncHookJSONOutput, {})
|
||||||
|
|
||||||
|
async def post_tool_use_hook(
|
||||||
|
input_data: HookInput,
|
||||||
|
tool_use_id: str | None,
|
||||||
|
context: HookContext,
|
||||||
|
) -> SyncHookJSONOutput:
|
||||||
|
"""Log successful tool executions for observability."""
|
||||||
|
_ = context
|
||||||
|
tool_name = cast(str, input_data.get("tool_name", ""))
|
||||||
|
logger.debug(f"[SDK] Tool success: {tool_name}, tool_use_id={tool_use_id}")
|
||||||
|
return cast(SyncHookJSONOutput, {})
|
||||||
|
|
||||||
|
async def post_tool_failure_hook(
|
||||||
|
input_data: HookInput,
|
||||||
|
tool_use_id: str | None,
|
||||||
|
context: HookContext,
|
||||||
|
) -> SyncHookJSONOutput:
|
||||||
|
"""Log failed tool executions for debugging."""
|
||||||
|
_ = context
|
||||||
|
tool_name = cast(str, input_data.get("tool_name", ""))
|
||||||
|
error = input_data.get("error", "Unknown error")
|
||||||
|
logger.warning(
|
||||||
|
f"[SDK] Tool failed: {tool_name}, error={error}, "
|
||||||
|
f"user={user_id}, tool_use_id={tool_use_id}"
|
||||||
|
)
|
||||||
|
return cast(SyncHookJSONOutput, {})
|
||||||
|
|
||||||
|
async def pre_compact_hook(
|
||||||
|
input_data: HookInput,
|
||||||
|
tool_use_id: str | None,
|
||||||
|
context: HookContext,
|
||||||
|
) -> SyncHookJSONOutput:
|
||||||
|
"""Log when SDK triggers context compaction.
|
||||||
|
|
||||||
|
The SDK automatically compacts conversation history when it grows too large.
|
||||||
|
This hook provides visibility into when compaction happens.
|
||||||
|
"""
|
||||||
|
_ = context, tool_use_id
|
||||||
|
trigger = input_data.get("trigger", "auto")
|
||||||
|
logger.info(
|
||||||
|
f"[SDK] Context compaction triggered: {trigger}, user={user_id}"
|
||||||
|
)
|
||||||
|
return cast(SyncHookJSONOutput, {})
|
||||||
|
|
||||||
|
return {
|
||||||
|
"PreToolUse": [HookMatcher(matcher="*", hooks=[pre_tool_use_hook])],
|
||||||
|
"PostToolUse": [HookMatcher(matcher="*", hooks=[post_tool_use_hook])],
|
||||||
|
"PostToolUseFailure": [
|
||||||
|
HookMatcher(matcher="*", hooks=[post_tool_failure_hook])
|
||||||
|
],
|
||||||
|
"PreCompact": [HookMatcher(matcher="*", hooks=[pre_compact_hook])],
|
||||||
|
}
|
||||||
|
except ImportError:
|
||||||
|
# Fallback for when SDK isn't available - return empty hooks
|
||||||
|
return {}
|
||||||
|
|
||||||
|
|
||||||
|
def create_strict_security_hooks(
|
||||||
|
user_id: str | None,
|
||||||
|
allowed_tools: list[str] | None = None,
|
||||||
|
) -> dict[str, Any]:
|
||||||
|
"""Create strict security hooks that only allow specific tools.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
user_id: Current user ID
|
||||||
|
allowed_tools: List of allowed tool names (defaults to CoPilot tools)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Hooks configuration dict
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
from claude_agent_sdk import HookMatcher
|
||||||
|
from claude_agent_sdk.types import HookContext, HookInput, SyncHookJSONOutput
|
||||||
|
|
||||||
|
from .tool_adapter import RAW_TOOL_NAMES
|
||||||
|
|
||||||
|
tools_list = allowed_tools if allowed_tools is not None else RAW_TOOL_NAMES
|
||||||
|
allowed_set = set(tools_list)
|
||||||
|
|
||||||
|
async def strict_pre_tool_use(
|
||||||
|
input_data: HookInput,
|
||||||
|
tool_use_id: str | None,
|
||||||
|
context: HookContext,
|
||||||
|
) -> SyncHookJSONOutput:
|
||||||
|
"""Strict validation that only allows whitelisted tools."""
|
||||||
|
_ = context # unused but required by signature
|
||||||
|
tool_name = cast(str, input_data.get("tool_name", ""))
|
||||||
|
tool_input = cast(dict[str, Any], input_data.get("tool_input", {}))
|
||||||
|
|
||||||
|
# Remove MCP prefix if present
|
||||||
|
clean_name = tool_name.removeprefix("mcp__copilot__")
|
||||||
|
|
||||||
|
if clean_name not in allowed_set:
|
||||||
|
logger.warning(f"Blocked non-whitelisted tool: {tool_name}")
|
||||||
|
return cast(
|
||||||
|
SyncHookJSONOutput,
|
||||||
|
{
|
||||||
|
"hookSpecificOutput": {
|
||||||
|
"hookEventName": "PreToolUse",
|
||||||
|
"permissionDecision": "deny",
|
||||||
|
"permissionDecisionReason": (
|
||||||
|
f"Tool '{tool_name}' is not in the allowed list"
|
||||||
|
),
|
||||||
|
}
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
# Run standard validations
|
||||||
|
result = _validate_tool_access(tool_name, tool_input)
|
||||||
|
if result:
|
||||||
|
return cast(SyncHookJSONOutput, result)
|
||||||
|
|
||||||
|
result = _validate_user_isolation(tool_name, tool_input, user_id)
|
||||||
|
if result:
|
||||||
|
return cast(SyncHookJSONOutput, result)
|
||||||
|
|
||||||
|
logger.debug(
|
||||||
|
f"[SDK Audit] Tool call: tool={tool_name}, "
|
||||||
|
f"user={user_id}, tool_use_id={tool_use_id}"
|
||||||
|
)
|
||||||
|
return cast(SyncHookJSONOutput, {})
|
||||||
|
|
||||||
|
return {
|
||||||
|
"PreToolUse": [
|
||||||
|
HookMatcher(matcher="*", hooks=[strict_pre_tool_use]),
|
||||||
|
],
|
||||||
|
}
|
||||||
|
except ImportError:
|
||||||
|
return {}
|
||||||
@@ -0,0 +1,471 @@
|
|||||||
|
"""Claude Agent SDK service layer for CoPilot chat completions."""
|
||||||
|
|
||||||
|
import asyncio
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
import uuid
|
||||||
|
from collections.abc import AsyncGenerator
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
import openai
|
||||||
|
|
||||||
|
from backend.data.understanding import (
|
||||||
|
format_understanding_for_prompt,
|
||||||
|
get_business_understanding,
|
||||||
|
)
|
||||||
|
from backend.util.exceptions import NotFoundError
|
||||||
|
|
||||||
|
from ..config import ChatConfig
|
||||||
|
from ..model import (
|
||||||
|
ChatMessage,
|
||||||
|
ChatSession,
|
||||||
|
get_chat_session,
|
||||||
|
update_session_title,
|
||||||
|
upsert_chat_session,
|
||||||
|
)
|
||||||
|
from ..response_model import (
|
||||||
|
StreamBaseResponse,
|
||||||
|
StreamError,
|
||||||
|
StreamFinish,
|
||||||
|
StreamStart,
|
||||||
|
StreamTextDelta,
|
||||||
|
StreamToolInputAvailable,
|
||||||
|
StreamToolOutputAvailable,
|
||||||
|
)
|
||||||
|
from ..tracking import track_user_message
|
||||||
|
from .anthropic_fallback import stream_with_anthropic
|
||||||
|
from .response_adapter import SDKResponseAdapter
|
||||||
|
from .security_hooks import create_security_hooks
|
||||||
|
from .tool_adapter import (
|
||||||
|
COPILOT_TOOL_NAMES,
|
||||||
|
create_copilot_mcp_server,
|
||||||
|
set_execution_context,
|
||||||
|
)
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
config = ChatConfig()
|
||||||
|
|
||||||
|
# Set to hold background tasks to prevent garbage collection
|
||||||
|
_background_tasks: set[asyncio.Task[Any]] = set()
|
||||||
|
|
||||||
|
DEFAULT_SYSTEM_PROMPT = """You are **Otto**, an AI Co-Pilot for AutoGPT and a Forward-Deployed Automation Engineer serving small business owners. Your mission is to help users automate business tasks with AI by delivering tangible value through working automations—not through documentation or lengthy explanations.
|
||||||
|
|
||||||
|
Here is everything you know about the current user from previous interactions:
|
||||||
|
|
||||||
|
<users_information>
|
||||||
|
{users_information}
|
||||||
|
</users_information>
|
||||||
|
|
||||||
|
## YOUR CORE MANDATE
|
||||||
|
|
||||||
|
You are action-oriented. Your success is measured by:
|
||||||
|
- **Value Delivery**: Does the user think "wow, that was amazing" or "what was the point"?
|
||||||
|
- **Demonstrable Proof**: Show working automations, not descriptions of what's possible
|
||||||
|
- **Time Saved**: Focus on tangible efficiency gains
|
||||||
|
- **Quality Output**: Deliver results that meet or exceed expectations
|
||||||
|
|
||||||
|
## YOUR WORKFLOW
|
||||||
|
|
||||||
|
Adapt flexibly to the conversation context. Not every interaction requires all stages:
|
||||||
|
|
||||||
|
1. **Explore & Understand**: Learn about the user's business, tasks, and goals. Use `add_understanding` to capture important context that will improve future conversations.
|
||||||
|
|
||||||
|
2. **Assess Automation Potential**: Help the user understand whether and how AI can automate their task.
|
||||||
|
|
||||||
|
3. **Prepare for AI**: Provide brief, actionable guidance on prerequisites (data, access, etc.).
|
||||||
|
|
||||||
|
4. **Discover or Create Agents**:
|
||||||
|
- **Always check the user's library first** with `find_library_agent` (these may be customized to their needs)
|
||||||
|
- Search the marketplace with `find_agent` for pre-built automations
|
||||||
|
- Find reusable components with `find_block`
|
||||||
|
- Create custom solutions with `create_agent` if nothing suitable exists
|
||||||
|
- Modify existing library agents with `edit_agent`
|
||||||
|
|
||||||
|
5. **Execute**: Run automations immediately, schedule them, or set up webhooks using `run_agent`. Test specific components with `run_block`.
|
||||||
|
|
||||||
|
6. **Show Results**: Display outputs using `agent_output`.
|
||||||
|
|
||||||
|
## BEHAVIORAL GUIDELINES
|
||||||
|
|
||||||
|
**Be Concise:**
|
||||||
|
- Target 2-5 short lines maximum
|
||||||
|
- Make every word count—no repetition or filler
|
||||||
|
- Use lightweight structure for scannability (bullets, numbered lists, short prompts)
|
||||||
|
- Avoid jargon (blocks, slugs, cron) unless the user asks
|
||||||
|
|
||||||
|
**Be Proactive:**
|
||||||
|
- Suggest next steps before being asked
|
||||||
|
- Anticipate needs based on conversation context and user information
|
||||||
|
- Look for opportunities to expand scope when relevant
|
||||||
|
- Reveal capabilities through action, not explanation
|
||||||
|
|
||||||
|
**Use Tools Effectively:**
|
||||||
|
- Select the right tool for each task
|
||||||
|
- **Always check `find_library_agent` before searching the marketplace**
|
||||||
|
- Use `add_understanding` to capture valuable business context
|
||||||
|
- When tool calls fail, try alternative approaches
|
||||||
|
|
||||||
|
## CRITICAL REMINDER
|
||||||
|
|
||||||
|
You are NOT a chatbot. You are NOT documentation. You are a partner who helps busy business owners get value quickly by showing proof through working automations. Bias toward action over explanation."""
|
||||||
|
|
||||||
|
|
||||||
|
async def _build_system_prompt(
|
||||||
|
user_id: str | None, has_conversation_history: bool = False
|
||||||
|
) -> tuple[str, Any]:
|
||||||
|
"""Build the system prompt with user's business understanding context.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
user_id: The user ID to fetch understanding for.
|
||||||
|
has_conversation_history: Whether there's existing conversation history.
|
||||||
|
If True, we don't tell the model to greet/introduce (since they're
|
||||||
|
already in a conversation).
|
||||||
|
"""
|
||||||
|
understanding = None
|
||||||
|
if user_id:
|
||||||
|
try:
|
||||||
|
understanding = await get_business_understanding(user_id)
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to fetch business understanding: {e}")
|
||||||
|
|
||||||
|
if understanding:
|
||||||
|
context = format_understanding_for_prompt(understanding)
|
||||||
|
elif has_conversation_history:
|
||||||
|
# Don't tell model to greet if there's conversation history
|
||||||
|
context = "No prior understanding saved yet. Continue the existing conversation naturally."
|
||||||
|
else:
|
||||||
|
context = "This is the first time you are meeting the user. Greet them and introduce them to the platform"
|
||||||
|
|
||||||
|
return DEFAULT_SYSTEM_PROMPT.format(users_information=context), understanding
|
||||||
|
|
||||||
|
|
||||||
|
def _format_conversation_history(session: ChatSession) -> str:
|
||||||
|
"""Format conversation history as a prompt context.
|
||||||
|
|
||||||
|
The SDK handles context compaction automatically, but we apply
|
||||||
|
max_context_messages as a safety guard to limit initial prompt size.
|
||||||
|
"""
|
||||||
|
if not session.messages:
|
||||||
|
return ""
|
||||||
|
|
||||||
|
# Get all messages except the last user message (which will be the prompt)
|
||||||
|
messages = session.messages[:-1] if session.messages else []
|
||||||
|
if not messages:
|
||||||
|
return ""
|
||||||
|
|
||||||
|
# Apply max_context_messages limit as a safety guard
|
||||||
|
# (SDK handles compaction, but this prevents excessively large initial prompts)
|
||||||
|
max_messages = config.max_context_messages
|
||||||
|
if len(messages) > max_messages:
|
||||||
|
messages = messages[-max_messages:]
|
||||||
|
|
||||||
|
history_parts = ["<conversation_history>"]
|
||||||
|
|
||||||
|
for msg in messages:
|
||||||
|
if msg.role == "user":
|
||||||
|
history_parts.append(f"User: {msg.content or ''}")
|
||||||
|
elif msg.role == "assistant":
|
||||||
|
# Pass full content - SDK handles compaction automatically
|
||||||
|
history_parts.append(f"Assistant: {msg.content or ''}")
|
||||||
|
if msg.tool_calls:
|
||||||
|
for tc in msg.tool_calls:
|
||||||
|
func = tc.get("function", {})
|
||||||
|
history_parts.append(
|
||||||
|
f" [Called tool: {func.get('name', 'unknown')}]"
|
||||||
|
)
|
||||||
|
elif msg.role == "tool":
|
||||||
|
# Pass full tool results - SDK handles compaction
|
||||||
|
history_parts.append(f" [Tool result: {msg.content or ''}]")
|
||||||
|
|
||||||
|
history_parts.append("</conversation_history>")
|
||||||
|
history_parts.append("")
|
||||||
|
history_parts.append(
|
||||||
|
"Continue this conversation. Respond to the user's latest message:"
|
||||||
|
)
|
||||||
|
history_parts.append("")
|
||||||
|
|
||||||
|
return "\n".join(history_parts)
|
||||||
|
|
||||||
|
|
||||||
|
async def _generate_session_title(
|
||||||
|
message: str,
|
||||||
|
user_id: str | None = None,
|
||||||
|
session_id: str | None = None,
|
||||||
|
) -> str | None:
|
||||||
|
"""Generate a concise title for a chat session."""
|
||||||
|
from backend.util.settings import Settings
|
||||||
|
|
||||||
|
settings = Settings()
|
||||||
|
try:
|
||||||
|
# Build extra_body for OpenRouter tracing
|
||||||
|
extra_body: dict[str, Any] = {
|
||||||
|
"posthogProperties": {"environment": settings.config.app_env.value},
|
||||||
|
}
|
||||||
|
if user_id:
|
||||||
|
extra_body["user"] = user_id[:128]
|
||||||
|
extra_body["posthogDistinctId"] = user_id
|
||||||
|
if session_id:
|
||||||
|
extra_body["session_id"] = session_id[:128]
|
||||||
|
|
||||||
|
client = openai.AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
|
||||||
|
response = await client.chat.completions.create(
|
||||||
|
model=config.title_model,
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": "Generate a very short title (3-6 words) for a chat conversation based on the user's first message. Return ONLY the title, no quotes or punctuation.",
|
||||||
|
},
|
||||||
|
{"role": "user", "content": message[:500]},
|
||||||
|
],
|
||||||
|
max_tokens=20,
|
||||||
|
extra_body=extra_body,
|
||||||
|
)
|
||||||
|
title = response.choices[0].message.content
|
||||||
|
if title:
|
||||||
|
title = title.strip().strip("\"'")
|
||||||
|
return title[:47] + "..." if len(title) > 50 else title
|
||||||
|
return None
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to generate session title: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
async def stream_chat_completion_sdk(
|
||||||
|
session_id: str,
|
||||||
|
message: str | None = None,
|
||||||
|
tool_call_response: str | None = None, # noqa: ARG001
|
||||||
|
is_user_message: bool = True,
|
||||||
|
user_id: str | None = None,
|
||||||
|
retry_count: int = 0, # noqa: ARG001
|
||||||
|
session: ChatSession | None = None,
|
||||||
|
context: dict[str, str] | None = None, # noqa: ARG001
|
||||||
|
) -> AsyncGenerator[StreamBaseResponse, None]:
|
||||||
|
"""Stream chat completion using Claude Agent SDK.
|
||||||
|
|
||||||
|
Drop-in replacement for stream_chat_completion with improved reliability.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if session is None:
|
||||||
|
session = await get_chat_session(session_id, user_id)
|
||||||
|
|
||||||
|
if not session:
|
||||||
|
raise NotFoundError(
|
||||||
|
f"Session {session_id} not found. Please create a new session first."
|
||||||
|
)
|
||||||
|
|
||||||
|
if message:
|
||||||
|
session.messages.append(
|
||||||
|
ChatMessage(
|
||||||
|
role="user" if is_user_message else "assistant", content=message
|
||||||
|
)
|
||||||
|
)
|
||||||
|
if is_user_message:
|
||||||
|
track_user_message(
|
||||||
|
user_id=user_id, session_id=session_id, message_length=len(message)
|
||||||
|
)
|
||||||
|
|
||||||
|
session = await upsert_chat_session(session)
|
||||||
|
|
||||||
|
# Generate title for new sessions (first user message)
|
||||||
|
if is_user_message and not session.title:
|
||||||
|
user_messages = [m for m in session.messages if m.role == "user"]
|
||||||
|
if len(user_messages) == 1:
|
||||||
|
first_message = user_messages[0].content or message or ""
|
||||||
|
if first_message:
|
||||||
|
task = asyncio.create_task(
|
||||||
|
_update_title_async(session_id, first_message, user_id)
|
||||||
|
)
|
||||||
|
# Store reference to prevent garbage collection
|
||||||
|
_background_tasks.add(task)
|
||||||
|
task.add_done_callback(_background_tasks.discard)
|
||||||
|
|
||||||
|
# Check if there's conversation history (more than just the current message)
|
||||||
|
has_history = len(session.messages) > 1
|
||||||
|
system_prompt, _ = await _build_system_prompt(
|
||||||
|
user_id, has_conversation_history=has_history
|
||||||
|
)
|
||||||
|
set_execution_context(user_id, session, None)
|
||||||
|
|
||||||
|
message_id = str(uuid.uuid4())
|
||||||
|
text_block_id = str(uuid.uuid4())
|
||||||
|
task_id = str(uuid.uuid4())
|
||||||
|
|
||||||
|
yield StreamStart(messageId=message_id, taskId=task_id)
|
||||||
|
|
||||||
|
# Track whether the stream completed normally via ResultMessage
|
||||||
|
stream_completed = False
|
||||||
|
|
||||||
|
try:
|
||||||
|
try:
|
||||||
|
from claude_agent_sdk import ClaudeAgentOptions, ClaudeSDKClient
|
||||||
|
|
||||||
|
# Create MCP server with CoPilot tools
|
||||||
|
mcp_server = create_copilot_mcp_server()
|
||||||
|
|
||||||
|
options = ClaudeAgentOptions(
|
||||||
|
system_prompt=system_prompt,
|
||||||
|
mcp_servers={"copilot": mcp_server}, # type: ignore[arg-type]
|
||||||
|
allowed_tools=COPILOT_TOOL_NAMES,
|
||||||
|
hooks=create_security_hooks(user_id), # type: ignore[arg-type]
|
||||||
|
continue_conversation=True, # Enable conversation continuation
|
||||||
|
)
|
||||||
|
|
||||||
|
adapter = SDKResponseAdapter(message_id=message_id)
|
||||||
|
adapter.set_task_id(task_id)
|
||||||
|
|
||||||
|
async with ClaudeSDKClient(options=options) as client:
|
||||||
|
# Build prompt with conversation history for context
|
||||||
|
# The SDK doesn't support replaying full conversation history,
|
||||||
|
# so we include it as context in the prompt
|
||||||
|
current_message = message or ""
|
||||||
|
if not current_message and session.messages:
|
||||||
|
last_user = [m for m in session.messages if m.role == "user"]
|
||||||
|
if last_user:
|
||||||
|
current_message = last_user[-1].content or ""
|
||||||
|
|
||||||
|
# Include conversation history if there are prior messages
|
||||||
|
if len(session.messages) > 1:
|
||||||
|
history_context = _format_conversation_history(session)
|
||||||
|
prompt = f"{history_context}{current_message}"
|
||||||
|
else:
|
||||||
|
prompt = current_message
|
||||||
|
|
||||||
|
# Guard against empty prompts
|
||||||
|
if not prompt.strip():
|
||||||
|
yield StreamError(
|
||||||
|
errorText="Message cannot be empty.",
|
||||||
|
code="empty_prompt",
|
||||||
|
)
|
||||||
|
yield StreamFinish()
|
||||||
|
return
|
||||||
|
|
||||||
|
await client.query(prompt, session_id=session_id)
|
||||||
|
|
||||||
|
# Track assistant response to save to session
|
||||||
|
# We may need multiple assistant messages if text comes after tool results
|
||||||
|
assistant_response = ChatMessage(role="assistant", content="")
|
||||||
|
accumulated_tool_calls: list[dict[str, Any]] = []
|
||||||
|
has_appended_assistant = False
|
||||||
|
has_tool_results = False # Track if we've received tool results
|
||||||
|
|
||||||
|
# Receive messages from the SDK
|
||||||
|
async for sdk_msg in client.receive_messages():
|
||||||
|
|
||||||
|
for response in adapter.convert_message(sdk_msg):
|
||||||
|
if isinstance(response, StreamStart):
|
||||||
|
continue
|
||||||
|
yield response
|
||||||
|
|
||||||
|
# Accumulate text deltas into assistant response
|
||||||
|
if isinstance(response, StreamTextDelta):
|
||||||
|
delta = response.delta or ""
|
||||||
|
# After tool results, create new assistant message for post-tool text
|
||||||
|
if has_tool_results and has_appended_assistant:
|
||||||
|
assistant_response = ChatMessage(
|
||||||
|
role="assistant", content=delta
|
||||||
|
)
|
||||||
|
accumulated_tool_calls = [] # Reset for new message
|
||||||
|
session.messages.append(assistant_response)
|
||||||
|
has_tool_results = False
|
||||||
|
else:
|
||||||
|
assistant_response.content = (
|
||||||
|
assistant_response.content or ""
|
||||||
|
) + delta
|
||||||
|
if not has_appended_assistant:
|
||||||
|
session.messages.append(assistant_response)
|
||||||
|
has_appended_assistant = True
|
||||||
|
|
||||||
|
# Track tool calls on the assistant message
|
||||||
|
elif isinstance(response, StreamToolInputAvailable):
|
||||||
|
accumulated_tool_calls.append(
|
||||||
|
{
|
||||||
|
"id": response.toolCallId,
|
||||||
|
"type": "function",
|
||||||
|
"function": {
|
||||||
|
"name": response.toolName,
|
||||||
|
"arguments": json.dumps(response.input or {}),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
# Update assistant message with tool calls
|
||||||
|
assistant_response.tool_calls = accumulated_tool_calls
|
||||||
|
# Append assistant message if not already (tool-only response)
|
||||||
|
if not has_appended_assistant:
|
||||||
|
session.messages.append(assistant_response)
|
||||||
|
has_appended_assistant = True
|
||||||
|
|
||||||
|
elif isinstance(response, StreamToolOutputAvailable):
|
||||||
|
session.messages.append(
|
||||||
|
ChatMessage(
|
||||||
|
role="tool",
|
||||||
|
content=(
|
||||||
|
response.output
|
||||||
|
if isinstance(response.output, str)
|
||||||
|
else str(response.output)
|
||||||
|
),
|
||||||
|
tool_call_id=response.toolCallId,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
has_tool_results = True
|
||||||
|
|
||||||
|
elif isinstance(response, StreamFinish):
|
||||||
|
stream_completed = True
|
||||||
|
|
||||||
|
# Break out of the message loop if we received finish signal
|
||||||
|
if stream_completed:
|
||||||
|
break
|
||||||
|
|
||||||
|
# Ensure assistant response is saved even if no text deltas
|
||||||
|
# (e.g., only tool calls were made)
|
||||||
|
if (
|
||||||
|
assistant_response.content or assistant_response.tool_calls
|
||||||
|
) and not has_appended_assistant:
|
||||||
|
session.messages.append(assistant_response)
|
||||||
|
|
||||||
|
except ImportError:
|
||||||
|
logger.warning(
|
||||||
|
"[SDK] claude-agent-sdk not available, using Anthropic fallback"
|
||||||
|
)
|
||||||
|
async for response in stream_with_anthropic(
|
||||||
|
session, system_prompt, text_block_id
|
||||||
|
):
|
||||||
|
yield response
|
||||||
|
|
||||||
|
# Save the session with accumulated messages
|
||||||
|
await upsert_chat_session(session)
|
||||||
|
logger.debug(
|
||||||
|
f"[SDK] Session {session_id} saved with {len(session.messages)} messages"
|
||||||
|
)
|
||||||
|
# Always yield StreamFinish to signal completion to the caller
|
||||||
|
# The adapter yields StreamFinish for the SSE stream, but we need to
|
||||||
|
# yield it here so the background task in routes.py knows to call mark_task_completed
|
||||||
|
yield StreamFinish()
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"[SDK] Error: {e}", exc_info=True)
|
||||||
|
# Save session even on error to preserve any partial response
|
||||||
|
try:
|
||||||
|
await upsert_chat_session(session)
|
||||||
|
except Exception as save_err:
|
||||||
|
logger.error(f"[SDK] Failed to save session on error: {save_err}")
|
||||||
|
# Sanitize error message to avoid exposing internal details
|
||||||
|
yield StreamError(
|
||||||
|
errorText="An error occurred. Please try again.",
|
||||||
|
code="sdk_error",
|
||||||
|
)
|
||||||
|
yield StreamFinish()
|
||||||
|
|
||||||
|
|
||||||
|
async def _update_title_async(
|
||||||
|
session_id: str, message: str, user_id: str | None = None
|
||||||
|
) -> None:
|
||||||
|
"""Background task to update session title."""
|
||||||
|
try:
|
||||||
|
title = await _generate_session_title(
|
||||||
|
message, user_id=user_id, session_id=session_id
|
||||||
|
)
|
||||||
|
if title:
|
||||||
|
await update_session_title(session_id, title)
|
||||||
|
logger.debug(f"[SDK] Generated title for {session_id}: {title}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"[SDK] Failed to update session title: {e}")
|
||||||
@@ -0,0 +1,213 @@
|
|||||||
|
"""Tool adapter for wrapping existing CoPilot tools as Claude Agent SDK MCP tools.
|
||||||
|
|
||||||
|
This module provides the adapter layer that converts existing BaseTool implementations
|
||||||
|
into in-process MCP tools that can be used with the Claude Agent SDK.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
from contextvars import ContextVar
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
from backend.api.features.chat.model import ChatSession
|
||||||
|
from backend.api.features.chat.tools import TOOL_REGISTRY
|
||||||
|
from backend.api.features.chat.tools.base import BaseTool
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# Context variables to pass user/session info to tool execution
|
||||||
|
_current_user_id: ContextVar[str | None] = ContextVar("current_user_id", default=None)
|
||||||
|
_current_session: ContextVar[ChatSession | None] = ContextVar(
|
||||||
|
"current_session", default=None
|
||||||
|
)
|
||||||
|
_current_tool_call_id: ContextVar[str | None] = ContextVar(
|
||||||
|
"current_tool_call_id", default=None
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def set_execution_context(
|
||||||
|
user_id: str | None,
|
||||||
|
session: ChatSession,
|
||||||
|
tool_call_id: str | None = None,
|
||||||
|
) -> None:
|
||||||
|
"""Set the execution context for tool calls.
|
||||||
|
|
||||||
|
This must be called before streaming begins to ensure tools have access
|
||||||
|
to user_id and session information.
|
||||||
|
"""
|
||||||
|
_current_user_id.set(user_id)
|
||||||
|
_current_session.set(session)
|
||||||
|
_current_tool_call_id.set(tool_call_id)
|
||||||
|
|
||||||
|
|
||||||
|
def get_execution_context() -> tuple[str | None, ChatSession | None, str | None]:
|
||||||
|
"""Get the current execution context."""
|
||||||
|
return (
|
||||||
|
_current_user_id.get(),
|
||||||
|
_current_session.get(),
|
||||||
|
_current_tool_call_id.get(),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def create_tool_handler(base_tool: BaseTool):
|
||||||
|
"""Create an async handler function for a BaseTool.
|
||||||
|
|
||||||
|
This wraps the existing BaseTool._execute method to be compatible
|
||||||
|
with the Claude Agent SDK MCP tool format.
|
||||||
|
"""
|
||||||
|
|
||||||
|
async def tool_handler(args: dict[str, Any]) -> dict[str, Any]:
|
||||||
|
"""Execute the wrapped tool and return MCP-formatted response."""
|
||||||
|
user_id, session, tool_call_id = get_execution_context()
|
||||||
|
|
||||||
|
if session is None:
|
||||||
|
return {
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "text",
|
||||||
|
"text": json.dumps(
|
||||||
|
{
|
||||||
|
"error": "No session context available",
|
||||||
|
"type": "error",
|
||||||
|
}
|
||||||
|
),
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"isError": True,
|
||||||
|
}
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Call the existing tool's execute method
|
||||||
|
result = await base_tool.execute(
|
||||||
|
user_id=user_id,
|
||||||
|
session=session,
|
||||||
|
tool_call_id=tool_call_id or "sdk-call",
|
||||||
|
**args,
|
||||||
|
)
|
||||||
|
|
||||||
|
# The result is a StreamToolOutputAvailable, extract the output
|
||||||
|
return {
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "text",
|
||||||
|
"text": (
|
||||||
|
result.output
|
||||||
|
if isinstance(result.output, str)
|
||||||
|
else json.dumps(result.output)
|
||||||
|
),
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"isError": not result.success,
|
||||||
|
}
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error executing tool {base_tool.name}: {e}", exc_info=True)
|
||||||
|
return {
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "text",
|
||||||
|
"text": json.dumps(
|
||||||
|
{
|
||||||
|
"error": str(e),
|
||||||
|
"type": "error",
|
||||||
|
"message": f"Failed to execute {base_tool.name}",
|
||||||
|
}
|
||||||
|
),
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"isError": True,
|
||||||
|
}
|
||||||
|
|
||||||
|
return tool_handler
|
||||||
|
|
||||||
|
|
||||||
|
def get_tool_definitions() -> list[dict[str, Any]]:
|
||||||
|
"""Get all tool definitions in MCP format.
|
||||||
|
|
||||||
|
Returns a list of tool definitions that can be used with
|
||||||
|
create_sdk_mcp_server or as raw tool definitions.
|
||||||
|
"""
|
||||||
|
tool_definitions = []
|
||||||
|
|
||||||
|
for tool_name, base_tool in TOOL_REGISTRY.items():
|
||||||
|
tool_def = {
|
||||||
|
"name": tool_name,
|
||||||
|
"description": base_tool.description,
|
||||||
|
"inputSchema": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": base_tool.parameters.get("properties", {}),
|
||||||
|
"required": base_tool.parameters.get("required", []),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
tool_definitions.append(tool_def)
|
||||||
|
|
||||||
|
return tool_definitions
|
||||||
|
|
||||||
|
|
||||||
|
def get_tool_handlers() -> dict[str, Any]:
|
||||||
|
"""Get all tool handlers mapped by name.
|
||||||
|
|
||||||
|
Returns a dictionary mapping tool names to their handler functions.
|
||||||
|
"""
|
||||||
|
handlers = {}
|
||||||
|
|
||||||
|
for tool_name, base_tool in TOOL_REGISTRY.items():
|
||||||
|
handlers[tool_name] = create_tool_handler(base_tool)
|
||||||
|
|
||||||
|
return handlers
|
||||||
|
|
||||||
|
|
||||||
|
# Create the MCP server configuration
|
||||||
|
def create_copilot_mcp_server():
|
||||||
|
"""Create an in-process MCP server configuration for CoPilot tools.
|
||||||
|
|
||||||
|
This can be passed to ClaudeAgentOptions.mcp_servers.
|
||||||
|
|
||||||
|
Note: The actual SDK MCP server creation depends on the claude-agent-sdk
|
||||||
|
package being available. This function returns the configuration that
|
||||||
|
can be used with the SDK.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
from claude_agent_sdk import create_sdk_mcp_server, tool
|
||||||
|
|
||||||
|
# Create decorated tool functions
|
||||||
|
sdk_tools = []
|
||||||
|
|
||||||
|
for tool_name, base_tool in TOOL_REGISTRY.items():
|
||||||
|
# Get the handler
|
||||||
|
handler = create_tool_handler(base_tool)
|
||||||
|
|
||||||
|
# Create the decorated tool
|
||||||
|
# The @tool decorator expects (name, description, schema)
|
||||||
|
decorated = tool(
|
||||||
|
tool_name,
|
||||||
|
base_tool.description,
|
||||||
|
base_tool.parameters.get("properties", {}),
|
||||||
|
)(handler)
|
||||||
|
|
||||||
|
sdk_tools.append(decorated)
|
||||||
|
|
||||||
|
# Create the MCP server
|
||||||
|
server = create_sdk_mcp_server(
|
||||||
|
name="copilot",
|
||||||
|
version="1.0.0",
|
||||||
|
tools=sdk_tools,
|
||||||
|
)
|
||||||
|
|
||||||
|
return server
|
||||||
|
|
||||||
|
except ImportError:
|
||||||
|
logger.warning(
|
||||||
|
"claude-agent-sdk not available, returning tool definitions only"
|
||||||
|
)
|
||||||
|
return {
|
||||||
|
"tools": get_tool_definitions(),
|
||||||
|
"handlers": get_tool_handlers(),
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
# List of tool names for allowed_tools configuration
|
||||||
|
COPILOT_TOOL_NAMES = [f"mcp__copilot__{name}" for name in TOOL_REGISTRY.keys()]
|
||||||
|
|
||||||
|
# Also export the raw tool names for flexibility
|
||||||
|
RAW_TOOL_NAMES = list(TOOL_REGISTRY.keys())
|
||||||
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,708 @@
|
|||||||
|
"""Stream registry for managing reconnectable SSE streams.
|
||||||
|
|
||||||
|
This module provides a registry for tracking active streaming tasks and their
|
||||||
|
messages. It uses Redis for all state management (no in-memory state), making
|
||||||
|
pods stateless and horizontally scalable.
|
||||||
|
|
||||||
|
Architecture:
|
||||||
|
- Redis Stream: Persists all messages for replay and real-time delivery
|
||||||
|
- Redis Hash: Task metadata (status, session_id, etc.)
|
||||||
|
|
||||||
|
Subscribers:
|
||||||
|
1. Replay missed messages from Redis Stream (XREAD)
|
||||||
|
2. Listen for live updates via blocking XREAD
|
||||||
|
3. No in-memory state required on the subscribing pod
|
||||||
|
"""
|
||||||
|
|
||||||
|
import asyncio
|
||||||
|
import logging
|
||||||
|
from dataclasses import dataclass, field
|
||||||
|
from datetime import datetime, timezone
|
||||||
|
from typing import Any, Literal
|
||||||
|
|
||||||
|
import orjson
|
||||||
|
|
||||||
|
from backend.data.redis_client import get_redis_async
|
||||||
|
|
||||||
|
from .config import ChatConfig
|
||||||
|
from .response_model import StreamBaseResponse, StreamError, StreamFinish
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
config = ChatConfig()
|
||||||
|
|
||||||
|
# Track background tasks for this pod (just the asyncio.Task reference, not subscribers)
|
||||||
|
_local_tasks: dict[str, asyncio.Task] = {}
|
||||||
|
|
||||||
|
# Track listener tasks per subscriber queue for cleanup
|
||||||
|
# Maps queue id() to (task_id, asyncio.Task) for proper cleanup on unsubscribe
|
||||||
|
_listener_tasks: dict[int, tuple[str, asyncio.Task]] = {}
|
||||||
|
|
||||||
|
# Timeout for putting chunks into subscriber queues (seconds)
|
||||||
|
# If the queue is full and doesn't drain within this time, send an overflow error
|
||||||
|
QUEUE_PUT_TIMEOUT = 5.0
|
||||||
|
|
||||||
|
# Lua script for atomic compare-and-swap status update (idempotent completion)
|
||||||
|
# Returns 1 if status was updated, 0 if already completed/failed
|
||||||
|
COMPLETE_TASK_SCRIPT = """
|
||||||
|
local current = redis.call("HGET", KEYS[1], "status")
|
||||||
|
if current == "running" then
|
||||||
|
redis.call("HSET", KEYS[1], "status", ARGV[1])
|
||||||
|
return 1
|
||||||
|
end
|
||||||
|
return 0
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ActiveTask:
|
||||||
|
"""Represents an active streaming task (metadata only, no in-memory queues)."""
|
||||||
|
|
||||||
|
task_id: str
|
||||||
|
session_id: str
|
||||||
|
user_id: str | None
|
||||||
|
tool_call_id: str
|
||||||
|
tool_name: str
|
||||||
|
operation_id: str
|
||||||
|
status: Literal["running", "completed", "failed"] = "running"
|
||||||
|
created_at: datetime = field(default_factory=lambda: datetime.now(timezone.utc))
|
||||||
|
asyncio_task: asyncio.Task | None = None
|
||||||
|
|
||||||
|
|
||||||
|
def _get_task_meta_key(task_id: str) -> str:
|
||||||
|
"""Get Redis key for task metadata."""
|
||||||
|
return f"{config.task_meta_prefix}{task_id}"
|
||||||
|
|
||||||
|
|
||||||
|
def _get_task_stream_key(task_id: str) -> str:
|
||||||
|
"""Get Redis key for task message stream."""
|
||||||
|
return f"{config.task_stream_prefix}{task_id}"
|
||||||
|
|
||||||
|
|
||||||
|
def _get_operation_mapping_key(operation_id: str) -> str:
|
||||||
|
"""Get Redis key for operation_id to task_id mapping."""
|
||||||
|
return f"{config.task_op_prefix}{operation_id}"
|
||||||
|
|
||||||
|
|
||||||
|
async def create_task(
|
||||||
|
task_id: str,
|
||||||
|
session_id: str,
|
||||||
|
user_id: str | None,
|
||||||
|
tool_call_id: str,
|
||||||
|
tool_name: str,
|
||||||
|
operation_id: str,
|
||||||
|
) -> ActiveTask:
|
||||||
|
"""Create a new streaming task in Redis.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_id: Unique identifier for the task
|
||||||
|
session_id: Chat session ID
|
||||||
|
user_id: User ID (may be None for anonymous)
|
||||||
|
tool_call_id: Tool call ID from the LLM
|
||||||
|
tool_name: Name of the tool being executed
|
||||||
|
operation_id: Operation ID for webhook callbacks
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The created ActiveTask instance (metadata only)
|
||||||
|
"""
|
||||||
|
task = ActiveTask(
|
||||||
|
task_id=task_id,
|
||||||
|
session_id=session_id,
|
||||||
|
user_id=user_id,
|
||||||
|
tool_call_id=tool_call_id,
|
||||||
|
tool_name=tool_name,
|
||||||
|
operation_id=operation_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Store metadata in Redis
|
||||||
|
redis = await get_redis_async()
|
||||||
|
meta_key = _get_task_meta_key(task_id)
|
||||||
|
op_key = _get_operation_mapping_key(operation_id)
|
||||||
|
|
||||||
|
await redis.hset( # type: ignore[misc]
|
||||||
|
meta_key,
|
||||||
|
mapping={
|
||||||
|
"task_id": task_id,
|
||||||
|
"session_id": session_id,
|
||||||
|
"user_id": user_id or "",
|
||||||
|
"tool_call_id": tool_call_id,
|
||||||
|
"tool_name": tool_name,
|
||||||
|
"operation_id": operation_id,
|
||||||
|
"status": task.status,
|
||||||
|
"created_at": task.created_at.isoformat(),
|
||||||
|
},
|
||||||
|
)
|
||||||
|
await redis.expire(meta_key, config.stream_ttl)
|
||||||
|
|
||||||
|
# Create operation_id -> task_id mapping for webhook lookups
|
||||||
|
await redis.set(op_key, task_id, ex=config.stream_ttl)
|
||||||
|
|
||||||
|
logger.debug(f"Created task {task_id} for session {session_id}")
|
||||||
|
|
||||||
|
return task
|
||||||
|
|
||||||
|
|
||||||
|
async def publish_chunk(
|
||||||
|
task_id: str,
|
||||||
|
chunk: StreamBaseResponse,
|
||||||
|
) -> str:
|
||||||
|
"""Publish a chunk to Redis Stream.
|
||||||
|
|
||||||
|
All delivery is via Redis Streams - no in-memory state.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_id: Task ID to publish to
|
||||||
|
chunk: The stream response chunk to publish
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The Redis Stream message ID
|
||||||
|
"""
|
||||||
|
chunk_json = chunk.model_dump_json()
|
||||||
|
message_id = "0-0"
|
||||||
|
|
||||||
|
try:
|
||||||
|
redis = await get_redis_async()
|
||||||
|
stream_key = _get_task_stream_key(task_id)
|
||||||
|
|
||||||
|
# Write to Redis Stream for persistence and real-time delivery
|
||||||
|
raw_id = await redis.xadd(
|
||||||
|
stream_key,
|
||||||
|
{"data": chunk_json},
|
||||||
|
maxlen=config.stream_max_length,
|
||||||
|
)
|
||||||
|
message_id = raw_id if isinstance(raw_id, str) else raw_id.decode()
|
||||||
|
|
||||||
|
# Set TTL on stream to match task metadata TTL
|
||||||
|
await redis.expire(stream_key, config.stream_ttl)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(
|
||||||
|
f"Failed to publish chunk for task {task_id}: {e}",
|
||||||
|
exc_info=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
return message_id
|
||||||
|
|
||||||
|
|
||||||
|
async def subscribe_to_task(
|
||||||
|
task_id: str,
|
||||||
|
user_id: str | None,
|
||||||
|
last_message_id: str = "0-0",
|
||||||
|
) -> asyncio.Queue[StreamBaseResponse] | None:
|
||||||
|
"""Subscribe to a task's stream with replay of missed messages.
|
||||||
|
|
||||||
|
This is fully stateless - uses Redis Stream for replay and pub/sub for live updates.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_id: Task ID to subscribe to
|
||||||
|
user_id: User ID for ownership validation
|
||||||
|
last_message_id: Last Redis Stream message ID received ("0-0" for full replay)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
An asyncio Queue that will receive stream chunks, or None if task not found
|
||||||
|
or user doesn't have access
|
||||||
|
"""
|
||||||
|
redis = await get_redis_async()
|
||||||
|
meta_key = _get_task_meta_key(task_id)
|
||||||
|
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
|
||||||
|
|
||||||
|
if not meta:
|
||||||
|
logger.debug(f"Task {task_id} not found in Redis")
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Note: Redis client uses decode_responses=True, so keys are strings
|
||||||
|
task_status = meta.get("status", "")
|
||||||
|
task_user_id = meta.get("user_id", "") or None
|
||||||
|
|
||||||
|
# Validate ownership - if task has an owner, requester must match
|
||||||
|
if task_user_id:
|
||||||
|
if user_id != task_user_id:
|
||||||
|
logger.warning(
|
||||||
|
f"User {user_id} denied access to task {task_id} "
|
||||||
|
f"owned by {task_user_id}"
|
||||||
|
)
|
||||||
|
return None
|
||||||
|
|
||||||
|
subscriber_queue: asyncio.Queue[StreamBaseResponse] = asyncio.Queue()
|
||||||
|
stream_key = _get_task_stream_key(task_id)
|
||||||
|
|
||||||
|
# Step 1: Replay messages from Redis Stream
|
||||||
|
messages = await redis.xread({stream_key: last_message_id}, block=0, count=1000)
|
||||||
|
|
||||||
|
replayed_count = 0
|
||||||
|
replay_last_id = last_message_id
|
||||||
|
if messages:
|
||||||
|
for _stream_name, stream_messages in messages:
|
||||||
|
for msg_id, msg_data in stream_messages:
|
||||||
|
replay_last_id = msg_id if isinstance(msg_id, str) else msg_id.decode()
|
||||||
|
# Note: Redis client uses decode_responses=True, so keys are strings
|
||||||
|
if "data" in msg_data:
|
||||||
|
try:
|
||||||
|
chunk_data = orjson.loads(msg_data["data"])
|
||||||
|
chunk = _reconstruct_chunk(chunk_data)
|
||||||
|
if chunk:
|
||||||
|
await subscriber_queue.put(chunk)
|
||||||
|
replayed_count += 1
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to replay message: {e}")
|
||||||
|
|
||||||
|
logger.debug(f"Task {task_id}: replayed {replayed_count} messages")
|
||||||
|
|
||||||
|
# Step 2: If task is still running, start stream listener for live updates
|
||||||
|
if task_status == "running":
|
||||||
|
listener_task = asyncio.create_task(
|
||||||
|
_stream_listener(task_id, subscriber_queue, replay_last_id)
|
||||||
|
)
|
||||||
|
# Track listener task for cleanup on unsubscribe
|
||||||
|
_listener_tasks[id(subscriber_queue)] = (task_id, listener_task)
|
||||||
|
else:
|
||||||
|
# Task is completed/failed - add finish marker
|
||||||
|
await subscriber_queue.put(StreamFinish())
|
||||||
|
|
||||||
|
return subscriber_queue
|
||||||
|
|
||||||
|
|
||||||
|
async def _stream_listener(
|
||||||
|
task_id: str,
|
||||||
|
subscriber_queue: asyncio.Queue[StreamBaseResponse],
|
||||||
|
last_replayed_id: str,
|
||||||
|
) -> None:
|
||||||
|
"""Listen to Redis Stream for new messages using blocking XREAD.
|
||||||
|
|
||||||
|
This approach avoids the duplicate message issue that can occur with pub/sub
|
||||||
|
when messages are published during the gap between replay and subscription.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_id: Task ID to listen for
|
||||||
|
subscriber_queue: Queue to deliver messages to
|
||||||
|
last_replayed_id: Last message ID from replay (continue from here)
|
||||||
|
"""
|
||||||
|
queue_id = id(subscriber_queue)
|
||||||
|
# Track the last successfully delivered message ID for recovery hints
|
||||||
|
last_delivered_id = last_replayed_id
|
||||||
|
|
||||||
|
try:
|
||||||
|
redis = await get_redis_async()
|
||||||
|
stream_key = _get_task_stream_key(task_id)
|
||||||
|
current_id = last_replayed_id
|
||||||
|
|
||||||
|
while True:
|
||||||
|
# Block for up to 30 seconds waiting for new messages
|
||||||
|
# This allows periodic checking if task is still running
|
||||||
|
messages = await redis.xread(
|
||||||
|
{stream_key: current_id}, block=30000, count=100
|
||||||
|
)
|
||||||
|
|
||||||
|
if not messages:
|
||||||
|
# Timeout - check if task is still running
|
||||||
|
meta_key = _get_task_meta_key(task_id)
|
||||||
|
status = await redis.hget(meta_key, "status") # type: ignore[misc]
|
||||||
|
if status and status != "running":
|
||||||
|
try:
|
||||||
|
await asyncio.wait_for(
|
||||||
|
subscriber_queue.put(StreamFinish()),
|
||||||
|
timeout=QUEUE_PUT_TIMEOUT,
|
||||||
|
)
|
||||||
|
except asyncio.TimeoutError:
|
||||||
|
logger.warning(
|
||||||
|
f"Timeout delivering finish event for task {task_id}"
|
||||||
|
)
|
||||||
|
break
|
||||||
|
continue
|
||||||
|
|
||||||
|
for _stream_name, stream_messages in messages:
|
||||||
|
for msg_id, msg_data in stream_messages:
|
||||||
|
current_id = msg_id if isinstance(msg_id, str) else msg_id.decode()
|
||||||
|
|
||||||
|
if "data" not in msg_data:
|
||||||
|
continue
|
||||||
|
|
||||||
|
try:
|
||||||
|
chunk_data = orjson.loads(msg_data["data"])
|
||||||
|
chunk = _reconstruct_chunk(chunk_data)
|
||||||
|
if chunk:
|
||||||
|
try:
|
||||||
|
await asyncio.wait_for(
|
||||||
|
subscriber_queue.put(chunk),
|
||||||
|
timeout=QUEUE_PUT_TIMEOUT,
|
||||||
|
)
|
||||||
|
# Update last delivered ID on successful delivery
|
||||||
|
last_delivered_id = current_id
|
||||||
|
except asyncio.TimeoutError:
|
||||||
|
logger.warning(
|
||||||
|
f"Subscriber queue full for task {task_id}, "
|
||||||
|
f"message delivery timed out after {QUEUE_PUT_TIMEOUT}s"
|
||||||
|
)
|
||||||
|
# Send overflow error with recovery info
|
||||||
|
try:
|
||||||
|
overflow_error = StreamError(
|
||||||
|
errorText="Message delivery timeout - some messages may have been missed",
|
||||||
|
code="QUEUE_OVERFLOW",
|
||||||
|
details={
|
||||||
|
"last_delivered_id": last_delivered_id,
|
||||||
|
"recovery_hint": f"Reconnect with last_message_id={last_delivered_id}",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
subscriber_queue.put_nowait(overflow_error)
|
||||||
|
except asyncio.QueueFull:
|
||||||
|
# Queue is completely stuck, nothing more we can do
|
||||||
|
logger.error(
|
||||||
|
f"Cannot deliver overflow error for task {task_id}, "
|
||||||
|
"queue completely blocked"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Stop listening on finish
|
||||||
|
if isinstance(chunk, StreamFinish):
|
||||||
|
return
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Error processing stream message: {e}")
|
||||||
|
|
||||||
|
except asyncio.CancelledError:
|
||||||
|
logger.debug(f"Stream listener cancelled for task {task_id}")
|
||||||
|
raise # Re-raise to propagate cancellation
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Stream listener error for task {task_id}: {e}")
|
||||||
|
# On error, send finish to unblock subscriber
|
||||||
|
try:
|
||||||
|
await asyncio.wait_for(
|
||||||
|
subscriber_queue.put(StreamFinish()),
|
||||||
|
timeout=QUEUE_PUT_TIMEOUT,
|
||||||
|
)
|
||||||
|
except (asyncio.TimeoutError, asyncio.QueueFull):
|
||||||
|
logger.warning(
|
||||||
|
f"Could not deliver finish event for task {task_id} after error"
|
||||||
|
)
|
||||||
|
finally:
|
||||||
|
# Clean up listener task mapping on exit
|
||||||
|
_listener_tasks.pop(queue_id, None)
|
||||||
|
|
||||||
|
|
||||||
|
async def mark_task_completed(
|
||||||
|
task_id: str,
|
||||||
|
status: Literal["completed", "failed"] = "completed",
|
||||||
|
) -> bool:
|
||||||
|
"""Mark a task as completed and publish finish event.
|
||||||
|
|
||||||
|
This is idempotent - calling multiple times with the same task_id is safe.
|
||||||
|
Uses atomic compare-and-swap via Lua script to prevent race conditions.
|
||||||
|
Status is updated first (source of truth), then finish event is published (best-effort).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_id: Task ID to mark as completed
|
||||||
|
status: Final status ("completed" or "failed")
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
True if task was newly marked completed, False if already completed/failed
|
||||||
|
"""
|
||||||
|
redis = await get_redis_async()
|
||||||
|
meta_key = _get_task_meta_key(task_id)
|
||||||
|
|
||||||
|
# Atomic compare-and-swap: only update if status is "running"
|
||||||
|
# This prevents race conditions when multiple callers try to complete simultaneously
|
||||||
|
result = await redis.eval(COMPLETE_TASK_SCRIPT, 1, meta_key, status) # type: ignore[misc]
|
||||||
|
|
||||||
|
if result == 0:
|
||||||
|
logger.debug(f"Task {task_id} already completed/failed, skipping")
|
||||||
|
return False
|
||||||
|
|
||||||
|
# THEN publish finish event (best-effort - listeners can detect via status polling)
|
||||||
|
try:
|
||||||
|
await publish_chunk(task_id, StreamFinish())
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(
|
||||||
|
f"Failed to publish finish event for task {task_id}: {e}. "
|
||||||
|
"Listeners will detect completion via status polling."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Clean up local task reference if exists
|
||||||
|
_local_tasks.pop(task_id, None)
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
async def find_task_by_operation_id(operation_id: str) -> ActiveTask | None:
|
||||||
|
"""Find a task by its operation ID.
|
||||||
|
|
||||||
|
Used by webhook callbacks to locate the task to update.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
operation_id: Operation ID to search for
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
ActiveTask if found, None otherwise
|
||||||
|
"""
|
||||||
|
redis = await get_redis_async()
|
||||||
|
op_key = _get_operation_mapping_key(operation_id)
|
||||||
|
task_id = await redis.get(op_key)
|
||||||
|
|
||||||
|
if not task_id:
|
||||||
|
return None
|
||||||
|
|
||||||
|
task_id_str = task_id.decode() if isinstance(task_id, bytes) else task_id
|
||||||
|
return await get_task(task_id_str)
|
||||||
|
|
||||||
|
|
||||||
|
async def get_task(task_id: str) -> ActiveTask | None:
|
||||||
|
"""Get a task by its ID from Redis.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_id: Task ID to look up
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
ActiveTask if found, None otherwise
|
||||||
|
"""
|
||||||
|
redis = await get_redis_async()
|
||||||
|
meta_key = _get_task_meta_key(task_id)
|
||||||
|
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
|
||||||
|
|
||||||
|
if not meta:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Note: Redis client uses decode_responses=True, so keys/values are strings
|
||||||
|
return ActiveTask(
|
||||||
|
task_id=meta.get("task_id", ""),
|
||||||
|
session_id=meta.get("session_id", ""),
|
||||||
|
user_id=meta.get("user_id", "") or None,
|
||||||
|
tool_call_id=meta.get("tool_call_id", ""),
|
||||||
|
tool_name=meta.get("tool_name", ""),
|
||||||
|
operation_id=meta.get("operation_id", ""),
|
||||||
|
status=meta.get("status", "running"), # type: ignore[arg-type]
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def get_task_with_expiry_info(
|
||||||
|
task_id: str,
|
||||||
|
) -> tuple[ActiveTask | None, str | None]:
|
||||||
|
"""Get a task by its ID with expiration detection.
|
||||||
|
|
||||||
|
Returns (task, error_code) where error_code is:
|
||||||
|
- None if task found
|
||||||
|
- "TASK_EXPIRED" if stream exists but metadata is gone (TTL expired)
|
||||||
|
- "TASK_NOT_FOUND" if neither exists
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_id: Task ID to look up
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (ActiveTask or None, error_code or None)
|
||||||
|
"""
|
||||||
|
redis = await get_redis_async()
|
||||||
|
meta_key = _get_task_meta_key(task_id)
|
||||||
|
stream_key = _get_task_stream_key(task_id)
|
||||||
|
|
||||||
|
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
|
||||||
|
|
||||||
|
if not meta:
|
||||||
|
# Check if stream still has data (metadata expired but stream hasn't)
|
||||||
|
stream_len = await redis.xlen(stream_key)
|
||||||
|
if stream_len > 0:
|
||||||
|
return None, "TASK_EXPIRED"
|
||||||
|
return None, "TASK_NOT_FOUND"
|
||||||
|
|
||||||
|
# Note: Redis client uses decode_responses=True, so keys/values are strings
|
||||||
|
return (
|
||||||
|
ActiveTask(
|
||||||
|
task_id=meta.get("task_id", ""),
|
||||||
|
session_id=meta.get("session_id", ""),
|
||||||
|
user_id=meta.get("user_id", "") or None,
|
||||||
|
tool_call_id=meta.get("tool_call_id", ""),
|
||||||
|
tool_name=meta.get("tool_name", ""),
|
||||||
|
operation_id=meta.get("operation_id", ""),
|
||||||
|
status=meta.get("status", "running"), # type: ignore[arg-type]
|
||||||
|
),
|
||||||
|
None,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def get_active_task_for_session(
|
||||||
|
session_id: str,
|
||||||
|
user_id: str | None = None,
|
||||||
|
) -> tuple[ActiveTask | None, str]:
|
||||||
|
"""Get the active (running) task for a session, if any.
|
||||||
|
|
||||||
|
Scans Redis for tasks matching the session_id with status="running".
|
||||||
|
|
||||||
|
Args:
|
||||||
|
session_id: Session ID to look up
|
||||||
|
user_id: User ID for ownership validation (optional)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (ActiveTask if found and running, last_message_id from Redis Stream)
|
||||||
|
"""
|
||||||
|
|
||||||
|
redis = await get_redis_async()
|
||||||
|
|
||||||
|
# Scan Redis for task metadata keys
|
||||||
|
cursor = 0
|
||||||
|
tasks_checked = 0
|
||||||
|
|
||||||
|
while True:
|
||||||
|
cursor, keys = await redis.scan(
|
||||||
|
cursor, match=f"{config.task_meta_prefix}*", count=100
|
||||||
|
)
|
||||||
|
|
||||||
|
for key in keys:
|
||||||
|
tasks_checked += 1
|
||||||
|
meta: dict[Any, Any] = await redis.hgetall(key) # type: ignore[misc]
|
||||||
|
if not meta:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Note: Redis client uses decode_responses=True, so keys/values are strings
|
||||||
|
task_session_id = meta.get("session_id", "")
|
||||||
|
task_status = meta.get("status", "")
|
||||||
|
task_user_id = meta.get("user_id", "") or None
|
||||||
|
task_id = meta.get("task_id", "")
|
||||||
|
|
||||||
|
if task_session_id == session_id and task_status == "running":
|
||||||
|
# Validate ownership - if task has an owner, requester must match
|
||||||
|
if task_user_id and user_id != task_user_id:
|
||||||
|
continue
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"[TASK_LOOKUP] Found running task {task_id[:8]}... for session {session_id[:8]}..."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Get the last message ID from Redis Stream
|
||||||
|
stream_key = _get_task_stream_key(task_id)
|
||||||
|
last_id = "0-0"
|
||||||
|
try:
|
||||||
|
messages = await redis.xrevrange(stream_key, count=1)
|
||||||
|
if messages:
|
||||||
|
msg_id = messages[0][0]
|
||||||
|
last_id = msg_id if isinstance(msg_id, str) else msg_id.decode()
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to get last message ID: {e}")
|
||||||
|
|
||||||
|
return (
|
||||||
|
ActiveTask(
|
||||||
|
task_id=task_id,
|
||||||
|
session_id=task_session_id,
|
||||||
|
user_id=task_user_id,
|
||||||
|
tool_call_id=meta.get("tool_call_id", ""),
|
||||||
|
tool_name=meta.get("tool_name", ""),
|
||||||
|
operation_id=meta.get("operation_id", ""),
|
||||||
|
status="running",
|
||||||
|
),
|
||||||
|
last_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
if cursor == 0:
|
||||||
|
break
|
||||||
|
|
||||||
|
return None, "0-0"
|
||||||
|
|
||||||
|
|
||||||
|
def _reconstruct_chunk(chunk_data: dict) -> StreamBaseResponse | None:
|
||||||
|
"""Reconstruct a StreamBaseResponse from JSON data.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
chunk_data: Parsed JSON data from Redis
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Reconstructed response object, or None if unknown type
|
||||||
|
"""
|
||||||
|
from .response_model import (
|
||||||
|
ResponseType,
|
||||||
|
StreamError,
|
||||||
|
StreamFinish,
|
||||||
|
StreamHeartbeat,
|
||||||
|
StreamStart,
|
||||||
|
StreamTextDelta,
|
||||||
|
StreamTextEnd,
|
||||||
|
StreamTextStart,
|
||||||
|
StreamToolInputAvailable,
|
||||||
|
StreamToolInputStart,
|
||||||
|
StreamToolOutputAvailable,
|
||||||
|
StreamUsage,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Map response types to their corresponding classes
|
||||||
|
type_to_class: dict[str, type[StreamBaseResponse]] = {
|
||||||
|
ResponseType.START.value: StreamStart,
|
||||||
|
ResponseType.FINISH.value: StreamFinish,
|
||||||
|
ResponseType.TEXT_START.value: StreamTextStart,
|
||||||
|
ResponseType.TEXT_DELTA.value: StreamTextDelta,
|
||||||
|
ResponseType.TEXT_END.value: StreamTextEnd,
|
||||||
|
ResponseType.TOOL_INPUT_START.value: StreamToolInputStart,
|
||||||
|
ResponseType.TOOL_INPUT_AVAILABLE.value: StreamToolInputAvailable,
|
||||||
|
ResponseType.TOOL_OUTPUT_AVAILABLE.value: StreamToolOutputAvailable,
|
||||||
|
ResponseType.ERROR.value: StreamError,
|
||||||
|
ResponseType.USAGE.value: StreamUsage,
|
||||||
|
ResponseType.HEARTBEAT.value: StreamHeartbeat,
|
||||||
|
}
|
||||||
|
|
||||||
|
chunk_type = chunk_data.get("type")
|
||||||
|
chunk_class = type_to_class.get(chunk_type) # type: ignore[arg-type]
|
||||||
|
|
||||||
|
if chunk_class is None:
|
||||||
|
logger.warning(f"Unknown chunk type: {chunk_type}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
try:
|
||||||
|
return chunk_class(**chunk_data)
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Failed to reconstruct chunk of type {chunk_type}: {e}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
async def set_task_asyncio_task(task_id: str, asyncio_task: asyncio.Task) -> None:
|
||||||
|
"""Track the asyncio.Task for a task (local reference only).
|
||||||
|
|
||||||
|
This is just for cleanup purposes - the task state is in Redis.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_id: Task ID
|
||||||
|
asyncio_task: The asyncio Task to track
|
||||||
|
"""
|
||||||
|
_local_tasks[task_id] = asyncio_task
|
||||||
|
|
||||||
|
|
||||||
|
async def unsubscribe_from_task(
|
||||||
|
task_id: str,
|
||||||
|
subscriber_queue: asyncio.Queue[StreamBaseResponse],
|
||||||
|
) -> None:
|
||||||
|
"""Clean up when a subscriber disconnects.
|
||||||
|
|
||||||
|
Cancels the XREAD-based listener task associated with this subscriber queue
|
||||||
|
to prevent resource leaks.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task_id: Task ID
|
||||||
|
subscriber_queue: The subscriber's queue used to look up the listener task
|
||||||
|
"""
|
||||||
|
queue_id = id(subscriber_queue)
|
||||||
|
listener_entry = _listener_tasks.pop(queue_id, None)
|
||||||
|
|
||||||
|
if listener_entry is None:
|
||||||
|
logger.debug(
|
||||||
|
f"No listener task found for task {task_id} queue {queue_id} "
|
||||||
|
"(may have already completed)"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
|
stored_task_id, listener_task = listener_entry
|
||||||
|
|
||||||
|
if stored_task_id != task_id:
|
||||||
|
logger.warning(
|
||||||
|
f"Task ID mismatch in unsubscribe: expected {task_id}, "
|
||||||
|
f"found {stored_task_id}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if listener_task.done():
|
||||||
|
logger.debug(f"Listener task for task {task_id} already completed")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Cancel the listener task
|
||||||
|
listener_task.cancel()
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Wait for the task to be cancelled with a timeout
|
||||||
|
await asyncio.wait_for(listener_task, timeout=5.0)
|
||||||
|
except asyncio.CancelledError:
|
||||||
|
# Expected - the task was successfully cancelled
|
||||||
|
pass
|
||||||
|
except asyncio.TimeoutError:
|
||||||
|
logger.warning(
|
||||||
|
f"Timeout waiting for listener task cancellation for task {task_id}"
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error during listener task cancellation for task {task_id}: {e}")
|
||||||
|
|
||||||
|
logger.debug(f"Successfully unsubscribed from task {task_id}")
|
||||||
@@ -10,6 +10,7 @@ from .add_understanding import AddUnderstandingTool
|
|||||||
from .agent_output import AgentOutputTool
|
from .agent_output import AgentOutputTool
|
||||||
from .base import BaseTool
|
from .base import BaseTool
|
||||||
from .create_agent import CreateAgentTool
|
from .create_agent import CreateAgentTool
|
||||||
|
from .customize_agent import CustomizeAgentTool
|
||||||
from .edit_agent import EditAgentTool
|
from .edit_agent import EditAgentTool
|
||||||
from .find_agent import FindAgentTool
|
from .find_agent import FindAgentTool
|
||||||
from .find_block import FindBlockTool
|
from .find_block import FindBlockTool
|
||||||
@@ -34,6 +35,7 @@ logger = logging.getLogger(__name__)
|
|||||||
TOOL_REGISTRY: dict[str, BaseTool] = {
|
TOOL_REGISTRY: dict[str, BaseTool] = {
|
||||||
"add_understanding": AddUnderstandingTool(),
|
"add_understanding": AddUnderstandingTool(),
|
||||||
"create_agent": CreateAgentTool(),
|
"create_agent": CreateAgentTool(),
|
||||||
|
"customize_agent": CustomizeAgentTool(),
|
||||||
"edit_agent": EditAgentTool(),
|
"edit_agent": EditAgentTool(),
|
||||||
"find_agent": FindAgentTool(),
|
"find_agent": FindAgentTool(),
|
||||||
"find_block": FindBlockTool(),
|
"find_block": FindBlockTool(),
|
||||||
|
|||||||
@@ -8,6 +8,7 @@ from .core import (
|
|||||||
DecompositionStep,
|
DecompositionStep,
|
||||||
LibraryAgentSummary,
|
LibraryAgentSummary,
|
||||||
MarketplaceAgentSummary,
|
MarketplaceAgentSummary,
|
||||||
|
customize_template,
|
||||||
decompose_goal,
|
decompose_goal,
|
||||||
enrich_library_agents_from_steps,
|
enrich_library_agents_from_steps,
|
||||||
extract_search_terms_from_steps,
|
extract_search_terms_from_steps,
|
||||||
@@ -19,6 +20,7 @@ from .core import (
|
|||||||
get_library_agent_by_graph_id,
|
get_library_agent_by_graph_id,
|
||||||
get_library_agent_by_id,
|
get_library_agent_by_id,
|
||||||
get_library_agents_for_generation,
|
get_library_agents_for_generation,
|
||||||
|
graph_to_json,
|
||||||
json_to_graph,
|
json_to_graph,
|
||||||
save_agent_to_library,
|
save_agent_to_library,
|
||||||
search_marketplace_agents_for_generation,
|
search_marketplace_agents_for_generation,
|
||||||
@@ -36,6 +38,7 @@ __all__ = [
|
|||||||
"LibraryAgentSummary",
|
"LibraryAgentSummary",
|
||||||
"MarketplaceAgentSummary",
|
"MarketplaceAgentSummary",
|
||||||
"check_external_service_health",
|
"check_external_service_health",
|
||||||
|
"customize_template",
|
||||||
"decompose_goal",
|
"decompose_goal",
|
||||||
"enrich_library_agents_from_steps",
|
"enrich_library_agents_from_steps",
|
||||||
"extract_search_terms_from_steps",
|
"extract_search_terms_from_steps",
|
||||||
@@ -48,6 +51,7 @@ __all__ = [
|
|||||||
"get_library_agent_by_id",
|
"get_library_agent_by_id",
|
||||||
"get_library_agents_for_generation",
|
"get_library_agents_for_generation",
|
||||||
"get_user_message_for_error",
|
"get_user_message_for_error",
|
||||||
|
"graph_to_json",
|
||||||
"is_external_service_configured",
|
"is_external_service_configured",
|
||||||
"json_to_graph",
|
"json_to_graph",
|
||||||
"save_agent_to_library",
|
"save_agent_to_library",
|
||||||
|
|||||||
@@ -7,17 +7,11 @@ from typing import Any, NotRequired, TypedDict
|
|||||||
|
|
||||||
from backend.api.features.library import db as library_db
|
from backend.api.features.library import db as library_db
|
||||||
from backend.api.features.store import db as store_db
|
from backend.api.features.store import db as store_db
|
||||||
from backend.data.graph import (
|
from backend.data.graph import Graph, Link, Node, get_graph, get_store_listed_graphs
|
||||||
Graph,
|
|
||||||
Link,
|
|
||||||
Node,
|
|
||||||
create_graph,
|
|
||||||
get_graph,
|
|
||||||
get_graph_all_versions,
|
|
||||||
)
|
|
||||||
from backend.util.exceptions import DatabaseError, NotFoundError
|
from backend.util.exceptions import DatabaseError, NotFoundError
|
||||||
|
|
||||||
from .service import (
|
from .service import (
|
||||||
|
customize_template_external,
|
||||||
decompose_goal_external,
|
decompose_goal_external,
|
||||||
generate_agent_external,
|
generate_agent_external,
|
||||||
generate_agent_patch_external,
|
generate_agent_patch_external,
|
||||||
@@ -26,8 +20,6 @@ from .service import (
|
|||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
AGENT_EXECUTOR_BLOCK_ID = "e189baac-8c20-45a1-94a7-55177ea42565"
|
|
||||||
|
|
||||||
|
|
||||||
class ExecutionSummary(TypedDict):
|
class ExecutionSummary(TypedDict):
|
||||||
"""Summary of a single execution for quality assessment."""
|
"""Summary of a single execution for quality assessment."""
|
||||||
@@ -266,18 +258,18 @@ async def get_library_agents_for_generation(
|
|||||||
async def search_marketplace_agents_for_generation(
|
async def search_marketplace_agents_for_generation(
|
||||||
search_query: str,
|
search_query: str,
|
||||||
max_results: int = 10,
|
max_results: int = 10,
|
||||||
) -> list[MarketplaceAgentSummary]:
|
) -> list[LibraryAgentSummary]:
|
||||||
"""Search marketplace agents formatted for Agent Generator.
|
"""Search marketplace agents formatted for Agent Generator.
|
||||||
|
|
||||||
Note: This returns basic agent info. Full input/output schemas would require
|
Fetches marketplace agents and their full schemas so they can be used
|
||||||
additional graph fetches and is a potential future enhancement.
|
as sub-agents in generated workflows.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
search_query: Search term to find relevant public agents
|
search_query: Search term to find relevant public agents
|
||||||
max_results: Maximum number of agents to return (default 10)
|
max_results: Maximum number of agents to return (default 10)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List of MarketplaceAgentSummary (without detailed schemas for now)
|
List of LibraryAgentSummary with full input/output schemas
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
response = await store_db.get_store_agents(
|
response = await store_db.get_store_agents(
|
||||||
@@ -286,17 +278,31 @@ async def search_marketplace_agents_for_generation(
|
|||||||
page_size=max_results,
|
page_size=max_results,
|
||||||
)
|
)
|
||||||
|
|
||||||
results: list[MarketplaceAgentSummary] = []
|
agents_with_graphs = [
|
||||||
for agent in response.agents:
|
agent for agent in response.agents if agent.agent_graph_id
|
||||||
results.append(
|
]
|
||||||
MarketplaceAgentSummary(
|
|
||||||
name=agent.agent_name,
|
if not agents_with_graphs:
|
||||||
description=agent.description,
|
return []
|
||||||
sub_heading=agent.sub_heading,
|
|
||||||
creator=agent.creator,
|
graph_ids = [agent.agent_graph_id for agent in agents_with_graphs]
|
||||||
is_marketplace_agent=True,
|
graphs = await get_store_listed_graphs(*graph_ids)
|
||||||
|
|
||||||
|
results: list[LibraryAgentSummary] = []
|
||||||
|
for agent in agents_with_graphs:
|
||||||
|
graph_id = agent.agent_graph_id
|
||||||
|
if graph_id and graph_id in graphs:
|
||||||
|
graph = graphs[graph_id]
|
||||||
|
results.append(
|
||||||
|
LibraryAgentSummary(
|
||||||
|
graph_id=graph.id,
|
||||||
|
graph_version=graph.version,
|
||||||
|
name=agent.agent_name,
|
||||||
|
description=agent.description,
|
||||||
|
input_schema=graph.input_schema,
|
||||||
|
output_schema=graph.output_schema,
|
||||||
|
)
|
||||||
)
|
)
|
||||||
)
|
|
||||||
return results
|
return results
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.warning(f"Failed to search marketplace agents: {e}")
|
logger.warning(f"Failed to search marketplace agents: {e}")
|
||||||
@@ -327,8 +333,7 @@ async def get_all_relevant_agents_for_generation(
|
|||||||
max_marketplace_results: Max marketplace agents to return (default 10)
|
max_marketplace_results: Max marketplace agents to return (default 10)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List of AgentSummary, library agents first (with full schemas),
|
List of AgentSummary with full schemas (both library and marketplace agents)
|
||||||
then marketplace agents (basic info only)
|
|
||||||
"""
|
"""
|
||||||
agents: list[AgentSummary] = []
|
agents: list[AgentSummary] = []
|
||||||
seen_graph_ids: set[str] = set()
|
seen_graph_ids: set[str] = set()
|
||||||
@@ -365,16 +370,11 @@ async def get_all_relevant_agents_for_generation(
|
|||||||
search_query=search_query,
|
search_query=search_query,
|
||||||
max_results=max_marketplace_results,
|
max_results=max_marketplace_results,
|
||||||
)
|
)
|
||||||
library_names: set[str] = set()
|
|
||||||
for a in agents:
|
|
||||||
name = a.get("name")
|
|
||||||
if name and isinstance(name, str):
|
|
||||||
library_names.add(name.lower())
|
|
||||||
for agent in marketplace_agents:
|
for agent in marketplace_agents:
|
||||||
agent_name = agent.get("name")
|
graph_id = agent.get("graph_id")
|
||||||
if agent_name and isinstance(agent_name, str):
|
if graph_id and graph_id not in seen_graph_ids:
|
||||||
if agent_name.lower() not in library_names:
|
agents.append(agent)
|
||||||
agents.append(agent)
|
seen_graph_ids.add(graph_id)
|
||||||
|
|
||||||
return agents
|
return agents
|
||||||
|
|
||||||
@@ -540,15 +540,21 @@ async def decompose_goal(
|
|||||||
async def generate_agent(
|
async def generate_agent(
|
||||||
instructions: DecompositionResult | dict[str, Any],
|
instructions: DecompositionResult | dict[str, Any],
|
||||||
library_agents: list[AgentSummary] | list[dict[str, Any]] | None = None,
|
library_agents: list[AgentSummary] | list[dict[str, Any]] | None = None,
|
||||||
|
operation_id: str | None = None,
|
||||||
|
task_id: str | None = None,
|
||||||
) -> dict[str, Any] | None:
|
) -> dict[str, Any] | None:
|
||||||
"""Generate agent JSON from instructions.
|
"""Generate agent JSON from instructions.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
instructions: Structured instructions from decompose_goal
|
instructions: Structured instructions from decompose_goal
|
||||||
library_agents: User's library agents available for sub-agent composition
|
library_agents: User's library agents available for sub-agent composition
|
||||||
|
operation_id: Operation ID for async processing (enables Redis Streams
|
||||||
|
completion notification)
|
||||||
|
task_id: Task ID for async processing (enables Redis Streams persistence
|
||||||
|
and SSE delivery)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Agent JSON dict, error dict {"type": "error", ...}, or None on error
|
Agent JSON dict, {"status": "accepted"} for async, error dict {"type": "error", ...}, or None on error
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
||||||
@@ -556,8 +562,13 @@ async def generate_agent(
|
|||||||
_check_service_configured()
|
_check_service_configured()
|
||||||
logger.info("Calling external Agent Generator service for generate_agent")
|
logger.info("Calling external Agent Generator service for generate_agent")
|
||||||
result = await generate_agent_external(
|
result = await generate_agent_external(
|
||||||
dict(instructions), _to_dict_list(library_agents)
|
dict(instructions), _to_dict_list(library_agents), operation_id, task_id
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Don't modify async response
|
||||||
|
if result and result.get("status") == "accepted":
|
||||||
|
return result
|
||||||
|
|
||||||
if result:
|
if result:
|
||||||
if isinstance(result, dict) and result.get("type") == "error":
|
if isinstance(result, dict) and result.get("type") == "error":
|
||||||
return result
|
return result
|
||||||
@@ -648,45 +659,6 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def _reassign_node_ids(graph: Graph) -> None:
|
|
||||||
"""Reassign all node and link IDs to new UUIDs.
|
|
||||||
|
|
||||||
This is needed when creating a new version to avoid unique constraint violations.
|
|
||||||
"""
|
|
||||||
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
|
|
||||||
|
|
||||||
for node in graph.nodes:
|
|
||||||
node.id = id_map[node.id]
|
|
||||||
|
|
||||||
for link in graph.links:
|
|
||||||
link.id = str(uuid.uuid4())
|
|
||||||
if link.source_id in id_map:
|
|
||||||
link.source_id = id_map[link.source_id]
|
|
||||||
if link.sink_id in id_map:
|
|
||||||
link.sink_id = id_map[link.sink_id]
|
|
||||||
|
|
||||||
|
|
||||||
def _populate_agent_executor_user_ids(agent_json: dict[str, Any], user_id: str) -> None:
|
|
||||||
"""Populate user_id in AgentExecutorBlock nodes.
|
|
||||||
|
|
||||||
The external agent generator creates AgentExecutorBlock nodes with empty user_id.
|
|
||||||
This function fills in the actual user_id so sub-agents run with correct permissions.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
agent_json: Agent JSON dict (modified in place)
|
|
||||||
user_id: User ID to set
|
|
||||||
"""
|
|
||||||
for node in agent_json.get("nodes", []):
|
|
||||||
if node.get("block_id") == AGENT_EXECUTOR_BLOCK_ID:
|
|
||||||
input_default = node.get("input_default") or {}
|
|
||||||
if not input_default.get("user_id"):
|
|
||||||
input_default["user_id"] = user_id
|
|
||||||
node["input_default"] = input_default
|
|
||||||
logger.debug(
|
|
||||||
f"Set user_id for AgentExecutorBlock node {node.get('id')}"
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
async def save_agent_to_library(
|
async def save_agent_to_library(
|
||||||
agent_json: dict[str, Any], user_id: str, is_update: bool = False
|
agent_json: dict[str, Any], user_id: str, is_update: bool = False
|
||||||
) -> tuple[Graph, Any]:
|
) -> tuple[Graph, Any]:
|
||||||
@@ -700,63 +672,21 @@ async def save_agent_to_library(
|
|||||||
Returns:
|
Returns:
|
||||||
Tuple of (created Graph, LibraryAgent)
|
Tuple of (created Graph, LibraryAgent)
|
||||||
"""
|
"""
|
||||||
# Populate user_id in AgentExecutorBlock nodes before conversion
|
|
||||||
_populate_agent_executor_user_ids(agent_json, user_id)
|
|
||||||
|
|
||||||
graph = json_to_graph(agent_json)
|
graph = json_to_graph(agent_json)
|
||||||
|
|
||||||
if is_update:
|
if is_update:
|
||||||
if graph.id:
|
return await library_db.update_graph_in_library(graph, user_id)
|
||||||
existing_versions = await get_graph_all_versions(graph.id, user_id)
|
return await library_db.create_graph_in_library(graph, user_id)
|
||||||
if existing_versions:
|
|
||||||
latest_version = max(v.version for v in existing_versions)
|
|
||||||
graph.version = latest_version + 1
|
|
||||||
_reassign_node_ids(graph)
|
|
||||||
logger.info(f"Updating agent {graph.id} to version {graph.version}")
|
|
||||||
else:
|
|
||||||
graph.id = str(uuid.uuid4())
|
|
||||||
graph.version = 1
|
|
||||||
_reassign_node_ids(graph)
|
|
||||||
logger.info(f"Creating new agent with ID {graph.id}")
|
|
||||||
|
|
||||||
created_graph = await create_graph(graph, user_id)
|
|
||||||
|
|
||||||
library_agents = await library_db.create_library_agent(
|
|
||||||
graph=created_graph,
|
|
||||||
user_id=user_id,
|
|
||||||
sensitive_action_safe_mode=True,
|
|
||||||
create_library_agents_for_sub_graphs=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
return created_graph, library_agents[0]
|
|
||||||
|
|
||||||
|
|
||||||
async def get_agent_as_json(
|
def graph_to_json(graph: Graph) -> dict[str, Any]:
|
||||||
agent_id: str, user_id: str | None
|
"""Convert a Graph object to JSON format for the agent generator.
|
||||||
) -> dict[str, Any] | None:
|
|
||||||
"""Fetch an agent and convert to JSON format for editing.
|
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
agent_id: Graph ID or library agent ID
|
graph: Graph object to convert
|
||||||
user_id: User ID
|
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Agent as JSON dict or None if not found
|
Agent as JSON dict
|
||||||
"""
|
"""
|
||||||
graph = await get_graph(agent_id, version=None, user_id=user_id)
|
|
||||||
|
|
||||||
if not graph and user_id:
|
|
||||||
try:
|
|
||||||
library_agent = await library_db.get_library_agent(agent_id, user_id)
|
|
||||||
graph = await get_graph(
|
|
||||||
library_agent.graph_id, version=None, user_id=user_id
|
|
||||||
)
|
|
||||||
except NotFoundError:
|
|
||||||
pass
|
|
||||||
|
|
||||||
if not graph:
|
|
||||||
return None
|
|
||||||
|
|
||||||
nodes = []
|
nodes = []
|
||||||
for node in graph.nodes:
|
for node in graph.nodes:
|
||||||
nodes.append(
|
nodes.append(
|
||||||
@@ -793,10 +723,41 @@ async def get_agent_as_json(
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
async def get_agent_as_json(
|
||||||
|
agent_id: str, user_id: str | None
|
||||||
|
) -> dict[str, Any] | None:
|
||||||
|
"""Fetch an agent and convert to JSON format for editing.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
agent_id: Graph ID or library agent ID
|
||||||
|
user_id: User ID
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Agent as JSON dict or None if not found
|
||||||
|
"""
|
||||||
|
graph = await get_graph(agent_id, version=None, user_id=user_id)
|
||||||
|
|
||||||
|
if not graph and user_id:
|
||||||
|
try:
|
||||||
|
library_agent = await library_db.get_library_agent(agent_id, user_id)
|
||||||
|
graph = await get_graph(
|
||||||
|
library_agent.graph_id, version=None, user_id=user_id
|
||||||
|
)
|
||||||
|
except NotFoundError:
|
||||||
|
pass
|
||||||
|
|
||||||
|
if not graph:
|
||||||
|
return None
|
||||||
|
|
||||||
|
return graph_to_json(graph)
|
||||||
|
|
||||||
|
|
||||||
async def generate_agent_patch(
|
async def generate_agent_patch(
|
||||||
update_request: str,
|
update_request: str,
|
||||||
current_agent: dict[str, Any],
|
current_agent: dict[str, Any],
|
||||||
library_agents: list[AgentSummary] | None = None,
|
library_agents: list[AgentSummary] | None = None,
|
||||||
|
operation_id: str | None = None,
|
||||||
|
task_id: str | None = None,
|
||||||
) -> dict[str, Any] | None:
|
) -> dict[str, Any] | None:
|
||||||
"""Update an existing agent using natural language.
|
"""Update an existing agent using natural language.
|
||||||
|
|
||||||
@@ -809,10 +770,12 @@ async def generate_agent_patch(
|
|||||||
update_request: Natural language description of changes
|
update_request: Natural language description of changes
|
||||||
current_agent: Current agent JSON
|
current_agent: Current agent JSON
|
||||||
library_agents: User's library agents available for sub-agent composition
|
library_agents: User's library agents available for sub-agent composition
|
||||||
|
operation_id: Operation ID for async processing (enables Redis Streams callback)
|
||||||
|
task_id: Task ID for async processing (enables Redis Streams callback)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
|
Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
|
||||||
error dict {"type": "error", ...}, or None on unexpected error
|
{"status": "accepted"} for async, error dict {"type": "error", ...}, or None on error
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
||||||
@@ -820,5 +783,43 @@ async def generate_agent_patch(
|
|||||||
_check_service_configured()
|
_check_service_configured()
|
||||||
logger.info("Calling external Agent Generator service for generate_agent_patch")
|
logger.info("Calling external Agent Generator service for generate_agent_patch")
|
||||||
return await generate_agent_patch_external(
|
return await generate_agent_patch_external(
|
||||||
update_request, current_agent, _to_dict_list(library_agents)
|
update_request,
|
||||||
|
current_agent,
|
||||||
|
_to_dict_list(library_agents),
|
||||||
|
operation_id,
|
||||||
|
task_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def customize_template(
|
||||||
|
template_agent: dict[str, Any],
|
||||||
|
modification_request: str,
|
||||||
|
context: str = "",
|
||||||
|
) -> dict[str, Any] | None:
|
||||||
|
"""Customize a template/marketplace agent using natural language.
|
||||||
|
|
||||||
|
This is used when users want to modify a template or marketplace agent
|
||||||
|
to fit their specific needs before adding it to their library.
|
||||||
|
|
||||||
|
The external Agent Generator service handles:
|
||||||
|
- Understanding the modification request
|
||||||
|
- Applying changes to the template
|
||||||
|
- Fixing and validating the result
|
||||||
|
|
||||||
|
Args:
|
||||||
|
template_agent: The template agent JSON to customize
|
||||||
|
modification_request: Natural language description of customizations
|
||||||
|
context: Additional context (e.g., answers to previous questions)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Customized agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
|
||||||
|
error dict {"type": "error", ...}, or None on unexpected error
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
AgentGeneratorNotConfiguredError: If the external service is not configured.
|
||||||
|
"""
|
||||||
|
_check_service_configured()
|
||||||
|
logger.info("Calling external Agent Generator service for customize_template")
|
||||||
|
return await customize_template_external(
|
||||||
|
template_agent, modification_request, context
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -139,11 +139,10 @@ async def decompose_goal_external(
|
|||||||
"""
|
"""
|
||||||
client = _get_client()
|
client = _get_client()
|
||||||
|
|
||||||
# Build the request payload
|
|
||||||
payload: dict[str, Any] = {"description": description}
|
|
||||||
if context:
|
if context:
|
||||||
# The external service uses user_instruction for additional context
|
description = f"{description}\n\nAdditional context from user:\n{context}"
|
||||||
payload["user_instruction"] = context
|
|
||||||
|
payload: dict[str, Any] = {"description": description}
|
||||||
if library_agents:
|
if library_agents:
|
||||||
payload["library_agents"] = library_agents
|
payload["library_agents"] = library_agents
|
||||||
|
|
||||||
@@ -213,24 +212,45 @@ async def decompose_goal_external(
|
|||||||
async def generate_agent_external(
|
async def generate_agent_external(
|
||||||
instructions: dict[str, Any],
|
instructions: dict[str, Any],
|
||||||
library_agents: list[dict[str, Any]] | None = None,
|
library_agents: list[dict[str, Any]] | None = None,
|
||||||
|
operation_id: str | None = None,
|
||||||
|
task_id: str | None = None,
|
||||||
) -> dict[str, Any] | None:
|
) -> dict[str, Any] | None:
|
||||||
"""Call the external service to generate an agent from instructions.
|
"""Call the external service to generate an agent from instructions.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
instructions: Structured instructions from decompose_goal
|
instructions: Structured instructions from decompose_goal
|
||||||
library_agents: User's library agents available for sub-agent composition
|
library_agents: User's library agents available for sub-agent composition
|
||||||
|
operation_id: Operation ID for async processing (enables Redis Streams callback)
|
||||||
|
task_id: Task ID for async processing (enables Redis Streams callback)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Agent JSON dict on success, or error dict {"type": "error", ...} on error
|
Agent JSON dict, {"status": "accepted"} for async, or error dict {"type": "error", ...} on error
|
||||||
"""
|
"""
|
||||||
client = _get_client()
|
client = _get_client()
|
||||||
|
|
||||||
|
# Build request payload
|
||||||
payload: dict[str, Any] = {"instructions": instructions}
|
payload: dict[str, Any] = {"instructions": instructions}
|
||||||
if library_agents:
|
if library_agents:
|
||||||
payload["library_agents"] = library_agents
|
payload["library_agents"] = library_agents
|
||||||
|
if operation_id and task_id:
|
||||||
|
payload["operation_id"] = operation_id
|
||||||
|
payload["task_id"] = task_id
|
||||||
|
|
||||||
try:
|
try:
|
||||||
response = await client.post("/api/generate-agent", json=payload)
|
response = await client.post("/api/generate-agent", json=payload)
|
||||||
|
|
||||||
|
# Handle 202 Accepted for async processing
|
||||||
|
if response.status_code == 202:
|
||||||
|
logger.info(
|
||||||
|
f"Agent Generator accepted async request "
|
||||||
|
f"(operation_id={operation_id}, task_id={task_id})"
|
||||||
|
)
|
||||||
|
return {
|
||||||
|
"status": "accepted",
|
||||||
|
"operation_id": operation_id,
|
||||||
|
"task_id": task_id,
|
||||||
|
}
|
||||||
|
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
data = response.json()
|
data = response.json()
|
||||||
|
|
||||||
@@ -262,6 +282,8 @@ async def generate_agent_patch_external(
|
|||||||
update_request: str,
|
update_request: str,
|
||||||
current_agent: dict[str, Any],
|
current_agent: dict[str, Any],
|
||||||
library_agents: list[dict[str, Any]] | None = None,
|
library_agents: list[dict[str, Any]] | None = None,
|
||||||
|
operation_id: str | None = None,
|
||||||
|
task_id: str | None = None,
|
||||||
) -> dict[str, Any] | None:
|
) -> dict[str, Any] | None:
|
||||||
"""Call the external service to generate a patch for an existing agent.
|
"""Call the external service to generate a patch for an existing agent.
|
||||||
|
|
||||||
@@ -269,21 +291,40 @@ async def generate_agent_patch_external(
|
|||||||
update_request: Natural language description of changes
|
update_request: Natural language description of changes
|
||||||
current_agent: Current agent JSON
|
current_agent: Current agent JSON
|
||||||
library_agents: User's library agents available for sub-agent composition
|
library_agents: User's library agents available for sub-agent composition
|
||||||
|
operation_id: Operation ID for async processing (enables Redis Streams callback)
|
||||||
|
task_id: Task ID for async processing (enables Redis Streams callback)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Updated agent JSON, clarifying questions dict, or error dict on error
|
Updated agent JSON, clarifying questions dict, {"status": "accepted"} for async, or error dict on error
|
||||||
"""
|
"""
|
||||||
client = _get_client()
|
client = _get_client()
|
||||||
|
|
||||||
|
# Build request payload
|
||||||
payload: dict[str, Any] = {
|
payload: dict[str, Any] = {
|
||||||
"update_request": update_request,
|
"update_request": update_request,
|
||||||
"current_agent_json": current_agent,
|
"current_agent_json": current_agent,
|
||||||
}
|
}
|
||||||
if library_agents:
|
if library_agents:
|
||||||
payload["library_agents"] = library_agents
|
payload["library_agents"] = library_agents
|
||||||
|
if operation_id and task_id:
|
||||||
|
payload["operation_id"] = operation_id
|
||||||
|
payload["task_id"] = task_id
|
||||||
|
|
||||||
try:
|
try:
|
||||||
response = await client.post("/api/update-agent", json=payload)
|
response = await client.post("/api/update-agent", json=payload)
|
||||||
|
|
||||||
|
# Handle 202 Accepted for async processing
|
||||||
|
if response.status_code == 202:
|
||||||
|
logger.info(
|
||||||
|
f"Agent Generator accepted async update request "
|
||||||
|
f"(operation_id={operation_id}, task_id={task_id})"
|
||||||
|
)
|
||||||
|
return {
|
||||||
|
"status": "accepted",
|
||||||
|
"operation_id": operation_id,
|
||||||
|
"task_id": task_id,
|
||||||
|
}
|
||||||
|
|
||||||
response.raise_for_status()
|
response.raise_for_status()
|
||||||
data = response.json()
|
data = response.json()
|
||||||
|
|
||||||
@@ -327,6 +368,77 @@ async def generate_agent_patch_external(
|
|||||||
return _create_error_response(error_msg, "unexpected_error")
|
return _create_error_response(error_msg, "unexpected_error")
|
||||||
|
|
||||||
|
|
||||||
|
async def customize_template_external(
|
||||||
|
template_agent: dict[str, Any],
|
||||||
|
modification_request: str,
|
||||||
|
context: str = "",
|
||||||
|
) -> dict[str, Any] | None:
|
||||||
|
"""Call the external service to customize a template/marketplace agent.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
template_agent: The template agent JSON to customize
|
||||||
|
modification_request: Natural language description of customizations
|
||||||
|
context: Additional context (e.g., answers to previous questions)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Customized agent JSON, clarifying questions dict, or error dict on error
|
||||||
|
"""
|
||||||
|
client = _get_client()
|
||||||
|
|
||||||
|
request = modification_request
|
||||||
|
if context:
|
||||||
|
request = f"{modification_request}\n\nAdditional context from user:\n{context}"
|
||||||
|
|
||||||
|
payload: dict[str, Any] = {
|
||||||
|
"template_agent_json": template_agent,
|
||||||
|
"modification_request": request,
|
||||||
|
}
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = await client.post("/api/template-modification", json=payload)
|
||||||
|
response.raise_for_status()
|
||||||
|
data = response.json()
|
||||||
|
|
||||||
|
if not data.get("success"):
|
||||||
|
error_msg = data.get("error", "Unknown error from Agent Generator")
|
||||||
|
error_type = data.get("error_type", "unknown")
|
||||||
|
logger.error(
|
||||||
|
f"Agent Generator template customization failed: {error_msg} "
|
||||||
|
f"(type: {error_type})"
|
||||||
|
)
|
||||||
|
return _create_error_response(error_msg, error_type)
|
||||||
|
|
||||||
|
# Check if it's clarifying questions
|
||||||
|
if data.get("type") == "clarifying_questions":
|
||||||
|
return {
|
||||||
|
"type": "clarifying_questions",
|
||||||
|
"questions": data.get("questions", []),
|
||||||
|
}
|
||||||
|
|
||||||
|
# Check if it's an error passed through
|
||||||
|
if data.get("type") == "error":
|
||||||
|
return _create_error_response(
|
||||||
|
data.get("error", "Unknown error"),
|
||||||
|
data.get("error_type", "unknown"),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Otherwise return the customized agent JSON
|
||||||
|
return data.get("agent_json")
|
||||||
|
|
||||||
|
except httpx.HTTPStatusError as e:
|
||||||
|
error_type, error_msg = _classify_http_error(e)
|
||||||
|
logger.error(error_msg)
|
||||||
|
return _create_error_response(error_msg, error_type)
|
||||||
|
except httpx.RequestError as e:
|
||||||
|
error_type, error_msg = _classify_request_error(e)
|
||||||
|
logger.error(error_msg)
|
||||||
|
return _create_error_response(error_msg, error_type)
|
||||||
|
except Exception as e:
|
||||||
|
error_msg = f"Unexpected error calling Agent Generator: {e}"
|
||||||
|
logger.error(error_msg)
|
||||||
|
return _create_error_response(error_msg, "unexpected_error")
|
||||||
|
|
||||||
|
|
||||||
async def get_blocks_external() -> list[dict[str, Any]] | None:
|
async def get_blocks_external() -> list[dict[str, Any]] | None:
|
||||||
"""Get available blocks from the external service.
|
"""Get available blocks from the external service.
|
||||||
|
|
||||||
|
|||||||
@@ -206,9 +206,9 @@ async def search_agents(
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
no_results_msg = (
|
no_results_msg = (
|
||||||
f"No agents found matching '{query}'. Try different keywords or browse the marketplace."
|
f"No agents found matching '{query}'. Let the user know they can try different keywords or browse the marketplace. Also let them know you can create a custom agent for them based on their needs."
|
||||||
if source == "marketplace"
|
if source == "marketplace"
|
||||||
else f"No agents matching '{query}' found in your library."
|
else f"No agents matching '{query}' found in your library. Let the user know you can create a custom agent for them based on their needs."
|
||||||
)
|
)
|
||||||
return NoResultsResponse(
|
return NoResultsResponse(
|
||||||
message=no_results_msg, session_id=session_id, suggestions=suggestions
|
message=no_results_msg, session_id=session_id, suggestions=suggestions
|
||||||
@@ -224,10 +224,10 @@ async def search_agents(
|
|||||||
message = (
|
message = (
|
||||||
"Now you have found some options for the user to choose from. "
|
"Now you have found some options for the user to choose from. "
|
||||||
"You can add a link to a recommended agent at: /marketplace/agent/agent_id "
|
"You can add a link to a recommended agent at: /marketplace/agent/agent_id "
|
||||||
"Please ask the user if they would like to use any of these agents."
|
"Please ask the user if they would like to use any of these agents. Let the user know we can create a custom agent for them based on their needs."
|
||||||
if source == "marketplace"
|
if source == "marketplace"
|
||||||
else "Found agents in the user's library. You can provide a link to view an agent at: "
|
else "Found agents in the user's library. You can provide a link to view an agent at: "
|
||||||
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute."
|
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute. Let the user know we can create a custom agent for them based on their needs."
|
||||||
)
|
)
|
||||||
|
|
||||||
return AgentsFoundResponse(
|
return AgentsFoundResponse(
|
||||||
|
|||||||
@@ -18,6 +18,7 @@ from .base import BaseTool
|
|||||||
from .models import (
|
from .models import (
|
||||||
AgentPreviewResponse,
|
AgentPreviewResponse,
|
||||||
AgentSavedResponse,
|
AgentSavedResponse,
|
||||||
|
AsyncProcessingResponse,
|
||||||
ClarificationNeededResponse,
|
ClarificationNeededResponse,
|
||||||
ClarifyingQuestion,
|
ClarifyingQuestion,
|
||||||
ErrorResponse,
|
ErrorResponse,
|
||||||
@@ -98,6 +99,10 @@ class CreateAgentTool(BaseTool):
|
|||||||
save = kwargs.get("save", True)
|
save = kwargs.get("save", True)
|
||||||
session_id = session.session_id if session else None
|
session_id = session.session_id if session else None
|
||||||
|
|
||||||
|
# Extract async processing params (passed by long-running tool handler)
|
||||||
|
operation_id = kwargs.get("_operation_id")
|
||||||
|
task_id = kwargs.get("_task_id")
|
||||||
|
|
||||||
if not description:
|
if not description:
|
||||||
return ErrorResponse(
|
return ErrorResponse(
|
||||||
message="Please provide a description of what the agent should do.",
|
message="Please provide a description of what the agent should do.",
|
||||||
@@ -219,7 +224,12 @@ class CreateAgentTool(BaseTool):
|
|||||||
logger.warning(f"Failed to enrich library agents from steps: {e}")
|
logger.warning(f"Failed to enrich library agents from steps: {e}")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
agent_json = await generate_agent(decomposition_result, library_agents)
|
agent_json = await generate_agent(
|
||||||
|
decomposition_result,
|
||||||
|
library_agents,
|
||||||
|
operation_id=operation_id,
|
||||||
|
task_id=task_id,
|
||||||
|
)
|
||||||
except AgentGeneratorNotConfiguredError:
|
except AgentGeneratorNotConfiguredError:
|
||||||
return ErrorResponse(
|
return ErrorResponse(
|
||||||
message=(
|
message=(
|
||||||
@@ -263,6 +273,19 @@ class CreateAgentTool(BaseTool):
|
|||||||
session_id=session_id,
|
session_id=session_id,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Check if Agent Generator accepted for async processing
|
||||||
|
if agent_json.get("status") == "accepted":
|
||||||
|
logger.info(
|
||||||
|
f"Agent generation delegated to async processing "
|
||||||
|
f"(operation_id={operation_id}, task_id={task_id})"
|
||||||
|
)
|
||||||
|
return AsyncProcessingResponse(
|
||||||
|
message="Agent generation started. You'll be notified when it's complete.",
|
||||||
|
operation_id=operation_id,
|
||||||
|
task_id=task_id,
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
|
||||||
agent_name = agent_json.get("name", "Generated Agent")
|
agent_name = agent_json.get("name", "Generated Agent")
|
||||||
agent_description = agent_json.get("description", "")
|
agent_description = agent_json.get("description", "")
|
||||||
node_count = len(agent_json.get("nodes", []))
|
node_count = len(agent_json.get("nodes", []))
|
||||||
|
|||||||
@@ -0,0 +1,337 @@
|
|||||||
|
"""CustomizeAgentTool - Customizes marketplace/template agents using natural language."""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
from backend.api.features.chat.model import ChatSession
|
||||||
|
from backend.api.features.store import db as store_db
|
||||||
|
from backend.api.features.store.exceptions import AgentNotFoundError
|
||||||
|
|
||||||
|
from .agent_generator import (
|
||||||
|
AgentGeneratorNotConfiguredError,
|
||||||
|
customize_template,
|
||||||
|
get_user_message_for_error,
|
||||||
|
graph_to_json,
|
||||||
|
save_agent_to_library,
|
||||||
|
)
|
||||||
|
from .base import BaseTool
|
||||||
|
from .models import (
|
||||||
|
AgentPreviewResponse,
|
||||||
|
AgentSavedResponse,
|
||||||
|
ClarificationNeededResponse,
|
||||||
|
ClarifyingQuestion,
|
||||||
|
ErrorResponse,
|
||||||
|
ToolResponseBase,
|
||||||
|
)
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class CustomizeAgentTool(BaseTool):
|
||||||
|
"""Tool for customizing marketplace/template agents using natural language."""
|
||||||
|
|
||||||
|
@property
|
||||||
|
def name(self) -> str:
|
||||||
|
return "customize_agent"
|
||||||
|
|
||||||
|
@property
|
||||||
|
def description(self) -> str:
|
||||||
|
return (
|
||||||
|
"Customize a marketplace or template agent using natural language. "
|
||||||
|
"Takes an existing agent from the marketplace and modifies it based on "
|
||||||
|
"the user's requirements before adding to their library."
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def requires_auth(self) -> bool:
|
||||||
|
return True
|
||||||
|
|
||||||
|
@property
|
||||||
|
def is_long_running(self) -> bool:
|
||||||
|
return True
|
||||||
|
|
||||||
|
@property
|
||||||
|
def parameters(self) -> dict[str, Any]:
|
||||||
|
return {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"agent_id": {
|
||||||
|
"type": "string",
|
||||||
|
"description": (
|
||||||
|
"The marketplace agent ID in format 'creator/slug' "
|
||||||
|
"(e.g., 'autogpt/newsletter-writer'). "
|
||||||
|
"Get this from find_agent results."
|
||||||
|
),
|
||||||
|
},
|
||||||
|
"modifications": {
|
||||||
|
"type": "string",
|
||||||
|
"description": (
|
||||||
|
"Natural language description of how to customize the agent. "
|
||||||
|
"Be specific about what changes you want to make."
|
||||||
|
),
|
||||||
|
},
|
||||||
|
"context": {
|
||||||
|
"type": "string",
|
||||||
|
"description": (
|
||||||
|
"Additional context or answers to previous clarifying questions."
|
||||||
|
),
|
||||||
|
},
|
||||||
|
"save": {
|
||||||
|
"type": "boolean",
|
||||||
|
"description": (
|
||||||
|
"Whether to save the customized agent to the user's library. "
|
||||||
|
"Default is true. Set to false for preview only."
|
||||||
|
),
|
||||||
|
"default": True,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
"required": ["agent_id", "modifications"],
|
||||||
|
}
|
||||||
|
|
||||||
|
async def _execute(
|
||||||
|
self,
|
||||||
|
user_id: str | None,
|
||||||
|
session: ChatSession,
|
||||||
|
**kwargs,
|
||||||
|
) -> ToolResponseBase:
|
||||||
|
"""Execute the customize_agent tool.
|
||||||
|
|
||||||
|
Flow:
|
||||||
|
1. Parse the agent ID to get creator/slug
|
||||||
|
2. Fetch the template agent from the marketplace
|
||||||
|
3. Call customize_template with the modification request
|
||||||
|
4. Preview or save based on the save parameter
|
||||||
|
"""
|
||||||
|
agent_id = kwargs.get("agent_id", "").strip()
|
||||||
|
modifications = kwargs.get("modifications", "").strip()
|
||||||
|
context = kwargs.get("context", "")
|
||||||
|
save = kwargs.get("save", True)
|
||||||
|
session_id = session.session_id if session else None
|
||||||
|
|
||||||
|
if not agent_id:
|
||||||
|
return ErrorResponse(
|
||||||
|
message="Please provide the marketplace agent ID (e.g., 'creator/agent-name').",
|
||||||
|
error="missing_agent_id",
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not modifications:
|
||||||
|
return ErrorResponse(
|
||||||
|
message="Please describe how you want to customize this agent.",
|
||||||
|
error="missing_modifications",
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Parse agent_id in format "creator/slug"
|
||||||
|
parts = [p.strip() for p in agent_id.split("/")]
|
||||||
|
if len(parts) != 2 or not parts[0] or not parts[1]:
|
||||||
|
return ErrorResponse(
|
||||||
|
message=(
|
||||||
|
f"Invalid agent ID format: '{agent_id}'. "
|
||||||
|
"Expected format is 'creator/agent-name' "
|
||||||
|
"(e.g., 'autogpt/newsletter-writer')."
|
||||||
|
),
|
||||||
|
error="invalid_agent_id_format",
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
creator_username, agent_slug = parts
|
||||||
|
|
||||||
|
# Fetch the marketplace agent details
|
||||||
|
try:
|
||||||
|
agent_details = await store_db.get_store_agent_details(
|
||||||
|
username=creator_username, agent_name=agent_slug
|
||||||
|
)
|
||||||
|
except AgentNotFoundError:
|
||||||
|
return ErrorResponse(
|
||||||
|
message=(
|
||||||
|
f"Could not find marketplace agent '{agent_id}'. "
|
||||||
|
"Please check the agent ID and try again."
|
||||||
|
),
|
||||||
|
error="agent_not_found",
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error fetching marketplace agent {agent_id}: {e}")
|
||||||
|
return ErrorResponse(
|
||||||
|
message="Failed to fetch the marketplace agent. Please try again.",
|
||||||
|
error="fetch_error",
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not agent_details.store_listing_version_id:
|
||||||
|
return ErrorResponse(
|
||||||
|
message=(
|
||||||
|
f"The agent '{agent_id}' does not have an available version. "
|
||||||
|
"Please try a different agent."
|
||||||
|
),
|
||||||
|
error="no_version_available",
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Get the full agent graph
|
||||||
|
try:
|
||||||
|
graph = await store_db.get_agent(agent_details.store_listing_version_id)
|
||||||
|
template_agent = graph_to_json(graph)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error fetching agent graph for {agent_id}: {e}")
|
||||||
|
return ErrorResponse(
|
||||||
|
message="Failed to fetch the agent configuration. Please try again.",
|
||||||
|
error="graph_fetch_error",
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Call customize_template
|
||||||
|
try:
|
||||||
|
result = await customize_template(
|
||||||
|
template_agent=template_agent,
|
||||||
|
modification_request=modifications,
|
||||||
|
context=context,
|
||||||
|
)
|
||||||
|
except AgentGeneratorNotConfiguredError:
|
||||||
|
return ErrorResponse(
|
||||||
|
message=(
|
||||||
|
"Agent customization is not available. "
|
||||||
|
"The Agent Generator service is not configured."
|
||||||
|
),
|
||||||
|
error="service_not_configured",
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error calling customize_template for {agent_id}: {e}")
|
||||||
|
return ErrorResponse(
|
||||||
|
message=(
|
||||||
|
"Failed to customize the agent due to a service error. "
|
||||||
|
"Please try again."
|
||||||
|
),
|
||||||
|
error="customization_service_error",
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
if result is None:
|
||||||
|
return ErrorResponse(
|
||||||
|
message=(
|
||||||
|
"Failed to customize the agent. "
|
||||||
|
"The agent generation service may be unavailable or timed out. "
|
||||||
|
"Please try again."
|
||||||
|
),
|
||||||
|
error="customization_failed",
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Handle error response
|
||||||
|
if isinstance(result, dict) and result.get("type") == "error":
|
||||||
|
error_msg = result.get("error", "Unknown error")
|
||||||
|
error_type = result.get("error_type", "unknown")
|
||||||
|
user_message = get_user_message_for_error(
|
||||||
|
error_type,
|
||||||
|
operation="customize the agent",
|
||||||
|
llm_parse_message=(
|
||||||
|
"The AI had trouble customizing the agent. "
|
||||||
|
"Please try again or simplify your request."
|
||||||
|
),
|
||||||
|
validation_message=(
|
||||||
|
"The customized agent failed validation. "
|
||||||
|
"Please try rephrasing your request."
|
||||||
|
),
|
||||||
|
error_details=error_msg,
|
||||||
|
)
|
||||||
|
return ErrorResponse(
|
||||||
|
message=user_message,
|
||||||
|
error=f"customization_failed:{error_type}",
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Handle clarifying questions
|
||||||
|
if isinstance(result, dict) and result.get("type") == "clarifying_questions":
|
||||||
|
questions = result.get("questions") or []
|
||||||
|
if not isinstance(questions, list):
|
||||||
|
logger.error(
|
||||||
|
f"Unexpected clarifying questions format: {type(questions)}"
|
||||||
|
)
|
||||||
|
questions = []
|
||||||
|
return ClarificationNeededResponse(
|
||||||
|
message=(
|
||||||
|
"I need some more information to customize this agent. "
|
||||||
|
"Please answer the following questions:"
|
||||||
|
),
|
||||||
|
questions=[
|
||||||
|
ClarifyingQuestion(
|
||||||
|
question=q.get("question", ""),
|
||||||
|
keyword=q.get("keyword", ""),
|
||||||
|
example=q.get("example"),
|
||||||
|
)
|
||||||
|
for q in questions
|
||||||
|
if isinstance(q, dict)
|
||||||
|
],
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Result should be the customized agent JSON
|
||||||
|
if not isinstance(result, dict):
|
||||||
|
logger.error(f"Unexpected customize_template response type: {type(result)}")
|
||||||
|
return ErrorResponse(
|
||||||
|
message="Failed to customize the agent due to an unexpected response.",
|
||||||
|
error="unexpected_response_type",
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
customized_agent = result
|
||||||
|
|
||||||
|
agent_name = customized_agent.get(
|
||||||
|
"name", f"Customized {agent_details.agent_name}"
|
||||||
|
)
|
||||||
|
agent_description = customized_agent.get("description", "")
|
||||||
|
nodes = customized_agent.get("nodes")
|
||||||
|
links = customized_agent.get("links")
|
||||||
|
node_count = len(nodes) if isinstance(nodes, list) else 0
|
||||||
|
link_count = len(links) if isinstance(links, list) else 0
|
||||||
|
|
||||||
|
if not save:
|
||||||
|
return AgentPreviewResponse(
|
||||||
|
message=(
|
||||||
|
f"I've customized the agent '{agent_details.agent_name}'. "
|
||||||
|
f"The customized agent has {node_count} blocks. "
|
||||||
|
f"Review it and call customize_agent with save=true to save it."
|
||||||
|
),
|
||||||
|
agent_json=customized_agent,
|
||||||
|
agent_name=agent_name,
|
||||||
|
description=agent_description,
|
||||||
|
node_count=node_count,
|
||||||
|
link_count=link_count,
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not user_id:
|
||||||
|
return ErrorResponse(
|
||||||
|
message="You must be logged in to save agents.",
|
||||||
|
error="auth_required",
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Save to user's library
|
||||||
|
try:
|
||||||
|
created_graph, library_agent = await save_agent_to_library(
|
||||||
|
customized_agent, user_id, is_update=False
|
||||||
|
)
|
||||||
|
|
||||||
|
return AgentSavedResponse(
|
||||||
|
message=(
|
||||||
|
f"Customized agent '{created_graph.name}' "
|
||||||
|
f"(based on '{agent_details.agent_name}') "
|
||||||
|
f"has been saved to your library!"
|
||||||
|
),
|
||||||
|
agent_id=created_graph.id,
|
||||||
|
agent_name=created_graph.name,
|
||||||
|
library_agent_id=library_agent.id,
|
||||||
|
library_agent_link=f"/library/agents/{library_agent.id}",
|
||||||
|
agent_page_link=f"/build?flowID={created_graph.id}",
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error saving customized agent: {e}")
|
||||||
|
return ErrorResponse(
|
||||||
|
message="Failed to save the customized agent. Please try again.",
|
||||||
|
error="save_failed",
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
@@ -17,6 +17,7 @@ from .base import BaseTool
|
|||||||
from .models import (
|
from .models import (
|
||||||
AgentPreviewResponse,
|
AgentPreviewResponse,
|
||||||
AgentSavedResponse,
|
AgentSavedResponse,
|
||||||
|
AsyncProcessingResponse,
|
||||||
ClarificationNeededResponse,
|
ClarificationNeededResponse,
|
||||||
ClarifyingQuestion,
|
ClarifyingQuestion,
|
||||||
ErrorResponse,
|
ErrorResponse,
|
||||||
@@ -104,6 +105,10 @@ class EditAgentTool(BaseTool):
|
|||||||
save = kwargs.get("save", True)
|
save = kwargs.get("save", True)
|
||||||
session_id = session.session_id if session else None
|
session_id = session.session_id if session else None
|
||||||
|
|
||||||
|
# Extract async processing params (passed by long-running tool handler)
|
||||||
|
operation_id = kwargs.get("_operation_id")
|
||||||
|
task_id = kwargs.get("_task_id")
|
||||||
|
|
||||||
if not agent_id:
|
if not agent_id:
|
||||||
return ErrorResponse(
|
return ErrorResponse(
|
||||||
message="Please provide the agent ID to edit.",
|
message="Please provide the agent ID to edit.",
|
||||||
@@ -149,7 +154,11 @@ class EditAgentTool(BaseTool):
|
|||||||
|
|
||||||
try:
|
try:
|
||||||
result = await generate_agent_patch(
|
result = await generate_agent_patch(
|
||||||
update_request, current_agent, library_agents
|
update_request,
|
||||||
|
current_agent,
|
||||||
|
library_agents,
|
||||||
|
operation_id=operation_id,
|
||||||
|
task_id=task_id,
|
||||||
)
|
)
|
||||||
except AgentGeneratorNotConfiguredError:
|
except AgentGeneratorNotConfiguredError:
|
||||||
return ErrorResponse(
|
return ErrorResponse(
|
||||||
@@ -169,6 +178,20 @@ class EditAgentTool(BaseTool):
|
|||||||
session_id=session_id,
|
session_id=session_id,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Check if Agent Generator accepted for async processing
|
||||||
|
if result.get("status") == "accepted":
|
||||||
|
logger.info(
|
||||||
|
f"Agent edit delegated to async processing "
|
||||||
|
f"(operation_id={operation_id}, task_id={task_id})"
|
||||||
|
)
|
||||||
|
return AsyncProcessingResponse(
|
||||||
|
message="Agent edit started. You'll be notified when it's complete.",
|
||||||
|
operation_id=operation_id,
|
||||||
|
task_id=task_id,
|
||||||
|
session_id=session_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Check if the result is an error from the external service
|
||||||
if isinstance(result, dict) and result.get("type") == "error":
|
if isinstance(result, dict) and result.get("type") == "error":
|
||||||
error_msg = result.get("error", "Unknown error")
|
error_msg = result.get("error", "Unknown error")
|
||||||
error_type = result.get("error_type", "unknown")
|
error_type = result.get("error_type", "unknown")
|
||||||
|
|||||||
@@ -38,6 +38,8 @@ class ResponseType(str, Enum):
|
|||||||
OPERATION_STARTED = "operation_started"
|
OPERATION_STARTED = "operation_started"
|
||||||
OPERATION_PENDING = "operation_pending"
|
OPERATION_PENDING = "operation_pending"
|
||||||
OPERATION_IN_PROGRESS = "operation_in_progress"
|
OPERATION_IN_PROGRESS = "operation_in_progress"
|
||||||
|
# Input validation
|
||||||
|
INPUT_VALIDATION_ERROR = "input_validation_error"
|
||||||
|
|
||||||
|
|
||||||
# Base response model
|
# Base response model
|
||||||
@@ -68,6 +70,10 @@ class AgentInfo(BaseModel):
|
|||||||
has_external_trigger: bool | None = None
|
has_external_trigger: bool | None = None
|
||||||
new_output: bool | None = None
|
new_output: bool | None = None
|
||||||
graph_id: str | None = None
|
graph_id: str | None = None
|
||||||
|
inputs: dict[str, Any] | None = Field(
|
||||||
|
default=None,
|
||||||
|
description="Input schema for the agent, including field names, types, and defaults",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class AgentsFoundResponse(ToolResponseBase):
|
class AgentsFoundResponse(ToolResponseBase):
|
||||||
@@ -194,6 +200,20 @@ class ErrorResponse(ToolResponseBase):
|
|||||||
details: dict[str, Any] | None = None
|
details: dict[str, Any] | None = None
|
||||||
|
|
||||||
|
|
||||||
|
class InputValidationErrorResponse(ToolResponseBase):
|
||||||
|
"""Response when run_agent receives unknown input fields."""
|
||||||
|
|
||||||
|
type: ResponseType = ResponseType.INPUT_VALIDATION_ERROR
|
||||||
|
unrecognized_fields: list[str] = Field(
|
||||||
|
description="List of input field names that were not recognized"
|
||||||
|
)
|
||||||
|
inputs: dict[str, Any] = Field(
|
||||||
|
description="The agent's valid input schema for reference"
|
||||||
|
)
|
||||||
|
graph_id: str | None = None
|
||||||
|
graph_version: int | None = None
|
||||||
|
|
||||||
|
|
||||||
# Agent output models
|
# Agent output models
|
||||||
class ExecutionOutputInfo(BaseModel):
|
class ExecutionOutputInfo(BaseModel):
|
||||||
"""Summary of a single execution's outputs."""
|
"""Summary of a single execution's outputs."""
|
||||||
@@ -352,11 +372,15 @@ class OperationStartedResponse(ToolResponseBase):
|
|||||||
|
|
||||||
This is returned immediately to the client while the operation continues
|
This is returned immediately to the client while the operation continues
|
||||||
to execute. The user can close the tab and check back later.
|
to execute. The user can close the tab and check back later.
|
||||||
|
|
||||||
|
The task_id can be used to reconnect to the SSE stream via
|
||||||
|
GET /chat/tasks/{task_id}/stream?last_idx=0
|
||||||
"""
|
"""
|
||||||
|
|
||||||
type: ResponseType = ResponseType.OPERATION_STARTED
|
type: ResponseType = ResponseType.OPERATION_STARTED
|
||||||
operation_id: str
|
operation_id: str
|
||||||
tool_name: str
|
tool_name: str
|
||||||
|
task_id: str | None = None # For SSE reconnection
|
||||||
|
|
||||||
|
|
||||||
class OperationPendingResponse(ToolResponseBase):
|
class OperationPendingResponse(ToolResponseBase):
|
||||||
@@ -380,3 +404,20 @@ class OperationInProgressResponse(ToolResponseBase):
|
|||||||
|
|
||||||
type: ResponseType = ResponseType.OPERATION_IN_PROGRESS
|
type: ResponseType = ResponseType.OPERATION_IN_PROGRESS
|
||||||
tool_call_id: str
|
tool_call_id: str
|
||||||
|
|
||||||
|
|
||||||
|
class AsyncProcessingResponse(ToolResponseBase):
|
||||||
|
"""Response when an operation has been delegated to async processing.
|
||||||
|
|
||||||
|
This is returned by tools when the external service accepts the request
|
||||||
|
for async processing (HTTP 202 Accepted). The Redis Streams completion
|
||||||
|
consumer will handle the result when the external service completes.
|
||||||
|
|
||||||
|
The status field is specifically "accepted" to allow the long-running tool
|
||||||
|
handler to detect this response and skip LLM continuation.
|
||||||
|
"""
|
||||||
|
|
||||||
|
type: ResponseType = ResponseType.OPERATION_STARTED
|
||||||
|
status: str = "accepted" # Must be "accepted" for detection
|
||||||
|
operation_id: str | None = None
|
||||||
|
task_id: str | None = None
|
||||||
|
|||||||
@@ -30,6 +30,7 @@ from .models import (
|
|||||||
ErrorResponse,
|
ErrorResponse,
|
||||||
ExecutionOptions,
|
ExecutionOptions,
|
||||||
ExecutionStartedResponse,
|
ExecutionStartedResponse,
|
||||||
|
InputValidationErrorResponse,
|
||||||
SetupInfo,
|
SetupInfo,
|
||||||
SetupRequirementsResponse,
|
SetupRequirementsResponse,
|
||||||
ToolResponseBase,
|
ToolResponseBase,
|
||||||
@@ -273,6 +274,22 @@ class RunAgentTool(BaseTool):
|
|||||||
input_properties = graph.input_schema.get("properties", {})
|
input_properties = graph.input_schema.get("properties", {})
|
||||||
required_fields = set(graph.input_schema.get("required", []))
|
required_fields = set(graph.input_schema.get("required", []))
|
||||||
provided_inputs = set(params.inputs.keys())
|
provided_inputs = set(params.inputs.keys())
|
||||||
|
valid_fields = set(input_properties.keys())
|
||||||
|
|
||||||
|
# Check for unknown input fields
|
||||||
|
unrecognized_fields = provided_inputs - valid_fields
|
||||||
|
if unrecognized_fields:
|
||||||
|
return InputValidationErrorResponse(
|
||||||
|
message=(
|
||||||
|
f"Unknown input field(s) provided: {', '.join(sorted(unrecognized_fields))}. "
|
||||||
|
f"Agent was not executed. Please use the correct field names from the schema."
|
||||||
|
),
|
||||||
|
session_id=session_id,
|
||||||
|
unrecognized_fields=sorted(unrecognized_fields),
|
||||||
|
inputs=graph.input_schema,
|
||||||
|
graph_id=graph.id,
|
||||||
|
graph_version=graph.version,
|
||||||
|
)
|
||||||
|
|
||||||
# If agent has inputs but none were provided AND use_defaults is not set,
|
# If agent has inputs but none were provided AND use_defaults is not set,
|
||||||
# always show what's available first so user can decide
|
# always show what's available first so user can decide
|
||||||
|
|||||||
@@ -402,3 +402,42 @@ async def test_run_agent_schedule_without_name(setup_test_data):
|
|||||||
# Should return error about missing schedule_name
|
# Should return error about missing schedule_name
|
||||||
assert result_data.get("type") == "error"
|
assert result_data.get("type") == "error"
|
||||||
assert "schedule_name" in result_data["message"].lower()
|
assert "schedule_name" in result_data["message"].lower()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio(loop_scope="session")
|
||||||
|
async def test_run_agent_rejects_unknown_input_fields(setup_test_data):
|
||||||
|
"""Test that run_agent returns input_validation_error for unknown input fields."""
|
||||||
|
user = setup_test_data["user"]
|
||||||
|
store_submission = setup_test_data["store_submission"]
|
||||||
|
|
||||||
|
tool = RunAgentTool()
|
||||||
|
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||||
|
session = make_session(user_id=user.id)
|
||||||
|
|
||||||
|
# Execute with unknown input field names
|
||||||
|
response = await tool.execute(
|
||||||
|
user_id=user.id,
|
||||||
|
session_id=str(uuid.uuid4()),
|
||||||
|
tool_call_id=str(uuid.uuid4()),
|
||||||
|
username_agent_slug=agent_marketplace_id,
|
||||||
|
inputs={
|
||||||
|
"unknown_field": "some value",
|
||||||
|
"another_unknown": "another value",
|
||||||
|
},
|
||||||
|
session=session,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert response is not None
|
||||||
|
assert hasattr(response, "output")
|
||||||
|
assert isinstance(response.output, str)
|
||||||
|
result_data = orjson.loads(response.output)
|
||||||
|
|
||||||
|
# Should return input_validation_error type with unrecognized fields
|
||||||
|
assert result_data.get("type") == "input_validation_error"
|
||||||
|
assert "unrecognized_fields" in result_data
|
||||||
|
assert set(result_data["unrecognized_fields"]) == {
|
||||||
|
"another_unknown",
|
||||||
|
"unknown_field",
|
||||||
|
}
|
||||||
|
assert "inputs" in result_data # Contains the valid schema
|
||||||
|
assert "Agent was not executed" in result_data["message"]
|
||||||
|
|||||||
@@ -5,6 +5,8 @@ import uuid
|
|||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from typing import Any
|
from typing import Any
|
||||||
|
|
||||||
|
from pydantic_core import PydanticUndefined
|
||||||
|
|
||||||
from backend.api.features.chat.model import ChatSession
|
from backend.api.features.chat.model import ChatSession
|
||||||
from backend.data.block import get_block
|
from backend.data.block import get_block
|
||||||
from backend.data.execution import ExecutionContext
|
from backend.data.execution import ExecutionContext
|
||||||
@@ -75,15 +77,22 @@ class RunBlockTool(BaseTool):
|
|||||||
self,
|
self,
|
||||||
user_id: str,
|
user_id: str,
|
||||||
block: Any,
|
block: Any,
|
||||||
|
input_data: dict[str, Any] | None = None,
|
||||||
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
|
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
|
||||||
"""
|
"""
|
||||||
Check if user has required credentials for a block.
|
Check if user has required credentials for a block.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
user_id: User ID
|
||||||
|
block: Block to check credentials for
|
||||||
|
input_data: Input data for the block (used to determine provider via discriminator)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
tuple[matched_credentials, missing_credentials]
|
tuple[matched_credentials, missing_credentials]
|
||||||
"""
|
"""
|
||||||
matched_credentials: dict[str, CredentialsMetaInput] = {}
|
matched_credentials: dict[str, CredentialsMetaInput] = {}
|
||||||
missing_credentials: list[CredentialsMetaInput] = []
|
missing_credentials: list[CredentialsMetaInput] = []
|
||||||
|
input_data = input_data or {}
|
||||||
|
|
||||||
# Get credential field info from block's input schema
|
# Get credential field info from block's input schema
|
||||||
credentials_fields_info = block.input_schema.get_credentials_fields_info()
|
credentials_fields_info = block.input_schema.get_credentials_fields_info()
|
||||||
@@ -96,14 +105,33 @@ class RunBlockTool(BaseTool):
|
|||||||
available_creds = await creds_manager.store.get_all_creds(user_id)
|
available_creds = await creds_manager.store.get_all_creds(user_id)
|
||||||
|
|
||||||
for field_name, field_info in credentials_fields_info.items():
|
for field_name, field_info in credentials_fields_info.items():
|
||||||
# field_info.provider is a frozenset of acceptable providers
|
effective_field_info = field_info
|
||||||
# field_info.supported_types is a frozenset of acceptable types
|
if field_info.discriminator and field_info.discriminator_mapping:
|
||||||
|
# Get discriminator from input, falling back to schema default
|
||||||
|
discriminator_value = input_data.get(field_info.discriminator)
|
||||||
|
if discriminator_value is None:
|
||||||
|
field = block.input_schema.model_fields.get(
|
||||||
|
field_info.discriminator
|
||||||
|
)
|
||||||
|
if field and field.default is not PydanticUndefined:
|
||||||
|
discriminator_value = field.default
|
||||||
|
|
||||||
|
if (
|
||||||
|
discriminator_value
|
||||||
|
and discriminator_value in field_info.discriminator_mapping
|
||||||
|
):
|
||||||
|
effective_field_info = field_info.discriminate(discriminator_value)
|
||||||
|
logger.debug(
|
||||||
|
f"Discriminated provider for {field_name}: "
|
||||||
|
f"{discriminator_value} -> {effective_field_info.provider}"
|
||||||
|
)
|
||||||
|
|
||||||
matching_cred = next(
|
matching_cred = next(
|
||||||
(
|
(
|
||||||
cred
|
cred
|
||||||
for cred in available_creds
|
for cred in available_creds
|
||||||
if cred.provider in field_info.provider
|
if cred.provider in effective_field_info.provider
|
||||||
and cred.type in field_info.supported_types
|
and cred.type in effective_field_info.supported_types
|
||||||
),
|
),
|
||||||
None,
|
None,
|
||||||
)
|
)
|
||||||
@@ -117,8 +145,8 @@ class RunBlockTool(BaseTool):
|
|||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
# Create a placeholder for the missing credential
|
# Create a placeholder for the missing credential
|
||||||
provider = next(iter(field_info.provider), "unknown")
|
provider = next(iter(effective_field_info.provider), "unknown")
|
||||||
cred_type = next(iter(field_info.supported_types), "api_key")
|
cred_type = next(iter(effective_field_info.supported_types), "api_key")
|
||||||
missing_credentials.append(
|
missing_credentials.append(
|
||||||
CredentialsMetaInput(
|
CredentialsMetaInput(
|
||||||
id=field_name,
|
id=field_name,
|
||||||
@@ -186,10 +214,9 @@ class RunBlockTool(BaseTool):
|
|||||||
|
|
||||||
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
|
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
|
||||||
|
|
||||||
# Check credentials
|
|
||||||
creds_manager = IntegrationCredentialsManager()
|
creds_manager = IntegrationCredentialsManager()
|
||||||
matched_credentials, missing_credentials = await self._check_block_credentials(
|
matched_credentials, missing_credentials = await self._check_block_credentials(
|
||||||
user_id, block
|
user_id, block, input_data
|
||||||
)
|
)
|
||||||
|
|
||||||
if missing_credentials:
|
if missing_credentials:
|
||||||
|
|||||||
@@ -8,7 +8,12 @@ from backend.api.features.library import model as library_model
|
|||||||
from backend.api.features.store import db as store_db
|
from backend.api.features.store import db as store_db
|
||||||
from backend.data import graph as graph_db
|
from backend.data import graph as graph_db
|
||||||
from backend.data.graph import GraphModel
|
from backend.data.graph import GraphModel
|
||||||
from backend.data.model import Credentials, CredentialsFieldInfo, CredentialsMetaInput
|
from backend.data.model import (
|
||||||
|
CredentialsFieldInfo,
|
||||||
|
CredentialsMetaInput,
|
||||||
|
HostScopedCredentials,
|
||||||
|
OAuth2Credentials,
|
||||||
|
)
|
||||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||||
from backend.util.exceptions import NotFoundError
|
from backend.util.exceptions import NotFoundError
|
||||||
|
|
||||||
@@ -273,7 +278,14 @@ async def match_user_credentials_to_graph(
|
|||||||
for cred in available_creds
|
for cred in available_creds
|
||||||
if cred.provider in credential_requirements.provider
|
if cred.provider in credential_requirements.provider
|
||||||
and cred.type in credential_requirements.supported_types
|
and cred.type in credential_requirements.supported_types
|
||||||
and _credential_has_required_scopes(cred, credential_requirements)
|
and (
|
||||||
|
cred.type != "oauth2"
|
||||||
|
or _credential_has_required_scopes(cred, credential_requirements)
|
||||||
|
)
|
||||||
|
and (
|
||||||
|
cred.type != "host_scoped"
|
||||||
|
or _credential_is_for_host(cred, credential_requirements)
|
||||||
|
)
|
||||||
),
|
),
|
||||||
None,
|
None,
|
||||||
)
|
)
|
||||||
@@ -318,19 +330,10 @@ async def match_user_credentials_to_graph(
|
|||||||
|
|
||||||
|
|
||||||
def _credential_has_required_scopes(
|
def _credential_has_required_scopes(
|
||||||
credential: Credentials,
|
credential: OAuth2Credentials,
|
||||||
requirements: CredentialsFieldInfo,
|
requirements: CredentialsFieldInfo,
|
||||||
) -> bool:
|
) -> bool:
|
||||||
"""
|
"""Check if an OAuth2 credential has all the scopes required by the input."""
|
||||||
Check if a credential has all the scopes required by the block.
|
|
||||||
|
|
||||||
For OAuth2 credentials, verifies that the credential's scopes are a superset
|
|
||||||
of the required scopes. For other credential types, returns True (no scope check).
|
|
||||||
"""
|
|
||||||
# Only OAuth2 credentials have scopes to check
|
|
||||||
if credential.type != "oauth2":
|
|
||||||
return True
|
|
||||||
|
|
||||||
# If no scopes are required, any credential matches
|
# If no scopes are required, any credential matches
|
||||||
if not requirements.required_scopes:
|
if not requirements.required_scopes:
|
||||||
return True
|
return True
|
||||||
@@ -339,6 +342,22 @@ def _credential_has_required_scopes(
|
|||||||
return set(credential.scopes).issuperset(requirements.required_scopes)
|
return set(credential.scopes).issuperset(requirements.required_scopes)
|
||||||
|
|
||||||
|
|
||||||
|
def _credential_is_for_host(
|
||||||
|
credential: HostScopedCredentials,
|
||||||
|
requirements: CredentialsFieldInfo,
|
||||||
|
) -> bool:
|
||||||
|
"""Check if a host-scoped credential matches the host required by the input."""
|
||||||
|
# We need to know the host to match host-scoped credentials to.
|
||||||
|
# Graph.aggregate_credentials_inputs() adds the node's set URL value (if any)
|
||||||
|
# to discriminator_values. No discriminator_values -> no host to match against.
|
||||||
|
if not requirements.discriminator_values:
|
||||||
|
return True
|
||||||
|
|
||||||
|
# Check that credential host matches required host.
|
||||||
|
# Host-scoped credential inputs are grouped by host, so any item from the set works.
|
||||||
|
return credential.matches_url(list(requirements.discriminator_values)[0])
|
||||||
|
|
||||||
|
|
||||||
async def check_user_has_required_credentials(
|
async def check_user_has_required_credentials(
|
||||||
user_id: str,
|
user_id: str,
|
||||||
required_credentials: list[CredentialsMetaInput],
|
required_credentials: list[CredentialsMetaInput],
|
||||||
|
|||||||
@@ -19,7 +19,10 @@ from backend.data.graph import GraphSettings
|
|||||||
from backend.data.includes import AGENT_PRESET_INCLUDE, library_agent_include
|
from backend.data.includes import AGENT_PRESET_INCLUDE, library_agent_include
|
||||||
from backend.data.model import CredentialsMetaInput
|
from backend.data.model import CredentialsMetaInput
|
||||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||||
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
|
from backend.integrations.webhooks.graph_lifecycle_hooks import (
|
||||||
|
on_graph_activate,
|
||||||
|
on_graph_deactivate,
|
||||||
|
)
|
||||||
from backend.util.clients import get_scheduler_client
|
from backend.util.clients import get_scheduler_client
|
||||||
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
|
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
|
||||||
from backend.util.json import SafeJson
|
from backend.util.json import SafeJson
|
||||||
@@ -537,6 +540,92 @@ async def update_agent_version_in_library(
|
|||||||
return library_model.LibraryAgent.from_db(lib)
|
return library_model.LibraryAgent.from_db(lib)
|
||||||
|
|
||||||
|
|
||||||
|
async def create_graph_in_library(
|
||||||
|
graph: graph_db.Graph,
|
||||||
|
user_id: str,
|
||||||
|
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
|
||||||
|
"""Create a new graph and add it to the user's library."""
|
||||||
|
graph.version = 1
|
||||||
|
graph_model = graph_db.make_graph_model(graph, user_id)
|
||||||
|
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=True)
|
||||||
|
|
||||||
|
created_graph = await graph_db.create_graph(graph_model, user_id)
|
||||||
|
|
||||||
|
library_agents = await create_library_agent(
|
||||||
|
graph=created_graph,
|
||||||
|
user_id=user_id,
|
||||||
|
sensitive_action_safe_mode=True,
|
||||||
|
create_library_agents_for_sub_graphs=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
if created_graph.is_active:
|
||||||
|
created_graph = await on_graph_activate(created_graph, user_id=user_id)
|
||||||
|
|
||||||
|
return created_graph, library_agents[0]
|
||||||
|
|
||||||
|
|
||||||
|
async def update_graph_in_library(
|
||||||
|
graph: graph_db.Graph,
|
||||||
|
user_id: str,
|
||||||
|
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
|
||||||
|
"""Create a new version of an existing graph and update the library entry."""
|
||||||
|
existing_versions = await graph_db.get_graph_all_versions(graph.id, user_id)
|
||||||
|
current_active_version = (
|
||||||
|
next((v for v in existing_versions if v.is_active), None)
|
||||||
|
if existing_versions
|
||||||
|
else None
|
||||||
|
)
|
||||||
|
graph.version = (
|
||||||
|
max(v.version for v in existing_versions) + 1 if existing_versions else 1
|
||||||
|
)
|
||||||
|
|
||||||
|
graph_model = graph_db.make_graph_model(graph, user_id)
|
||||||
|
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=False)
|
||||||
|
|
||||||
|
created_graph = await graph_db.create_graph(graph_model, user_id)
|
||||||
|
|
||||||
|
library_agent = await get_library_agent_by_graph_id(user_id, created_graph.id)
|
||||||
|
if not library_agent:
|
||||||
|
raise NotFoundError(f"Library agent not found for graph {created_graph.id}")
|
||||||
|
|
||||||
|
library_agent = await update_library_agent_version_and_settings(
|
||||||
|
user_id, created_graph
|
||||||
|
)
|
||||||
|
|
||||||
|
if created_graph.is_active:
|
||||||
|
created_graph = await on_graph_activate(created_graph, user_id=user_id)
|
||||||
|
await graph_db.set_graph_active_version(
|
||||||
|
graph_id=created_graph.id,
|
||||||
|
version=created_graph.version,
|
||||||
|
user_id=user_id,
|
||||||
|
)
|
||||||
|
if current_active_version:
|
||||||
|
await on_graph_deactivate(current_active_version, user_id=user_id)
|
||||||
|
|
||||||
|
return created_graph, library_agent
|
||||||
|
|
||||||
|
|
||||||
|
async def update_library_agent_version_and_settings(
|
||||||
|
user_id: str, agent_graph: graph_db.GraphModel
|
||||||
|
) -> library_model.LibraryAgent:
|
||||||
|
"""Update library agent to point to new graph version and sync settings."""
|
||||||
|
library = await update_agent_version_in_library(
|
||||||
|
user_id, agent_graph.id, agent_graph.version
|
||||||
|
)
|
||||||
|
updated_settings = GraphSettings.from_graph(
|
||||||
|
graph=agent_graph,
|
||||||
|
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
|
||||||
|
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
|
||||||
|
)
|
||||||
|
if updated_settings != library.settings:
|
||||||
|
library = await update_library_agent(
|
||||||
|
library_agent_id=library.id,
|
||||||
|
user_id=user_id,
|
||||||
|
settings=updated_settings,
|
||||||
|
)
|
||||||
|
return library
|
||||||
|
|
||||||
|
|
||||||
async def update_library_agent(
|
async def update_library_agent(
|
||||||
library_agent_id: str,
|
library_agent_id: str,
|
||||||
user_id: str,
|
user_id: str,
|
||||||
|
|||||||
@@ -112,6 +112,7 @@ async def get_store_agents(
|
|||||||
description=agent["description"],
|
description=agent["description"],
|
||||||
runs=agent["runs"],
|
runs=agent["runs"],
|
||||||
rating=agent["rating"],
|
rating=agent["rating"],
|
||||||
|
agent_graph_id=agent.get("agentGraphId", ""),
|
||||||
)
|
)
|
||||||
store_agents.append(store_agent)
|
store_agents.append(store_agent)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@@ -170,6 +171,7 @@ async def get_store_agents(
|
|||||||
description=agent.description,
|
description=agent.description,
|
||||||
runs=agent.runs,
|
runs=agent.runs,
|
||||||
rating=agent.rating,
|
rating=agent.rating,
|
||||||
|
agent_graph_id=agent.agentGraphId,
|
||||||
)
|
)
|
||||||
# Add to the list only if creation was successful
|
# Add to the list only if creation was successful
|
||||||
store_agents.append(store_agent)
|
store_agents.append(store_agent)
|
||||||
|
|||||||
@@ -454,6 +454,9 @@ async def test_unified_hybrid_search_pagination(
|
|||||||
cleanup_embeddings: list,
|
cleanup_embeddings: list,
|
||||||
):
|
):
|
||||||
"""Test unified search pagination works correctly."""
|
"""Test unified search pagination works correctly."""
|
||||||
|
# Use a unique search term to avoid matching other test data
|
||||||
|
unique_term = f"xyzpagtest{uuid.uuid4().hex[:8]}"
|
||||||
|
|
||||||
# Create multiple items
|
# Create multiple items
|
||||||
content_ids = []
|
content_ids = []
|
||||||
for i in range(5):
|
for i in range(5):
|
||||||
@@ -465,14 +468,14 @@ async def test_unified_hybrid_search_pagination(
|
|||||||
content_type=ContentType.BLOCK,
|
content_type=ContentType.BLOCK,
|
||||||
content_id=content_id,
|
content_id=content_id,
|
||||||
embedding=mock_embedding,
|
embedding=mock_embedding,
|
||||||
searchable_text=f"pagination test item number {i}",
|
searchable_text=f"{unique_term} item number {i}",
|
||||||
metadata={"index": i},
|
metadata={"index": i},
|
||||||
user_id=None,
|
user_id=None,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Get first page
|
# Get first page
|
||||||
page1_results, total1 = await unified_hybrid_search(
|
page1_results, total1 = await unified_hybrid_search(
|
||||||
query="pagination test",
|
query=unique_term,
|
||||||
content_types=[ContentType.BLOCK],
|
content_types=[ContentType.BLOCK],
|
||||||
page=1,
|
page=1,
|
||||||
page_size=2,
|
page_size=2,
|
||||||
@@ -480,7 +483,7 @@ async def test_unified_hybrid_search_pagination(
|
|||||||
|
|
||||||
# Get second page
|
# Get second page
|
||||||
page2_results, total2 = await unified_hybrid_search(
|
page2_results, total2 = await unified_hybrid_search(
|
||||||
query="pagination test",
|
query=unique_term,
|
||||||
content_types=[ContentType.BLOCK],
|
content_types=[ContentType.BLOCK],
|
||||||
page=2,
|
page=2,
|
||||||
page_size=2,
|
page_size=2,
|
||||||
|
|||||||
@@ -600,6 +600,7 @@ async def hybrid_search(
|
|||||||
sa.featured,
|
sa.featured,
|
||||||
sa.is_available,
|
sa.is_available,
|
||||||
sa.updated_at,
|
sa.updated_at,
|
||||||
|
sa."agentGraphId",
|
||||||
-- Searchable text for BM25 reranking
|
-- Searchable text for BM25 reranking
|
||||||
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
|
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
|
||||||
-- Semantic score
|
-- Semantic score
|
||||||
@@ -659,6 +660,7 @@ async def hybrid_search(
|
|||||||
featured,
|
featured,
|
||||||
is_available,
|
is_available,
|
||||||
updated_at,
|
updated_at,
|
||||||
|
"agentGraphId",
|
||||||
searchable_text,
|
searchable_text,
|
||||||
semantic_score,
|
semantic_score,
|
||||||
lexical_score,
|
lexical_score,
|
||||||
|
|||||||
@@ -38,6 +38,7 @@ class StoreAgent(pydantic.BaseModel):
|
|||||||
description: str
|
description: str
|
||||||
runs: int
|
runs: int
|
||||||
rating: float
|
rating: float
|
||||||
|
agent_graph_id: str
|
||||||
|
|
||||||
|
|
||||||
class StoreAgentsResponse(pydantic.BaseModel):
|
class StoreAgentsResponse(pydantic.BaseModel):
|
||||||
|
|||||||
@@ -26,11 +26,13 @@ def test_store_agent():
|
|||||||
description="Test description",
|
description="Test description",
|
||||||
runs=50,
|
runs=50,
|
||||||
rating=4.5,
|
rating=4.5,
|
||||||
|
agent_graph_id="test-graph-id",
|
||||||
)
|
)
|
||||||
assert agent.slug == "test-agent"
|
assert agent.slug == "test-agent"
|
||||||
assert agent.agent_name == "Test Agent"
|
assert agent.agent_name == "Test Agent"
|
||||||
assert agent.runs == 50
|
assert agent.runs == 50
|
||||||
assert agent.rating == 4.5
|
assert agent.rating == 4.5
|
||||||
|
assert agent.agent_graph_id == "test-graph-id"
|
||||||
|
|
||||||
|
|
||||||
def test_store_agents_response():
|
def test_store_agents_response():
|
||||||
@@ -46,6 +48,7 @@ def test_store_agents_response():
|
|||||||
description="Test description",
|
description="Test description",
|
||||||
runs=50,
|
runs=50,
|
||||||
rating=4.5,
|
rating=4.5,
|
||||||
|
agent_graph_id="test-graph-id",
|
||||||
)
|
)
|
||||||
],
|
],
|
||||||
pagination=store_model.Pagination(
|
pagination=store_model.Pagination(
|
||||||
|
|||||||
@@ -82,6 +82,7 @@ def test_get_agents_featured(
|
|||||||
description="Featured agent description",
|
description="Featured agent description",
|
||||||
runs=100,
|
runs=100,
|
||||||
rating=4.5,
|
rating=4.5,
|
||||||
|
agent_graph_id="test-graph-1",
|
||||||
)
|
)
|
||||||
],
|
],
|
||||||
pagination=store_model.Pagination(
|
pagination=store_model.Pagination(
|
||||||
@@ -127,6 +128,7 @@ def test_get_agents_by_creator(
|
|||||||
description="Creator agent description",
|
description="Creator agent description",
|
||||||
runs=50,
|
runs=50,
|
||||||
rating=4.0,
|
rating=4.0,
|
||||||
|
agent_graph_id="test-graph-2",
|
||||||
)
|
)
|
||||||
],
|
],
|
||||||
pagination=store_model.Pagination(
|
pagination=store_model.Pagination(
|
||||||
@@ -172,6 +174,7 @@ def test_get_agents_sorted(
|
|||||||
description="Top agent description",
|
description="Top agent description",
|
||||||
runs=1000,
|
runs=1000,
|
||||||
rating=5.0,
|
rating=5.0,
|
||||||
|
agent_graph_id="test-graph-3",
|
||||||
)
|
)
|
||||||
],
|
],
|
||||||
pagination=store_model.Pagination(
|
pagination=store_model.Pagination(
|
||||||
@@ -217,6 +220,7 @@ def test_get_agents_search(
|
|||||||
description="Specific search term description",
|
description="Specific search term description",
|
||||||
runs=75,
|
runs=75,
|
||||||
rating=4.2,
|
rating=4.2,
|
||||||
|
agent_graph_id="test-graph-search",
|
||||||
)
|
)
|
||||||
],
|
],
|
||||||
pagination=store_model.Pagination(
|
pagination=store_model.Pagination(
|
||||||
@@ -262,6 +266,7 @@ def test_get_agents_category(
|
|||||||
description="Category agent description",
|
description="Category agent description",
|
||||||
runs=60,
|
runs=60,
|
||||||
rating=4.1,
|
rating=4.1,
|
||||||
|
agent_graph_id="test-graph-category",
|
||||||
)
|
)
|
||||||
],
|
],
|
||||||
pagination=store_model.Pagination(
|
pagination=store_model.Pagination(
|
||||||
@@ -306,6 +311,7 @@ def test_get_agents_pagination(
|
|||||||
description=f"Agent {i} description",
|
description=f"Agent {i} description",
|
||||||
runs=i * 10,
|
runs=i * 10,
|
||||||
rating=4.0,
|
rating=4.0,
|
||||||
|
agent_graph_id="test-graph-2",
|
||||||
)
|
)
|
||||||
for i in range(5)
|
for i in range(5)
|
||||||
],
|
],
|
||||||
|
|||||||
@@ -33,6 +33,7 @@ class TestCacheDeletion:
|
|||||||
description="Test description",
|
description="Test description",
|
||||||
runs=100,
|
runs=100,
|
||||||
rating=4.5,
|
rating=4.5,
|
||||||
|
agent_graph_id="test-graph-id",
|
||||||
)
|
)
|
||||||
],
|
],
|
||||||
pagination=Pagination(
|
pagination=Pagination(
|
||||||
|
|||||||
@@ -101,7 +101,6 @@ from backend.util.timezone_utils import (
|
|||||||
from backend.util.virus_scanner import scan_content_safe
|
from backend.util.virus_scanner import scan_content_safe
|
||||||
|
|
||||||
from .library import db as library_db
|
from .library import db as library_db
|
||||||
from .library import model as library_model
|
|
||||||
from .store.model import StoreAgentDetails
|
from .store.model import StoreAgentDetails
|
||||||
|
|
||||||
|
|
||||||
@@ -823,18 +822,16 @@ async def update_graph(
|
|||||||
graph: graph_db.Graph,
|
graph: graph_db.Graph,
|
||||||
user_id: Annotated[str, Security(get_user_id)],
|
user_id: Annotated[str, Security(get_user_id)],
|
||||||
) -> graph_db.GraphModel:
|
) -> graph_db.GraphModel:
|
||||||
# Sanity check
|
|
||||||
if graph.id and graph.id != graph_id:
|
if graph.id and graph.id != graph_id:
|
||||||
raise HTTPException(400, detail="Graph ID does not match ID in URI")
|
raise HTTPException(400, detail="Graph ID does not match ID in URI")
|
||||||
|
|
||||||
# Determine new version
|
|
||||||
existing_versions = await graph_db.get_graph_all_versions(graph_id, user_id=user_id)
|
existing_versions = await graph_db.get_graph_all_versions(graph_id, user_id=user_id)
|
||||||
if not existing_versions:
|
if not existing_versions:
|
||||||
raise HTTPException(404, detail=f"Graph #{graph_id} not found")
|
raise HTTPException(404, detail=f"Graph #{graph_id} not found")
|
||||||
latest_version_number = max(g.version for g in existing_versions)
|
|
||||||
graph.version = latest_version_number + 1
|
|
||||||
|
|
||||||
|
graph.version = max(g.version for g in existing_versions) + 1
|
||||||
current_active_version = next((v for v in existing_versions if v.is_active), None)
|
current_active_version = next((v for v in existing_versions if v.is_active), None)
|
||||||
|
|
||||||
graph = graph_db.make_graph_model(graph, user_id)
|
graph = graph_db.make_graph_model(graph, user_id)
|
||||||
graph.reassign_ids(user_id=user_id, reassign_graph_id=False)
|
graph.reassign_ids(user_id=user_id, reassign_graph_id=False)
|
||||||
graph.validate_graph(for_run=False)
|
graph.validate_graph(for_run=False)
|
||||||
@@ -842,27 +839,23 @@ async def update_graph(
|
|||||||
new_graph_version = await graph_db.create_graph(graph, user_id=user_id)
|
new_graph_version = await graph_db.create_graph(graph, user_id=user_id)
|
||||||
|
|
||||||
if new_graph_version.is_active:
|
if new_graph_version.is_active:
|
||||||
# Keep the library agent up to date with the new active version
|
await library_db.update_library_agent_version_and_settings(
|
||||||
await _update_library_agent_version_and_settings(user_id, new_graph_version)
|
user_id, new_graph_version
|
||||||
|
)
|
||||||
# Handle activation of the new graph first to ensure continuity
|
|
||||||
new_graph_version = await on_graph_activate(new_graph_version, user_id=user_id)
|
new_graph_version = await on_graph_activate(new_graph_version, user_id=user_id)
|
||||||
# Ensure new version is the only active version
|
|
||||||
await graph_db.set_graph_active_version(
|
await graph_db.set_graph_active_version(
|
||||||
graph_id=graph_id, version=new_graph_version.version, user_id=user_id
|
graph_id=graph_id, version=new_graph_version.version, user_id=user_id
|
||||||
)
|
)
|
||||||
if current_active_version:
|
if current_active_version:
|
||||||
# Handle deactivation of the previously active version
|
|
||||||
await on_graph_deactivate(current_active_version, user_id=user_id)
|
await on_graph_deactivate(current_active_version, user_id=user_id)
|
||||||
|
|
||||||
# Fetch new graph version *with sub-graphs* (needed for credentials input schema)
|
|
||||||
new_graph_version_with_subgraphs = await graph_db.get_graph(
|
new_graph_version_with_subgraphs = await graph_db.get_graph(
|
||||||
graph_id,
|
graph_id,
|
||||||
new_graph_version.version,
|
new_graph_version.version,
|
||||||
user_id=user_id,
|
user_id=user_id,
|
||||||
include_subgraphs=True,
|
include_subgraphs=True,
|
||||||
)
|
)
|
||||||
assert new_graph_version_with_subgraphs # make type checker happy
|
assert new_graph_version_with_subgraphs
|
||||||
return new_graph_version_with_subgraphs
|
return new_graph_version_with_subgraphs
|
||||||
|
|
||||||
|
|
||||||
@@ -900,33 +893,15 @@ async def set_graph_active_version(
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Keep the library agent up to date with the new active version
|
# Keep the library agent up to date with the new active version
|
||||||
await _update_library_agent_version_and_settings(user_id, new_active_graph)
|
await library_db.update_library_agent_version_and_settings(
|
||||||
|
user_id, new_active_graph
|
||||||
|
)
|
||||||
|
|
||||||
if current_active_graph and current_active_graph.version != new_active_version:
|
if current_active_graph and current_active_graph.version != new_active_version:
|
||||||
# Handle deactivation of the previously active version
|
# Handle deactivation of the previously active version
|
||||||
await on_graph_deactivate(current_active_graph, user_id=user_id)
|
await on_graph_deactivate(current_active_graph, user_id=user_id)
|
||||||
|
|
||||||
|
|
||||||
async def _update_library_agent_version_and_settings(
|
|
||||||
user_id: str, agent_graph: graph_db.GraphModel
|
|
||||||
) -> library_model.LibraryAgent:
|
|
||||||
library = await library_db.update_agent_version_in_library(
|
|
||||||
user_id, agent_graph.id, agent_graph.version
|
|
||||||
)
|
|
||||||
updated_settings = GraphSettings.from_graph(
|
|
||||||
graph=agent_graph,
|
|
||||||
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
|
|
||||||
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
|
|
||||||
)
|
|
||||||
if updated_settings != library.settings:
|
|
||||||
library = await library_db.update_library_agent(
|
|
||||||
library_agent_id=library.id,
|
|
||||||
user_id=user_id,
|
|
||||||
settings=updated_settings,
|
|
||||||
)
|
|
||||||
return library
|
|
||||||
|
|
||||||
|
|
||||||
@v1_router.patch(
|
@v1_router.patch(
|
||||||
path="/graphs/{graph_id}/settings",
|
path="/graphs/{graph_id}/settings",
|
||||||
summary="Update graph settings",
|
summary="Update graph settings",
|
||||||
|
|||||||
@@ -40,6 +40,10 @@ import backend.data.user
|
|||||||
import backend.integrations.webhooks.utils
|
import backend.integrations.webhooks.utils
|
||||||
import backend.util.service
|
import backend.util.service
|
||||||
import backend.util.settings
|
import backend.util.settings
|
||||||
|
from backend.api.features.chat.completion_consumer import (
|
||||||
|
start_completion_consumer,
|
||||||
|
stop_completion_consumer,
|
||||||
|
)
|
||||||
from backend.blocks.llm import DEFAULT_LLM_MODEL
|
from backend.blocks.llm import DEFAULT_LLM_MODEL
|
||||||
from backend.data.model import Credentials
|
from backend.data.model import Credentials
|
||||||
from backend.integrations.providers import ProviderName
|
from backend.integrations.providers import ProviderName
|
||||||
@@ -118,9 +122,21 @@ async def lifespan_context(app: fastapi.FastAPI):
|
|||||||
await backend.data.graph.migrate_llm_models(DEFAULT_LLM_MODEL)
|
await backend.data.graph.migrate_llm_models(DEFAULT_LLM_MODEL)
|
||||||
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
|
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
|
||||||
|
|
||||||
|
# Start chat completion consumer for Redis Streams notifications
|
||||||
|
try:
|
||||||
|
await start_completion_consumer()
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Could not start chat completion consumer: {e}")
|
||||||
|
|
||||||
with launch_darkly_context():
|
with launch_darkly_context():
|
||||||
yield
|
yield
|
||||||
|
|
||||||
|
# Stop chat completion consumer
|
||||||
|
try:
|
||||||
|
await stop_completion_consumer()
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Error stopping chat completion consumer: {e}")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
await shutdown_cloud_storage_handler()
|
await shutdown_cloud_storage_handler()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
|
|||||||
@@ -66,18 +66,24 @@ async def event_broadcaster(manager: ConnectionManager):
|
|||||||
execution_bus = AsyncRedisExecutionEventBus()
|
execution_bus = AsyncRedisExecutionEventBus()
|
||||||
notification_bus = AsyncRedisNotificationEventBus()
|
notification_bus = AsyncRedisNotificationEventBus()
|
||||||
|
|
||||||
async def execution_worker():
|
try:
|
||||||
async for event in execution_bus.listen("*"):
|
|
||||||
await manager.send_execution_update(event)
|
|
||||||
|
|
||||||
async def notification_worker():
|
async def execution_worker():
|
||||||
async for notification in notification_bus.listen("*"):
|
async for event in execution_bus.listen("*"):
|
||||||
await manager.send_notification(
|
await manager.send_execution_update(event)
|
||||||
user_id=notification.user_id,
|
|
||||||
payload=notification.payload,
|
|
||||||
)
|
|
||||||
|
|
||||||
await asyncio.gather(execution_worker(), notification_worker())
|
async def notification_worker():
|
||||||
|
async for notification in notification_bus.listen("*"):
|
||||||
|
await manager.send_notification(
|
||||||
|
user_id=notification.user_id,
|
||||||
|
payload=notification.payload,
|
||||||
|
)
|
||||||
|
|
||||||
|
await asyncio.gather(execution_worker(), notification_worker())
|
||||||
|
finally:
|
||||||
|
# Ensure PubSub connections are closed on any exit to prevent leaks
|
||||||
|
await execution_bus.close()
|
||||||
|
await notification_bus.close()
|
||||||
|
|
||||||
|
|
||||||
async def authenticate_websocket(websocket: WebSocket) -> str:
|
async def authenticate_websocket(websocket: WebSocket) -> str:
|
||||||
|
|||||||
28
autogpt_platform/backend/backend/blocks/elevenlabs/_auth.py
Normal file
28
autogpt_platform/backend/backend/blocks/elevenlabs/_auth.py
Normal file
@@ -0,0 +1,28 @@
|
|||||||
|
"""ElevenLabs integration blocks - test credentials and shared utilities."""
|
||||||
|
|
||||||
|
from typing import Literal
|
||||||
|
|
||||||
|
from pydantic import SecretStr
|
||||||
|
|
||||||
|
from backend.data.model import APIKeyCredentials, CredentialsMetaInput
|
||||||
|
from backend.integrations.providers import ProviderName
|
||||||
|
|
||||||
|
TEST_CREDENTIALS = APIKeyCredentials(
|
||||||
|
id="01234567-89ab-cdef-0123-456789abcdef",
|
||||||
|
provider="elevenlabs",
|
||||||
|
api_key=SecretStr("mock-elevenlabs-api-key"),
|
||||||
|
title="Mock ElevenLabs API key",
|
||||||
|
expires_at=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
TEST_CREDENTIALS_INPUT = {
|
||||||
|
"provider": TEST_CREDENTIALS.provider,
|
||||||
|
"id": TEST_CREDENTIALS.id,
|
||||||
|
"type": TEST_CREDENTIALS.type,
|
||||||
|
"title": TEST_CREDENTIALS.title,
|
||||||
|
}
|
||||||
|
|
||||||
|
ElevenLabsCredentials = APIKeyCredentials
|
||||||
|
ElevenLabsCredentialsInput = CredentialsMetaInput[
|
||||||
|
Literal[ProviderName.ELEVENLABS], Literal["api_key"]
|
||||||
|
]
|
||||||
77
autogpt_platform/backend/backend/blocks/encoder_block.py
Normal file
77
autogpt_platform/backend/backend/blocks/encoder_block.py
Normal file
@@ -0,0 +1,77 @@
|
|||||||
|
"""Text encoding block for converting special characters to escape sequences."""
|
||||||
|
|
||||||
|
import codecs
|
||||||
|
|
||||||
|
from backend.data.block import (
|
||||||
|
Block,
|
||||||
|
BlockCategory,
|
||||||
|
BlockOutput,
|
||||||
|
BlockSchemaInput,
|
||||||
|
BlockSchemaOutput,
|
||||||
|
)
|
||||||
|
from backend.data.model import SchemaField
|
||||||
|
|
||||||
|
|
||||||
|
class TextEncoderBlock(Block):
|
||||||
|
"""
|
||||||
|
Encodes a string by converting special characters into escape sequences.
|
||||||
|
|
||||||
|
This block is the inverse of TextDecoderBlock. It takes text containing
|
||||||
|
special characters (like newlines, tabs, etc.) and converts them into
|
||||||
|
their escape sequence representations (e.g., newline becomes \\n).
|
||||||
|
"""
|
||||||
|
|
||||||
|
class Input(BlockSchemaInput):
|
||||||
|
"""Input schema for TextEncoderBlock."""
|
||||||
|
|
||||||
|
text: str = SchemaField(
|
||||||
|
description="A string containing special characters to be encoded",
|
||||||
|
placeholder="Your text with newlines and quotes to encode",
|
||||||
|
)
|
||||||
|
|
||||||
|
class Output(BlockSchemaOutput):
|
||||||
|
"""Output schema for TextEncoderBlock."""
|
||||||
|
|
||||||
|
encoded_text: str = SchemaField(
|
||||||
|
description="The encoded text with special characters converted to escape sequences"
|
||||||
|
)
|
||||||
|
error: str = SchemaField(description="Error message if encoding fails")
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(
|
||||||
|
id="5185f32e-4b65-4ecf-8fbb-873f003f09d6",
|
||||||
|
description="Encodes a string by converting special characters into escape sequences",
|
||||||
|
categories={BlockCategory.TEXT},
|
||||||
|
input_schema=TextEncoderBlock.Input,
|
||||||
|
output_schema=TextEncoderBlock.Output,
|
||||||
|
test_input={
|
||||||
|
"text": """Hello
|
||||||
|
World!
|
||||||
|
This is a "quoted" string."""
|
||||||
|
},
|
||||||
|
test_output=[
|
||||||
|
(
|
||||||
|
"encoded_text",
|
||||||
|
"""Hello\\nWorld!\\nThis is a "quoted" string.""",
|
||||||
|
)
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
|
||||||
|
"""
|
||||||
|
Encode the input text by converting special characters to escape sequences.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_data: The input containing the text to encode.
|
||||||
|
**kwargs: Additional keyword arguments (unused).
|
||||||
|
|
||||||
|
Yields:
|
||||||
|
The encoded text with escape sequences, or an error message if encoding fails.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
encoded_text = codecs.encode(input_data.text, "unicode_escape").decode(
|
||||||
|
"utf-8"
|
||||||
|
)
|
||||||
|
yield "encoded_text", encoded_text
|
||||||
|
except Exception as e:
|
||||||
|
yield "error", f"Encoding error: {str(e)}"
|
||||||
@@ -162,8 +162,16 @@ class LinearClient:
|
|||||||
"searchTerm": team_name,
|
"searchTerm": team_name,
|
||||||
}
|
}
|
||||||
|
|
||||||
team_id = await self.query(query, variables)
|
result = await self.query(query, variables)
|
||||||
return team_id["teams"]["nodes"][0]["id"]
|
nodes = result["teams"]["nodes"]
|
||||||
|
|
||||||
|
if not nodes:
|
||||||
|
raise LinearAPIException(
|
||||||
|
f"Team '{team_name}' not found. Check the team name or key and try again.",
|
||||||
|
status_code=404,
|
||||||
|
)
|
||||||
|
|
||||||
|
return nodes[0]["id"]
|
||||||
except LinearAPIException as e:
|
except LinearAPIException as e:
|
||||||
raise e
|
raise e
|
||||||
|
|
||||||
@@ -240,17 +248,44 @@ class LinearClient:
|
|||||||
except LinearAPIException as e:
|
except LinearAPIException as e:
|
||||||
raise e
|
raise e
|
||||||
|
|
||||||
async def try_search_issues(self, term: str) -> list[Issue]:
|
async def try_search_issues(
|
||||||
|
self,
|
||||||
|
term: str,
|
||||||
|
max_results: int = 10,
|
||||||
|
team_id: str | None = None,
|
||||||
|
) -> list[Issue]:
|
||||||
try:
|
try:
|
||||||
query = """
|
query = """
|
||||||
query SearchIssues($term: String!, $includeComments: Boolean!) {
|
query SearchIssues(
|
||||||
searchIssues(term: $term, includeComments: $includeComments) {
|
$term: String!,
|
||||||
|
$first: Int,
|
||||||
|
$teamId: String
|
||||||
|
) {
|
||||||
|
searchIssues(
|
||||||
|
term: $term,
|
||||||
|
first: $first,
|
||||||
|
teamId: $teamId
|
||||||
|
) {
|
||||||
nodes {
|
nodes {
|
||||||
id
|
id
|
||||||
identifier
|
identifier
|
||||||
title
|
title
|
||||||
description
|
description
|
||||||
priority
|
priority
|
||||||
|
createdAt
|
||||||
|
state {
|
||||||
|
id
|
||||||
|
name
|
||||||
|
type
|
||||||
|
}
|
||||||
|
project {
|
||||||
|
id
|
||||||
|
name
|
||||||
|
}
|
||||||
|
assignee {
|
||||||
|
id
|
||||||
|
name
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -258,7 +293,8 @@ class LinearClient:
|
|||||||
|
|
||||||
variables: dict[str, Any] = {
|
variables: dict[str, Any] = {
|
||||||
"term": term,
|
"term": term,
|
||||||
"includeComments": True,
|
"first": max_results,
|
||||||
|
"teamId": team_id,
|
||||||
}
|
}
|
||||||
|
|
||||||
issues = await self.query(query, variables)
|
issues = await self.query(query, variables)
|
||||||
|
|||||||
@@ -17,7 +17,7 @@ from ._config import (
|
|||||||
LinearScope,
|
LinearScope,
|
||||||
linear,
|
linear,
|
||||||
)
|
)
|
||||||
from .models import CreateIssueResponse, Issue
|
from .models import CreateIssueResponse, Issue, State
|
||||||
|
|
||||||
|
|
||||||
class LinearCreateIssueBlock(Block):
|
class LinearCreateIssueBlock(Block):
|
||||||
@@ -135,9 +135,20 @@ class LinearSearchIssuesBlock(Block):
|
|||||||
description="Linear credentials with read permissions",
|
description="Linear credentials with read permissions",
|
||||||
required_scopes={LinearScope.READ},
|
required_scopes={LinearScope.READ},
|
||||||
)
|
)
|
||||||
|
max_results: int = SchemaField(
|
||||||
|
description="Maximum number of results to return",
|
||||||
|
default=10,
|
||||||
|
ge=1,
|
||||||
|
le=100,
|
||||||
|
)
|
||||||
|
team_name: str | None = SchemaField(
|
||||||
|
description="Optional team name to filter results (e.g., 'Internal', 'Open Source')",
|
||||||
|
default=None,
|
||||||
|
)
|
||||||
|
|
||||||
class Output(BlockSchemaOutput):
|
class Output(BlockSchemaOutput):
|
||||||
issues: list[Issue] = SchemaField(description="List of issues")
|
issues: list[Issue] = SchemaField(description="List of issues")
|
||||||
|
error: str = SchemaField(description="Error message if the search failed")
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super().__init__(
|
super().__init__(
|
||||||
@@ -145,8 +156,11 @@ class LinearSearchIssuesBlock(Block):
|
|||||||
description="Searches for issues on Linear",
|
description="Searches for issues on Linear",
|
||||||
input_schema=self.Input,
|
input_schema=self.Input,
|
||||||
output_schema=self.Output,
|
output_schema=self.Output,
|
||||||
|
categories={BlockCategory.PRODUCTIVITY, BlockCategory.ISSUE_TRACKING},
|
||||||
test_input={
|
test_input={
|
||||||
"term": "Test issue",
|
"term": "Test issue",
|
||||||
|
"max_results": 10,
|
||||||
|
"team_name": None,
|
||||||
"credentials": TEST_CREDENTIALS_INPUT_OAUTH,
|
"credentials": TEST_CREDENTIALS_INPUT_OAUTH,
|
||||||
},
|
},
|
||||||
test_credentials=TEST_CREDENTIALS_OAUTH,
|
test_credentials=TEST_CREDENTIALS_OAUTH,
|
||||||
@@ -156,10 +170,14 @@ class LinearSearchIssuesBlock(Block):
|
|||||||
[
|
[
|
||||||
Issue(
|
Issue(
|
||||||
id="abc123",
|
id="abc123",
|
||||||
identifier="abc123",
|
identifier="TST-123",
|
||||||
title="Test issue",
|
title="Test issue",
|
||||||
description="Test description",
|
description="Test description",
|
||||||
priority=1,
|
priority=1,
|
||||||
|
state=State(
|
||||||
|
id="state1", name="In Progress", type="started"
|
||||||
|
),
|
||||||
|
createdAt="2026-01-15T10:00:00.000Z",
|
||||||
)
|
)
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
@@ -168,10 +186,12 @@ class LinearSearchIssuesBlock(Block):
|
|||||||
"search_issues": lambda *args, **kwargs: [
|
"search_issues": lambda *args, **kwargs: [
|
||||||
Issue(
|
Issue(
|
||||||
id="abc123",
|
id="abc123",
|
||||||
identifier="abc123",
|
identifier="TST-123",
|
||||||
title="Test issue",
|
title="Test issue",
|
||||||
description="Test description",
|
description="Test description",
|
||||||
priority=1,
|
priority=1,
|
||||||
|
state=State(id="state1", name="In Progress", type="started"),
|
||||||
|
createdAt="2026-01-15T10:00:00.000Z",
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -181,10 +201,22 @@ class LinearSearchIssuesBlock(Block):
|
|||||||
async def search_issues(
|
async def search_issues(
|
||||||
credentials: OAuth2Credentials | APIKeyCredentials,
|
credentials: OAuth2Credentials | APIKeyCredentials,
|
||||||
term: str,
|
term: str,
|
||||||
|
max_results: int = 10,
|
||||||
|
team_name: str | None = None,
|
||||||
) -> list[Issue]:
|
) -> list[Issue]:
|
||||||
client = LinearClient(credentials=credentials)
|
client = LinearClient(credentials=credentials)
|
||||||
response: list[Issue] = await client.try_search_issues(term=term)
|
|
||||||
return response
|
# Resolve team name to ID if provided
|
||||||
|
# Raises LinearAPIException with descriptive message if team not found
|
||||||
|
team_id: str | None = None
|
||||||
|
if team_name:
|
||||||
|
team_id = await client.try_get_team_by_name(team_name=team_name)
|
||||||
|
|
||||||
|
return await client.try_search_issues(
|
||||||
|
term=term,
|
||||||
|
max_results=max_results,
|
||||||
|
team_id=team_id,
|
||||||
|
)
|
||||||
|
|
||||||
async def run(
|
async def run(
|
||||||
self,
|
self,
|
||||||
@@ -196,7 +228,10 @@ class LinearSearchIssuesBlock(Block):
|
|||||||
"""Execute the issue search"""
|
"""Execute the issue search"""
|
||||||
try:
|
try:
|
||||||
issues = await self.search_issues(
|
issues = await self.search_issues(
|
||||||
credentials=credentials, term=input_data.term
|
credentials=credentials,
|
||||||
|
term=input_data.term,
|
||||||
|
max_results=input_data.max_results,
|
||||||
|
team_name=input_data.team_name,
|
||||||
)
|
)
|
||||||
yield "issues", issues
|
yield "issues", issues
|
||||||
except LinearAPIException as e:
|
except LinearAPIException as e:
|
||||||
|
|||||||
@@ -36,12 +36,21 @@ class Project(BaseModel):
|
|||||||
content: str | None = None
|
content: str | None = None
|
||||||
|
|
||||||
|
|
||||||
|
class State(BaseModel):
|
||||||
|
id: str
|
||||||
|
name: str
|
||||||
|
type: str | None = (
|
||||||
|
None # Workflow state type (e.g., "triage", "backlog", "started", "completed", "canceled")
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class Issue(BaseModel):
|
class Issue(BaseModel):
|
||||||
id: str
|
id: str
|
||||||
identifier: str
|
identifier: str
|
||||||
title: str
|
title: str
|
||||||
description: str | None
|
description: str | None
|
||||||
priority: int
|
priority: int
|
||||||
|
state: State | None = None
|
||||||
project: Project | None = None
|
project: Project | None = None
|
||||||
createdAt: str | None = None
|
createdAt: str | None = None
|
||||||
comments: list[Comment] | None = None
|
comments: list[Comment] | None = None
|
||||||
|
|||||||
@@ -32,7 +32,7 @@ from backend.data.model import (
|
|||||||
from backend.integrations.providers import ProviderName
|
from backend.integrations.providers import ProviderName
|
||||||
from backend.util import json
|
from backend.util import json
|
||||||
from backend.util.logging import TruncatedLogger
|
from backend.util.logging import TruncatedLogger
|
||||||
from backend.util.prompt import compress_prompt, estimate_token_count
|
from backend.util.prompt import compress_context, estimate_token_count
|
||||||
from backend.util.text import TextFormatter
|
from backend.util.text import TextFormatter
|
||||||
|
|
||||||
logger = TruncatedLogger(logging.getLogger(__name__), "[LLM-Block]")
|
logger = TruncatedLogger(logging.getLogger(__name__), "[LLM-Block]")
|
||||||
@@ -115,6 +115,7 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
|||||||
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
|
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
|
||||||
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
|
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
|
||||||
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
|
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
|
||||||
|
CLAUDE_4_6_OPUS = "claude-opus-4-6"
|
||||||
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
|
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
|
||||||
# AI/ML API models
|
# AI/ML API models
|
||||||
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
|
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
|
||||||
@@ -270,6 +271,9 @@ MODEL_METADATA = {
|
|||||||
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
|
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
|
||||||
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
|
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
|
||||||
), # claude-4-sonnet-20250514
|
), # claude-4-sonnet-20250514
|
||||||
|
LlmModel.CLAUDE_4_6_OPUS: ModelMetadata(
|
||||||
|
"anthropic", 200000, 128000, "Claude Opus 4.6", "Anthropic", "Anthropic", 3
|
||||||
|
), # claude-opus-4-6
|
||||||
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
|
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
|
||||||
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
|
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
|
||||||
), # claude-opus-4-5-20251101
|
), # claude-opus-4-5-20251101
|
||||||
@@ -634,11 +638,18 @@ async def llm_call(
|
|||||||
context_window = llm_model.context_window
|
context_window = llm_model.context_window
|
||||||
|
|
||||||
if compress_prompt_to_fit:
|
if compress_prompt_to_fit:
|
||||||
prompt = compress_prompt(
|
result = await compress_context(
|
||||||
messages=prompt,
|
messages=prompt,
|
||||||
target_tokens=llm_model.context_window // 2,
|
target_tokens=llm_model.context_window // 2,
|
||||||
lossy_ok=True,
|
client=None, # Truncation-only, no LLM summarization
|
||||||
|
reserve=0, # Caller handles response token budget separately
|
||||||
)
|
)
|
||||||
|
if result.error:
|
||||||
|
logger.warning(
|
||||||
|
f"Prompt compression did not meet target: {result.error}. "
|
||||||
|
f"Proceeding with {result.token_count} tokens."
|
||||||
|
)
|
||||||
|
prompt = result.messages
|
||||||
|
|
||||||
# Calculate available tokens based on context window and input length
|
# Calculate available tokens based on context window and input length
|
||||||
estimated_input_tokens = estimate_token_count(prompt)
|
estimated_input_tokens = estimate_token_count(prompt)
|
||||||
|
|||||||
@@ -1,246 +0,0 @@
|
|||||||
import os
|
|
||||||
import tempfile
|
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
from moviepy.audio.io.AudioFileClip import AudioFileClip
|
|
||||||
from moviepy.video.fx.Loop import Loop
|
|
||||||
from moviepy.video.io.VideoFileClip import VideoFileClip
|
|
||||||
|
|
||||||
from backend.data.block import (
|
|
||||||
Block,
|
|
||||||
BlockCategory,
|
|
||||||
BlockOutput,
|
|
||||||
BlockSchemaInput,
|
|
||||||
BlockSchemaOutput,
|
|
||||||
)
|
|
||||||
from backend.data.execution import ExecutionContext
|
|
||||||
from backend.data.model import SchemaField
|
|
||||||
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
|
||||||
|
|
||||||
|
|
||||||
class MediaDurationBlock(Block):
|
|
||||||
|
|
||||||
class Input(BlockSchemaInput):
|
|
||||||
media_in: MediaFileType = SchemaField(
|
|
||||||
description="Media input (URL, data URI, or local path)."
|
|
||||||
)
|
|
||||||
is_video: bool = SchemaField(
|
|
||||||
description="Whether the media is a video (True) or audio (False).",
|
|
||||||
default=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
class Output(BlockSchemaOutput):
|
|
||||||
duration: float = SchemaField(
|
|
||||||
description="Duration of the media file (in seconds)."
|
|
||||||
)
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
super().__init__(
|
|
||||||
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
|
|
||||||
description="Block to get the duration of a media file.",
|
|
||||||
categories={BlockCategory.MULTIMEDIA},
|
|
||||||
input_schema=MediaDurationBlock.Input,
|
|
||||||
output_schema=MediaDurationBlock.Output,
|
|
||||||
)
|
|
||||||
|
|
||||||
async def run(
|
|
||||||
self,
|
|
||||||
input_data: Input,
|
|
||||||
*,
|
|
||||||
execution_context: ExecutionContext,
|
|
||||||
**kwargs,
|
|
||||||
) -> BlockOutput:
|
|
||||||
# 1) Store the input media locally
|
|
||||||
local_media_path = await store_media_file(
|
|
||||||
file=input_data.media_in,
|
|
||||||
execution_context=execution_context,
|
|
||||||
return_format="for_local_processing",
|
|
||||||
)
|
|
||||||
assert execution_context.graph_exec_id is not None
|
|
||||||
media_abspath = get_exec_file_path(
|
|
||||||
execution_context.graph_exec_id, local_media_path
|
|
||||||
)
|
|
||||||
|
|
||||||
# 2) Load the clip
|
|
||||||
if input_data.is_video:
|
|
||||||
clip = VideoFileClip(media_abspath)
|
|
||||||
else:
|
|
||||||
clip = AudioFileClip(media_abspath)
|
|
||||||
|
|
||||||
yield "duration", clip.duration
|
|
||||||
|
|
||||||
|
|
||||||
class LoopVideoBlock(Block):
|
|
||||||
"""
|
|
||||||
Block for looping (repeating) a video clip until a given duration or number of loops.
|
|
||||||
"""
|
|
||||||
|
|
||||||
class Input(BlockSchemaInput):
|
|
||||||
video_in: MediaFileType = SchemaField(
|
|
||||||
description="The input video (can be a URL, data URI, or local path)."
|
|
||||||
)
|
|
||||||
# Provide EITHER a `duration` or `n_loops` or both. We'll demonstrate `duration`.
|
|
||||||
duration: Optional[float] = SchemaField(
|
|
||||||
description="Target duration (in seconds) to loop the video to. If omitted, defaults to no looping.",
|
|
||||||
default=None,
|
|
||||||
ge=0.0,
|
|
||||||
)
|
|
||||||
n_loops: Optional[int] = SchemaField(
|
|
||||||
description="Number of times to repeat the video. If omitted, defaults to 1 (no repeat).",
|
|
||||||
default=None,
|
|
||||||
ge=1,
|
|
||||||
)
|
|
||||||
|
|
||||||
class Output(BlockSchemaOutput):
|
|
||||||
video_out: str = SchemaField(
|
|
||||||
description="Looped video returned either as a relative path or a data URI."
|
|
||||||
)
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
super().__init__(
|
|
||||||
id="8bf9eef6-5451-4213-b265-25306446e94b",
|
|
||||||
description="Block to loop a video to a given duration or number of repeats.",
|
|
||||||
categories={BlockCategory.MULTIMEDIA},
|
|
||||||
input_schema=LoopVideoBlock.Input,
|
|
||||||
output_schema=LoopVideoBlock.Output,
|
|
||||||
)
|
|
||||||
|
|
||||||
async def run(
|
|
||||||
self,
|
|
||||||
input_data: Input,
|
|
||||||
*,
|
|
||||||
execution_context: ExecutionContext,
|
|
||||||
**kwargs,
|
|
||||||
) -> BlockOutput:
|
|
||||||
assert execution_context.graph_exec_id is not None
|
|
||||||
assert execution_context.node_exec_id is not None
|
|
||||||
graph_exec_id = execution_context.graph_exec_id
|
|
||||||
node_exec_id = execution_context.node_exec_id
|
|
||||||
|
|
||||||
# 1) Store the input video locally
|
|
||||||
local_video_path = await store_media_file(
|
|
||||||
file=input_data.video_in,
|
|
||||||
execution_context=execution_context,
|
|
||||||
return_format="for_local_processing",
|
|
||||||
)
|
|
||||||
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
|
|
||||||
|
|
||||||
# 2) Load the clip
|
|
||||||
clip = VideoFileClip(input_abspath)
|
|
||||||
|
|
||||||
# 3) Apply the loop effect
|
|
||||||
looped_clip = clip
|
|
||||||
if input_data.duration:
|
|
||||||
# Loop until we reach the specified duration
|
|
||||||
looped_clip = looped_clip.with_effects([Loop(duration=input_data.duration)])
|
|
||||||
elif input_data.n_loops:
|
|
||||||
looped_clip = looped_clip.with_effects([Loop(n=input_data.n_loops)])
|
|
||||||
else:
|
|
||||||
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
|
|
||||||
|
|
||||||
assert isinstance(looped_clip, VideoFileClip)
|
|
||||||
|
|
||||||
# 4) Save the looped output
|
|
||||||
output_filename = MediaFileType(
|
|
||||||
f"{node_exec_id}_looped_{os.path.basename(local_video_path)}"
|
|
||||||
)
|
|
||||||
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
|
|
||||||
|
|
||||||
looped_clip = looped_clip.with_audio(clip.audio)
|
|
||||||
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
|
|
||||||
|
|
||||||
# Return output - for_block_output returns workspace:// if available, else data URI
|
|
||||||
video_out = await store_media_file(
|
|
||||||
file=output_filename,
|
|
||||||
execution_context=execution_context,
|
|
||||||
return_format="for_block_output",
|
|
||||||
)
|
|
||||||
|
|
||||||
yield "video_out", video_out
|
|
||||||
|
|
||||||
|
|
||||||
class AddAudioToVideoBlock(Block):
|
|
||||||
"""
|
|
||||||
Block that adds (attaches) an audio track to an existing video.
|
|
||||||
Optionally scale the volume of the new track.
|
|
||||||
"""
|
|
||||||
|
|
||||||
class Input(BlockSchemaInput):
|
|
||||||
video_in: MediaFileType = SchemaField(
|
|
||||||
description="Video input (URL, data URI, or local path)."
|
|
||||||
)
|
|
||||||
audio_in: MediaFileType = SchemaField(
|
|
||||||
description="Audio input (URL, data URI, or local path)."
|
|
||||||
)
|
|
||||||
volume: float = SchemaField(
|
|
||||||
description="Volume scale for the newly attached audio track (1.0 = original).",
|
|
||||||
default=1.0,
|
|
||||||
)
|
|
||||||
|
|
||||||
class Output(BlockSchemaOutput):
|
|
||||||
video_out: MediaFileType = SchemaField(
|
|
||||||
description="Final video (with attached audio), as a path or data URI."
|
|
||||||
)
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
super().__init__(
|
|
||||||
id="3503748d-62b6-4425-91d6-725b064af509",
|
|
||||||
description="Block to attach an audio file to a video file using moviepy.",
|
|
||||||
categories={BlockCategory.MULTIMEDIA},
|
|
||||||
input_schema=AddAudioToVideoBlock.Input,
|
|
||||||
output_schema=AddAudioToVideoBlock.Output,
|
|
||||||
)
|
|
||||||
|
|
||||||
async def run(
|
|
||||||
self,
|
|
||||||
input_data: Input,
|
|
||||||
*,
|
|
||||||
execution_context: ExecutionContext,
|
|
||||||
**kwargs,
|
|
||||||
) -> BlockOutput:
|
|
||||||
assert execution_context.graph_exec_id is not None
|
|
||||||
assert execution_context.node_exec_id is not None
|
|
||||||
graph_exec_id = execution_context.graph_exec_id
|
|
||||||
node_exec_id = execution_context.node_exec_id
|
|
||||||
|
|
||||||
# 1) Store the inputs locally
|
|
||||||
local_video_path = await store_media_file(
|
|
||||||
file=input_data.video_in,
|
|
||||||
execution_context=execution_context,
|
|
||||||
return_format="for_local_processing",
|
|
||||||
)
|
|
||||||
local_audio_path = await store_media_file(
|
|
||||||
file=input_data.audio_in,
|
|
||||||
execution_context=execution_context,
|
|
||||||
return_format="for_local_processing",
|
|
||||||
)
|
|
||||||
|
|
||||||
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
|
|
||||||
video_abspath = os.path.join(abs_temp_dir, local_video_path)
|
|
||||||
audio_abspath = os.path.join(abs_temp_dir, local_audio_path)
|
|
||||||
|
|
||||||
# 2) Load video + audio with moviepy
|
|
||||||
video_clip = VideoFileClip(video_abspath)
|
|
||||||
audio_clip = AudioFileClip(audio_abspath)
|
|
||||||
# Optionally scale volume
|
|
||||||
if input_data.volume != 1.0:
|
|
||||||
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
|
|
||||||
|
|
||||||
# 3) Attach the new audio track
|
|
||||||
final_clip = video_clip.with_audio(audio_clip)
|
|
||||||
|
|
||||||
# 4) Write to output file
|
|
||||||
output_filename = MediaFileType(
|
|
||||||
f"{node_exec_id}_audio_attached_{os.path.basename(local_video_path)}"
|
|
||||||
)
|
|
||||||
output_abspath = os.path.join(abs_temp_dir, output_filename)
|
|
||||||
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
|
|
||||||
|
|
||||||
# 5) Return output - for_block_output returns workspace:// if available, else data URI
|
|
||||||
video_out = await store_media_file(
|
|
||||||
file=output_filename,
|
|
||||||
execution_context=execution_context,
|
|
||||||
return_format="for_block_output",
|
|
||||||
)
|
|
||||||
|
|
||||||
yield "video_out", video_out
|
|
||||||
@@ -182,10 +182,7 @@ class StagehandObserveBlock(Block):
|
|||||||
**kwargs,
|
**kwargs,
|
||||||
) -> BlockOutput:
|
) -> BlockOutput:
|
||||||
|
|
||||||
logger.info(f"OBSERVE: Stagehand credentials: {stagehand_credentials}")
|
logger.debug(f"OBSERVE: Using model provider {model_credentials.provider}")
|
||||||
logger.info(
|
|
||||||
f"OBSERVE: Model credentials: {model_credentials} for provider {model_credentials.provider} secret: {model_credentials.api_key.get_secret_value()}"
|
|
||||||
)
|
|
||||||
|
|
||||||
with disable_signal_handling():
|
with disable_signal_handling():
|
||||||
stagehand = Stagehand(
|
stagehand = Stagehand(
|
||||||
@@ -282,10 +279,7 @@ class StagehandActBlock(Block):
|
|||||||
**kwargs,
|
**kwargs,
|
||||||
) -> BlockOutput:
|
) -> BlockOutput:
|
||||||
|
|
||||||
logger.info(f"ACT: Stagehand credentials: {stagehand_credentials}")
|
logger.debug(f"ACT: Using model provider {model_credentials.provider}")
|
||||||
logger.info(
|
|
||||||
f"ACT: Model credentials: {model_credentials} for provider {model_credentials.provider} secret: {model_credentials.api_key.get_secret_value()}"
|
|
||||||
)
|
|
||||||
|
|
||||||
with disable_signal_handling():
|
with disable_signal_handling():
|
||||||
stagehand = Stagehand(
|
stagehand = Stagehand(
|
||||||
@@ -370,10 +364,7 @@ class StagehandExtractBlock(Block):
|
|||||||
**kwargs,
|
**kwargs,
|
||||||
) -> BlockOutput:
|
) -> BlockOutput:
|
||||||
|
|
||||||
logger.info(f"EXTRACT: Stagehand credentials: {stagehand_credentials}")
|
logger.debug(f"EXTRACT: Using model provider {model_credentials.provider}")
|
||||||
logger.info(
|
|
||||||
f"EXTRACT: Model credentials: {model_credentials} for provider {model_credentials.provider} secret: {model_credentials.api_key.get_secret_value()}"
|
|
||||||
)
|
|
||||||
|
|
||||||
with disable_signal_handling():
|
with disable_signal_handling():
|
||||||
stagehand = Stagehand(
|
stagehand = Stagehand(
|
||||||
|
|||||||
@@ -0,0 +1,77 @@
|
|||||||
|
import pytest
|
||||||
|
|
||||||
|
from backend.blocks.encoder_block import TextEncoderBlock
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_text_encoder_basic():
|
||||||
|
"""Test basic encoding of newlines and special characters."""
|
||||||
|
block = TextEncoderBlock()
|
||||||
|
result = []
|
||||||
|
async for output in block.run(TextEncoderBlock.Input(text="Hello\nWorld")):
|
||||||
|
result.append(output)
|
||||||
|
|
||||||
|
assert len(result) == 1
|
||||||
|
assert result[0][0] == "encoded_text"
|
||||||
|
assert result[0][1] == "Hello\\nWorld"
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_text_encoder_multiple_escapes():
|
||||||
|
"""Test encoding of multiple escape sequences."""
|
||||||
|
block = TextEncoderBlock()
|
||||||
|
result = []
|
||||||
|
async for output in block.run(
|
||||||
|
TextEncoderBlock.Input(text="Line1\nLine2\tTabbed\rCarriage")
|
||||||
|
):
|
||||||
|
result.append(output)
|
||||||
|
|
||||||
|
assert len(result) == 1
|
||||||
|
assert result[0][0] == "encoded_text"
|
||||||
|
assert "\\n" in result[0][1]
|
||||||
|
assert "\\t" in result[0][1]
|
||||||
|
assert "\\r" in result[0][1]
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_text_encoder_unicode():
|
||||||
|
"""Test that unicode characters are handled correctly."""
|
||||||
|
block = TextEncoderBlock()
|
||||||
|
result = []
|
||||||
|
async for output in block.run(TextEncoderBlock.Input(text="Hello 世界\n")):
|
||||||
|
result.append(output)
|
||||||
|
|
||||||
|
assert len(result) == 1
|
||||||
|
assert result[0][0] == "encoded_text"
|
||||||
|
# Unicode characters should be escaped as \uXXXX sequences
|
||||||
|
assert "\\n" in result[0][1]
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_text_encoder_empty_string():
|
||||||
|
"""Test encoding of an empty string."""
|
||||||
|
block = TextEncoderBlock()
|
||||||
|
result = []
|
||||||
|
async for output in block.run(TextEncoderBlock.Input(text="")):
|
||||||
|
result.append(output)
|
||||||
|
|
||||||
|
assert len(result) == 1
|
||||||
|
assert result[0][0] == "encoded_text"
|
||||||
|
assert result[0][1] == ""
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_text_encoder_error_handling():
|
||||||
|
"""Test that encoding errors are handled gracefully."""
|
||||||
|
from unittest.mock import patch
|
||||||
|
|
||||||
|
block = TextEncoderBlock()
|
||||||
|
result = []
|
||||||
|
|
||||||
|
with patch("codecs.encode", side_effect=Exception("Mocked encoding error")):
|
||||||
|
async for output in block.run(TextEncoderBlock.Input(text="test")):
|
||||||
|
result.append(output)
|
||||||
|
|
||||||
|
assert len(result) == 1
|
||||||
|
assert result[0][0] == "error"
|
||||||
|
assert "Mocked encoding error" in result[0][1]
|
||||||
37
autogpt_platform/backend/backend/blocks/video/__init__.py
Normal file
37
autogpt_platform/backend/backend/blocks/video/__init__.py
Normal file
@@ -0,0 +1,37 @@
|
|||||||
|
"""Video editing blocks for AutoGPT Platform.
|
||||||
|
|
||||||
|
This module provides blocks for:
|
||||||
|
- Downloading videos from URLs (YouTube, Vimeo, news sites, direct links)
|
||||||
|
- Clipping/trimming video segments
|
||||||
|
- Concatenating multiple videos
|
||||||
|
- Adding text overlays
|
||||||
|
- Adding AI-generated narration
|
||||||
|
- Getting media duration
|
||||||
|
- Looping videos
|
||||||
|
- Adding audio to videos
|
||||||
|
|
||||||
|
Dependencies:
|
||||||
|
- yt-dlp: For video downloading
|
||||||
|
- moviepy: For video editing operations
|
||||||
|
- elevenlabs: For AI narration (optional)
|
||||||
|
"""
|
||||||
|
|
||||||
|
from backend.blocks.video.add_audio import AddAudioToVideoBlock
|
||||||
|
from backend.blocks.video.clip import VideoClipBlock
|
||||||
|
from backend.blocks.video.concat import VideoConcatBlock
|
||||||
|
from backend.blocks.video.download import VideoDownloadBlock
|
||||||
|
from backend.blocks.video.duration import MediaDurationBlock
|
||||||
|
from backend.blocks.video.loop import LoopVideoBlock
|
||||||
|
from backend.blocks.video.narration import VideoNarrationBlock
|
||||||
|
from backend.blocks.video.text_overlay import VideoTextOverlayBlock
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"AddAudioToVideoBlock",
|
||||||
|
"LoopVideoBlock",
|
||||||
|
"MediaDurationBlock",
|
||||||
|
"VideoClipBlock",
|
||||||
|
"VideoConcatBlock",
|
||||||
|
"VideoDownloadBlock",
|
||||||
|
"VideoNarrationBlock",
|
||||||
|
"VideoTextOverlayBlock",
|
||||||
|
]
|
||||||
131
autogpt_platform/backend/backend/blocks/video/_utils.py
Normal file
131
autogpt_platform/backend/backend/blocks/video/_utils.py
Normal file
@@ -0,0 +1,131 @@
|
|||||||
|
"""Shared utilities for video blocks."""
|
||||||
|
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import re
|
||||||
|
import subprocess
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# Known operation tags added by video blocks
|
||||||
|
_VIDEO_OPS = (
|
||||||
|
r"(?:clip|overlay|narrated|looped|concat|audio_attached|with_audio|narration)"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Matches: {node_exec_id}_{operation}_ where node_exec_id contains a UUID
|
||||||
|
_BLOCK_PREFIX_RE = re.compile(
|
||||||
|
r"^[a-zA-Z0-9_-]*"
|
||||||
|
r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
|
||||||
|
r"[a-zA-Z0-9_-]*"
|
||||||
|
r"_" + _VIDEO_OPS + r"_"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Matches: a lone {node_exec_id}_ prefix (no operation keyword, e.g. download output)
|
||||||
|
_UUID_PREFIX_RE = re.compile(
|
||||||
|
r"^[a-zA-Z0-9_-]*"
|
||||||
|
r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
|
||||||
|
r"[a-zA-Z0-9_-]*_"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def extract_source_name(input_path: str, max_length: int = 50) -> str:
|
||||||
|
"""Extract the original source filename by stripping block-generated prefixes.
|
||||||
|
|
||||||
|
Iteratively removes {node_exec_id}_{operation}_ prefixes that accumulate
|
||||||
|
when chaining video blocks, recovering the original human-readable name.
|
||||||
|
|
||||||
|
Safe for plain filenames (no UUID -> no stripping).
|
||||||
|
Falls back to "video" if everything is stripped.
|
||||||
|
"""
|
||||||
|
stem = Path(input_path).stem
|
||||||
|
|
||||||
|
# Pass 1: strip {node_exec_id}_{operation}_ prefixes iteratively
|
||||||
|
while _BLOCK_PREFIX_RE.match(stem):
|
||||||
|
stem = _BLOCK_PREFIX_RE.sub("", stem, count=1)
|
||||||
|
|
||||||
|
# Pass 2: strip a lone {node_exec_id}_ prefix (e.g. from download block)
|
||||||
|
if _UUID_PREFIX_RE.match(stem):
|
||||||
|
stem = _UUID_PREFIX_RE.sub("", stem, count=1)
|
||||||
|
|
||||||
|
if not stem:
|
||||||
|
return "video"
|
||||||
|
|
||||||
|
return stem[:max_length]
|
||||||
|
|
||||||
|
|
||||||
|
def get_video_codecs(output_path: str) -> tuple[str, str]:
|
||||||
|
"""Get appropriate video and audio codecs based on output file extension.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
output_path: Path to the output file (used to determine extension)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (video_codec, audio_codec)
|
||||||
|
|
||||||
|
Codec mappings:
|
||||||
|
- .mp4: H.264 + AAC (universal compatibility)
|
||||||
|
- .webm: VP8 + Vorbis (web streaming)
|
||||||
|
- .mkv: H.264 + AAC (container supports many codecs)
|
||||||
|
- .mov: H.264 + AAC (Apple QuickTime, widely compatible)
|
||||||
|
- .m4v: H.264 + AAC (Apple iTunes/devices)
|
||||||
|
- .avi: MPEG-4 + MP3 (legacy Windows)
|
||||||
|
"""
|
||||||
|
ext = os.path.splitext(output_path)[1].lower()
|
||||||
|
|
||||||
|
codec_map: dict[str, tuple[str, str]] = {
|
||||||
|
".mp4": ("libx264", "aac"),
|
||||||
|
".webm": ("libvpx", "libvorbis"),
|
||||||
|
".mkv": ("libx264", "aac"),
|
||||||
|
".mov": ("libx264", "aac"),
|
||||||
|
".m4v": ("libx264", "aac"),
|
||||||
|
".avi": ("mpeg4", "libmp3lame"),
|
||||||
|
}
|
||||||
|
|
||||||
|
return codec_map.get(ext, ("libx264", "aac"))
|
||||||
|
|
||||||
|
|
||||||
|
def strip_chapters_inplace(video_path: str) -> None:
|
||||||
|
"""Strip chapter metadata from a media file in-place using ffmpeg.
|
||||||
|
|
||||||
|
MoviePy 2.x crashes with IndexError when parsing files with embedded
|
||||||
|
chapter metadata (https://github.com/Zulko/moviepy/issues/2419).
|
||||||
|
This strips chapters without re-encoding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
video_path: Absolute path to the media file to strip chapters from.
|
||||||
|
"""
|
||||||
|
base, ext = os.path.splitext(video_path)
|
||||||
|
tmp_path = base + ".tmp" + ext
|
||||||
|
try:
|
||||||
|
result = subprocess.run(
|
||||||
|
[
|
||||||
|
"ffmpeg",
|
||||||
|
"-y",
|
||||||
|
"-i",
|
||||||
|
video_path,
|
||||||
|
"-map_chapters",
|
||||||
|
"-1",
|
||||||
|
"-codec",
|
||||||
|
"copy",
|
||||||
|
tmp_path,
|
||||||
|
],
|
||||||
|
capture_output=True,
|
||||||
|
text=True,
|
||||||
|
timeout=300,
|
||||||
|
)
|
||||||
|
if result.returncode != 0:
|
||||||
|
logger.warning(
|
||||||
|
"ffmpeg chapter strip failed (rc=%d): %s",
|
||||||
|
result.returncode,
|
||||||
|
result.stderr,
|
||||||
|
)
|
||||||
|
return
|
||||||
|
os.replace(tmp_path, video_path)
|
||||||
|
except FileNotFoundError:
|
||||||
|
logger.warning("ffmpeg not found; skipping chapter strip")
|
||||||
|
finally:
|
||||||
|
if os.path.exists(tmp_path):
|
||||||
|
os.unlink(tmp_path)
|
||||||
113
autogpt_platform/backend/backend/blocks/video/add_audio.py
Normal file
113
autogpt_platform/backend/backend/blocks/video/add_audio.py
Normal file
@@ -0,0 +1,113 @@
|
|||||||
|
"""AddAudioToVideoBlock - Attach an audio track to a video file."""
|
||||||
|
|
||||||
|
from moviepy.audio.io.AudioFileClip import AudioFileClip
|
||||||
|
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||||
|
|
||||||
|
from backend.blocks.video._utils import extract_source_name, strip_chapters_inplace
|
||||||
|
from backend.data.block import (
|
||||||
|
Block,
|
||||||
|
BlockCategory,
|
||||||
|
BlockOutput,
|
||||||
|
BlockSchemaInput,
|
||||||
|
BlockSchemaOutput,
|
||||||
|
)
|
||||||
|
from backend.data.execution import ExecutionContext
|
||||||
|
from backend.data.model import SchemaField
|
||||||
|
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||||
|
|
||||||
|
|
||||||
|
class AddAudioToVideoBlock(Block):
|
||||||
|
"""Add (attach) an audio track to an existing video."""
|
||||||
|
|
||||||
|
class Input(BlockSchemaInput):
|
||||||
|
video_in: MediaFileType = SchemaField(
|
||||||
|
description="Video input (URL, data URI, or local path)."
|
||||||
|
)
|
||||||
|
audio_in: MediaFileType = SchemaField(
|
||||||
|
description="Audio input (URL, data URI, or local path)."
|
||||||
|
)
|
||||||
|
volume: float = SchemaField(
|
||||||
|
description="Volume scale for the newly attached audio track (1.0 = original).",
|
||||||
|
default=1.0,
|
||||||
|
)
|
||||||
|
|
||||||
|
class Output(BlockSchemaOutput):
|
||||||
|
video_out: MediaFileType = SchemaField(
|
||||||
|
description="Final video (with attached audio), as a path or data URI."
|
||||||
|
)
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(
|
||||||
|
id="3503748d-62b6-4425-91d6-725b064af509",
|
||||||
|
description="Block to attach an audio file to a video file using moviepy.",
|
||||||
|
categories={BlockCategory.MULTIMEDIA},
|
||||||
|
input_schema=AddAudioToVideoBlock.Input,
|
||||||
|
output_schema=AddAudioToVideoBlock.Output,
|
||||||
|
)
|
||||||
|
|
||||||
|
async def run(
|
||||||
|
self,
|
||||||
|
input_data: Input,
|
||||||
|
*,
|
||||||
|
execution_context: ExecutionContext,
|
||||||
|
**kwargs,
|
||||||
|
) -> BlockOutput:
|
||||||
|
assert execution_context.graph_exec_id is not None
|
||||||
|
assert execution_context.node_exec_id is not None
|
||||||
|
graph_exec_id = execution_context.graph_exec_id
|
||||||
|
node_exec_id = execution_context.node_exec_id
|
||||||
|
|
||||||
|
# 1) Store the inputs locally
|
||||||
|
local_video_path = await store_media_file(
|
||||||
|
file=input_data.video_in,
|
||||||
|
execution_context=execution_context,
|
||||||
|
return_format="for_local_processing",
|
||||||
|
)
|
||||||
|
local_audio_path = await store_media_file(
|
||||||
|
file=input_data.audio_in,
|
||||||
|
execution_context=execution_context,
|
||||||
|
return_format="for_local_processing",
|
||||||
|
)
|
||||||
|
|
||||||
|
video_abspath = get_exec_file_path(graph_exec_id, local_video_path)
|
||||||
|
audio_abspath = get_exec_file_path(graph_exec_id, local_audio_path)
|
||||||
|
|
||||||
|
# 2) Load video + audio with moviepy
|
||||||
|
strip_chapters_inplace(video_abspath)
|
||||||
|
strip_chapters_inplace(audio_abspath)
|
||||||
|
video_clip = None
|
||||||
|
audio_clip = None
|
||||||
|
final_clip = None
|
||||||
|
try:
|
||||||
|
video_clip = VideoFileClip(video_abspath)
|
||||||
|
audio_clip = AudioFileClip(audio_abspath)
|
||||||
|
# Optionally scale volume
|
||||||
|
if input_data.volume != 1.0:
|
||||||
|
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
|
||||||
|
|
||||||
|
# 3) Attach the new audio track
|
||||||
|
final_clip = video_clip.with_audio(audio_clip)
|
||||||
|
|
||||||
|
# 4) Write to output file
|
||||||
|
source = extract_source_name(local_video_path)
|
||||||
|
output_filename = MediaFileType(f"{node_exec_id}_with_audio_{source}.mp4")
|
||||||
|
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
|
||||||
|
final_clip.write_videofile(
|
||||||
|
output_abspath, codec="libx264", audio_codec="aac"
|
||||||
|
)
|
||||||
|
finally:
|
||||||
|
if final_clip:
|
||||||
|
final_clip.close()
|
||||||
|
if audio_clip:
|
||||||
|
audio_clip.close()
|
||||||
|
if video_clip:
|
||||||
|
video_clip.close()
|
||||||
|
|
||||||
|
# 5) Return output - for_block_output returns workspace:// if available, else data URI
|
||||||
|
video_out = await store_media_file(
|
||||||
|
file=output_filename,
|
||||||
|
execution_context=execution_context,
|
||||||
|
return_format="for_block_output",
|
||||||
|
)
|
||||||
|
|
||||||
|
yield "video_out", video_out
|
||||||
167
autogpt_platform/backend/backend/blocks/video/clip.py
Normal file
167
autogpt_platform/backend/backend/blocks/video/clip.py
Normal file
@@ -0,0 +1,167 @@
|
|||||||
|
"""VideoClipBlock - Extract a segment from a video file."""
|
||||||
|
|
||||||
|
from typing import Literal
|
||||||
|
|
||||||
|
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||||
|
|
||||||
|
from backend.blocks.video._utils import (
|
||||||
|
extract_source_name,
|
||||||
|
get_video_codecs,
|
||||||
|
strip_chapters_inplace,
|
||||||
|
)
|
||||||
|
from backend.data.block import (
|
||||||
|
Block,
|
||||||
|
BlockCategory,
|
||||||
|
BlockOutput,
|
||||||
|
BlockSchemaInput,
|
||||||
|
BlockSchemaOutput,
|
||||||
|
)
|
||||||
|
from backend.data.execution import ExecutionContext
|
||||||
|
from backend.data.model import SchemaField
|
||||||
|
from backend.util.exceptions import BlockExecutionError
|
||||||
|
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||||
|
|
||||||
|
|
||||||
|
class VideoClipBlock(Block):
|
||||||
|
"""Extract a time segment from a video."""
|
||||||
|
|
||||||
|
class Input(BlockSchemaInput):
|
||||||
|
video_in: MediaFileType = SchemaField(
|
||||||
|
description="Input video (URL, data URI, or local path)"
|
||||||
|
)
|
||||||
|
start_time: float = SchemaField(description="Start time in seconds", ge=0.0)
|
||||||
|
end_time: float = SchemaField(description="End time in seconds", ge=0.0)
|
||||||
|
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
|
||||||
|
description="Output format", default="mp4", advanced=True
|
||||||
|
)
|
||||||
|
|
||||||
|
class Output(BlockSchemaOutput):
|
||||||
|
video_out: MediaFileType = SchemaField(
|
||||||
|
description="Clipped video file (path or data URI)"
|
||||||
|
)
|
||||||
|
duration: float = SchemaField(description="Clip duration in seconds")
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(
|
||||||
|
id="8f539119-e580-4d86-ad41-86fbcb22abb1",
|
||||||
|
description="Extract a time segment from a video",
|
||||||
|
categories={BlockCategory.MULTIMEDIA},
|
||||||
|
input_schema=self.Input,
|
||||||
|
output_schema=self.Output,
|
||||||
|
test_input={
|
||||||
|
"video_in": "/tmp/test.mp4",
|
||||||
|
"start_time": 0.0,
|
||||||
|
"end_time": 10.0,
|
||||||
|
},
|
||||||
|
test_output=[("video_out", str), ("duration", float)],
|
||||||
|
test_mock={
|
||||||
|
"_clip_video": lambda *args: 10.0,
|
||||||
|
"_store_input_video": lambda *args, **kwargs: "test.mp4",
|
||||||
|
"_store_output_video": lambda *args, **kwargs: "clip_test.mp4",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
async def _store_input_video(
|
||||||
|
self, execution_context: ExecutionContext, file: MediaFileType
|
||||||
|
) -> MediaFileType:
|
||||||
|
"""Store input video. Extracted for testability."""
|
||||||
|
return await store_media_file(
|
||||||
|
file=file,
|
||||||
|
execution_context=execution_context,
|
||||||
|
return_format="for_local_processing",
|
||||||
|
)
|
||||||
|
|
||||||
|
async def _store_output_video(
|
||||||
|
self, execution_context: ExecutionContext, file: MediaFileType
|
||||||
|
) -> MediaFileType:
|
||||||
|
"""Store output video. Extracted for testability."""
|
||||||
|
return await store_media_file(
|
||||||
|
file=file,
|
||||||
|
execution_context=execution_context,
|
||||||
|
return_format="for_block_output",
|
||||||
|
)
|
||||||
|
|
||||||
|
def _clip_video(
|
||||||
|
self,
|
||||||
|
video_abspath: str,
|
||||||
|
output_abspath: str,
|
||||||
|
start_time: float,
|
||||||
|
end_time: float,
|
||||||
|
) -> float:
|
||||||
|
"""Extract a clip from a video. Extracted for testability."""
|
||||||
|
clip = None
|
||||||
|
subclip = None
|
||||||
|
try:
|
||||||
|
strip_chapters_inplace(video_abspath)
|
||||||
|
clip = VideoFileClip(video_abspath)
|
||||||
|
subclip = clip.subclipped(start_time, end_time)
|
||||||
|
video_codec, audio_codec = get_video_codecs(output_abspath)
|
||||||
|
subclip.write_videofile(
|
||||||
|
output_abspath, codec=video_codec, audio_codec=audio_codec
|
||||||
|
)
|
||||||
|
return subclip.duration
|
||||||
|
finally:
|
||||||
|
if subclip:
|
||||||
|
subclip.close()
|
||||||
|
if clip:
|
||||||
|
clip.close()
|
||||||
|
|
||||||
|
async def run(
|
||||||
|
self,
|
||||||
|
input_data: Input,
|
||||||
|
*,
|
||||||
|
execution_context: ExecutionContext,
|
||||||
|
node_exec_id: str,
|
||||||
|
**kwargs,
|
||||||
|
) -> BlockOutput:
|
||||||
|
# Validate time range
|
||||||
|
if input_data.end_time <= input_data.start_time:
|
||||||
|
raise BlockExecutionError(
|
||||||
|
message=f"end_time ({input_data.end_time}) must be greater than start_time ({input_data.start_time})",
|
||||||
|
block_name=self.name,
|
||||||
|
block_id=str(self.id),
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
assert execution_context.graph_exec_id is not None
|
||||||
|
|
||||||
|
# Store the input video locally
|
||||||
|
local_video_path = await self._store_input_video(
|
||||||
|
execution_context, input_data.video_in
|
||||||
|
)
|
||||||
|
video_abspath = get_exec_file_path(
|
||||||
|
execution_context.graph_exec_id, local_video_path
|
||||||
|
)
|
||||||
|
|
||||||
|
# Build output path
|
||||||
|
source = extract_source_name(local_video_path)
|
||||||
|
output_filename = MediaFileType(
|
||||||
|
f"{node_exec_id}_clip_{source}.{input_data.output_format}"
|
||||||
|
)
|
||||||
|
output_abspath = get_exec_file_path(
|
||||||
|
execution_context.graph_exec_id, output_filename
|
||||||
|
)
|
||||||
|
|
||||||
|
duration = self._clip_video(
|
||||||
|
video_abspath,
|
||||||
|
output_abspath,
|
||||||
|
input_data.start_time,
|
||||||
|
input_data.end_time,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Return as workspace path or data URI based on context
|
||||||
|
video_out = await self._store_output_video(
|
||||||
|
execution_context, output_filename
|
||||||
|
)
|
||||||
|
|
||||||
|
yield "video_out", video_out
|
||||||
|
yield "duration", duration
|
||||||
|
|
||||||
|
except BlockExecutionError:
|
||||||
|
raise
|
||||||
|
except Exception as e:
|
||||||
|
raise BlockExecutionError(
|
||||||
|
message=f"Failed to clip video: {e}",
|
||||||
|
block_name=self.name,
|
||||||
|
block_id=str(self.id),
|
||||||
|
) from e
|
||||||
227
autogpt_platform/backend/backend/blocks/video/concat.py
Normal file
227
autogpt_platform/backend/backend/blocks/video/concat.py
Normal file
@@ -0,0 +1,227 @@
|
|||||||
|
"""VideoConcatBlock - Concatenate multiple video clips into one."""
|
||||||
|
|
||||||
|
from typing import Literal
|
||||||
|
|
||||||
|
from moviepy import concatenate_videoclips
|
||||||
|
from moviepy.video.fx import CrossFadeIn, CrossFadeOut, FadeIn, FadeOut
|
||||||
|
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||||
|
|
||||||
|
from backend.blocks.video._utils import (
|
||||||
|
extract_source_name,
|
||||||
|
get_video_codecs,
|
||||||
|
strip_chapters_inplace,
|
||||||
|
)
|
||||||
|
from backend.data.block import (
|
||||||
|
Block,
|
||||||
|
BlockCategory,
|
||||||
|
BlockOutput,
|
||||||
|
BlockSchemaInput,
|
||||||
|
BlockSchemaOutput,
|
||||||
|
)
|
||||||
|
from backend.data.execution import ExecutionContext
|
||||||
|
from backend.data.model import SchemaField
|
||||||
|
from backend.util.exceptions import BlockExecutionError
|
||||||
|
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||||
|
|
||||||
|
|
||||||
|
class VideoConcatBlock(Block):
|
||||||
|
"""Merge multiple video clips into one continuous video."""
|
||||||
|
|
||||||
|
class Input(BlockSchemaInput):
|
||||||
|
videos: list[MediaFileType] = SchemaField(
|
||||||
|
description="List of video files to concatenate (in order)"
|
||||||
|
)
|
||||||
|
transition: Literal["none", "crossfade", "fade_black"] = SchemaField(
|
||||||
|
description="Transition between clips", default="none"
|
||||||
|
)
|
||||||
|
transition_duration: int = SchemaField(
|
||||||
|
description="Transition duration in seconds",
|
||||||
|
default=1,
|
||||||
|
ge=0,
|
||||||
|
advanced=True,
|
||||||
|
)
|
||||||
|
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
|
||||||
|
description="Output format", default="mp4", advanced=True
|
||||||
|
)
|
||||||
|
|
||||||
|
class Output(BlockSchemaOutput):
|
||||||
|
video_out: MediaFileType = SchemaField(
|
||||||
|
description="Concatenated video file (path or data URI)"
|
||||||
|
)
|
||||||
|
total_duration: float = SchemaField(description="Total duration in seconds")
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(
|
||||||
|
id="9b0f531a-1118-487f-aeec-3fa63ea8900a",
|
||||||
|
description="Merge multiple video clips into one continuous video",
|
||||||
|
categories={BlockCategory.MULTIMEDIA},
|
||||||
|
input_schema=self.Input,
|
||||||
|
output_schema=self.Output,
|
||||||
|
test_input={
|
||||||
|
"videos": ["/tmp/a.mp4", "/tmp/b.mp4"],
|
||||||
|
},
|
||||||
|
test_output=[
|
||||||
|
("video_out", str),
|
||||||
|
("total_duration", float),
|
||||||
|
],
|
||||||
|
test_mock={
|
||||||
|
"_concat_videos": lambda *args: 20.0,
|
||||||
|
"_store_input_video": lambda *args, **kwargs: "test.mp4",
|
||||||
|
"_store_output_video": lambda *args, **kwargs: "concat_test.mp4",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
async def _store_input_video(
|
||||||
|
self, execution_context: ExecutionContext, file: MediaFileType
|
||||||
|
) -> MediaFileType:
|
||||||
|
"""Store input video. Extracted for testability."""
|
||||||
|
return await store_media_file(
|
||||||
|
file=file,
|
||||||
|
execution_context=execution_context,
|
||||||
|
return_format="for_local_processing",
|
||||||
|
)
|
||||||
|
|
||||||
|
async def _store_output_video(
|
||||||
|
self, execution_context: ExecutionContext, file: MediaFileType
|
||||||
|
) -> MediaFileType:
|
||||||
|
"""Store output video. Extracted for testability."""
|
||||||
|
return await store_media_file(
|
||||||
|
file=file,
|
||||||
|
execution_context=execution_context,
|
||||||
|
return_format="for_block_output",
|
||||||
|
)
|
||||||
|
|
||||||
|
def _concat_videos(
|
||||||
|
self,
|
||||||
|
video_abspaths: list[str],
|
||||||
|
output_abspath: str,
|
||||||
|
transition: str,
|
||||||
|
transition_duration: int,
|
||||||
|
) -> float:
|
||||||
|
"""Concatenate videos. Extracted for testability.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Total duration of the concatenated video.
|
||||||
|
"""
|
||||||
|
clips = []
|
||||||
|
faded_clips = []
|
||||||
|
final = None
|
||||||
|
try:
|
||||||
|
# Load clips
|
||||||
|
for v in video_abspaths:
|
||||||
|
strip_chapters_inplace(v)
|
||||||
|
clips.append(VideoFileClip(v))
|
||||||
|
|
||||||
|
# Validate transition_duration against shortest clip
|
||||||
|
if transition in {"crossfade", "fade_black"} and transition_duration > 0:
|
||||||
|
min_duration = min(c.duration for c in clips)
|
||||||
|
if transition_duration >= min_duration:
|
||||||
|
raise BlockExecutionError(
|
||||||
|
message=(
|
||||||
|
f"transition_duration ({transition_duration}s) must be "
|
||||||
|
f"shorter than the shortest clip ({min_duration:.2f}s)"
|
||||||
|
),
|
||||||
|
block_name=self.name,
|
||||||
|
block_id=str(self.id),
|
||||||
|
)
|
||||||
|
|
||||||
|
if transition == "crossfade":
|
||||||
|
for i, clip in enumerate(clips):
|
||||||
|
effects = []
|
||||||
|
if i > 0:
|
||||||
|
effects.append(CrossFadeIn(transition_duration))
|
||||||
|
if i < len(clips) - 1:
|
||||||
|
effects.append(CrossFadeOut(transition_duration))
|
||||||
|
if effects:
|
||||||
|
clip = clip.with_effects(effects)
|
||||||
|
faded_clips.append(clip)
|
||||||
|
final = concatenate_videoclips(
|
||||||
|
faded_clips,
|
||||||
|
method="compose",
|
||||||
|
padding=-transition_duration,
|
||||||
|
)
|
||||||
|
elif transition == "fade_black":
|
||||||
|
for clip in clips:
|
||||||
|
faded = clip.with_effects(
|
||||||
|
[FadeIn(transition_duration), FadeOut(transition_duration)]
|
||||||
|
)
|
||||||
|
faded_clips.append(faded)
|
||||||
|
final = concatenate_videoclips(faded_clips)
|
||||||
|
else:
|
||||||
|
final = concatenate_videoclips(clips)
|
||||||
|
|
||||||
|
video_codec, audio_codec = get_video_codecs(output_abspath)
|
||||||
|
final.write_videofile(
|
||||||
|
output_abspath, codec=video_codec, audio_codec=audio_codec
|
||||||
|
)
|
||||||
|
|
||||||
|
return final.duration
|
||||||
|
finally:
|
||||||
|
if final:
|
||||||
|
final.close()
|
||||||
|
for clip in faded_clips:
|
||||||
|
clip.close()
|
||||||
|
for clip in clips:
|
||||||
|
clip.close()
|
||||||
|
|
||||||
|
async def run(
|
||||||
|
self,
|
||||||
|
input_data: Input,
|
||||||
|
*,
|
||||||
|
execution_context: ExecutionContext,
|
||||||
|
node_exec_id: str,
|
||||||
|
**kwargs,
|
||||||
|
) -> BlockOutput:
|
||||||
|
# Validate minimum clips
|
||||||
|
if len(input_data.videos) < 2:
|
||||||
|
raise BlockExecutionError(
|
||||||
|
message="At least 2 videos are required for concatenation",
|
||||||
|
block_name=self.name,
|
||||||
|
block_id=str(self.id),
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
assert execution_context.graph_exec_id is not None
|
||||||
|
|
||||||
|
# Store all input videos locally
|
||||||
|
video_abspaths = []
|
||||||
|
for video in input_data.videos:
|
||||||
|
local_path = await self._store_input_video(execution_context, video)
|
||||||
|
video_abspaths.append(
|
||||||
|
get_exec_file_path(execution_context.graph_exec_id, local_path)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Build output path
|
||||||
|
source = (
|
||||||
|
extract_source_name(video_abspaths[0]) if video_abspaths else "video"
|
||||||
|
)
|
||||||
|
output_filename = MediaFileType(
|
||||||
|
f"{node_exec_id}_concat_{source}.{input_data.output_format}"
|
||||||
|
)
|
||||||
|
output_abspath = get_exec_file_path(
|
||||||
|
execution_context.graph_exec_id, output_filename
|
||||||
|
)
|
||||||
|
|
||||||
|
total_duration = self._concat_videos(
|
||||||
|
video_abspaths,
|
||||||
|
output_abspath,
|
||||||
|
input_data.transition,
|
||||||
|
input_data.transition_duration,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Return as workspace path or data URI based on context
|
||||||
|
video_out = await self._store_output_video(
|
||||||
|
execution_context, output_filename
|
||||||
|
)
|
||||||
|
|
||||||
|
yield "video_out", video_out
|
||||||
|
yield "total_duration", total_duration
|
||||||
|
|
||||||
|
except BlockExecutionError:
|
||||||
|
raise
|
||||||
|
except Exception as e:
|
||||||
|
raise BlockExecutionError(
|
||||||
|
message=f"Failed to concatenate videos: {e}",
|
||||||
|
block_name=self.name,
|
||||||
|
block_id=str(self.id),
|
||||||
|
) from e
|
||||||
172
autogpt_platform/backend/backend/blocks/video/download.py
Normal file
172
autogpt_platform/backend/backend/blocks/video/download.py
Normal file
@@ -0,0 +1,172 @@
|
|||||||
|
"""VideoDownloadBlock - Download video from URL (YouTube, Vimeo, news sites, direct links)."""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import typing
|
||||||
|
from typing import Literal
|
||||||
|
|
||||||
|
import yt_dlp
|
||||||
|
|
||||||
|
if typing.TYPE_CHECKING:
|
||||||
|
from yt_dlp import _Params
|
||||||
|
|
||||||
|
from backend.data.block import (
|
||||||
|
Block,
|
||||||
|
BlockCategory,
|
||||||
|
BlockOutput,
|
||||||
|
BlockSchemaInput,
|
||||||
|
BlockSchemaOutput,
|
||||||
|
)
|
||||||
|
from backend.data.execution import ExecutionContext
|
||||||
|
from backend.data.model import SchemaField
|
||||||
|
from backend.util.exceptions import BlockExecutionError
|
||||||
|
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||||
|
|
||||||
|
|
||||||
|
class VideoDownloadBlock(Block):
|
||||||
|
"""Download video from URL using yt-dlp."""
|
||||||
|
|
||||||
|
class Input(BlockSchemaInput):
|
||||||
|
url: str = SchemaField(
|
||||||
|
description="URL of the video to download (YouTube, Vimeo, direct link, etc.)",
|
||||||
|
placeholder="https://www.youtube.com/watch?v=...",
|
||||||
|
)
|
||||||
|
quality: Literal["best", "1080p", "720p", "480p", "audio_only"] = SchemaField(
|
||||||
|
description="Video quality preference", default="720p"
|
||||||
|
)
|
||||||
|
output_format: Literal["mp4", "webm", "mkv"] = SchemaField(
|
||||||
|
description="Output video format", default="mp4", advanced=True
|
||||||
|
)
|
||||||
|
|
||||||
|
class Output(BlockSchemaOutput):
|
||||||
|
video_file: MediaFileType = SchemaField(
|
||||||
|
description="Downloaded video (path or data URI)"
|
||||||
|
)
|
||||||
|
duration: float = SchemaField(description="Video duration in seconds")
|
||||||
|
title: str = SchemaField(description="Video title from source")
|
||||||
|
source_url: str = SchemaField(description="Original source URL")
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(
|
||||||
|
id="c35daabb-cd60-493b-b9ad-51f1fe4b50c4",
|
||||||
|
description="Download video from URL (YouTube, Vimeo, news sites, direct links)",
|
||||||
|
categories={BlockCategory.MULTIMEDIA},
|
||||||
|
input_schema=self.Input,
|
||||||
|
output_schema=self.Output,
|
||||||
|
disabled=True, # Disable until we can sandbox yt-dlp and handle security implications
|
||||||
|
test_input={
|
||||||
|
"url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
|
||||||
|
"quality": "480p",
|
||||||
|
},
|
||||||
|
test_output=[
|
||||||
|
("video_file", str),
|
||||||
|
("duration", float),
|
||||||
|
("title", str),
|
||||||
|
("source_url", str),
|
||||||
|
],
|
||||||
|
test_mock={
|
||||||
|
"_download_video": lambda *args: (
|
||||||
|
"video.mp4",
|
||||||
|
212.0,
|
||||||
|
"Test Video",
|
||||||
|
),
|
||||||
|
"_store_output_video": lambda *args, **kwargs: "video.mp4",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
async def _store_output_video(
|
||||||
|
self, execution_context: ExecutionContext, file: MediaFileType
|
||||||
|
) -> MediaFileType:
|
||||||
|
"""Store output video. Extracted for testability."""
|
||||||
|
return await store_media_file(
|
||||||
|
file=file,
|
||||||
|
execution_context=execution_context,
|
||||||
|
return_format="for_block_output",
|
||||||
|
)
|
||||||
|
|
||||||
|
def _get_format_string(self, quality: str) -> str:
|
||||||
|
formats = {
|
||||||
|
"best": "bestvideo+bestaudio/best",
|
||||||
|
"1080p": "bestvideo[height<=1080]+bestaudio/best[height<=1080]",
|
||||||
|
"720p": "bestvideo[height<=720]+bestaudio/best[height<=720]",
|
||||||
|
"480p": "bestvideo[height<=480]+bestaudio/best[height<=480]",
|
||||||
|
"audio_only": "bestaudio/best",
|
||||||
|
}
|
||||||
|
return formats.get(quality, formats["720p"])
|
||||||
|
|
||||||
|
def _download_video(
|
||||||
|
self,
|
||||||
|
url: str,
|
||||||
|
quality: str,
|
||||||
|
output_format: str,
|
||||||
|
output_dir: str,
|
||||||
|
node_exec_id: str,
|
||||||
|
) -> tuple[str, float, str]:
|
||||||
|
"""Download video. Extracted for testability."""
|
||||||
|
output_template = os.path.join(
|
||||||
|
output_dir, f"{node_exec_id}_%(title).50s.%(ext)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
ydl_opts: "_Params" = {
|
||||||
|
"format": f"{self._get_format_string(quality)}/best",
|
||||||
|
"outtmpl": output_template,
|
||||||
|
"merge_output_format": output_format,
|
||||||
|
"quiet": True,
|
||||||
|
"no_warnings": True,
|
||||||
|
}
|
||||||
|
|
||||||
|
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
||||||
|
info = ydl.extract_info(url, download=True)
|
||||||
|
video_path = ydl.prepare_filename(info)
|
||||||
|
|
||||||
|
# Handle format conversion in filename
|
||||||
|
if not video_path.endswith(f".{output_format}"):
|
||||||
|
video_path = video_path.rsplit(".", 1)[0] + f".{output_format}"
|
||||||
|
|
||||||
|
# Return just the filename, not the full path
|
||||||
|
filename = os.path.basename(video_path)
|
||||||
|
|
||||||
|
return (
|
||||||
|
filename,
|
||||||
|
info.get("duration") or 0.0,
|
||||||
|
info.get("title") or "Unknown",
|
||||||
|
)
|
||||||
|
|
||||||
|
async def run(
|
||||||
|
self,
|
||||||
|
input_data: Input,
|
||||||
|
*,
|
||||||
|
execution_context: ExecutionContext,
|
||||||
|
node_exec_id: str,
|
||||||
|
**kwargs,
|
||||||
|
) -> BlockOutput:
|
||||||
|
try:
|
||||||
|
assert execution_context.graph_exec_id is not None
|
||||||
|
|
||||||
|
# Get the exec file directory
|
||||||
|
output_dir = get_exec_file_path(execution_context.graph_exec_id, "")
|
||||||
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
|
|
||||||
|
filename, duration, title = self._download_video(
|
||||||
|
input_data.url,
|
||||||
|
input_data.quality,
|
||||||
|
input_data.output_format,
|
||||||
|
output_dir,
|
||||||
|
node_exec_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Return as workspace path or data URI based on context
|
||||||
|
video_out = await self._store_output_video(
|
||||||
|
execution_context, MediaFileType(filename)
|
||||||
|
)
|
||||||
|
|
||||||
|
yield "video_file", video_out
|
||||||
|
yield "duration", duration
|
||||||
|
yield "title", title
|
||||||
|
yield "source_url", input_data.url
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
raise BlockExecutionError(
|
||||||
|
message=f"Failed to download video: {e}",
|
||||||
|
block_name=self.name,
|
||||||
|
block_id=str(self.id),
|
||||||
|
) from e
|
||||||
77
autogpt_platform/backend/backend/blocks/video/duration.py
Normal file
77
autogpt_platform/backend/backend/blocks/video/duration.py
Normal file
@@ -0,0 +1,77 @@
|
|||||||
|
"""MediaDurationBlock - Get the duration of a media file."""
|
||||||
|
|
||||||
|
from moviepy.audio.io.AudioFileClip import AudioFileClip
|
||||||
|
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||||
|
|
||||||
|
from backend.blocks.video._utils import strip_chapters_inplace
|
||||||
|
from backend.data.block import (
|
||||||
|
Block,
|
||||||
|
BlockCategory,
|
||||||
|
BlockOutput,
|
||||||
|
BlockSchemaInput,
|
||||||
|
BlockSchemaOutput,
|
||||||
|
)
|
||||||
|
from backend.data.execution import ExecutionContext
|
||||||
|
from backend.data.model import SchemaField
|
||||||
|
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||||
|
|
||||||
|
|
||||||
|
class MediaDurationBlock(Block):
|
||||||
|
"""Get the duration of a media file (video or audio)."""
|
||||||
|
|
||||||
|
class Input(BlockSchemaInput):
|
||||||
|
media_in: MediaFileType = SchemaField(
|
||||||
|
description="Media input (URL, data URI, or local path)."
|
||||||
|
)
|
||||||
|
is_video: bool = SchemaField(
|
||||||
|
description="Whether the media is a video (True) or audio (False).",
|
||||||
|
default=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
class Output(BlockSchemaOutput):
|
||||||
|
duration: float = SchemaField(
|
||||||
|
description="Duration of the media file (in seconds)."
|
||||||
|
)
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(
|
||||||
|
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
|
||||||
|
description="Block to get the duration of a media file.",
|
||||||
|
categories={BlockCategory.MULTIMEDIA},
|
||||||
|
input_schema=MediaDurationBlock.Input,
|
||||||
|
output_schema=MediaDurationBlock.Output,
|
||||||
|
)
|
||||||
|
|
||||||
|
async def run(
|
||||||
|
self,
|
||||||
|
input_data: Input,
|
||||||
|
*,
|
||||||
|
execution_context: ExecutionContext,
|
||||||
|
**kwargs,
|
||||||
|
) -> BlockOutput:
|
||||||
|
# 1) Store the input media locally
|
||||||
|
local_media_path = await store_media_file(
|
||||||
|
file=input_data.media_in,
|
||||||
|
execution_context=execution_context,
|
||||||
|
return_format="for_local_processing",
|
||||||
|
)
|
||||||
|
assert execution_context.graph_exec_id is not None
|
||||||
|
media_abspath = get_exec_file_path(
|
||||||
|
execution_context.graph_exec_id, local_media_path
|
||||||
|
)
|
||||||
|
|
||||||
|
# 2) Strip chapters to avoid MoviePy crash, then load the clip
|
||||||
|
strip_chapters_inplace(media_abspath)
|
||||||
|
clip = None
|
||||||
|
try:
|
||||||
|
if input_data.is_video:
|
||||||
|
clip = VideoFileClip(media_abspath)
|
||||||
|
else:
|
||||||
|
clip = AudioFileClip(media_abspath)
|
||||||
|
|
||||||
|
duration = clip.duration
|
||||||
|
finally:
|
||||||
|
if clip:
|
||||||
|
clip.close()
|
||||||
|
|
||||||
|
yield "duration", duration
|
||||||
115
autogpt_platform/backend/backend/blocks/video/loop.py
Normal file
115
autogpt_platform/backend/backend/blocks/video/loop.py
Normal file
@@ -0,0 +1,115 @@
|
|||||||
|
"""LoopVideoBlock - Loop a video to a given duration or number of repeats."""
|
||||||
|
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
from moviepy.video.fx.Loop import Loop
|
||||||
|
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||||
|
|
||||||
|
from backend.blocks.video._utils import extract_source_name, strip_chapters_inplace
|
||||||
|
from backend.data.block import (
|
||||||
|
Block,
|
||||||
|
BlockCategory,
|
||||||
|
BlockOutput,
|
||||||
|
BlockSchemaInput,
|
||||||
|
BlockSchemaOutput,
|
||||||
|
)
|
||||||
|
from backend.data.execution import ExecutionContext
|
||||||
|
from backend.data.model import SchemaField
|
||||||
|
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||||
|
|
||||||
|
|
||||||
|
class LoopVideoBlock(Block):
|
||||||
|
"""Loop (repeat) a video clip until a given duration or number of loops."""
|
||||||
|
|
||||||
|
class Input(BlockSchemaInput):
|
||||||
|
video_in: MediaFileType = SchemaField(
|
||||||
|
description="The input video (can be a URL, data URI, or local path)."
|
||||||
|
)
|
||||||
|
duration: Optional[float] = SchemaField(
|
||||||
|
description="Target duration (in seconds) to loop the video to. Either duration or n_loops must be provided.",
|
||||||
|
default=None,
|
||||||
|
ge=0.0,
|
||||||
|
le=3600.0, # Max 1 hour to prevent disk exhaustion
|
||||||
|
)
|
||||||
|
n_loops: Optional[int] = SchemaField(
|
||||||
|
description="Number of times to repeat the video. Either n_loops or duration must be provided.",
|
||||||
|
default=None,
|
||||||
|
ge=1,
|
||||||
|
le=10, # Max 10 loops to prevent disk exhaustion
|
||||||
|
)
|
||||||
|
|
||||||
|
class Output(BlockSchemaOutput):
|
||||||
|
video_out: MediaFileType = SchemaField(
|
||||||
|
description="Looped video returned either as a relative path or a data URI."
|
||||||
|
)
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(
|
||||||
|
id="8bf9eef6-5451-4213-b265-25306446e94b",
|
||||||
|
description="Block to loop a video to a given duration or number of repeats.",
|
||||||
|
categories={BlockCategory.MULTIMEDIA},
|
||||||
|
input_schema=LoopVideoBlock.Input,
|
||||||
|
output_schema=LoopVideoBlock.Output,
|
||||||
|
)
|
||||||
|
|
||||||
|
async def run(
|
||||||
|
self,
|
||||||
|
input_data: Input,
|
||||||
|
*,
|
||||||
|
execution_context: ExecutionContext,
|
||||||
|
**kwargs,
|
||||||
|
) -> BlockOutput:
|
||||||
|
assert execution_context.graph_exec_id is not None
|
||||||
|
assert execution_context.node_exec_id is not None
|
||||||
|
graph_exec_id = execution_context.graph_exec_id
|
||||||
|
node_exec_id = execution_context.node_exec_id
|
||||||
|
|
||||||
|
# 1) Store the input video locally
|
||||||
|
local_video_path = await store_media_file(
|
||||||
|
file=input_data.video_in,
|
||||||
|
execution_context=execution_context,
|
||||||
|
return_format="for_local_processing",
|
||||||
|
)
|
||||||
|
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
|
||||||
|
|
||||||
|
# 2) Load the clip
|
||||||
|
strip_chapters_inplace(input_abspath)
|
||||||
|
clip = None
|
||||||
|
looped_clip = None
|
||||||
|
try:
|
||||||
|
clip = VideoFileClip(input_abspath)
|
||||||
|
|
||||||
|
# 3) Apply the loop effect
|
||||||
|
if input_data.duration:
|
||||||
|
# Loop until we reach the specified duration
|
||||||
|
looped_clip = clip.with_effects([Loop(duration=input_data.duration)])
|
||||||
|
elif input_data.n_loops:
|
||||||
|
looped_clip = clip.with_effects([Loop(n=input_data.n_loops)])
|
||||||
|
else:
|
||||||
|
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
|
||||||
|
|
||||||
|
assert isinstance(looped_clip, VideoFileClip)
|
||||||
|
|
||||||
|
# 4) Save the looped output
|
||||||
|
source = extract_source_name(local_video_path)
|
||||||
|
output_filename = MediaFileType(f"{node_exec_id}_looped_{source}.mp4")
|
||||||
|
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
|
||||||
|
|
||||||
|
looped_clip = looped_clip.with_audio(clip.audio)
|
||||||
|
looped_clip.write_videofile(
|
||||||
|
output_abspath, codec="libx264", audio_codec="aac"
|
||||||
|
)
|
||||||
|
finally:
|
||||||
|
if looped_clip:
|
||||||
|
looped_clip.close()
|
||||||
|
if clip:
|
||||||
|
clip.close()
|
||||||
|
|
||||||
|
# Return output - for_block_output returns workspace:// if available, else data URI
|
||||||
|
video_out = await store_media_file(
|
||||||
|
file=output_filename,
|
||||||
|
execution_context=execution_context,
|
||||||
|
return_format="for_block_output",
|
||||||
|
)
|
||||||
|
|
||||||
|
yield "video_out", video_out
|
||||||
267
autogpt_platform/backend/backend/blocks/video/narration.py
Normal file
267
autogpt_platform/backend/backend/blocks/video/narration.py
Normal file
@@ -0,0 +1,267 @@
|
|||||||
|
"""VideoNarrationBlock - Generate AI voice narration and add to video."""
|
||||||
|
|
||||||
|
import os
|
||||||
|
from typing import Literal
|
||||||
|
|
||||||
|
from elevenlabs import ElevenLabs
|
||||||
|
from moviepy import CompositeAudioClip
|
||||||
|
from moviepy.audio.io.AudioFileClip import AudioFileClip
|
||||||
|
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||||
|
|
||||||
|
from backend.blocks.elevenlabs._auth import (
|
||||||
|
TEST_CREDENTIALS,
|
||||||
|
TEST_CREDENTIALS_INPUT,
|
||||||
|
ElevenLabsCredentials,
|
||||||
|
ElevenLabsCredentialsInput,
|
||||||
|
)
|
||||||
|
from backend.blocks.video._utils import (
|
||||||
|
extract_source_name,
|
||||||
|
get_video_codecs,
|
||||||
|
strip_chapters_inplace,
|
||||||
|
)
|
||||||
|
from backend.data.block import (
|
||||||
|
Block,
|
||||||
|
BlockCategory,
|
||||||
|
BlockOutput,
|
||||||
|
BlockSchemaInput,
|
||||||
|
BlockSchemaOutput,
|
||||||
|
)
|
||||||
|
from backend.data.execution import ExecutionContext
|
||||||
|
from backend.data.model import CredentialsField, SchemaField
|
||||||
|
from backend.util.exceptions import BlockExecutionError
|
||||||
|
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||||
|
|
||||||
|
|
||||||
|
class VideoNarrationBlock(Block):
|
||||||
|
"""Generate AI narration and add to video."""
|
||||||
|
|
||||||
|
class Input(BlockSchemaInput):
|
||||||
|
credentials: ElevenLabsCredentialsInput = CredentialsField(
|
||||||
|
description="ElevenLabs API key for voice synthesis"
|
||||||
|
)
|
||||||
|
video_in: MediaFileType = SchemaField(
|
||||||
|
description="Input video (URL, data URI, or local path)"
|
||||||
|
)
|
||||||
|
script: str = SchemaField(description="Narration script text")
|
||||||
|
voice_id: str = SchemaField(
|
||||||
|
description="ElevenLabs voice ID", default="21m00Tcm4TlvDq8ikWAM" # Rachel
|
||||||
|
)
|
||||||
|
model_id: Literal[
|
||||||
|
"eleven_multilingual_v2",
|
||||||
|
"eleven_flash_v2_5",
|
||||||
|
"eleven_turbo_v2_5",
|
||||||
|
"eleven_turbo_v2",
|
||||||
|
] = SchemaField(
|
||||||
|
description="ElevenLabs TTS model",
|
||||||
|
default="eleven_multilingual_v2",
|
||||||
|
)
|
||||||
|
mix_mode: Literal["replace", "mix", "ducking"] = SchemaField(
|
||||||
|
description="How to combine with original audio. 'ducking' applies stronger attenuation than 'mix'.",
|
||||||
|
default="ducking",
|
||||||
|
)
|
||||||
|
narration_volume: float = SchemaField(
|
||||||
|
description="Narration volume (0.0 to 2.0)",
|
||||||
|
default=1.0,
|
||||||
|
ge=0.0,
|
||||||
|
le=2.0,
|
||||||
|
advanced=True,
|
||||||
|
)
|
||||||
|
original_volume: float = SchemaField(
|
||||||
|
description="Original audio volume when mixing (0.0 to 1.0)",
|
||||||
|
default=0.3,
|
||||||
|
ge=0.0,
|
||||||
|
le=1.0,
|
||||||
|
advanced=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
class Output(BlockSchemaOutput):
|
||||||
|
video_out: MediaFileType = SchemaField(
|
||||||
|
description="Video with narration (path or data URI)"
|
||||||
|
)
|
||||||
|
audio_file: MediaFileType = SchemaField(
|
||||||
|
description="Generated audio file (path or data URI)"
|
||||||
|
)
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(
|
||||||
|
id="3d036b53-859c-4b17-9826-ca340f736e0e",
|
||||||
|
description="Generate AI narration and add to video",
|
||||||
|
categories={BlockCategory.MULTIMEDIA, BlockCategory.AI},
|
||||||
|
input_schema=self.Input,
|
||||||
|
output_schema=self.Output,
|
||||||
|
test_input={
|
||||||
|
"video_in": "/tmp/test.mp4",
|
||||||
|
"script": "Hello world",
|
||||||
|
"credentials": TEST_CREDENTIALS_INPUT,
|
||||||
|
},
|
||||||
|
test_credentials=TEST_CREDENTIALS,
|
||||||
|
test_output=[("video_out", str), ("audio_file", str)],
|
||||||
|
test_mock={
|
||||||
|
"_generate_narration_audio": lambda *args: b"mock audio content",
|
||||||
|
"_add_narration_to_video": lambda *args: None,
|
||||||
|
"_store_input_video": lambda *args, **kwargs: "test.mp4",
|
||||||
|
"_store_output_video": lambda *args, **kwargs: "narrated_test.mp4",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
async def _store_input_video(
|
||||||
|
self, execution_context: ExecutionContext, file: MediaFileType
|
||||||
|
) -> MediaFileType:
|
||||||
|
"""Store input video. Extracted for testability."""
|
||||||
|
return await store_media_file(
|
||||||
|
file=file,
|
||||||
|
execution_context=execution_context,
|
||||||
|
return_format="for_local_processing",
|
||||||
|
)
|
||||||
|
|
||||||
|
async def _store_output_video(
|
||||||
|
self, execution_context: ExecutionContext, file: MediaFileType
|
||||||
|
) -> MediaFileType:
|
||||||
|
"""Store output video. Extracted for testability."""
|
||||||
|
return await store_media_file(
|
||||||
|
file=file,
|
||||||
|
execution_context=execution_context,
|
||||||
|
return_format="for_block_output",
|
||||||
|
)
|
||||||
|
|
||||||
|
def _generate_narration_audio(
|
||||||
|
self, api_key: str, script: str, voice_id: str, model_id: str
|
||||||
|
) -> bytes:
|
||||||
|
"""Generate narration audio via ElevenLabs API."""
|
||||||
|
client = ElevenLabs(api_key=api_key)
|
||||||
|
audio_generator = client.text_to_speech.convert(
|
||||||
|
voice_id=voice_id,
|
||||||
|
text=script,
|
||||||
|
model_id=model_id,
|
||||||
|
)
|
||||||
|
# The SDK returns a generator, collect all chunks
|
||||||
|
return b"".join(audio_generator)
|
||||||
|
|
||||||
|
def _add_narration_to_video(
|
||||||
|
self,
|
||||||
|
video_abspath: str,
|
||||||
|
audio_abspath: str,
|
||||||
|
output_abspath: str,
|
||||||
|
mix_mode: str,
|
||||||
|
narration_volume: float,
|
||||||
|
original_volume: float,
|
||||||
|
) -> None:
|
||||||
|
"""Add narration audio to video. Extracted for testability."""
|
||||||
|
video = None
|
||||||
|
final = None
|
||||||
|
narration_original = None
|
||||||
|
narration_scaled = None
|
||||||
|
original = None
|
||||||
|
|
||||||
|
try:
|
||||||
|
strip_chapters_inplace(video_abspath)
|
||||||
|
video = VideoFileClip(video_abspath)
|
||||||
|
narration_original = AudioFileClip(audio_abspath)
|
||||||
|
narration_scaled = narration_original.with_volume_scaled(narration_volume)
|
||||||
|
narration = narration_scaled
|
||||||
|
|
||||||
|
if mix_mode == "replace":
|
||||||
|
final_audio = narration
|
||||||
|
elif mix_mode == "mix":
|
||||||
|
if video.audio:
|
||||||
|
original = video.audio.with_volume_scaled(original_volume)
|
||||||
|
final_audio = CompositeAudioClip([original, narration])
|
||||||
|
else:
|
||||||
|
final_audio = narration
|
||||||
|
else: # ducking - apply stronger attenuation
|
||||||
|
if video.audio:
|
||||||
|
# Ducking uses a much lower volume for original audio
|
||||||
|
ducking_volume = original_volume * 0.3
|
||||||
|
original = video.audio.with_volume_scaled(ducking_volume)
|
||||||
|
final_audio = CompositeAudioClip([original, narration])
|
||||||
|
else:
|
||||||
|
final_audio = narration
|
||||||
|
|
||||||
|
final = video.with_audio(final_audio)
|
||||||
|
video_codec, audio_codec = get_video_codecs(output_abspath)
|
||||||
|
final.write_videofile(
|
||||||
|
output_abspath, codec=video_codec, audio_codec=audio_codec
|
||||||
|
)
|
||||||
|
|
||||||
|
finally:
|
||||||
|
if original:
|
||||||
|
original.close()
|
||||||
|
if narration_scaled:
|
||||||
|
narration_scaled.close()
|
||||||
|
if narration_original:
|
||||||
|
narration_original.close()
|
||||||
|
if final:
|
||||||
|
final.close()
|
||||||
|
if video:
|
||||||
|
video.close()
|
||||||
|
|
||||||
|
async def run(
|
||||||
|
self,
|
||||||
|
input_data: Input,
|
||||||
|
*,
|
||||||
|
credentials: ElevenLabsCredentials,
|
||||||
|
execution_context: ExecutionContext,
|
||||||
|
node_exec_id: str,
|
||||||
|
**kwargs,
|
||||||
|
) -> BlockOutput:
|
||||||
|
try:
|
||||||
|
assert execution_context.graph_exec_id is not None
|
||||||
|
|
||||||
|
# Store the input video locally
|
||||||
|
local_video_path = await self._store_input_video(
|
||||||
|
execution_context, input_data.video_in
|
||||||
|
)
|
||||||
|
video_abspath = get_exec_file_path(
|
||||||
|
execution_context.graph_exec_id, local_video_path
|
||||||
|
)
|
||||||
|
|
||||||
|
# Generate narration audio via ElevenLabs
|
||||||
|
audio_content = self._generate_narration_audio(
|
||||||
|
credentials.api_key.get_secret_value(),
|
||||||
|
input_data.script,
|
||||||
|
input_data.voice_id,
|
||||||
|
input_data.model_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Save audio to exec file path
|
||||||
|
audio_filename = MediaFileType(f"{node_exec_id}_narration.mp3")
|
||||||
|
audio_abspath = get_exec_file_path(
|
||||||
|
execution_context.graph_exec_id, audio_filename
|
||||||
|
)
|
||||||
|
os.makedirs(os.path.dirname(audio_abspath), exist_ok=True)
|
||||||
|
with open(audio_abspath, "wb") as f:
|
||||||
|
f.write(audio_content)
|
||||||
|
|
||||||
|
# Add narration to video
|
||||||
|
source = extract_source_name(local_video_path)
|
||||||
|
output_filename = MediaFileType(f"{node_exec_id}_narrated_{source}.mp4")
|
||||||
|
output_abspath = get_exec_file_path(
|
||||||
|
execution_context.graph_exec_id, output_filename
|
||||||
|
)
|
||||||
|
|
||||||
|
self._add_narration_to_video(
|
||||||
|
video_abspath,
|
||||||
|
audio_abspath,
|
||||||
|
output_abspath,
|
||||||
|
input_data.mix_mode,
|
||||||
|
input_data.narration_volume,
|
||||||
|
input_data.original_volume,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Return as workspace path or data URI based on context
|
||||||
|
video_out = await self._store_output_video(
|
||||||
|
execution_context, output_filename
|
||||||
|
)
|
||||||
|
audio_out = await self._store_output_video(
|
||||||
|
execution_context, audio_filename
|
||||||
|
)
|
||||||
|
|
||||||
|
yield "video_out", video_out
|
||||||
|
yield "audio_file", audio_out
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
raise BlockExecutionError(
|
||||||
|
message=f"Failed to add narration: {e}",
|
||||||
|
block_name=self.name,
|
||||||
|
block_id=str(self.id),
|
||||||
|
) from e
|
||||||
231
autogpt_platform/backend/backend/blocks/video/text_overlay.py
Normal file
231
autogpt_platform/backend/backend/blocks/video/text_overlay.py
Normal file
@@ -0,0 +1,231 @@
|
|||||||
|
"""VideoTextOverlayBlock - Add text overlay to video."""
|
||||||
|
|
||||||
|
from typing import Literal
|
||||||
|
|
||||||
|
from moviepy import CompositeVideoClip, TextClip
|
||||||
|
from moviepy.video.io.VideoFileClip import VideoFileClip
|
||||||
|
|
||||||
|
from backend.blocks.video._utils import (
|
||||||
|
extract_source_name,
|
||||||
|
get_video_codecs,
|
||||||
|
strip_chapters_inplace,
|
||||||
|
)
|
||||||
|
from backend.data.block import (
|
||||||
|
Block,
|
||||||
|
BlockCategory,
|
||||||
|
BlockOutput,
|
||||||
|
BlockSchemaInput,
|
||||||
|
BlockSchemaOutput,
|
||||||
|
)
|
||||||
|
from backend.data.execution import ExecutionContext
|
||||||
|
from backend.data.model import SchemaField
|
||||||
|
from backend.util.exceptions import BlockExecutionError
|
||||||
|
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
|
||||||
|
|
||||||
|
|
||||||
|
class VideoTextOverlayBlock(Block):
|
||||||
|
"""Add text overlay/caption to video."""
|
||||||
|
|
||||||
|
class Input(BlockSchemaInput):
|
||||||
|
video_in: MediaFileType = SchemaField(
|
||||||
|
description="Input video (URL, data URI, or local path)"
|
||||||
|
)
|
||||||
|
text: str = SchemaField(description="Text to overlay on video")
|
||||||
|
position: Literal[
|
||||||
|
"top",
|
||||||
|
"center",
|
||||||
|
"bottom",
|
||||||
|
"top-left",
|
||||||
|
"top-right",
|
||||||
|
"bottom-left",
|
||||||
|
"bottom-right",
|
||||||
|
] = SchemaField(description="Position of text on screen", default="bottom")
|
||||||
|
start_time: float | None = SchemaField(
|
||||||
|
description="When to show text (seconds). None = entire video",
|
||||||
|
default=None,
|
||||||
|
advanced=True,
|
||||||
|
)
|
||||||
|
end_time: float | None = SchemaField(
|
||||||
|
description="When to hide text (seconds). None = until end",
|
||||||
|
default=None,
|
||||||
|
advanced=True,
|
||||||
|
)
|
||||||
|
font_size: int = SchemaField(
|
||||||
|
description="Font size", default=48, ge=12, le=200, advanced=True
|
||||||
|
)
|
||||||
|
font_color: str = SchemaField(
|
||||||
|
description="Font color (hex or name)", default="white", advanced=True
|
||||||
|
)
|
||||||
|
bg_color: str | None = SchemaField(
|
||||||
|
description="Background color behind text (None for transparent)",
|
||||||
|
default=None,
|
||||||
|
advanced=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
class Output(BlockSchemaOutput):
|
||||||
|
video_out: MediaFileType = SchemaField(
|
||||||
|
description="Video with text overlay (path or data URI)"
|
||||||
|
)
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(
|
||||||
|
id="8ef14de6-cc90-430a-8cfa-3a003be92454",
|
||||||
|
description="Add text overlay/caption to video",
|
||||||
|
categories={BlockCategory.MULTIMEDIA},
|
||||||
|
input_schema=self.Input,
|
||||||
|
output_schema=self.Output,
|
||||||
|
disabled=True, # Disable until we can lockdown imagemagick security policy
|
||||||
|
test_input={"video_in": "/tmp/test.mp4", "text": "Hello World"},
|
||||||
|
test_output=[("video_out", str)],
|
||||||
|
test_mock={
|
||||||
|
"_add_text_overlay": lambda *args: None,
|
||||||
|
"_store_input_video": lambda *args, **kwargs: "test.mp4",
|
||||||
|
"_store_output_video": lambda *args, **kwargs: "overlay_test.mp4",
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
async def _store_input_video(
|
||||||
|
self, execution_context: ExecutionContext, file: MediaFileType
|
||||||
|
) -> MediaFileType:
|
||||||
|
"""Store input video. Extracted for testability."""
|
||||||
|
return await store_media_file(
|
||||||
|
file=file,
|
||||||
|
execution_context=execution_context,
|
||||||
|
return_format="for_local_processing",
|
||||||
|
)
|
||||||
|
|
||||||
|
async def _store_output_video(
|
||||||
|
self, execution_context: ExecutionContext, file: MediaFileType
|
||||||
|
) -> MediaFileType:
|
||||||
|
"""Store output video. Extracted for testability."""
|
||||||
|
return await store_media_file(
|
||||||
|
file=file,
|
||||||
|
execution_context=execution_context,
|
||||||
|
return_format="for_block_output",
|
||||||
|
)
|
||||||
|
|
||||||
|
def _add_text_overlay(
|
||||||
|
self,
|
||||||
|
video_abspath: str,
|
||||||
|
output_abspath: str,
|
||||||
|
text: str,
|
||||||
|
position: str,
|
||||||
|
start_time: float | None,
|
||||||
|
end_time: float | None,
|
||||||
|
font_size: int,
|
||||||
|
font_color: str,
|
||||||
|
bg_color: str | None,
|
||||||
|
) -> None:
|
||||||
|
"""Add text overlay to video. Extracted for testability."""
|
||||||
|
video = None
|
||||||
|
final = None
|
||||||
|
txt_clip = None
|
||||||
|
try:
|
||||||
|
strip_chapters_inplace(video_abspath)
|
||||||
|
video = VideoFileClip(video_abspath)
|
||||||
|
|
||||||
|
txt_clip = TextClip(
|
||||||
|
text=text,
|
||||||
|
font_size=font_size,
|
||||||
|
color=font_color,
|
||||||
|
bg_color=bg_color,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Position mapping
|
||||||
|
pos_map = {
|
||||||
|
"top": ("center", "top"),
|
||||||
|
"center": ("center", "center"),
|
||||||
|
"bottom": ("center", "bottom"),
|
||||||
|
"top-left": ("left", "top"),
|
||||||
|
"top-right": ("right", "top"),
|
||||||
|
"bottom-left": ("left", "bottom"),
|
||||||
|
"bottom-right": ("right", "bottom"),
|
||||||
|
}
|
||||||
|
|
||||||
|
txt_clip = txt_clip.with_position(pos_map[position])
|
||||||
|
|
||||||
|
# Set timing
|
||||||
|
start = start_time or 0
|
||||||
|
end = end_time or video.duration
|
||||||
|
duration = max(0, end - start)
|
||||||
|
txt_clip = txt_clip.with_start(start).with_end(end).with_duration(duration)
|
||||||
|
|
||||||
|
final = CompositeVideoClip([video, txt_clip])
|
||||||
|
video_codec, audio_codec = get_video_codecs(output_abspath)
|
||||||
|
final.write_videofile(
|
||||||
|
output_abspath, codec=video_codec, audio_codec=audio_codec
|
||||||
|
)
|
||||||
|
|
||||||
|
finally:
|
||||||
|
if txt_clip:
|
||||||
|
txt_clip.close()
|
||||||
|
if final:
|
||||||
|
final.close()
|
||||||
|
if video:
|
||||||
|
video.close()
|
||||||
|
|
||||||
|
async def run(
|
||||||
|
self,
|
||||||
|
input_data: Input,
|
||||||
|
*,
|
||||||
|
execution_context: ExecutionContext,
|
||||||
|
node_exec_id: str,
|
||||||
|
**kwargs,
|
||||||
|
) -> BlockOutput:
|
||||||
|
# Validate time range if both are provided
|
||||||
|
if (
|
||||||
|
input_data.start_time is not None
|
||||||
|
and input_data.end_time is not None
|
||||||
|
and input_data.end_time <= input_data.start_time
|
||||||
|
):
|
||||||
|
raise BlockExecutionError(
|
||||||
|
message=f"end_time ({input_data.end_time}) must be greater than start_time ({input_data.start_time})",
|
||||||
|
block_name=self.name,
|
||||||
|
block_id=str(self.id),
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
assert execution_context.graph_exec_id is not None
|
||||||
|
|
||||||
|
# Store the input video locally
|
||||||
|
local_video_path = await self._store_input_video(
|
||||||
|
execution_context, input_data.video_in
|
||||||
|
)
|
||||||
|
video_abspath = get_exec_file_path(
|
||||||
|
execution_context.graph_exec_id, local_video_path
|
||||||
|
)
|
||||||
|
|
||||||
|
# Build output path
|
||||||
|
source = extract_source_name(local_video_path)
|
||||||
|
output_filename = MediaFileType(f"{node_exec_id}_overlay_{source}.mp4")
|
||||||
|
output_abspath = get_exec_file_path(
|
||||||
|
execution_context.graph_exec_id, output_filename
|
||||||
|
)
|
||||||
|
|
||||||
|
self._add_text_overlay(
|
||||||
|
video_abspath,
|
||||||
|
output_abspath,
|
||||||
|
input_data.text,
|
||||||
|
input_data.position,
|
||||||
|
input_data.start_time,
|
||||||
|
input_data.end_time,
|
||||||
|
input_data.font_size,
|
||||||
|
input_data.font_color,
|
||||||
|
input_data.bg_color,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Return as workspace path or data URI based on context
|
||||||
|
video_out = await self._store_output_video(
|
||||||
|
execution_context, output_filename
|
||||||
|
)
|
||||||
|
|
||||||
|
yield "video_out", video_out
|
||||||
|
|
||||||
|
except BlockExecutionError:
|
||||||
|
raise
|
||||||
|
except Exception as e:
|
||||||
|
raise BlockExecutionError(
|
||||||
|
message=f"Failed to add text overlay: {e}",
|
||||||
|
block_name=self.name,
|
||||||
|
block_id=str(self.id),
|
||||||
|
) from e
|
||||||
@@ -165,10 +165,13 @@ class TranscribeYoutubeVideoBlock(Block):
|
|||||||
credentials: WebshareProxyCredentials,
|
credentials: WebshareProxyCredentials,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
) -> BlockOutput:
|
) -> BlockOutput:
|
||||||
video_id = self.extract_video_id(input_data.youtube_url)
|
try:
|
||||||
yield "video_id", video_id
|
video_id = self.extract_video_id(input_data.youtube_url)
|
||||||
|
transcript = self.get_transcript(video_id, credentials)
|
||||||
|
transcript_text = self.format_transcript(transcript=transcript)
|
||||||
|
|
||||||
transcript = self.get_transcript(video_id, credentials)
|
# Only yield after all operations succeed
|
||||||
transcript_text = self.format_transcript(transcript=transcript)
|
yield "video_id", video_id
|
||||||
|
yield "transcript", transcript_text
|
||||||
yield "transcript", transcript_text
|
except Exception as e:
|
||||||
|
yield "error", str(e)
|
||||||
|
|||||||
@@ -873,14 +873,13 @@ def is_block_auth_configured(
|
|||||||
|
|
||||||
|
|
||||||
async def initialize_blocks() -> None:
|
async def initialize_blocks() -> None:
|
||||||
# First, sync all provider costs to blocks
|
|
||||||
# Imported here to avoid circular import
|
|
||||||
from backend.sdk.cost_integration import sync_all_provider_costs
|
from backend.sdk.cost_integration import sync_all_provider_costs
|
||||||
|
from backend.util.retry import func_retry
|
||||||
|
|
||||||
sync_all_provider_costs()
|
sync_all_provider_costs()
|
||||||
|
|
||||||
for cls in get_blocks().values():
|
@func_retry
|
||||||
block = cls()
|
async def sync_block_to_db(block: Block) -> None:
|
||||||
existing_block = await AgentBlock.prisma().find_first(
|
existing_block = await AgentBlock.prisma().find_first(
|
||||||
where={"OR": [{"id": block.id}, {"name": block.name}]}
|
where={"OR": [{"id": block.id}, {"name": block.name}]}
|
||||||
)
|
)
|
||||||
@@ -893,7 +892,7 @@ async def initialize_blocks() -> None:
|
|||||||
outputSchema=json.dumps(block.output_schema.jsonschema()),
|
outputSchema=json.dumps(block.output_schema.jsonschema()),
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
continue
|
return
|
||||||
|
|
||||||
input_schema = json.dumps(block.input_schema.jsonschema())
|
input_schema = json.dumps(block.input_schema.jsonschema())
|
||||||
output_schema = json.dumps(block.output_schema.jsonschema())
|
output_schema = json.dumps(block.output_schema.jsonschema())
|
||||||
@@ -913,6 +912,25 @@ async def initialize_blocks() -> None:
|
|||||||
},
|
},
|
||||||
)
|
)
|
||||||
|
|
||||||
|
failed_blocks: list[str] = []
|
||||||
|
for cls in get_blocks().values():
|
||||||
|
block = cls()
|
||||||
|
try:
|
||||||
|
await sync_block_to_db(block)
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(
|
||||||
|
f"Failed to sync block {block.name} to database: {e}. "
|
||||||
|
"Block is still available in memory.",
|
||||||
|
exc_info=True,
|
||||||
|
)
|
||||||
|
failed_blocks.append(block.name)
|
||||||
|
|
||||||
|
if failed_blocks:
|
||||||
|
logger.error(
|
||||||
|
f"Failed to sync {len(failed_blocks)} block(s) to database: "
|
||||||
|
f"{', '.join(failed_blocks)}. These blocks are still available in memory."
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
# Note on the return type annotation: https://github.com/microsoft/pyright/issues/10281
|
# Note on the return type annotation: https://github.com/microsoft/pyright/issues/10281
|
||||||
def get_block(block_id: str) -> AnyBlockSchema | None:
|
def get_block(block_id: str) -> AnyBlockSchema | None:
|
||||||
|
|||||||
@@ -36,12 +36,14 @@ from backend.blocks.replicate.replicate_block import ReplicateModelBlock
|
|||||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||||
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
|
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
|
||||||
from backend.blocks.text_to_speech_block import UnrealTextToSpeechBlock
|
from backend.blocks.text_to_speech_block import UnrealTextToSpeechBlock
|
||||||
|
from backend.blocks.video.narration import VideoNarrationBlock
|
||||||
from backend.data.block import Block, BlockCost, BlockCostType
|
from backend.data.block import Block, BlockCost, BlockCostType
|
||||||
from backend.integrations.credentials_store import (
|
from backend.integrations.credentials_store import (
|
||||||
aiml_api_credentials,
|
aiml_api_credentials,
|
||||||
anthropic_credentials,
|
anthropic_credentials,
|
||||||
apollo_credentials,
|
apollo_credentials,
|
||||||
did_credentials,
|
did_credentials,
|
||||||
|
elevenlabs_credentials,
|
||||||
enrichlayer_credentials,
|
enrichlayer_credentials,
|
||||||
groq_credentials,
|
groq_credentials,
|
||||||
ideogram_credentials,
|
ideogram_credentials,
|
||||||
@@ -78,6 +80,7 @@ MODEL_COST: dict[LlmModel, int] = {
|
|||||||
LlmModel.CLAUDE_4_1_OPUS: 21,
|
LlmModel.CLAUDE_4_1_OPUS: 21,
|
||||||
LlmModel.CLAUDE_4_OPUS: 21,
|
LlmModel.CLAUDE_4_OPUS: 21,
|
||||||
LlmModel.CLAUDE_4_SONNET: 5,
|
LlmModel.CLAUDE_4_SONNET: 5,
|
||||||
|
LlmModel.CLAUDE_4_6_OPUS: 14,
|
||||||
LlmModel.CLAUDE_4_5_HAIKU: 4,
|
LlmModel.CLAUDE_4_5_HAIKU: 4,
|
||||||
LlmModel.CLAUDE_4_5_OPUS: 14,
|
LlmModel.CLAUDE_4_5_OPUS: 14,
|
||||||
LlmModel.CLAUDE_4_5_SONNET: 9,
|
LlmModel.CLAUDE_4_5_SONNET: 9,
|
||||||
@@ -639,4 +642,16 @@ BLOCK_COSTS: dict[Type[Block], list[BlockCost]] = {
|
|||||||
},
|
},
|
||||||
),
|
),
|
||||||
],
|
],
|
||||||
|
VideoNarrationBlock: [
|
||||||
|
BlockCost(
|
||||||
|
cost_amount=5, # ElevenLabs TTS cost
|
||||||
|
cost_filter={
|
||||||
|
"credentials": {
|
||||||
|
"id": elevenlabs_credentials.id,
|
||||||
|
"provider": elevenlabs_credentials.provider,
|
||||||
|
"type": elevenlabs_credentials.type,
|
||||||
|
}
|
||||||
|
},
|
||||||
|
)
|
||||||
|
],
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -134,6 +134,16 @@ async def test_block_credit_reset(server: SpinTestServer):
|
|||||||
month1 = datetime.now(timezone.utc).replace(month=1, day=1)
|
month1 = datetime.now(timezone.utc).replace(month=1, day=1)
|
||||||
user_credit.time_now = lambda: month1
|
user_credit.time_now = lambda: month1
|
||||||
|
|
||||||
|
# IMPORTANT: Set updatedAt to December of previous year to ensure it's
|
||||||
|
# in a different month than month1 (January). This fixes a timing bug
|
||||||
|
# where if the test runs in early February, 35 days ago would be January,
|
||||||
|
# matching the mocked month1 and preventing the refill from triggering.
|
||||||
|
dec_previous_year = month1.replace(year=month1.year - 1, month=12, day=15)
|
||||||
|
await UserBalance.prisma().update(
|
||||||
|
where={"userId": DEFAULT_USER_ID},
|
||||||
|
data={"updatedAt": dec_previous_year},
|
||||||
|
)
|
||||||
|
|
||||||
# First call in month 1 should trigger refill
|
# First call in month 1 should trigger refill
|
||||||
balance = await user_credit.get_credits(DEFAULT_USER_ID)
|
balance = await user_credit.get_credits(DEFAULT_USER_ID)
|
||||||
assert balance == REFILL_VALUE # Should get 1000 credits
|
assert balance == REFILL_VALUE # Should get 1000 credits
|
||||||
|
|||||||
@@ -133,10 +133,23 @@ class RedisEventBus(BaseRedisEventBus[M], ABC):
|
|||||||
|
|
||||||
|
|
||||||
class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
|
class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
|
||||||
|
def __init__(self):
|
||||||
|
self._pubsub: AsyncPubSub | None = None
|
||||||
|
|
||||||
@property
|
@property
|
||||||
async def connection(self) -> redis.AsyncRedis:
|
async def connection(self) -> redis.AsyncRedis:
|
||||||
return await redis.get_redis_async()
|
return await redis.get_redis_async()
|
||||||
|
|
||||||
|
async def close(self) -> None:
|
||||||
|
"""Close the PubSub connection if it exists."""
|
||||||
|
if self._pubsub is not None:
|
||||||
|
try:
|
||||||
|
await self._pubsub.close()
|
||||||
|
except Exception:
|
||||||
|
logger.warning("Failed to close PubSub connection", exc_info=True)
|
||||||
|
finally:
|
||||||
|
self._pubsub = None
|
||||||
|
|
||||||
async def publish_event(self, event: M, channel_key: str):
|
async def publish_event(self, event: M, channel_key: str):
|
||||||
"""
|
"""
|
||||||
Publish an event to Redis. Gracefully handles connection failures
|
Publish an event to Redis. Gracefully handles connection failures
|
||||||
@@ -157,6 +170,7 @@ class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
|
|||||||
await self.connection, channel_key
|
await self.connection, channel_key
|
||||||
)
|
)
|
||||||
assert isinstance(pubsub, AsyncPubSub)
|
assert isinstance(pubsub, AsyncPubSub)
|
||||||
|
self._pubsub = pubsub
|
||||||
|
|
||||||
if "*" in channel_key:
|
if "*" in channel_key:
|
||||||
await pubsub.psubscribe(full_channel_name)
|
await pubsub.psubscribe(full_channel_name)
|
||||||
|
|||||||
@@ -1028,6 +1028,39 @@ async def get_graph(
|
|||||||
return GraphModel.from_db(graph, for_export)
|
return GraphModel.from_db(graph, for_export)
|
||||||
|
|
||||||
|
|
||||||
|
async def get_store_listed_graphs(*graph_ids: str) -> dict[str, GraphModel]:
|
||||||
|
"""Batch-fetch multiple store-listed graphs by their IDs.
|
||||||
|
|
||||||
|
Only returns graphs that have approved store listings (publicly available).
|
||||||
|
Does not require permission checks since store-listed graphs are public.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
*graph_ids: Variable number of graph IDs to fetch
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dict mapping graph_id to GraphModel for graphs with approved store listings
|
||||||
|
"""
|
||||||
|
if not graph_ids:
|
||||||
|
return {}
|
||||||
|
|
||||||
|
store_listings = await StoreListingVersion.prisma().find_many(
|
||||||
|
where={
|
||||||
|
"agentGraphId": {"in": list(graph_ids)},
|
||||||
|
"submissionStatus": SubmissionStatus.APPROVED,
|
||||||
|
"isDeleted": False,
|
||||||
|
},
|
||||||
|
include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}},
|
||||||
|
distinct=["agentGraphId"],
|
||||||
|
order={"agentGraphVersion": "desc"},
|
||||||
|
)
|
||||||
|
|
||||||
|
return {
|
||||||
|
listing.agentGraphId: GraphModel.from_db(listing.AgentGraph)
|
||||||
|
for listing in store_listings
|
||||||
|
if listing.AgentGraph
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
async def get_graph_as_admin(
|
async def get_graph_as_admin(
|
||||||
graph_id: str,
|
graph_id: str,
|
||||||
version: int | None = None,
|
version: int | None = None,
|
||||||
|
|||||||
@@ -19,7 +19,6 @@ from typing import (
|
|||||||
cast,
|
cast,
|
||||||
get_args,
|
get_args,
|
||||||
)
|
)
|
||||||
from urllib.parse import urlparse
|
|
||||||
from uuid import uuid4
|
from uuid import uuid4
|
||||||
|
|
||||||
from prisma.enums import CreditTransactionType, OnboardingStep
|
from prisma.enums import CreditTransactionType, OnboardingStep
|
||||||
@@ -42,6 +41,7 @@ from typing_extensions import TypedDict
|
|||||||
|
|
||||||
from backend.integrations.providers import ProviderName
|
from backend.integrations.providers import ProviderName
|
||||||
from backend.util.json import loads as json_loads
|
from backend.util.json import loads as json_loads
|
||||||
|
from backend.util.request import parse_url
|
||||||
from backend.util.settings import Secrets
|
from backend.util.settings import Secrets
|
||||||
|
|
||||||
# Type alias for any provider name (including custom ones)
|
# Type alias for any provider name (including custom ones)
|
||||||
@@ -397,19 +397,25 @@ class HostScopedCredentials(_BaseCredentials):
|
|||||||
def matches_url(self, url: str) -> bool:
|
def matches_url(self, url: str) -> bool:
|
||||||
"""Check if this credential should be applied to the given URL."""
|
"""Check if this credential should be applied to the given URL."""
|
||||||
|
|
||||||
parsed_url = urlparse(url)
|
request_host, request_port = _extract_host_from_url(url)
|
||||||
# Extract hostname without port
|
cred_scope_host, cred_scope_port = _extract_host_from_url(self.host)
|
||||||
request_host = parsed_url.hostname
|
|
||||||
if not request_host:
|
if not request_host:
|
||||||
return False
|
return False
|
||||||
|
|
||||||
# Simple host matching - exact match or wildcard subdomain match
|
# If a port is specified in credential host, the request host port must match
|
||||||
if self.host == request_host:
|
if cred_scope_port is not None and request_port != cred_scope_port:
|
||||||
|
return False
|
||||||
|
# Non-standard ports are only allowed if explicitly specified in credential host
|
||||||
|
elif cred_scope_port is None and request_port not in (80, 443, None):
|
||||||
|
return False
|
||||||
|
|
||||||
|
# Simple host matching
|
||||||
|
if cred_scope_host == request_host:
|
||||||
return True
|
return True
|
||||||
|
|
||||||
# Support wildcard matching (e.g., "*.example.com" matches "api.example.com")
|
# Support wildcard matching (e.g., "*.example.com" matches "api.example.com")
|
||||||
if self.host.startswith("*."):
|
if cred_scope_host.startswith("*."):
|
||||||
domain = self.host[2:] # Remove "*."
|
domain = cred_scope_host[2:] # Remove "*."
|
||||||
return request_host.endswith(f".{domain}") or request_host == domain
|
return request_host.endswith(f".{domain}") or request_host == domain
|
||||||
|
|
||||||
return False
|
return False
|
||||||
@@ -551,13 +557,13 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def _extract_host_from_url(url: str) -> str:
|
def _extract_host_from_url(url: str) -> tuple[str, int | None]:
|
||||||
"""Extract host from URL for grouping host-scoped credentials."""
|
"""Extract host and port from URL for grouping host-scoped credentials."""
|
||||||
try:
|
try:
|
||||||
parsed = urlparse(url)
|
parsed = parse_url(url)
|
||||||
return parsed.hostname or url
|
return parsed.hostname or url, parsed.port
|
||||||
except Exception:
|
except Exception:
|
||||||
return ""
|
return "", None
|
||||||
|
|
||||||
|
|
||||||
class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
|
class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
|
||||||
@@ -606,7 +612,7 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
|
|||||||
providers = frozenset(
|
providers = frozenset(
|
||||||
[cast(CP, "http")]
|
[cast(CP, "http")]
|
||||||
+ [
|
+ [
|
||||||
cast(CP, _extract_host_from_url(str(value)))
|
cast(CP, parse_url(str(value)).netloc)
|
||||||
for value in field.discriminator_values
|
for value in field.discriminator_values
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -79,10 +79,23 @@ class TestHostScopedCredentials:
|
|||||||
headers={"Authorization": SecretStr("Bearer token")},
|
headers={"Authorization": SecretStr("Bearer token")},
|
||||||
)
|
)
|
||||||
|
|
||||||
assert creds.matches_url("http://localhost:8080/api/v1")
|
# Non-standard ports require explicit port in credential host
|
||||||
|
assert not creds.matches_url("http://localhost:8080/api/v1")
|
||||||
assert creds.matches_url("https://localhost:443/secure/endpoint")
|
assert creds.matches_url("https://localhost:443/secure/endpoint")
|
||||||
assert creds.matches_url("http://localhost/simple")
|
assert creds.matches_url("http://localhost/simple")
|
||||||
|
|
||||||
|
def test_matches_url_with_explicit_port(self):
|
||||||
|
"""Test URL matching with explicit port in credential host."""
|
||||||
|
creds = HostScopedCredentials(
|
||||||
|
provider="custom",
|
||||||
|
host="localhost:8080",
|
||||||
|
headers={"Authorization": SecretStr("Bearer token")},
|
||||||
|
)
|
||||||
|
|
||||||
|
assert creds.matches_url("http://localhost:8080/api/v1")
|
||||||
|
assert not creds.matches_url("http://localhost:3000/api/v1")
|
||||||
|
assert not creds.matches_url("http://localhost/simple")
|
||||||
|
|
||||||
def test_empty_headers_dict(self):
|
def test_empty_headers_dict(self):
|
||||||
"""Test HostScopedCredentials with empty headers."""
|
"""Test HostScopedCredentials with empty headers."""
|
||||||
creds = HostScopedCredentials(
|
creds = HostScopedCredentials(
|
||||||
@@ -128,8 +141,20 @@ class TestHostScopedCredentials:
|
|||||||
("*.example.com", "https://sub.api.example.com/test", True),
|
("*.example.com", "https://sub.api.example.com/test", True),
|
||||||
("*.example.com", "https://example.com/test", True),
|
("*.example.com", "https://example.com/test", True),
|
||||||
("*.example.com", "https://example.org/test", False),
|
("*.example.com", "https://example.org/test", False),
|
||||||
("localhost", "http://localhost:3000/test", True),
|
# Non-standard ports require explicit port in credential host
|
||||||
|
("localhost", "http://localhost:3000/test", False),
|
||||||
|
("localhost:3000", "http://localhost:3000/test", True),
|
||||||
("localhost", "http://127.0.0.1:3000/test", False),
|
("localhost", "http://127.0.0.1:3000/test", False),
|
||||||
|
# IPv6 addresses (frontend stores with brackets via URL.hostname)
|
||||||
|
("[::1]", "http://[::1]/test", True),
|
||||||
|
("[::1]", "http://[::1]:80/test", True),
|
||||||
|
("[::1]", "https://[::1]:443/test", True),
|
||||||
|
("[::1]", "http://[::1]:8080/test", False), # Non-standard port
|
||||||
|
("[::1]:8080", "http://[::1]:8080/test", True),
|
||||||
|
("[::1]:8080", "http://[::1]:9090/test", False),
|
||||||
|
("[2001:db8::1]", "http://[2001:db8::1]/path", True),
|
||||||
|
("[2001:db8::1]", "https://[2001:db8::1]:443/path", True),
|
||||||
|
("[2001:db8::1]", "http://[2001:db8::ff]/path", False),
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
def test_url_matching_parametrized(self, host: str, test_url: str, expected: bool):
|
def test_url_matching_parametrized(self, host: str, test_url: str, expected: bool):
|
||||||
|
|||||||
@@ -17,6 +17,7 @@ from backend.data.analytics import (
|
|||||||
get_accuracy_trends_and_alerts,
|
get_accuracy_trends_and_alerts,
|
||||||
get_marketplace_graphs_for_monitoring,
|
get_marketplace_graphs_for_monitoring,
|
||||||
)
|
)
|
||||||
|
from backend.data.auth.oauth import cleanup_expired_oauth_tokens
|
||||||
from backend.data.credit import UsageTransactionMetadata, get_user_credit_model
|
from backend.data.credit import UsageTransactionMetadata, get_user_credit_model
|
||||||
from backend.data.execution import (
|
from backend.data.execution import (
|
||||||
create_graph_execution,
|
create_graph_execution,
|
||||||
@@ -219,6 +220,9 @@ class DatabaseManager(AppService):
|
|||||||
# Onboarding
|
# Onboarding
|
||||||
increment_onboarding_runs = _(increment_onboarding_runs)
|
increment_onboarding_runs = _(increment_onboarding_runs)
|
||||||
|
|
||||||
|
# OAuth
|
||||||
|
cleanup_expired_oauth_tokens = _(cleanup_expired_oauth_tokens)
|
||||||
|
|
||||||
# Store
|
# Store
|
||||||
get_store_agents = _(get_store_agents)
|
get_store_agents = _(get_store_agents)
|
||||||
get_store_agent_details = _(get_store_agent_details)
|
get_store_agent_details = _(get_store_agent_details)
|
||||||
@@ -349,6 +353,9 @@ class DatabaseManagerAsyncClient(AppServiceClient):
|
|||||||
# Onboarding
|
# Onboarding
|
||||||
increment_onboarding_runs = d.increment_onboarding_runs
|
increment_onboarding_runs = d.increment_onboarding_runs
|
||||||
|
|
||||||
|
# OAuth
|
||||||
|
cleanup_expired_oauth_tokens = d.cleanup_expired_oauth_tokens
|
||||||
|
|
||||||
# Store
|
# Store
|
||||||
get_store_agents = d.get_store_agents
|
get_store_agents = d.get_store_agents
|
||||||
get_store_agent_details = d.get_store_agent_details
|
get_store_agent_details = d.get_store_agent_details
|
||||||
|
|||||||
@@ -24,11 +24,9 @@ from dotenv import load_dotenv
|
|||||||
from pydantic import BaseModel, Field, ValidationError
|
from pydantic import BaseModel, Field, ValidationError
|
||||||
from sqlalchemy import MetaData, create_engine
|
from sqlalchemy import MetaData, create_engine
|
||||||
|
|
||||||
from backend.data.auth.oauth import cleanup_expired_oauth_tokens
|
|
||||||
from backend.data.block import BlockInput
|
from backend.data.block import BlockInput
|
||||||
from backend.data.execution import GraphExecutionWithNodes
|
from backend.data.execution import GraphExecutionWithNodes
|
||||||
from backend.data.model import CredentialsMetaInput
|
from backend.data.model import CredentialsMetaInput
|
||||||
from backend.data.onboarding import increment_onboarding_runs
|
|
||||||
from backend.executor import utils as execution_utils
|
from backend.executor import utils as execution_utils
|
||||||
from backend.monitoring import (
|
from backend.monitoring import (
|
||||||
NotificationJobArgs,
|
NotificationJobArgs,
|
||||||
@@ -38,7 +36,11 @@ from backend.monitoring import (
|
|||||||
report_execution_accuracy_alerts,
|
report_execution_accuracy_alerts,
|
||||||
report_late_executions,
|
report_late_executions,
|
||||||
)
|
)
|
||||||
from backend.util.clients import get_database_manager_client, get_scheduler_client
|
from backend.util.clients import (
|
||||||
|
get_database_manager_async_client,
|
||||||
|
get_database_manager_client,
|
||||||
|
get_scheduler_client,
|
||||||
|
)
|
||||||
from backend.util.cloud_storage import cleanup_expired_files_async
|
from backend.util.cloud_storage import cleanup_expired_files_async
|
||||||
from backend.util.exceptions import (
|
from backend.util.exceptions import (
|
||||||
GraphNotFoundError,
|
GraphNotFoundError,
|
||||||
@@ -148,6 +150,7 @@ def execute_graph(**kwargs):
|
|||||||
async def _execute_graph(**kwargs):
|
async def _execute_graph(**kwargs):
|
||||||
args = GraphExecutionJobArgs(**kwargs)
|
args = GraphExecutionJobArgs(**kwargs)
|
||||||
start_time = asyncio.get_event_loop().time()
|
start_time = asyncio.get_event_loop().time()
|
||||||
|
db = get_database_manager_async_client()
|
||||||
try:
|
try:
|
||||||
logger.info(f"Executing recurring job for graph #{args.graph_id}")
|
logger.info(f"Executing recurring job for graph #{args.graph_id}")
|
||||||
graph_exec: GraphExecutionWithNodes = await execution_utils.add_graph_execution(
|
graph_exec: GraphExecutionWithNodes = await execution_utils.add_graph_execution(
|
||||||
@@ -157,7 +160,7 @@ async def _execute_graph(**kwargs):
|
|||||||
inputs=args.input_data,
|
inputs=args.input_data,
|
||||||
graph_credentials_inputs=args.input_credentials,
|
graph_credentials_inputs=args.input_credentials,
|
||||||
)
|
)
|
||||||
await increment_onboarding_runs(args.user_id)
|
await db.increment_onboarding_runs(args.user_id)
|
||||||
elapsed = asyncio.get_event_loop().time() - start_time
|
elapsed = asyncio.get_event_loop().time() - start_time
|
||||||
logger.info(
|
logger.info(
|
||||||
f"Graph execution started with ID {graph_exec.id} for graph {args.graph_id} "
|
f"Graph execution started with ID {graph_exec.id} for graph {args.graph_id} "
|
||||||
@@ -246,8 +249,13 @@ def cleanup_expired_files():
|
|||||||
|
|
||||||
def cleanup_oauth_tokens():
|
def cleanup_oauth_tokens():
|
||||||
"""Clean up expired OAuth tokens from the database."""
|
"""Clean up expired OAuth tokens from the database."""
|
||||||
|
|
||||||
# Wait for completion
|
# Wait for completion
|
||||||
run_async(cleanup_expired_oauth_tokens())
|
async def _cleanup():
|
||||||
|
db = get_database_manager_async_client()
|
||||||
|
return await db.cleanup_expired_oauth_tokens()
|
||||||
|
|
||||||
|
run_async(_cleanup())
|
||||||
|
|
||||||
|
|
||||||
def execution_accuracy_alerts():
|
def execution_accuracy_alerts():
|
||||||
|
|||||||
@@ -224,6 +224,14 @@ openweathermap_credentials = APIKeyCredentials(
|
|||||||
expires_at=None,
|
expires_at=None,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
elevenlabs_credentials = APIKeyCredentials(
|
||||||
|
id="f4a8b6c2-3d1e-4f5a-9b8c-7d6e5f4a3b2c",
|
||||||
|
provider="elevenlabs",
|
||||||
|
api_key=SecretStr(settings.secrets.elevenlabs_api_key),
|
||||||
|
title="Use Credits for ElevenLabs",
|
||||||
|
expires_at=None,
|
||||||
|
)
|
||||||
|
|
||||||
DEFAULT_CREDENTIALS = [
|
DEFAULT_CREDENTIALS = [
|
||||||
ollama_credentials,
|
ollama_credentials,
|
||||||
revid_credentials,
|
revid_credentials,
|
||||||
@@ -252,6 +260,7 @@ DEFAULT_CREDENTIALS = [
|
|||||||
v0_credentials,
|
v0_credentials,
|
||||||
webshare_proxy_credentials,
|
webshare_proxy_credentials,
|
||||||
openweathermap_credentials,
|
openweathermap_credentials,
|
||||||
|
elevenlabs_credentials,
|
||||||
]
|
]
|
||||||
|
|
||||||
SYSTEM_CREDENTIAL_IDS = {cred.id for cred in DEFAULT_CREDENTIALS}
|
SYSTEM_CREDENTIAL_IDS = {cred.id for cred in DEFAULT_CREDENTIALS}
|
||||||
@@ -366,6 +375,8 @@ class IntegrationCredentialsStore:
|
|||||||
all_credentials.append(webshare_proxy_credentials)
|
all_credentials.append(webshare_proxy_credentials)
|
||||||
if settings.secrets.openweathermap_api_key:
|
if settings.secrets.openweathermap_api_key:
|
||||||
all_credentials.append(openweathermap_credentials)
|
all_credentials.append(openweathermap_credentials)
|
||||||
|
if settings.secrets.elevenlabs_api_key:
|
||||||
|
all_credentials.append(elevenlabs_credentials)
|
||||||
return all_credentials
|
return all_credentials
|
||||||
|
|
||||||
async def get_creds_by_id(
|
async def get_creds_by_id(
|
||||||
|
|||||||
@@ -18,6 +18,7 @@ class ProviderName(str, Enum):
|
|||||||
DISCORD = "discord"
|
DISCORD = "discord"
|
||||||
D_ID = "d_id"
|
D_ID = "d_id"
|
||||||
E2B = "e2b"
|
E2B = "e2b"
|
||||||
|
ELEVENLABS = "elevenlabs"
|
||||||
FAL = "fal"
|
FAL = "fal"
|
||||||
GITHUB = "github"
|
GITHUB = "github"
|
||||||
GOOGLE = "google"
|
GOOGLE = "google"
|
||||||
|
|||||||
@@ -0,0 +1,39 @@
|
|||||||
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
|
import fastapi
|
||||||
|
from fastapi.routing import APIRoute
|
||||||
|
|
||||||
|
from backend.api.features.integrations.router import router as integrations_router
|
||||||
|
from backend.integrations.providers import ProviderName
|
||||||
|
from backend.integrations.webhooks import utils as webhooks_utils
|
||||||
|
|
||||||
|
|
||||||
|
def test_webhook_ingress_url_matches_route(monkeypatch) -> None:
|
||||||
|
app = fastapi.FastAPI()
|
||||||
|
app.include_router(integrations_router, prefix="/api/integrations")
|
||||||
|
|
||||||
|
provider = ProviderName.GITHUB
|
||||||
|
webhook_id = "webhook_123"
|
||||||
|
base_url = "https://example.com"
|
||||||
|
|
||||||
|
monkeypatch.setattr(webhooks_utils.app_config, "platform_base_url", base_url)
|
||||||
|
|
||||||
|
route = next(
|
||||||
|
route
|
||||||
|
for route in integrations_router.routes
|
||||||
|
if isinstance(route, APIRoute)
|
||||||
|
and route.path == "/{provider}/webhooks/{webhook_id}/ingress"
|
||||||
|
and "POST" in route.methods
|
||||||
|
)
|
||||||
|
expected_path = f"/api/integrations{route.path}".format(
|
||||||
|
provider=provider.value,
|
||||||
|
webhook_id=webhook_id,
|
||||||
|
)
|
||||||
|
actual_url = urlparse(webhooks_utils.webhook_ingress_url(provider, webhook_id))
|
||||||
|
expected_base = urlparse(base_url)
|
||||||
|
|
||||||
|
assert (actual_url.scheme, actual_url.netloc) == (
|
||||||
|
expected_base.scheme,
|
||||||
|
expected_base.netloc,
|
||||||
|
)
|
||||||
|
assert actual_url.path == expected_path
|
||||||
@@ -8,6 +8,8 @@ from pathlib import Path
|
|||||||
from typing import TYPE_CHECKING, Literal
|
from typing import TYPE_CHECKING, Literal
|
||||||
from urllib.parse import urlparse
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
from backend.util.cloud_storage import get_cloud_storage_handler
|
from backend.util.cloud_storage import get_cloud_storage_handler
|
||||||
from backend.util.request import Requests
|
from backend.util.request import Requests
|
||||||
from backend.util.settings import Config
|
from backend.util.settings import Config
|
||||||
@@ -17,6 +19,35 @@ from backend.util.virus_scanner import scan_content_safe
|
|||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from backend.data.execution import ExecutionContext
|
from backend.data.execution import ExecutionContext
|
||||||
|
|
||||||
|
|
||||||
|
class WorkspaceUri(BaseModel):
|
||||||
|
"""Parsed workspace:// URI."""
|
||||||
|
|
||||||
|
file_ref: str # File ID or path (e.g. "abc123" or "/path/to/file.txt")
|
||||||
|
mime_type: str | None = None # MIME type from fragment (e.g. "video/mp4")
|
||||||
|
is_path: bool = False # True if file_ref is a path (starts with "/")
|
||||||
|
|
||||||
|
|
||||||
|
def parse_workspace_uri(uri: str) -> WorkspaceUri:
|
||||||
|
"""Parse a workspace:// URI into its components.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
"workspace://abc123" → WorkspaceUri(file_ref="abc123", mime_type=None, is_path=False)
|
||||||
|
"workspace://abc123#video/mp4" → WorkspaceUri(file_ref="abc123", mime_type="video/mp4", is_path=False)
|
||||||
|
"workspace:///path/to/file.txt" → WorkspaceUri(file_ref="/path/to/file.txt", mime_type=None, is_path=True)
|
||||||
|
"""
|
||||||
|
raw = uri.removeprefix("workspace://")
|
||||||
|
mime_type: str | None = None
|
||||||
|
if "#" in raw:
|
||||||
|
raw, fragment = raw.split("#", 1)
|
||||||
|
mime_type = fragment or None
|
||||||
|
return WorkspaceUri(
|
||||||
|
file_ref=raw,
|
||||||
|
mime_type=mime_type,
|
||||||
|
is_path=raw.startswith("/"),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
# Return format options for store_media_file
|
# Return format options for store_media_file
|
||||||
# - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
|
# - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
|
||||||
# - "for_external_api": Returns data URI (base64) - use when sending content to external APIs
|
# - "for_external_api": Returns data URI (base64) - use when sending content to external APIs
|
||||||
@@ -183,22 +214,20 @@ async def store_media_file(
|
|||||||
"This file type is only available in CoPilot sessions."
|
"This file type is only available in CoPilot sessions."
|
||||||
)
|
)
|
||||||
|
|
||||||
# Parse workspace reference
|
# Parse workspace reference (strips #mimeType fragment from file ID)
|
||||||
# workspace://abc123 - by file ID
|
ws = parse_workspace_uri(file)
|
||||||
# workspace:///path/to/file.txt - by virtual path
|
|
||||||
file_ref = file[12:] # Remove "workspace://"
|
|
||||||
|
|
||||||
if file_ref.startswith("/"):
|
if ws.is_path:
|
||||||
# Path reference
|
# Path reference: workspace:///path/to/file.txt
|
||||||
workspace_content = await workspace_manager.read_file(file_ref)
|
workspace_content = await workspace_manager.read_file(ws.file_ref)
|
||||||
file_info = await workspace_manager.get_file_info_by_path(file_ref)
|
file_info = await workspace_manager.get_file_info_by_path(ws.file_ref)
|
||||||
filename = sanitize_filename(
|
filename = sanitize_filename(
|
||||||
file_info.name if file_info else f"{uuid.uuid4()}.bin"
|
file_info.name if file_info else f"{uuid.uuid4()}.bin"
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
# ID reference
|
# ID reference: workspace://abc123 or workspace://abc123#video/mp4
|
||||||
workspace_content = await workspace_manager.read_file_by_id(file_ref)
|
workspace_content = await workspace_manager.read_file_by_id(ws.file_ref)
|
||||||
file_info = await workspace_manager.get_file_info(file_ref)
|
file_info = await workspace_manager.get_file_info(ws.file_ref)
|
||||||
filename = sanitize_filename(
|
filename = sanitize_filename(
|
||||||
file_info.name if file_info else f"{uuid.uuid4()}.bin"
|
file_info.name if file_info else f"{uuid.uuid4()}.bin"
|
||||||
)
|
)
|
||||||
@@ -334,7 +363,21 @@ async def store_media_file(
|
|||||||
|
|
||||||
# Don't re-save if input was already from workspace
|
# Don't re-save if input was already from workspace
|
||||||
if is_from_workspace:
|
if is_from_workspace:
|
||||||
# Return original workspace reference
|
# Return original workspace reference, ensuring MIME type fragment
|
||||||
|
ws = parse_workspace_uri(file)
|
||||||
|
if not ws.mime_type:
|
||||||
|
# Add MIME type fragment if missing (older refs without it)
|
||||||
|
try:
|
||||||
|
if ws.is_path:
|
||||||
|
info = await workspace_manager.get_file_info_by_path(
|
||||||
|
ws.file_ref
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
info = await workspace_manager.get_file_info(ws.file_ref)
|
||||||
|
if info:
|
||||||
|
return MediaFileType(f"{file}#{info.mimeType}")
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
return MediaFileType(file)
|
return MediaFileType(file)
|
||||||
|
|
||||||
# Save new content to workspace
|
# Save new content to workspace
|
||||||
@@ -346,7 +389,7 @@ async def store_media_file(
|
|||||||
filename=filename,
|
filename=filename,
|
||||||
overwrite=True,
|
overwrite=True,
|
||||||
)
|
)
|
||||||
return MediaFileType(f"workspace://{file_record.id}")
|
return MediaFileType(f"workspace://{file_record.id}#{file_record.mimeType}")
|
||||||
|
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Invalid return_format: {return_format}")
|
raise ValueError(f"Invalid return_format: {return_format}")
|
||||||
|
|||||||
@@ -1,10 +1,19 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import logging
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from typing import Any
|
from dataclasses import dataclass
|
||||||
|
from typing import TYPE_CHECKING, Any
|
||||||
|
|
||||||
from tiktoken import encoding_for_model
|
from tiktoken import encoding_for_model
|
||||||
|
|
||||||
from backend.util import json
|
from backend.util import json
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from openai import AsyncOpenAI
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
# ---------------------------------------------------------------------------#
|
# ---------------------------------------------------------------------------#
|
||||||
# CONSTANTS #
|
# CONSTANTS #
|
||||||
# ---------------------------------------------------------------------------#
|
# ---------------------------------------------------------------------------#
|
||||||
@@ -100,9 +109,17 @@ def _is_objective_message(msg: dict) -> bool:
|
|||||||
def _truncate_tool_message_content(msg: dict, enc, max_tokens: int) -> None:
|
def _truncate_tool_message_content(msg: dict, enc, max_tokens: int) -> None:
|
||||||
"""
|
"""
|
||||||
Carefully truncate tool message content while preserving tool structure.
|
Carefully truncate tool message content while preserving tool structure.
|
||||||
Only truncates tool_result content, leaves tool_use intact.
|
Handles both Anthropic-style (list content) and OpenAI-style (string content) tool messages.
|
||||||
"""
|
"""
|
||||||
content = msg.get("content")
|
content = msg.get("content")
|
||||||
|
|
||||||
|
# OpenAI-style tool message: role="tool" with string content
|
||||||
|
if msg.get("role") == "tool" and isinstance(content, str):
|
||||||
|
if _tok_len(content, enc) > max_tokens:
|
||||||
|
msg["content"] = _truncate_middle_tokens(content, enc, max_tokens)
|
||||||
|
return
|
||||||
|
|
||||||
|
# Anthropic-style: list content with tool_result items
|
||||||
if not isinstance(content, list):
|
if not isinstance(content, list):
|
||||||
return
|
return
|
||||||
|
|
||||||
@@ -140,141 +157,6 @@ def _truncate_middle_tokens(text: str, enc, max_tok: int) -> str:
|
|||||||
# ---------------------------------------------------------------------------#
|
# ---------------------------------------------------------------------------#
|
||||||
|
|
||||||
|
|
||||||
def compress_prompt(
|
|
||||||
messages: list[dict],
|
|
||||||
target_tokens: int,
|
|
||||||
*,
|
|
||||||
model: str = "gpt-4o",
|
|
||||||
reserve: int = 2_048,
|
|
||||||
start_cap: int = 8_192,
|
|
||||||
floor_cap: int = 128,
|
|
||||||
lossy_ok: bool = True,
|
|
||||||
) -> list[dict]:
|
|
||||||
"""
|
|
||||||
Shrink *messages* so that::
|
|
||||||
|
|
||||||
token_count(prompt) + reserve ≤ target_tokens
|
|
||||||
|
|
||||||
Strategy
|
|
||||||
--------
|
|
||||||
1. **Token-aware truncation** – progressively halve a per-message cap
|
|
||||||
(`start_cap`, `start_cap/2`, … `floor_cap`) and apply it to the
|
|
||||||
*content* of every message except the first and last. Tool shells
|
|
||||||
are included: we keep the envelope but shorten huge payloads.
|
|
||||||
2. **Middle-out deletion** – if still over the limit, delete whole
|
|
||||||
messages working outward from the centre, **skipping** any message
|
|
||||||
that contains ``tool_calls`` or has ``role == "tool"``.
|
|
||||||
3. **Last-chance trim** – if still too big, truncate the *first* and
|
|
||||||
*last* message bodies down to `floor_cap` tokens.
|
|
||||||
4. If the prompt is *still* too large:
|
|
||||||
• raise ``ValueError`` when ``lossy_ok == False`` (default)
|
|
||||||
• return the partially-trimmed prompt when ``lossy_ok == True``
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
messages Complete chat history (will be deep-copied).
|
|
||||||
model Model name; passed to tiktoken to pick the right
|
|
||||||
tokenizer (gpt-4o → 'o200k_base', others fallback).
|
|
||||||
target_tokens Hard ceiling for prompt size **excluding** the model's
|
|
||||||
forthcoming answer.
|
|
||||||
reserve How many tokens you want to leave available for that
|
|
||||||
answer (`max_tokens` in your subsequent completion call).
|
|
||||||
start_cap Initial per-message truncation ceiling (tokens).
|
|
||||||
floor_cap Lowest cap we'll accept before moving to deletions.
|
|
||||||
lossy_ok If *True* return best-effort prompt instead of raising
|
|
||||||
after all trim passes have been exhausted.
|
|
||||||
|
|
||||||
Returns
|
|
||||||
-------
|
|
||||||
list[dict] – A *new* messages list that abides by the rules above.
|
|
||||||
"""
|
|
||||||
enc = encoding_for_model(model) # best-match tokenizer
|
|
||||||
msgs = deepcopy(messages) # never mutate caller
|
|
||||||
|
|
||||||
def total_tokens() -> int:
|
|
||||||
"""Current size of *msgs* in tokens."""
|
|
||||||
return sum(_msg_tokens(m, enc) for m in msgs)
|
|
||||||
|
|
||||||
original_token_count = total_tokens()
|
|
||||||
|
|
||||||
if original_token_count + reserve <= target_tokens:
|
|
||||||
return msgs
|
|
||||||
|
|
||||||
# ---- STEP 0 : normalise content --------------------------------------
|
|
||||||
# Convert non-string payloads to strings so token counting is coherent.
|
|
||||||
for i, m in enumerate(msgs):
|
|
||||||
if not isinstance(m.get("content"), str) and m.get("content") is not None:
|
|
||||||
if _is_tool_message(m):
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Keep first and last messages intact (unless they're tool messages)
|
|
||||||
if i == 0 or i == len(msgs) - 1:
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Reasonable 20k-char ceiling prevents pathological blobs
|
|
||||||
content_str = json.dumps(m["content"], separators=(",", ":"))
|
|
||||||
if len(content_str) > 20_000:
|
|
||||||
content_str = _truncate_middle_tokens(content_str, enc, 20_000)
|
|
||||||
m["content"] = content_str
|
|
||||||
|
|
||||||
# ---- STEP 1 : token-aware truncation ---------------------------------
|
|
||||||
cap = start_cap
|
|
||||||
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
|
|
||||||
for m in msgs[1:-1]: # keep first & last intact
|
|
||||||
if _is_tool_message(m):
|
|
||||||
# For tool messages, only truncate tool result content, preserve structure
|
|
||||||
_truncate_tool_message_content(m, enc, cap)
|
|
||||||
continue
|
|
||||||
|
|
||||||
if _is_objective_message(m):
|
|
||||||
# Never truncate objective messages - they contain the core task
|
|
||||||
continue
|
|
||||||
|
|
||||||
content = m.get("content") or ""
|
|
||||||
if _tok_len(content, enc) > cap:
|
|
||||||
m["content"] = _truncate_middle_tokens(content, enc, cap)
|
|
||||||
cap //= 2 # tighten the screw
|
|
||||||
|
|
||||||
# ---- STEP 2 : middle-out deletion -----------------------------------
|
|
||||||
while total_tokens() + reserve > target_tokens and len(msgs) > 2:
|
|
||||||
# Identify all deletable messages (not first/last, not tool messages, not objective messages)
|
|
||||||
deletable_indices = []
|
|
||||||
for i in range(1, len(msgs) - 1): # Skip first and last
|
|
||||||
if not _is_tool_message(msgs[i]) and not _is_objective_message(msgs[i]):
|
|
||||||
deletable_indices.append(i)
|
|
||||||
|
|
||||||
if not deletable_indices:
|
|
||||||
break # nothing more we can drop
|
|
||||||
|
|
||||||
# Delete from center outward - find the index closest to center
|
|
||||||
centre = len(msgs) // 2
|
|
||||||
to_delete = min(deletable_indices, key=lambda i: abs(i - centre))
|
|
||||||
del msgs[to_delete]
|
|
||||||
|
|
||||||
# ---- STEP 3 : final safety-net trim on first & last ------------------
|
|
||||||
cap = start_cap
|
|
||||||
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
|
|
||||||
for idx in (0, -1): # first and last
|
|
||||||
if _is_tool_message(msgs[idx]):
|
|
||||||
# For tool messages at first/last position, truncate tool result content only
|
|
||||||
_truncate_tool_message_content(msgs[idx], enc, cap)
|
|
||||||
continue
|
|
||||||
|
|
||||||
text = msgs[idx].get("content") or ""
|
|
||||||
if _tok_len(text, enc) > cap:
|
|
||||||
msgs[idx]["content"] = _truncate_middle_tokens(text, enc, cap)
|
|
||||||
cap //= 2 # tighten the screw
|
|
||||||
|
|
||||||
# ---- STEP 4 : success or fail-gracefully -----------------------------
|
|
||||||
if total_tokens() + reserve > target_tokens and not lossy_ok:
|
|
||||||
raise ValueError(
|
|
||||||
"compress_prompt: prompt still exceeds budget "
|
|
||||||
f"({total_tokens() + reserve} > {target_tokens})."
|
|
||||||
)
|
|
||||||
|
|
||||||
return msgs
|
|
||||||
|
|
||||||
|
|
||||||
def estimate_token_count(
|
def estimate_token_count(
|
||||||
messages: list[dict],
|
messages: list[dict],
|
||||||
*,
|
*,
|
||||||
@@ -293,7 +175,8 @@ def estimate_token_count(
|
|||||||
-------
|
-------
|
||||||
int – Token count.
|
int – Token count.
|
||||||
"""
|
"""
|
||||||
enc = encoding_for_model(model) # best-match tokenizer
|
token_model = _normalize_model_for_tokenizer(model)
|
||||||
|
enc = encoding_for_model(token_model)
|
||||||
return sum(_msg_tokens(m, enc) for m in messages)
|
return sum(_msg_tokens(m, enc) for m in messages)
|
||||||
|
|
||||||
|
|
||||||
@@ -315,6 +198,543 @@ def estimate_token_count_str(
|
|||||||
-------
|
-------
|
||||||
int – Token count.
|
int – Token count.
|
||||||
"""
|
"""
|
||||||
enc = encoding_for_model(model) # best-match tokenizer
|
token_model = _normalize_model_for_tokenizer(model)
|
||||||
|
enc = encoding_for_model(token_model)
|
||||||
text = json.dumps(text) if not isinstance(text, str) else text
|
text = json.dumps(text) if not isinstance(text, str) else text
|
||||||
return _tok_len(text, enc)
|
return _tok_len(text, enc)
|
||||||
|
|
||||||
|
|
||||||
|
# ---------------------------------------------------------------------------#
|
||||||
|
# UNIFIED CONTEXT COMPRESSION #
|
||||||
|
# ---------------------------------------------------------------------------#
|
||||||
|
|
||||||
|
# Default thresholds
|
||||||
|
DEFAULT_TOKEN_THRESHOLD = 120_000
|
||||||
|
DEFAULT_KEEP_RECENT = 15
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class CompressResult:
|
||||||
|
"""Result of context compression."""
|
||||||
|
|
||||||
|
messages: list[dict]
|
||||||
|
token_count: int
|
||||||
|
was_compacted: bool
|
||||||
|
error: str | None = None
|
||||||
|
original_token_count: int = 0
|
||||||
|
messages_summarized: int = 0
|
||||||
|
messages_dropped: int = 0
|
||||||
|
|
||||||
|
|
||||||
|
def _normalize_model_for_tokenizer(model: str) -> str:
|
||||||
|
"""Normalize model name for tiktoken tokenizer selection."""
|
||||||
|
if "/" in model:
|
||||||
|
model = model.split("/")[-1]
|
||||||
|
if "claude" in model.lower() or not any(
|
||||||
|
known in model.lower() for known in ["gpt", "o1", "chatgpt", "text-"]
|
||||||
|
):
|
||||||
|
return "gpt-4o"
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def _extract_tool_call_ids_from_message(msg: dict) -> set[str]:
|
||||||
|
"""
|
||||||
|
Extract tool_call IDs from an assistant message.
|
||||||
|
|
||||||
|
Supports both formats:
|
||||||
|
- OpenAI: {"role": "assistant", "tool_calls": [{"id": "..."}]}
|
||||||
|
- Anthropic: {"role": "assistant", "content": [{"type": "tool_use", "id": "..."}]}
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Set of tool_call IDs found in the message.
|
||||||
|
"""
|
||||||
|
ids: set[str] = set()
|
||||||
|
if msg.get("role") != "assistant":
|
||||||
|
return ids
|
||||||
|
|
||||||
|
# OpenAI format: tool_calls array
|
||||||
|
if msg.get("tool_calls"):
|
||||||
|
for tc in msg["tool_calls"]:
|
||||||
|
tc_id = tc.get("id")
|
||||||
|
if tc_id:
|
||||||
|
ids.add(tc_id)
|
||||||
|
|
||||||
|
# Anthropic format: content list with tool_use blocks
|
||||||
|
content = msg.get("content")
|
||||||
|
if isinstance(content, list):
|
||||||
|
for block in content:
|
||||||
|
if isinstance(block, dict) and block.get("type") == "tool_use":
|
||||||
|
tc_id = block.get("id")
|
||||||
|
if tc_id:
|
||||||
|
ids.add(tc_id)
|
||||||
|
|
||||||
|
return ids
|
||||||
|
|
||||||
|
|
||||||
|
def _extract_tool_response_ids_from_message(msg: dict) -> set[str]:
|
||||||
|
"""
|
||||||
|
Extract tool_call IDs that this message is responding to.
|
||||||
|
|
||||||
|
Supports both formats:
|
||||||
|
- OpenAI: {"role": "tool", "tool_call_id": "..."}
|
||||||
|
- Anthropic: {"role": "user", "content": [{"type": "tool_result", "tool_use_id": "..."}]}
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Set of tool_call IDs this message responds to.
|
||||||
|
"""
|
||||||
|
ids: set[str] = set()
|
||||||
|
|
||||||
|
# OpenAI format: role=tool with tool_call_id
|
||||||
|
if msg.get("role") == "tool":
|
||||||
|
tc_id = msg.get("tool_call_id")
|
||||||
|
if tc_id:
|
||||||
|
ids.add(tc_id)
|
||||||
|
|
||||||
|
# Anthropic format: content list with tool_result blocks
|
||||||
|
content = msg.get("content")
|
||||||
|
if isinstance(content, list):
|
||||||
|
for block in content:
|
||||||
|
if isinstance(block, dict) and block.get("type") == "tool_result":
|
||||||
|
tc_id = block.get("tool_use_id")
|
||||||
|
if tc_id:
|
||||||
|
ids.add(tc_id)
|
||||||
|
|
||||||
|
return ids
|
||||||
|
|
||||||
|
|
||||||
|
def _is_tool_response_message(msg: dict) -> bool:
|
||||||
|
"""Check if message is a tool response (OpenAI or Anthropic format)."""
|
||||||
|
# OpenAI format
|
||||||
|
if msg.get("role") == "tool":
|
||||||
|
return True
|
||||||
|
# Anthropic format
|
||||||
|
content = msg.get("content")
|
||||||
|
if isinstance(content, list):
|
||||||
|
for block in content:
|
||||||
|
if isinstance(block, dict) and block.get("type") == "tool_result":
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def _remove_orphan_tool_responses(
|
||||||
|
messages: list[dict], orphan_ids: set[str]
|
||||||
|
) -> list[dict]:
|
||||||
|
"""
|
||||||
|
Remove tool response messages/blocks that reference orphan tool_call IDs.
|
||||||
|
|
||||||
|
Supports both OpenAI and Anthropic formats.
|
||||||
|
For Anthropic messages with mixed valid/orphan tool_result blocks,
|
||||||
|
filters out only the orphan blocks instead of dropping the entire message.
|
||||||
|
"""
|
||||||
|
result = []
|
||||||
|
for msg in messages:
|
||||||
|
# OpenAI format: role=tool - drop entire message if orphan
|
||||||
|
if msg.get("role") == "tool":
|
||||||
|
tc_id = msg.get("tool_call_id")
|
||||||
|
if tc_id and tc_id in orphan_ids:
|
||||||
|
continue
|
||||||
|
result.append(msg)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Anthropic format: content list may have mixed tool_result blocks
|
||||||
|
content = msg.get("content")
|
||||||
|
if isinstance(content, list):
|
||||||
|
has_tool_results = any(
|
||||||
|
isinstance(b, dict) and b.get("type") == "tool_result" for b in content
|
||||||
|
)
|
||||||
|
if has_tool_results:
|
||||||
|
# Filter out orphan tool_result blocks, keep valid ones
|
||||||
|
filtered_content = [
|
||||||
|
block
|
||||||
|
for block in content
|
||||||
|
if not (
|
||||||
|
isinstance(block, dict)
|
||||||
|
and block.get("type") == "tool_result"
|
||||||
|
and block.get("tool_use_id") in orphan_ids
|
||||||
|
)
|
||||||
|
]
|
||||||
|
# Only keep message if it has remaining content
|
||||||
|
if filtered_content:
|
||||||
|
msg = msg.copy()
|
||||||
|
msg["content"] = filtered_content
|
||||||
|
result.append(msg)
|
||||||
|
continue
|
||||||
|
|
||||||
|
result.append(msg)
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def _ensure_tool_pairs_intact(
|
||||||
|
recent_messages: list[dict],
|
||||||
|
all_messages: list[dict],
|
||||||
|
start_index: int,
|
||||||
|
) -> list[dict]:
|
||||||
|
"""
|
||||||
|
Ensure tool_call/tool_response pairs stay together after slicing.
|
||||||
|
|
||||||
|
When slicing messages for context compaction, a naive slice can separate
|
||||||
|
an assistant message containing tool_calls from its corresponding tool
|
||||||
|
response messages. This causes API validation errors (e.g., Anthropic's
|
||||||
|
"unexpected tool_use_id found in tool_result blocks").
|
||||||
|
|
||||||
|
This function checks for orphan tool responses in the slice and extends
|
||||||
|
backwards to include their corresponding assistant messages.
|
||||||
|
|
||||||
|
Supports both formats:
|
||||||
|
- OpenAI: tool_calls array + role="tool" responses
|
||||||
|
- Anthropic: tool_use blocks + tool_result blocks
|
||||||
|
|
||||||
|
Args:
|
||||||
|
recent_messages: The sliced messages to validate
|
||||||
|
all_messages: The complete message list (for looking up missing assistants)
|
||||||
|
start_index: The index in all_messages where recent_messages begins
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A potentially extended list of messages with tool pairs intact
|
||||||
|
"""
|
||||||
|
if not recent_messages:
|
||||||
|
return recent_messages
|
||||||
|
|
||||||
|
# Collect all tool_call_ids from assistant messages in the slice
|
||||||
|
available_tool_call_ids: set[str] = set()
|
||||||
|
for msg in recent_messages:
|
||||||
|
available_tool_call_ids |= _extract_tool_call_ids_from_message(msg)
|
||||||
|
|
||||||
|
# Find orphan tool responses (responses whose tool_call_id is missing)
|
||||||
|
orphan_tool_call_ids: set[str] = set()
|
||||||
|
for msg in recent_messages:
|
||||||
|
response_ids = _extract_tool_response_ids_from_message(msg)
|
||||||
|
for tc_id in response_ids:
|
||||||
|
if tc_id not in available_tool_call_ids:
|
||||||
|
orphan_tool_call_ids.add(tc_id)
|
||||||
|
|
||||||
|
if not orphan_tool_call_ids:
|
||||||
|
# No orphans, slice is valid
|
||||||
|
return recent_messages
|
||||||
|
|
||||||
|
# Find the assistant messages that contain the orphan tool_call_ids
|
||||||
|
# Search backwards from start_index in all_messages
|
||||||
|
messages_to_prepend: list[dict] = []
|
||||||
|
for i in range(start_index - 1, -1, -1):
|
||||||
|
msg = all_messages[i]
|
||||||
|
msg_tool_ids = _extract_tool_call_ids_from_message(msg)
|
||||||
|
if msg_tool_ids & orphan_tool_call_ids:
|
||||||
|
# This assistant message has tool_calls we need
|
||||||
|
# Also collect its contiguous tool responses that follow it
|
||||||
|
assistant_and_responses: list[dict] = [msg]
|
||||||
|
|
||||||
|
# Scan forward from this assistant to collect tool responses
|
||||||
|
for j in range(i + 1, start_index):
|
||||||
|
following_msg = all_messages[j]
|
||||||
|
following_response_ids = _extract_tool_response_ids_from_message(
|
||||||
|
following_msg
|
||||||
|
)
|
||||||
|
if following_response_ids and following_response_ids & msg_tool_ids:
|
||||||
|
assistant_and_responses.append(following_msg)
|
||||||
|
elif not _is_tool_response_message(following_msg):
|
||||||
|
# Stop at first non-tool-response message
|
||||||
|
break
|
||||||
|
|
||||||
|
# Prepend the assistant and its tool responses (maintain order)
|
||||||
|
messages_to_prepend = assistant_and_responses + messages_to_prepend
|
||||||
|
# Mark these as found
|
||||||
|
orphan_tool_call_ids -= msg_tool_ids
|
||||||
|
# Also add this assistant's tool_call_ids to available set
|
||||||
|
available_tool_call_ids |= msg_tool_ids
|
||||||
|
|
||||||
|
if not orphan_tool_call_ids:
|
||||||
|
# Found all missing assistants
|
||||||
|
break
|
||||||
|
|
||||||
|
if orphan_tool_call_ids:
|
||||||
|
# Some tool_call_ids couldn't be resolved - remove those tool responses
|
||||||
|
# This shouldn't happen in normal operation but handles edge cases
|
||||||
|
logger.warning(
|
||||||
|
f"Could not find assistant messages for tool_call_ids: {orphan_tool_call_ids}. "
|
||||||
|
"Removing orphan tool responses."
|
||||||
|
)
|
||||||
|
recent_messages = _remove_orphan_tool_responses(
|
||||||
|
recent_messages, orphan_tool_call_ids
|
||||||
|
)
|
||||||
|
|
||||||
|
if messages_to_prepend:
|
||||||
|
logger.info(
|
||||||
|
f"Extended recent messages by {len(messages_to_prepend)} to preserve "
|
||||||
|
f"tool_call/tool_response pairs"
|
||||||
|
)
|
||||||
|
return messages_to_prepend + recent_messages
|
||||||
|
|
||||||
|
return recent_messages
|
||||||
|
|
||||||
|
|
||||||
|
async def _summarize_messages_llm(
|
||||||
|
messages: list[dict],
|
||||||
|
client: AsyncOpenAI,
|
||||||
|
model: str,
|
||||||
|
timeout: float = 30.0,
|
||||||
|
) -> str:
|
||||||
|
"""Summarize messages using an LLM."""
|
||||||
|
conversation = []
|
||||||
|
for msg in messages:
|
||||||
|
role = msg.get("role", "")
|
||||||
|
content = msg.get("content", "")
|
||||||
|
if content and role in ("user", "assistant", "tool"):
|
||||||
|
conversation.append(f"{role.upper()}: {content}")
|
||||||
|
|
||||||
|
conversation_text = "\n\n".join(conversation)
|
||||||
|
|
||||||
|
if not conversation_text:
|
||||||
|
return "No conversation history available."
|
||||||
|
|
||||||
|
# Limit to ~100k chars for safety
|
||||||
|
MAX_CHARS = 100_000
|
||||||
|
if len(conversation_text) > MAX_CHARS:
|
||||||
|
conversation_text = conversation_text[:MAX_CHARS] + "\n\n[truncated]"
|
||||||
|
|
||||||
|
response = await client.with_options(timeout=timeout).chat.completions.create(
|
||||||
|
model=model,
|
||||||
|
messages=[
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": (
|
||||||
|
"Create a detailed summary of the conversation so far. "
|
||||||
|
"This summary will be used as context when continuing the conversation.\n\n"
|
||||||
|
"Before writing the summary, analyze each message chronologically to identify:\n"
|
||||||
|
"- User requests and their explicit goals\n"
|
||||||
|
"- Your approach and key decisions made\n"
|
||||||
|
"- Technical specifics (file names, tool outputs, function signatures)\n"
|
||||||
|
"- Errors encountered and resolutions applied\n\n"
|
||||||
|
"You MUST include ALL of the following sections:\n\n"
|
||||||
|
"## 1. Primary Request and Intent\n"
|
||||||
|
"The user's explicit goals and what they are trying to accomplish.\n\n"
|
||||||
|
"## 2. Key Technical Concepts\n"
|
||||||
|
"Technologies, frameworks, tools, and patterns being used or discussed.\n\n"
|
||||||
|
"## 3. Files and Resources Involved\n"
|
||||||
|
"Specific files examined or modified, with relevant snippets and identifiers.\n\n"
|
||||||
|
"## 4. Errors and Fixes\n"
|
||||||
|
"Problems encountered, error messages, and their resolutions. "
|
||||||
|
"Include any user feedback on fixes.\n\n"
|
||||||
|
"## 5. Problem Solving\n"
|
||||||
|
"Issues that have been resolved and how they were addressed.\n\n"
|
||||||
|
"## 6. All User Messages\n"
|
||||||
|
"A complete list of all user inputs (excluding tool outputs) to preserve their exact requests.\n\n"
|
||||||
|
"## 7. Pending Tasks\n"
|
||||||
|
"Work items the user explicitly requested that have not yet been completed.\n\n"
|
||||||
|
"## 8. Current Work\n"
|
||||||
|
"Precise description of what was being worked on most recently, including relevant context.\n\n"
|
||||||
|
"## 9. Next Steps\n"
|
||||||
|
"What should happen next, aligned with the user's most recent requests. "
|
||||||
|
"Include verbatim quotes of recent instructions if relevant."
|
||||||
|
),
|
||||||
|
},
|
||||||
|
{"role": "user", "content": f"Summarize:\n\n{conversation_text}"},
|
||||||
|
],
|
||||||
|
max_tokens=1500,
|
||||||
|
temperature=0.3,
|
||||||
|
)
|
||||||
|
|
||||||
|
return response.choices[0].message.content or "No summary available."
|
||||||
|
|
||||||
|
|
||||||
|
async def compress_context(
|
||||||
|
messages: list[dict],
|
||||||
|
target_tokens: int = DEFAULT_TOKEN_THRESHOLD,
|
||||||
|
*,
|
||||||
|
model: str = "gpt-4o",
|
||||||
|
client: AsyncOpenAI | None = None,
|
||||||
|
keep_recent: int = DEFAULT_KEEP_RECENT,
|
||||||
|
reserve: int = 2_048,
|
||||||
|
start_cap: int = 8_192,
|
||||||
|
floor_cap: int = 128,
|
||||||
|
) -> CompressResult:
|
||||||
|
"""
|
||||||
|
Unified context compression that combines summarization and truncation strategies.
|
||||||
|
|
||||||
|
Strategy (in order):
|
||||||
|
1. **LLM summarization** – If client provided, summarize old messages into a
|
||||||
|
single context message while keeping recent messages intact. This is the
|
||||||
|
primary strategy for chat service.
|
||||||
|
2. **Content truncation** – Progressively halve a per-message cap and truncate
|
||||||
|
bloated message content (tool outputs, large pastes). Preserves all messages
|
||||||
|
but shortens their content. Primary strategy when client=None (LLM blocks).
|
||||||
|
3. **Middle-out deletion** – Delete whole messages one at a time from the center
|
||||||
|
outward, skipping tool messages and objective messages.
|
||||||
|
4. **First/last trim** – Truncate first and last message content as last resort.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
messages Complete chat history (will be deep-copied).
|
||||||
|
target_tokens Hard ceiling for prompt size.
|
||||||
|
model Model name for tokenization and summarization.
|
||||||
|
client AsyncOpenAI client. If provided, enables LLM summarization
|
||||||
|
as the first strategy. If None, skips to truncation strategies.
|
||||||
|
keep_recent Number of recent messages to preserve during summarization.
|
||||||
|
reserve Tokens to reserve for model response.
|
||||||
|
start_cap Initial per-message truncation ceiling (tokens).
|
||||||
|
floor_cap Lowest cap before moving to deletions.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
CompressResult with compressed messages and metadata.
|
||||||
|
"""
|
||||||
|
# Guard clause for empty messages
|
||||||
|
if not messages:
|
||||||
|
return CompressResult(
|
||||||
|
messages=[],
|
||||||
|
token_count=0,
|
||||||
|
was_compacted=False,
|
||||||
|
original_token_count=0,
|
||||||
|
)
|
||||||
|
|
||||||
|
token_model = _normalize_model_for_tokenizer(model)
|
||||||
|
enc = encoding_for_model(token_model)
|
||||||
|
msgs = deepcopy(messages)
|
||||||
|
|
||||||
|
def total_tokens() -> int:
|
||||||
|
return sum(_msg_tokens(m, enc) for m in msgs)
|
||||||
|
|
||||||
|
original_count = total_tokens()
|
||||||
|
|
||||||
|
# Already under limit
|
||||||
|
if original_count + reserve <= target_tokens:
|
||||||
|
return CompressResult(
|
||||||
|
messages=msgs,
|
||||||
|
token_count=original_count,
|
||||||
|
was_compacted=False,
|
||||||
|
original_token_count=original_count,
|
||||||
|
)
|
||||||
|
|
||||||
|
messages_summarized = 0
|
||||||
|
messages_dropped = 0
|
||||||
|
|
||||||
|
# ---- STEP 1: LLM summarization (if client provided) -------------------
|
||||||
|
# This is the primary compression strategy for chat service.
|
||||||
|
# Summarize old messages while keeping recent ones intact.
|
||||||
|
if client is not None:
|
||||||
|
has_system = len(msgs) > 0 and msgs[0].get("role") == "system"
|
||||||
|
system_msg = msgs[0] if has_system else None
|
||||||
|
|
||||||
|
# Calculate old vs recent messages
|
||||||
|
if has_system:
|
||||||
|
if len(msgs) > keep_recent + 1:
|
||||||
|
old_msgs = msgs[1:-keep_recent]
|
||||||
|
recent_msgs = msgs[-keep_recent:]
|
||||||
|
else:
|
||||||
|
old_msgs = []
|
||||||
|
recent_msgs = msgs[1:] if len(msgs) > 1 else []
|
||||||
|
else:
|
||||||
|
if len(msgs) > keep_recent:
|
||||||
|
old_msgs = msgs[:-keep_recent]
|
||||||
|
recent_msgs = msgs[-keep_recent:]
|
||||||
|
else:
|
||||||
|
old_msgs = []
|
||||||
|
recent_msgs = msgs
|
||||||
|
|
||||||
|
# Ensure tool pairs stay intact
|
||||||
|
slice_start = max(0, len(msgs) - keep_recent)
|
||||||
|
recent_msgs = _ensure_tool_pairs_intact(recent_msgs, msgs, slice_start)
|
||||||
|
|
||||||
|
if old_msgs:
|
||||||
|
try:
|
||||||
|
summary_text = await _summarize_messages_llm(old_msgs, client, model)
|
||||||
|
summary_msg = {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": f"[Previous conversation summary — for context only]: {summary_text}",
|
||||||
|
}
|
||||||
|
messages_summarized = len(old_msgs)
|
||||||
|
|
||||||
|
if has_system:
|
||||||
|
msgs = [system_msg, summary_msg] + recent_msgs
|
||||||
|
else:
|
||||||
|
msgs = [summary_msg] + recent_msgs
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"Context summarized: {original_count} -> {total_tokens()} tokens, "
|
||||||
|
f"summarized {messages_summarized} messages"
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.warning(f"Summarization failed, continuing with truncation: {e}")
|
||||||
|
# Fall through to content truncation
|
||||||
|
|
||||||
|
# ---- STEP 2: Normalize content ----------------------------------------
|
||||||
|
# Convert non-string payloads to strings so token counting is coherent.
|
||||||
|
# Always run this before truncation to ensure consistent token counting.
|
||||||
|
for i, m in enumerate(msgs):
|
||||||
|
if not isinstance(m.get("content"), str) and m.get("content") is not None:
|
||||||
|
if _is_tool_message(m):
|
||||||
|
continue
|
||||||
|
if i == 0 or i == len(msgs) - 1:
|
||||||
|
continue
|
||||||
|
content_str = json.dumps(m["content"], separators=(",", ":"))
|
||||||
|
if len(content_str) > 20_000:
|
||||||
|
content_str = _truncate_middle_tokens(content_str, enc, 20_000)
|
||||||
|
m["content"] = content_str
|
||||||
|
|
||||||
|
# ---- STEP 3: Token-aware content truncation ---------------------------
|
||||||
|
# Progressively halve per-message cap and truncate bloated content.
|
||||||
|
# This preserves all messages but shortens their content.
|
||||||
|
cap = start_cap
|
||||||
|
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
|
||||||
|
for m in msgs[1:-1]:
|
||||||
|
if _is_tool_message(m):
|
||||||
|
_truncate_tool_message_content(m, enc, cap)
|
||||||
|
continue
|
||||||
|
if _is_objective_message(m):
|
||||||
|
continue
|
||||||
|
content = m.get("content") or ""
|
||||||
|
if _tok_len(content, enc) > cap:
|
||||||
|
m["content"] = _truncate_middle_tokens(content, enc, cap)
|
||||||
|
cap //= 2
|
||||||
|
|
||||||
|
# ---- STEP 4: Middle-out deletion --------------------------------------
|
||||||
|
# Delete messages one at a time from the center outward.
|
||||||
|
# This is more granular than dropping all old messages at once.
|
||||||
|
while total_tokens() + reserve > target_tokens and len(msgs) > 2:
|
||||||
|
deletable: list[int] = []
|
||||||
|
for i in range(1, len(msgs) - 1):
|
||||||
|
msg = msgs[i]
|
||||||
|
if (
|
||||||
|
msg is not None
|
||||||
|
and not _is_tool_message(msg)
|
||||||
|
and not _is_objective_message(msg)
|
||||||
|
):
|
||||||
|
deletable.append(i)
|
||||||
|
if not deletable:
|
||||||
|
break
|
||||||
|
centre = len(msgs) // 2
|
||||||
|
to_delete = min(deletable, key=lambda i: abs(i - centre))
|
||||||
|
del msgs[to_delete]
|
||||||
|
messages_dropped += 1
|
||||||
|
|
||||||
|
# ---- STEP 5: Final trim on first/last ---------------------------------
|
||||||
|
cap = start_cap
|
||||||
|
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
|
||||||
|
for idx in (0, -1):
|
||||||
|
msg = msgs[idx]
|
||||||
|
if msg is None:
|
||||||
|
continue
|
||||||
|
if _is_tool_message(msg):
|
||||||
|
_truncate_tool_message_content(msg, enc, cap)
|
||||||
|
continue
|
||||||
|
text = msg.get("content") or ""
|
||||||
|
if _tok_len(text, enc) > cap:
|
||||||
|
msg["content"] = _truncate_middle_tokens(text, enc, cap)
|
||||||
|
cap //= 2
|
||||||
|
|
||||||
|
# Filter out any None values that may have been introduced
|
||||||
|
final_msgs: list[dict] = [m for m in msgs if m is not None]
|
||||||
|
final_count = sum(_msg_tokens(m, enc) for m in final_msgs)
|
||||||
|
error = None
|
||||||
|
if final_count + reserve > target_tokens:
|
||||||
|
error = f"Could not compress below target ({final_count + reserve} > {target_tokens})"
|
||||||
|
logger.warning(error)
|
||||||
|
|
||||||
|
return CompressResult(
|
||||||
|
messages=final_msgs,
|
||||||
|
token_count=final_count,
|
||||||
|
was_compacted=True,
|
||||||
|
error=error,
|
||||||
|
original_token_count=original_count,
|
||||||
|
messages_summarized=messages_summarized,
|
||||||
|
messages_dropped=messages_dropped,
|
||||||
|
)
|
||||||
|
|||||||
@@ -1,10 +1,21 @@
|
|||||||
"""Tests for prompt utility functions, especially tool call token counting."""
|
"""Tests for prompt utility functions, especially tool call token counting."""
|
||||||
|
|
||||||
|
from unittest.mock import AsyncMock, MagicMock
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
from tiktoken import encoding_for_model
|
from tiktoken import encoding_for_model
|
||||||
|
|
||||||
from backend.util import json
|
from backend.util import json
|
||||||
from backend.util.prompt import _msg_tokens, estimate_token_count
|
from backend.util.prompt import (
|
||||||
|
CompressResult,
|
||||||
|
_ensure_tool_pairs_intact,
|
||||||
|
_msg_tokens,
|
||||||
|
_normalize_model_for_tokenizer,
|
||||||
|
_truncate_middle_tokens,
|
||||||
|
_truncate_tool_message_content,
|
||||||
|
compress_context,
|
||||||
|
estimate_token_count,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class TestMsgTokens:
|
class TestMsgTokens:
|
||||||
@@ -276,3 +287,690 @@ class TestEstimateTokenCount:
|
|||||||
|
|
||||||
assert total_tokens == expected_total
|
assert total_tokens == expected_total
|
||||||
assert total_tokens > 20 # Should be substantial
|
assert total_tokens > 20 # Should be substantial
|
||||||
|
|
||||||
|
|
||||||
|
class TestNormalizeModelForTokenizer:
|
||||||
|
"""Test model name normalization for tiktoken."""
|
||||||
|
|
||||||
|
def test_openai_models_unchanged(self):
|
||||||
|
"""Test that OpenAI models are returned as-is."""
|
||||||
|
assert _normalize_model_for_tokenizer("gpt-4o") == "gpt-4o"
|
||||||
|
assert _normalize_model_for_tokenizer("gpt-4") == "gpt-4"
|
||||||
|
assert _normalize_model_for_tokenizer("gpt-3.5-turbo") == "gpt-3.5-turbo"
|
||||||
|
|
||||||
|
def test_claude_models_normalized(self):
|
||||||
|
"""Test that Claude models are normalized to gpt-4o."""
|
||||||
|
assert _normalize_model_for_tokenizer("claude-3-opus") == "gpt-4o"
|
||||||
|
assert _normalize_model_for_tokenizer("claude-3-sonnet") == "gpt-4o"
|
||||||
|
assert _normalize_model_for_tokenizer("anthropic/claude-3-haiku") == "gpt-4o"
|
||||||
|
|
||||||
|
def test_openrouter_paths_extracted(self):
|
||||||
|
"""Test that OpenRouter model paths are handled."""
|
||||||
|
assert _normalize_model_for_tokenizer("openai/gpt-4o") == "gpt-4o"
|
||||||
|
assert _normalize_model_for_tokenizer("anthropic/claude-3-opus") == "gpt-4o"
|
||||||
|
|
||||||
|
def test_unknown_models_default_to_gpt4o(self):
|
||||||
|
"""Test that unknown models default to gpt-4o."""
|
||||||
|
assert _normalize_model_for_tokenizer("some-random-model") == "gpt-4o"
|
||||||
|
assert _normalize_model_for_tokenizer("llama-3-70b") == "gpt-4o"
|
||||||
|
|
||||||
|
|
||||||
|
class TestTruncateToolMessageContent:
|
||||||
|
"""Test tool message content truncation."""
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def enc(self):
|
||||||
|
return encoding_for_model("gpt-4o")
|
||||||
|
|
||||||
|
def test_truncate_openai_tool_message(self, enc):
|
||||||
|
"""Test truncation of OpenAI-style tool message with string content."""
|
||||||
|
long_content = "x" * 10000
|
||||||
|
msg = {"role": "tool", "tool_call_id": "call_123", "content": long_content}
|
||||||
|
|
||||||
|
_truncate_tool_message_content(msg, enc, max_tokens=100)
|
||||||
|
|
||||||
|
# Content should be truncated
|
||||||
|
assert len(msg["content"]) < len(long_content)
|
||||||
|
assert "…" in msg["content"] # Has ellipsis marker
|
||||||
|
|
||||||
|
def test_truncate_anthropic_tool_result(self, enc):
|
||||||
|
"""Test truncation of Anthropic-style tool_result."""
|
||||||
|
long_content = "y" * 10000
|
||||||
|
msg = {
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "tool_result",
|
||||||
|
"tool_use_id": "toolu_123",
|
||||||
|
"content": long_content,
|
||||||
|
}
|
||||||
|
],
|
||||||
|
}
|
||||||
|
|
||||||
|
_truncate_tool_message_content(msg, enc, max_tokens=100)
|
||||||
|
|
||||||
|
# Content should be truncated
|
||||||
|
result_content = msg["content"][0]["content"]
|
||||||
|
assert len(result_content) < len(long_content)
|
||||||
|
assert "…" in result_content
|
||||||
|
|
||||||
|
def test_preserve_tool_use_blocks(self, enc):
|
||||||
|
"""Test that tool_use blocks are not truncated."""
|
||||||
|
msg = {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "tool_use",
|
||||||
|
"id": "toolu_123",
|
||||||
|
"name": "some_function",
|
||||||
|
"input": {"key": "value" * 1000}, # Large input
|
||||||
|
}
|
||||||
|
],
|
||||||
|
}
|
||||||
|
|
||||||
|
original = json.dumps(msg["content"][0]["input"])
|
||||||
|
_truncate_tool_message_content(msg, enc, max_tokens=10)
|
||||||
|
|
||||||
|
# tool_use should be unchanged
|
||||||
|
assert json.dumps(msg["content"][0]["input"]) == original
|
||||||
|
|
||||||
|
def test_no_truncation_when_under_limit(self, enc):
|
||||||
|
"""Test that short content is not modified."""
|
||||||
|
msg = {"role": "tool", "tool_call_id": "call_123", "content": "Short content"}
|
||||||
|
|
||||||
|
original = msg["content"]
|
||||||
|
_truncate_tool_message_content(msg, enc, max_tokens=1000)
|
||||||
|
|
||||||
|
assert msg["content"] == original
|
||||||
|
|
||||||
|
|
||||||
|
class TestTruncateMiddleTokens:
|
||||||
|
"""Test middle truncation of text."""
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def enc(self):
|
||||||
|
return encoding_for_model("gpt-4o")
|
||||||
|
|
||||||
|
def test_truncates_long_text(self, enc):
|
||||||
|
"""Test that long text is truncated with ellipsis in middle."""
|
||||||
|
long_text = "word " * 1000
|
||||||
|
result = _truncate_middle_tokens(long_text, enc, max_tok=50)
|
||||||
|
|
||||||
|
assert len(enc.encode(result)) <= 52 # Allow some slack for ellipsis
|
||||||
|
assert "…" in result
|
||||||
|
assert result.startswith("word") # Head preserved
|
||||||
|
assert result.endswith("word ") # Tail preserved
|
||||||
|
|
||||||
|
def test_preserves_short_text(self, enc):
|
||||||
|
"""Test that short text is not modified."""
|
||||||
|
short_text = "Hello world"
|
||||||
|
result = _truncate_middle_tokens(short_text, enc, max_tok=100)
|
||||||
|
|
||||||
|
assert result == short_text
|
||||||
|
|
||||||
|
|
||||||
|
class TestEnsureToolPairsIntact:
|
||||||
|
"""Test tool call/response pair preservation for both OpenAI and Anthropic formats."""
|
||||||
|
|
||||||
|
# ---- OpenAI Format Tests ----
|
||||||
|
|
||||||
|
def test_openai_adds_missing_tool_call(self):
|
||||||
|
"""Test that orphaned OpenAI tool_response gets its tool_call prepended."""
|
||||||
|
all_msgs = [
|
||||||
|
{"role": "system", "content": "You are helpful."},
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"tool_calls": [
|
||||||
|
{"id": "call_1", "type": "function", "function": {"name": "f1"}}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{"role": "tool", "tool_call_id": "call_1", "content": "result"},
|
||||||
|
{"role": "user", "content": "Thanks!"},
|
||||||
|
]
|
||||||
|
# Recent messages start at index 2 (the tool response)
|
||||||
|
recent = [all_msgs[2], all_msgs[3]]
|
||||||
|
start_index = 2
|
||||||
|
|
||||||
|
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
|
||||||
|
|
||||||
|
# Should prepend the tool_call message
|
||||||
|
assert len(result) == 3
|
||||||
|
assert result[0]["role"] == "assistant"
|
||||||
|
assert "tool_calls" in result[0]
|
||||||
|
|
||||||
|
def test_openai_keeps_complete_pairs(self):
|
||||||
|
"""Test that complete OpenAI pairs are unchanged."""
|
||||||
|
all_msgs = [
|
||||||
|
{"role": "system", "content": "System"},
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"tool_calls": [
|
||||||
|
{"id": "call_1", "type": "function", "function": {"name": "f1"}}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{"role": "tool", "tool_call_id": "call_1", "content": "result"},
|
||||||
|
]
|
||||||
|
recent = all_msgs[1:] # Include both tool_call and response
|
||||||
|
start_index = 1
|
||||||
|
|
||||||
|
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
|
||||||
|
|
||||||
|
assert len(result) == 2 # No messages added
|
||||||
|
|
||||||
|
def test_openai_multiple_tool_calls(self):
|
||||||
|
"""Test multiple OpenAI tool calls in one assistant message."""
|
||||||
|
all_msgs = [
|
||||||
|
{"role": "system", "content": "System"},
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"tool_calls": [
|
||||||
|
{"id": "call_1", "type": "function", "function": {"name": "f1"}},
|
||||||
|
{"id": "call_2", "type": "function", "function": {"name": "f2"}},
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{"role": "tool", "tool_call_id": "call_1", "content": "result1"},
|
||||||
|
{"role": "tool", "tool_call_id": "call_2", "content": "result2"},
|
||||||
|
{"role": "user", "content": "Thanks!"},
|
||||||
|
]
|
||||||
|
# Recent messages start at index 2 (first tool response)
|
||||||
|
recent = [all_msgs[2], all_msgs[3], all_msgs[4]]
|
||||||
|
start_index = 2
|
||||||
|
|
||||||
|
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
|
||||||
|
|
||||||
|
# Should prepend the assistant message with both tool_calls
|
||||||
|
assert len(result) == 4
|
||||||
|
assert result[0]["role"] == "assistant"
|
||||||
|
assert len(result[0]["tool_calls"]) == 2
|
||||||
|
|
||||||
|
# ---- Anthropic Format Tests ----
|
||||||
|
|
||||||
|
def test_anthropic_adds_missing_tool_use(self):
|
||||||
|
"""Test that orphaned Anthropic tool_result gets its tool_use prepended."""
|
||||||
|
all_msgs = [
|
||||||
|
{"role": "system", "content": "You are helpful."},
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "tool_use",
|
||||||
|
"id": "toolu_123",
|
||||||
|
"name": "get_weather",
|
||||||
|
"input": {"location": "SF"},
|
||||||
|
}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "tool_result",
|
||||||
|
"tool_use_id": "toolu_123",
|
||||||
|
"content": "22°C and sunny",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{"role": "user", "content": "Thanks!"},
|
||||||
|
]
|
||||||
|
# Recent messages start at index 2 (the tool_result)
|
||||||
|
recent = [all_msgs[2], all_msgs[3]]
|
||||||
|
start_index = 2
|
||||||
|
|
||||||
|
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
|
||||||
|
|
||||||
|
# Should prepend the tool_use message
|
||||||
|
assert len(result) == 3
|
||||||
|
assert result[0]["role"] == "assistant"
|
||||||
|
assert result[0]["content"][0]["type"] == "tool_use"
|
||||||
|
|
||||||
|
def test_anthropic_keeps_complete_pairs(self):
|
||||||
|
"""Test that complete Anthropic pairs are unchanged."""
|
||||||
|
all_msgs = [
|
||||||
|
{"role": "system", "content": "System"},
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "tool_use",
|
||||||
|
"id": "toolu_456",
|
||||||
|
"name": "calculator",
|
||||||
|
"input": {"expr": "2+2"},
|
||||||
|
}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "tool_result",
|
||||||
|
"tool_use_id": "toolu_456",
|
||||||
|
"content": "4",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
]
|
||||||
|
recent = all_msgs[1:] # Include both tool_use and result
|
||||||
|
start_index = 1
|
||||||
|
|
||||||
|
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
|
||||||
|
|
||||||
|
assert len(result) == 2 # No messages added
|
||||||
|
|
||||||
|
def test_anthropic_multiple_tool_uses(self):
|
||||||
|
"""Test multiple Anthropic tool_use blocks in one message."""
|
||||||
|
all_msgs = [
|
||||||
|
{"role": "system", "content": "System"},
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"content": [
|
||||||
|
{"type": "text", "text": "Let me check both..."},
|
||||||
|
{
|
||||||
|
"type": "tool_use",
|
||||||
|
"id": "toolu_1",
|
||||||
|
"name": "get_weather",
|
||||||
|
"input": {"city": "NYC"},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "tool_use",
|
||||||
|
"id": "toolu_2",
|
||||||
|
"name": "get_weather",
|
||||||
|
"input": {"city": "LA"},
|
||||||
|
},
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "tool_result",
|
||||||
|
"tool_use_id": "toolu_1",
|
||||||
|
"content": "Cold",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "tool_result",
|
||||||
|
"tool_use_id": "toolu_2",
|
||||||
|
"content": "Warm",
|
||||||
|
},
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{"role": "user", "content": "Thanks!"},
|
||||||
|
]
|
||||||
|
# Recent messages start at index 2 (tool_result)
|
||||||
|
recent = [all_msgs[2], all_msgs[3]]
|
||||||
|
start_index = 2
|
||||||
|
|
||||||
|
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
|
||||||
|
|
||||||
|
# Should prepend the assistant message with both tool_uses
|
||||||
|
assert len(result) == 3
|
||||||
|
assert result[0]["role"] == "assistant"
|
||||||
|
tool_use_count = sum(
|
||||||
|
1 for b in result[0]["content"] if b.get("type") == "tool_use"
|
||||||
|
)
|
||||||
|
assert tool_use_count == 2
|
||||||
|
|
||||||
|
# ---- Mixed/Edge Case Tests ----
|
||||||
|
|
||||||
|
def test_anthropic_with_type_message_field(self):
|
||||||
|
"""Test Anthropic format with 'type': 'message' field (smart_decision_maker style)."""
|
||||||
|
all_msgs = [
|
||||||
|
{"role": "system", "content": "You are helpful."},
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "tool_use",
|
||||||
|
"id": "toolu_abc",
|
||||||
|
"name": "search",
|
||||||
|
"input": {"q": "test"},
|
||||||
|
}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"type": "message", # Extra field from smart_decision_maker
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "tool_result",
|
||||||
|
"tool_use_id": "toolu_abc",
|
||||||
|
"content": "Found results",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{"role": "user", "content": "Thanks!"},
|
||||||
|
]
|
||||||
|
# Recent messages start at index 2 (the tool_result with 'type': 'message')
|
||||||
|
recent = [all_msgs[2], all_msgs[3]]
|
||||||
|
start_index = 2
|
||||||
|
|
||||||
|
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
|
||||||
|
|
||||||
|
# Should prepend the tool_use message
|
||||||
|
assert len(result) == 3
|
||||||
|
assert result[0]["role"] == "assistant"
|
||||||
|
assert result[0]["content"][0]["type"] == "tool_use"
|
||||||
|
|
||||||
|
def test_handles_no_tool_messages(self):
|
||||||
|
"""Test messages without tool calls."""
|
||||||
|
all_msgs = [
|
||||||
|
{"role": "user", "content": "Hello"},
|
||||||
|
{"role": "assistant", "content": "Hi there!"},
|
||||||
|
]
|
||||||
|
recent = all_msgs
|
||||||
|
start_index = 0
|
||||||
|
|
||||||
|
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
|
||||||
|
|
||||||
|
assert result == all_msgs
|
||||||
|
|
||||||
|
def test_handles_empty_messages(self):
|
||||||
|
"""Test empty message list."""
|
||||||
|
result = _ensure_tool_pairs_intact([], [], 0)
|
||||||
|
assert result == []
|
||||||
|
|
||||||
|
def test_mixed_text_and_tool_content(self):
|
||||||
|
"""Test Anthropic message with mixed text and tool_use content."""
|
||||||
|
all_msgs = [
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"content": [
|
||||||
|
{"type": "text", "text": "I'll help you with that."},
|
||||||
|
{
|
||||||
|
"type": "tool_use",
|
||||||
|
"id": "toolu_mixed",
|
||||||
|
"name": "search",
|
||||||
|
"input": {"q": "test"},
|
||||||
|
},
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "tool_result",
|
||||||
|
"tool_use_id": "toolu_mixed",
|
||||||
|
"content": "Found results",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{"role": "assistant", "content": "Here are the results..."},
|
||||||
|
]
|
||||||
|
# Start from tool_result
|
||||||
|
recent = [all_msgs[1], all_msgs[2]]
|
||||||
|
start_index = 1
|
||||||
|
|
||||||
|
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
|
||||||
|
|
||||||
|
# Should prepend the assistant message with tool_use
|
||||||
|
assert len(result) == 3
|
||||||
|
assert result[0]["content"][0]["type"] == "text"
|
||||||
|
assert result[0]["content"][1]["type"] == "tool_use"
|
||||||
|
|
||||||
|
|
||||||
|
class TestCompressContext:
|
||||||
|
"""Test the async compress_context function."""
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_no_compression_needed(self):
|
||||||
|
"""Test messages under limit return without compression."""
|
||||||
|
messages = [
|
||||||
|
{"role": "system", "content": "You are helpful."},
|
||||||
|
{"role": "user", "content": "Hello!"},
|
||||||
|
]
|
||||||
|
|
||||||
|
result = await compress_context(messages, target_tokens=100000)
|
||||||
|
|
||||||
|
assert isinstance(result, CompressResult)
|
||||||
|
assert result.was_compacted is False
|
||||||
|
assert len(result.messages) == 2
|
||||||
|
assert result.error is None
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_truncation_without_client(self):
|
||||||
|
"""Test that truncation works without LLM client."""
|
||||||
|
long_content = "x" * 50000
|
||||||
|
messages = [
|
||||||
|
{"role": "system", "content": "System"},
|
||||||
|
{"role": "user", "content": long_content},
|
||||||
|
{"role": "assistant", "content": "Response"},
|
||||||
|
]
|
||||||
|
|
||||||
|
result = await compress_context(
|
||||||
|
messages, target_tokens=1000, client=None, reserve=100
|
||||||
|
)
|
||||||
|
|
||||||
|
assert result.was_compacted is True
|
||||||
|
# Should have truncated without summarization
|
||||||
|
assert result.messages_summarized == 0
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_with_mocked_llm_client(self):
|
||||||
|
"""Test summarization with mocked LLM client."""
|
||||||
|
# Create many messages to trigger summarization
|
||||||
|
messages = [{"role": "system", "content": "System prompt"}]
|
||||||
|
for i in range(30):
|
||||||
|
messages.append({"role": "user", "content": f"User message {i} " * 100})
|
||||||
|
messages.append(
|
||||||
|
{"role": "assistant", "content": f"Assistant response {i} " * 100}
|
||||||
|
)
|
||||||
|
|
||||||
|
# Mock the AsyncOpenAI client
|
||||||
|
mock_client = AsyncMock()
|
||||||
|
mock_response = MagicMock()
|
||||||
|
mock_response.choices = [MagicMock()]
|
||||||
|
mock_response.choices[0].message.content = "Summary of conversation"
|
||||||
|
mock_client.with_options.return_value.chat.completions.create = AsyncMock(
|
||||||
|
return_value=mock_response
|
||||||
|
)
|
||||||
|
|
||||||
|
result = await compress_context(
|
||||||
|
messages,
|
||||||
|
target_tokens=5000,
|
||||||
|
client=mock_client,
|
||||||
|
keep_recent=5,
|
||||||
|
reserve=500,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert result.was_compacted is True
|
||||||
|
# Should have attempted summarization
|
||||||
|
assert mock_client.with_options.called or result.messages_summarized > 0
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_preserves_tool_pairs(self):
|
||||||
|
"""Test that tool call/response pairs stay together."""
|
||||||
|
messages = [
|
||||||
|
{"role": "system", "content": "System"},
|
||||||
|
{"role": "user", "content": "Do something"},
|
||||||
|
{
|
||||||
|
"role": "assistant",
|
||||||
|
"tool_calls": [
|
||||||
|
{"id": "call_1", "type": "function", "function": {"name": "func"}}
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{"role": "tool", "tool_call_id": "call_1", "content": "Result " * 1000},
|
||||||
|
{"role": "assistant", "content": "Done!"},
|
||||||
|
]
|
||||||
|
|
||||||
|
result = await compress_context(
|
||||||
|
messages, target_tokens=500, client=None, reserve=50
|
||||||
|
)
|
||||||
|
|
||||||
|
# Check that if tool response exists, its call exists too
|
||||||
|
tool_call_ids = set()
|
||||||
|
tool_response_ids = set()
|
||||||
|
for msg in result.messages:
|
||||||
|
if "tool_calls" in msg:
|
||||||
|
for tc in msg["tool_calls"]:
|
||||||
|
tool_call_ids.add(tc["id"])
|
||||||
|
if msg.get("role") == "tool":
|
||||||
|
tool_response_ids.add(msg.get("tool_call_id"))
|
||||||
|
|
||||||
|
# All tool responses should have their calls
|
||||||
|
assert tool_response_ids <= tool_call_ids
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_returns_error_when_cannot_compress(self):
|
||||||
|
"""Test that error is returned when compression fails."""
|
||||||
|
# Single huge message that can't be compressed enough
|
||||||
|
messages = [
|
||||||
|
{"role": "user", "content": "x" * 100000},
|
||||||
|
]
|
||||||
|
|
||||||
|
result = await compress_context(
|
||||||
|
messages, target_tokens=100, client=None, reserve=50
|
||||||
|
)
|
||||||
|
|
||||||
|
# Should have an error since we can't get below 100 tokens
|
||||||
|
assert result.error is not None
|
||||||
|
assert result.was_compacted is True
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_empty_messages(self):
|
||||||
|
"""Test that empty messages list returns early without error."""
|
||||||
|
result = await compress_context([], target_tokens=1000)
|
||||||
|
|
||||||
|
assert result.messages == []
|
||||||
|
assert result.token_count == 0
|
||||||
|
assert result.was_compacted is False
|
||||||
|
assert result.error is None
|
||||||
|
|
||||||
|
|
||||||
|
class TestRemoveOrphanToolResponses:
|
||||||
|
"""Test _remove_orphan_tool_responses helper function."""
|
||||||
|
|
||||||
|
def test_removes_openai_orphan(self):
|
||||||
|
"""Test removal of orphan OpenAI tool response."""
|
||||||
|
from backend.util.prompt import _remove_orphan_tool_responses
|
||||||
|
|
||||||
|
messages = [
|
||||||
|
{"role": "tool", "tool_call_id": "call_orphan", "content": "result"},
|
||||||
|
{"role": "user", "content": "Hello"},
|
||||||
|
]
|
||||||
|
orphan_ids = {"call_orphan"}
|
||||||
|
|
||||||
|
result = _remove_orphan_tool_responses(messages, orphan_ids)
|
||||||
|
|
||||||
|
assert len(result) == 1
|
||||||
|
assert result[0]["role"] == "user"
|
||||||
|
|
||||||
|
def test_keeps_valid_openai_tool(self):
|
||||||
|
"""Test that valid OpenAI tool responses are kept."""
|
||||||
|
from backend.util.prompt import _remove_orphan_tool_responses
|
||||||
|
|
||||||
|
messages = [
|
||||||
|
{"role": "tool", "tool_call_id": "call_valid", "content": "result"},
|
||||||
|
]
|
||||||
|
orphan_ids = {"call_other"}
|
||||||
|
|
||||||
|
result = _remove_orphan_tool_responses(messages, orphan_ids)
|
||||||
|
|
||||||
|
assert len(result) == 1
|
||||||
|
assert result[0]["tool_call_id"] == "call_valid"
|
||||||
|
|
||||||
|
def test_filters_anthropic_mixed_blocks(self):
|
||||||
|
"""Test filtering individual orphan blocks from Anthropic message with mixed valid/orphan."""
|
||||||
|
from backend.util.prompt import _remove_orphan_tool_responses
|
||||||
|
|
||||||
|
messages = [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "tool_result",
|
||||||
|
"tool_use_id": "toolu_valid",
|
||||||
|
"content": "valid result",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "tool_result",
|
||||||
|
"tool_use_id": "toolu_orphan",
|
||||||
|
"content": "orphan result",
|
||||||
|
},
|
||||||
|
],
|
||||||
|
},
|
||||||
|
]
|
||||||
|
orphan_ids = {"toolu_orphan"}
|
||||||
|
|
||||||
|
result = _remove_orphan_tool_responses(messages, orphan_ids)
|
||||||
|
|
||||||
|
assert len(result) == 1
|
||||||
|
# Should only have the valid tool_result, orphan filtered out
|
||||||
|
assert len(result[0]["content"]) == 1
|
||||||
|
assert result[0]["content"][0]["tool_use_id"] == "toolu_valid"
|
||||||
|
|
||||||
|
def test_removes_anthropic_all_orphan(self):
|
||||||
|
"""Test removal of Anthropic message when all tool_results are orphans."""
|
||||||
|
from backend.util.prompt import _remove_orphan_tool_responses
|
||||||
|
|
||||||
|
messages = [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{
|
||||||
|
"type": "tool_result",
|
||||||
|
"tool_use_id": "toolu_orphan1",
|
||||||
|
"content": "result1",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "tool_result",
|
||||||
|
"tool_use_id": "toolu_orphan2",
|
||||||
|
"content": "result2",
|
||||||
|
},
|
||||||
|
],
|
||||||
|
},
|
||||||
|
]
|
||||||
|
orphan_ids = {"toolu_orphan1", "toolu_orphan2"}
|
||||||
|
|
||||||
|
result = _remove_orphan_tool_responses(messages, orphan_ids)
|
||||||
|
|
||||||
|
# Message should be completely removed since no content left
|
||||||
|
assert len(result) == 0
|
||||||
|
|
||||||
|
def test_preserves_non_tool_messages(self):
|
||||||
|
"""Test that non-tool messages are preserved."""
|
||||||
|
from backend.util.prompt import _remove_orphan_tool_responses
|
||||||
|
|
||||||
|
messages = [
|
||||||
|
{"role": "user", "content": "Hello"},
|
||||||
|
{"role": "assistant", "content": "Hi there!"},
|
||||||
|
]
|
||||||
|
orphan_ids = {"some_id"}
|
||||||
|
|
||||||
|
result = _remove_orphan_tool_responses(messages, orphan_ids)
|
||||||
|
|
||||||
|
assert result == messages
|
||||||
|
|
||||||
|
|
||||||
|
class TestCompressResultDataclass:
|
||||||
|
"""Test CompressResult dataclass."""
|
||||||
|
|
||||||
|
def test_default_values(self):
|
||||||
|
"""Test default values are set correctly."""
|
||||||
|
result = CompressResult(
|
||||||
|
messages=[{"role": "user", "content": "test"}],
|
||||||
|
token_count=10,
|
||||||
|
was_compacted=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert result.error is None
|
||||||
|
assert result.original_token_count == 0 # Defaults to 0, not None
|
||||||
|
assert result.messages_summarized == 0
|
||||||
|
assert result.messages_dropped == 0
|
||||||
|
|
||||||
|
def test_all_fields(self):
|
||||||
|
"""Test all fields can be set."""
|
||||||
|
result = CompressResult(
|
||||||
|
messages=[{"role": "user", "content": "test"}],
|
||||||
|
token_count=100,
|
||||||
|
was_compacted=True,
|
||||||
|
error="Some error",
|
||||||
|
original_token_count=500,
|
||||||
|
messages_summarized=10,
|
||||||
|
messages_dropped=5,
|
||||||
|
)
|
||||||
|
|
||||||
|
assert result.token_count == 100
|
||||||
|
assert result.was_compacted is True
|
||||||
|
assert result.error == "Some error"
|
||||||
|
assert result.original_token_count == 500
|
||||||
|
assert result.messages_summarized == 10
|
||||||
|
assert result.messages_dropped == 5
|
||||||
|
|||||||
@@ -157,12 +157,7 @@ async def validate_url(
|
|||||||
is_trusted: Boolean indicating if the hostname is in trusted_origins
|
is_trusted: Boolean indicating if the hostname is in trusted_origins
|
||||||
ip_addresses: List of IP addresses for the host; empty if the host is trusted
|
ip_addresses: List of IP addresses for the host; empty if the host is trusted
|
||||||
"""
|
"""
|
||||||
# Canonicalize URL
|
parsed = parse_url(url)
|
||||||
url = url.strip("/ ").replace("\\", "/")
|
|
||||||
parsed = urlparse(url)
|
|
||||||
if not parsed.scheme:
|
|
||||||
url = f"http://{url}"
|
|
||||||
parsed = urlparse(url)
|
|
||||||
|
|
||||||
# Check scheme
|
# Check scheme
|
||||||
if parsed.scheme not in ALLOWED_SCHEMES:
|
if parsed.scheme not in ALLOWED_SCHEMES:
|
||||||
@@ -220,6 +215,17 @@ async def validate_url(
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_url(url: str) -> URL:
|
||||||
|
"""Canonicalizes and parses a URL string."""
|
||||||
|
url = url.strip("/ ").replace("\\", "/")
|
||||||
|
|
||||||
|
# Ensure scheme is present for proper parsing
|
||||||
|
if not re.match(r"[a-z0-9+.\-]+://", url):
|
||||||
|
url = f"http://{url}"
|
||||||
|
|
||||||
|
return urlparse(url)
|
||||||
|
|
||||||
|
|
||||||
def pin_url(url: URL, ip_addresses: Optional[list[str]] = None) -> URL:
|
def pin_url(url: URL, ip_addresses: Optional[list[str]] = None) -> URL:
|
||||||
"""
|
"""
|
||||||
Pins a URL to a specific IP address to prevent DNS rebinding attacks.
|
Pins a URL to a specific IP address to prevent DNS rebinding attacks.
|
||||||
|
|||||||
@@ -656,6 +656,7 @@ class Secrets(UpdateTrackingModel["Secrets"], BaseSettings):
|
|||||||
e2b_api_key: str = Field(default="", description="E2B API key")
|
e2b_api_key: str = Field(default="", description="E2B API key")
|
||||||
nvidia_api_key: str = Field(default="", description="Nvidia API key")
|
nvidia_api_key: str = Field(default="", description="Nvidia API key")
|
||||||
mem0_api_key: str = Field(default="", description="Mem0 API key")
|
mem0_api_key: str = Field(default="", description="Mem0 API key")
|
||||||
|
elevenlabs_api_key: str = Field(default="", description="ElevenLabs API key")
|
||||||
|
|
||||||
linear_client_id: str = Field(default="", description="Linear client ID")
|
linear_client_id: str = Field(default="", description="Linear client ID")
|
||||||
linear_client_secret: str = Field(default="", description="Linear client secret")
|
linear_client_secret: str = Field(default="", description="Linear client secret")
|
||||||
|
|||||||
@@ -22,6 +22,7 @@ from backend.data.workspace import (
|
|||||||
soft_delete_workspace_file,
|
soft_delete_workspace_file,
|
||||||
)
|
)
|
||||||
from backend.util.settings import Config
|
from backend.util.settings import Config
|
||||||
|
from backend.util.virus_scanner import scan_content_safe
|
||||||
from backend.util.workspace_storage import compute_file_checksum, get_workspace_storage
|
from backend.util.workspace_storage import compute_file_checksum, get_workspace_storage
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@@ -187,6 +188,9 @@ class WorkspaceManager:
|
|||||||
f"{Config().max_file_size_mb}MB limit"
|
f"{Config().max_file_size_mb}MB limit"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Virus scan content before persisting (defense in depth)
|
||||||
|
await scan_content_safe(content, filename=filename)
|
||||||
|
|
||||||
# Determine path with session scoping
|
# Determine path with session scoping
|
||||||
if path is None:
|
if path is None:
|
||||||
path = f"/{filename}"
|
path = f"/{filename}"
|
||||||
|
|||||||
138
autogpt_platform/backend/poetry.lock
generated
138
autogpt_platform/backend/poetry.lock
generated
@@ -825,6 +825,29 @@ files = [
|
|||||||
{file = "charset_normalizer-3.4.2.tar.gz", hash = "sha256:5baececa9ecba31eff645232d59845c07aa030f0c81ee70184a90d35099a0e63"},
|
{file = "charset_normalizer-3.4.2.tar.gz", hash = "sha256:5baececa9ecba31eff645232d59845c07aa030f0c81ee70184a90d35099a0e63"},
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "claude-agent-sdk"
|
||||||
|
version = "0.1.31"
|
||||||
|
description = "Python SDK for Claude Code"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.10"
|
||||||
|
groups = ["main"]
|
||||||
|
files = [
|
||||||
|
{file = "claude_agent_sdk-0.1.31-py3-none-macosx_11_0_arm64.whl", hash = "sha256:801bacfe4192782a7cc7b61b0d23a57f061c069993dd3dfa8109aa2e7050a530"},
|
||||||
|
{file = "claude_agent_sdk-0.1.31-py3-none-manylinux_2_17_aarch64.whl", hash = "sha256:0b608e0cbfcedcb827427e6d16a73fe573d58e7f93e15f95435066feacbe6511"},
|
||||||
|
{file = "claude_agent_sdk-0.1.31-py3-none-manylinux_2_17_x86_64.whl", hash = "sha256:d0cb30e026a22246e84d9237d23bb4df20be5146913a04d2802ddd37d4f8b8c9"},
|
||||||
|
{file = "claude_agent_sdk-0.1.31-py3-none-win_amd64.whl", hash = "sha256:8ceca675c2770ad739bd1208362059a830e91c74efcf128045b5a7af14d36f2b"},
|
||||||
|
{file = "claude_agent_sdk-0.1.31.tar.gz", hash = "sha256:b68c681083d7cc985dd3e48f73aabf459f056c1a7e1c5b9c47033c6af94da1a1"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
anyio = ">=4.0.0"
|
||||||
|
mcp = ">=0.1.0"
|
||||||
|
typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.11\""}
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
dev = ["anyio[trio] (>=4.0.0)", "mypy (>=1.0.0)", "pytest (>=7.0.0)", "pytest-asyncio (>=0.20.0)", "pytest-cov (>=4.0.0)", "ruff (>=0.1.0)"]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "cleo"
|
name = "cleo"
|
||||||
version = "2.1.0"
|
version = "2.1.0"
|
||||||
@@ -1169,6 +1192,29 @@ attrs = ">=21.3.0"
|
|||||||
e2b = ">=1.5.4,<2.0.0"
|
e2b = ">=1.5.4,<2.0.0"
|
||||||
httpx = ">=0.20.0,<1.0.0"
|
httpx = ">=0.20.0,<1.0.0"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "elevenlabs"
|
||||||
|
version = "1.59.0"
|
||||||
|
description = ""
|
||||||
|
optional = false
|
||||||
|
python-versions = "<4.0,>=3.8"
|
||||||
|
groups = ["main"]
|
||||||
|
files = [
|
||||||
|
{file = "elevenlabs-1.59.0-py3-none-any.whl", hash = "sha256:468145db81a0bc867708b4a8619699f75583e9481b395ec1339d0b443da771ed"},
|
||||||
|
{file = "elevenlabs-1.59.0.tar.gz", hash = "sha256:16e735bd594e86d415dd445d249c8cc28b09996cfd627fbc10102c0a84698859"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
httpx = ">=0.21.2"
|
||||||
|
pydantic = ">=1.9.2"
|
||||||
|
pydantic-core = ">=2.18.2,<3.0.0"
|
||||||
|
requests = ">=2.20"
|
||||||
|
typing_extensions = ">=4.0.0"
|
||||||
|
websockets = ">=11.0"
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
pyaudio = ["pyaudio (>=0.2.14)"]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "email-validator"
|
name = "email-validator"
|
||||||
version = "2.2.0"
|
version = "2.2.0"
|
||||||
@@ -2320,6 +2366,18 @@ http2 = ["h2 (>=3,<5)"]
|
|||||||
socks = ["socksio (==1.*)"]
|
socks = ["socksio (==1.*)"]
|
||||||
zstd = ["zstandard (>=0.18.0)"]
|
zstd = ["zstandard (>=0.18.0)"]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "httpx-sse"
|
||||||
|
version = "0.4.3"
|
||||||
|
description = "Consume Server-Sent Event (SSE) messages with HTTPX."
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.9"
|
||||||
|
groups = ["main"]
|
||||||
|
files = [
|
||||||
|
{file = "httpx_sse-0.4.3-py3-none-any.whl", hash = "sha256:0ac1c9fe3c0afad2e0ebb25a934a59f4c7823b60792691f779fad2c5568830fc"},
|
||||||
|
{file = "httpx_sse-0.4.3.tar.gz", hash = "sha256:9b1ed0127459a66014aec3c56bebd93da3c1bc8bb6618c8082039a44889a755d"},
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "huggingface-hub"
|
name = "huggingface-hub"
|
||||||
version = "0.34.4"
|
version = "0.34.4"
|
||||||
@@ -2981,6 +3039,39 @@ files = [
|
|||||||
{file = "mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325"},
|
{file = "mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325"},
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "mcp"
|
||||||
|
version = "1.26.0"
|
||||||
|
description = "Model Context Protocol SDK"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.10"
|
||||||
|
groups = ["main"]
|
||||||
|
files = [
|
||||||
|
{file = "mcp-1.26.0-py3-none-any.whl", hash = "sha256:904a21c33c25aa98ddbeb47273033c435e595bbacfdb177f4bd87f6dceebe1ca"},
|
||||||
|
{file = "mcp-1.26.0.tar.gz", hash = "sha256:db6e2ef491eecc1a0d93711a76f28dec2e05999f93afd48795da1c1137142c66"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
anyio = ">=4.5"
|
||||||
|
httpx = ">=0.27.1"
|
||||||
|
httpx-sse = ">=0.4"
|
||||||
|
jsonschema = ">=4.20.0"
|
||||||
|
pydantic = ">=2.11.0,<3.0.0"
|
||||||
|
pydantic-settings = ">=2.5.2"
|
||||||
|
pyjwt = {version = ">=2.10.1", extras = ["crypto"]}
|
||||||
|
python-multipart = ">=0.0.9"
|
||||||
|
pywin32 = {version = ">=310", markers = "sys_platform == \"win32\""}
|
||||||
|
sse-starlette = ">=1.6.1"
|
||||||
|
starlette = ">=0.27"
|
||||||
|
typing-extensions = ">=4.9.0"
|
||||||
|
typing-inspection = ">=0.4.1"
|
||||||
|
uvicorn = {version = ">=0.31.1", markers = "sys_platform != \"emscripten\""}
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
cli = ["python-dotenv (>=1.0.0)", "typer (>=0.16.0)"]
|
||||||
|
rich = ["rich (>=13.9.4)"]
|
||||||
|
ws = ["websockets (>=15.0.1)"]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "mdurl"
|
name = "mdurl"
|
||||||
version = "0.1.2"
|
version = "0.1.2"
|
||||||
@@ -5210,7 +5301,7 @@ description = "Python for Window Extensions"
|
|||||||
optional = false
|
optional = false
|
||||||
python-versions = "*"
|
python-versions = "*"
|
||||||
groups = ["main"]
|
groups = ["main"]
|
||||||
markers = "platform_system == \"Windows\""
|
markers = "sys_platform == \"win32\" or platform_system == \"Windows\""
|
||||||
files = [
|
files = [
|
||||||
{file = "pywin32-311-cp310-cp310-win32.whl", hash = "sha256:d03ff496d2a0cd4a5893504789d4a15399133fe82517455e78bad62efbb7f0a3"},
|
{file = "pywin32-311-cp310-cp310-win32.whl", hash = "sha256:d03ff496d2a0cd4a5893504789d4a15399133fe82517455e78bad62efbb7f0a3"},
|
||||||
{file = "pywin32-311-cp310-cp310-win_amd64.whl", hash = "sha256:797c2772017851984b97180b0bebe4b620bb86328e8a884bb626156295a63b3b"},
|
{file = "pywin32-311-cp310-cp310-win_amd64.whl", hash = "sha256:797c2772017851984b97180b0bebe4b620bb86328e8a884bb626156295a63b3b"},
|
||||||
@@ -6195,6 +6286,27 @@ postgresql-psycopgbinary = ["psycopg[binary] (>=3.0.7)"]
|
|||||||
pymysql = ["pymysql"]
|
pymysql = ["pymysql"]
|
||||||
sqlcipher = ["sqlcipher3_binary"]
|
sqlcipher = ["sqlcipher3_binary"]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "sse-starlette"
|
||||||
|
version = "3.0.3"
|
||||||
|
description = "SSE plugin for Starlette"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.9"
|
||||||
|
groups = ["main"]
|
||||||
|
files = [
|
||||||
|
{file = "sse_starlette-3.0.3-py3-none-any.whl", hash = "sha256:af5bf5a6f3933df1d9c7f8539633dc8444ca6a97ab2e2a7cd3b6e431ac03a431"},
|
||||||
|
{file = "sse_starlette-3.0.3.tar.gz", hash = "sha256:88cfb08747e16200ea990c8ca876b03910a23b547ab3bd764c0d8eb81019b971"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
anyio = ">=4.7.0"
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
daphne = ["daphne (>=4.2.0)"]
|
||||||
|
examples = ["aiosqlite (>=0.21.0)", "fastapi (>=0.115.12)", "sqlalchemy[asyncio] (>=2.0.41)", "starlette (>=0.49.1)", "uvicorn (>=0.34.0)"]
|
||||||
|
granian = ["granian (>=2.3.1)"]
|
||||||
|
uvicorn = ["uvicorn (>=0.34.0)"]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "stagehand"
|
name = "stagehand"
|
||||||
version = "0.5.1"
|
version = "0.5.1"
|
||||||
@@ -7361,6 +7473,28 @@ files = [
|
|||||||
defusedxml = ">=0.7.1,<0.8.0"
|
defusedxml = ">=0.7.1,<0.8.0"
|
||||||
requests = "*"
|
requests = "*"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "yt-dlp"
|
||||||
|
version = "2025.12.8"
|
||||||
|
description = "A feature-rich command-line audio/video downloader"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.10"
|
||||||
|
groups = ["main"]
|
||||||
|
files = [
|
||||||
|
{file = "yt_dlp-2025.12.8-py3-none-any.whl", hash = "sha256:36e2584342e409cfbfa0b5e61448a1c5189e345cf4564294456ee509e7d3e065"},
|
||||||
|
{file = "yt_dlp-2025.12.8.tar.gz", hash = "sha256:b773c81bb6b71cb2c111cfb859f453c7a71cf2ef44eff234ff155877184c3e4f"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
build = ["build", "hatchling (>=1.27.0)", "pip", "setuptools (>=71.0.2)", "wheel"]
|
||||||
|
curl-cffi = ["curl-cffi (>=0.5.10,<0.6.dev0 || >=0.10.dev0,<0.14) ; implementation_name == \"cpython\""]
|
||||||
|
default = ["brotli ; implementation_name == \"cpython\"", "brotlicffi ; implementation_name != \"cpython\"", "certifi", "mutagen", "pycryptodomex", "requests (>=2.32.2,<3)", "urllib3 (>=2.0.2,<3)", "websockets (>=13.0)", "yt-dlp-ejs (==0.3.2)"]
|
||||||
|
dev = ["autopep8 (>=2.0,<3.0)", "pre-commit", "pytest (>=8.1,<9.0)", "pytest-rerunfailures (>=14.0,<15.0)", "ruff (>=0.14.0,<0.15.0)"]
|
||||||
|
pyinstaller = ["pyinstaller (>=6.17.0)"]
|
||||||
|
secretstorage = ["cffi", "secretstorage"]
|
||||||
|
static-analysis = ["autopep8 (>=2.0,<3.0)", "ruff (>=0.14.0,<0.15.0)"]
|
||||||
|
test = ["pytest (>=8.1,<9.0)", "pytest-rerunfailures (>=14.0,<15.0)"]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "zerobouncesdk"
|
name = "zerobouncesdk"
|
||||||
version = "1.1.2"
|
version = "1.1.2"
|
||||||
@@ -7512,4 +7646,4 @@ cffi = ["cffi (>=1.11)"]
|
|||||||
[metadata]
|
[metadata]
|
||||||
lock-version = "2.1"
|
lock-version = "2.1"
|
||||||
python-versions = ">=3.10,<3.14"
|
python-versions = ">=3.10,<3.14"
|
||||||
content-hash = "ee5742dc1a9df50dfc06d4b26a1682cbb2b25cab6b79ce5625ec272f93e4f4bf"
|
content-hash = "f79a5f01baf459195d6fd06be2515b83c60cf2aef11a16530842b47febb98a23"
|
||||||
|
|||||||
@@ -13,6 +13,7 @@ aio-pika = "^9.5.5"
|
|||||||
aiohttp = "^3.10.0"
|
aiohttp = "^3.10.0"
|
||||||
aiodns = "^3.5.0"
|
aiodns = "^3.5.0"
|
||||||
anthropic = "^0.59.0"
|
anthropic = "^0.59.0"
|
||||||
|
claude-agent-sdk = "^0.1.0"
|
||||||
apscheduler = "^3.11.1"
|
apscheduler = "^3.11.1"
|
||||||
autogpt-libs = { path = "../autogpt_libs", develop = true }
|
autogpt-libs = { path = "../autogpt_libs", develop = true }
|
||||||
bleach = { extras = ["css"], version = "^6.2.0" }
|
bleach = { extras = ["css"], version = "^6.2.0" }
|
||||||
@@ -20,6 +21,7 @@ click = "^8.2.0"
|
|||||||
cryptography = "^45.0"
|
cryptography = "^45.0"
|
||||||
discord-py = "^2.5.2"
|
discord-py = "^2.5.2"
|
||||||
e2b-code-interpreter = "^1.5.2"
|
e2b-code-interpreter = "^1.5.2"
|
||||||
|
elevenlabs = "^1.50.0"
|
||||||
fastapi = "^0.116.1"
|
fastapi = "^0.116.1"
|
||||||
feedparser = "^6.0.11"
|
feedparser = "^6.0.11"
|
||||||
flake8 = "^7.3.0"
|
flake8 = "^7.3.0"
|
||||||
@@ -71,6 +73,7 @@ tweepy = "^4.16.0"
|
|||||||
uvicorn = { extras = ["standard"], version = "^0.35.0" }
|
uvicorn = { extras = ["standard"], version = "^0.35.0" }
|
||||||
websockets = "^15.0"
|
websockets = "^15.0"
|
||||||
youtube-transcript-api = "^1.2.1"
|
youtube-transcript-api = "^1.2.1"
|
||||||
|
yt-dlp = "2025.12.08"
|
||||||
zerobouncesdk = "^1.1.2"
|
zerobouncesdk = "^1.1.2"
|
||||||
# NOTE: please insert new dependencies in their alphabetical location
|
# NOTE: please insert new dependencies in their alphabetical location
|
||||||
pytest-snapshot = "^0.9.0"
|
pytest-snapshot = "^0.9.0"
|
||||||
|
|||||||
@@ -9,7 +9,8 @@
|
|||||||
"sub_heading": "Creator agent subheading",
|
"sub_heading": "Creator agent subheading",
|
||||||
"description": "Creator agent description",
|
"description": "Creator agent description",
|
||||||
"runs": 50,
|
"runs": 50,
|
||||||
"rating": 4.0
|
"rating": 4.0,
|
||||||
|
"agent_graph_id": "test-graph-2"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"pagination": {
|
"pagination": {
|
||||||
|
|||||||
@@ -9,7 +9,8 @@
|
|||||||
"sub_heading": "Category agent subheading",
|
"sub_heading": "Category agent subheading",
|
||||||
"description": "Category agent description",
|
"description": "Category agent description",
|
||||||
"runs": 60,
|
"runs": 60,
|
||||||
"rating": 4.1
|
"rating": 4.1,
|
||||||
|
"agent_graph_id": "test-graph-category"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"pagination": {
|
"pagination": {
|
||||||
|
|||||||
@@ -9,7 +9,8 @@
|
|||||||
"sub_heading": "Agent 0 subheading",
|
"sub_heading": "Agent 0 subheading",
|
||||||
"description": "Agent 0 description",
|
"description": "Agent 0 description",
|
||||||
"runs": 0,
|
"runs": 0,
|
||||||
"rating": 4.0
|
"rating": 4.0,
|
||||||
|
"agent_graph_id": "test-graph-2"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"slug": "agent-1",
|
"slug": "agent-1",
|
||||||
@@ -20,7 +21,8 @@
|
|||||||
"sub_heading": "Agent 1 subheading",
|
"sub_heading": "Agent 1 subheading",
|
||||||
"description": "Agent 1 description",
|
"description": "Agent 1 description",
|
||||||
"runs": 10,
|
"runs": 10,
|
||||||
"rating": 4.0
|
"rating": 4.0,
|
||||||
|
"agent_graph_id": "test-graph-2"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"slug": "agent-2",
|
"slug": "agent-2",
|
||||||
@@ -31,7 +33,8 @@
|
|||||||
"sub_heading": "Agent 2 subheading",
|
"sub_heading": "Agent 2 subheading",
|
||||||
"description": "Agent 2 description",
|
"description": "Agent 2 description",
|
||||||
"runs": 20,
|
"runs": 20,
|
||||||
"rating": 4.0
|
"rating": 4.0,
|
||||||
|
"agent_graph_id": "test-graph-2"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"slug": "agent-3",
|
"slug": "agent-3",
|
||||||
@@ -42,7 +45,8 @@
|
|||||||
"sub_heading": "Agent 3 subheading",
|
"sub_heading": "Agent 3 subheading",
|
||||||
"description": "Agent 3 description",
|
"description": "Agent 3 description",
|
||||||
"runs": 30,
|
"runs": 30,
|
||||||
"rating": 4.0
|
"rating": 4.0,
|
||||||
|
"agent_graph_id": "test-graph-2"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"slug": "agent-4",
|
"slug": "agent-4",
|
||||||
@@ -53,7 +57,8 @@
|
|||||||
"sub_heading": "Agent 4 subheading",
|
"sub_heading": "Agent 4 subheading",
|
||||||
"description": "Agent 4 description",
|
"description": "Agent 4 description",
|
||||||
"runs": 40,
|
"runs": 40,
|
||||||
"rating": 4.0
|
"rating": 4.0,
|
||||||
|
"agent_graph_id": "test-graph-2"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"pagination": {
|
"pagination": {
|
||||||
|
|||||||
@@ -9,7 +9,8 @@
|
|||||||
"sub_heading": "Search agent subheading",
|
"sub_heading": "Search agent subheading",
|
||||||
"description": "Specific search term description",
|
"description": "Specific search term description",
|
||||||
"runs": 75,
|
"runs": 75,
|
||||||
"rating": 4.2
|
"rating": 4.2,
|
||||||
|
"agent_graph_id": "test-graph-search"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"pagination": {
|
"pagination": {
|
||||||
|
|||||||
@@ -9,7 +9,8 @@
|
|||||||
"sub_heading": "Top agent subheading",
|
"sub_heading": "Top agent subheading",
|
||||||
"description": "Top agent description",
|
"description": "Top agent description",
|
||||||
"runs": 1000,
|
"runs": 1000,
|
||||||
"rating": 5.0
|
"rating": 5.0,
|
||||||
|
"agent_graph_id": "test-graph-3"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"pagination": {
|
"pagination": {
|
||||||
|
|||||||
@@ -9,7 +9,8 @@
|
|||||||
"sub_heading": "Featured agent subheading",
|
"sub_heading": "Featured agent subheading",
|
||||||
"description": "Featured agent description",
|
"description": "Featured agent description",
|
||||||
"runs": 100,
|
"runs": 100,
|
||||||
"rating": 4.5
|
"rating": 4.5,
|
||||||
|
"agent_graph_id": "test-graph-1"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"pagination": {
|
"pagination": {
|
||||||
|
|||||||
@@ -111,9 +111,7 @@ class TestGenerateAgent:
|
|||||||
instructions = {"type": "instructions", "steps": ["Step 1"]}
|
instructions = {"type": "instructions", "steps": ["Step 1"]}
|
||||||
result = await core.generate_agent(instructions)
|
result = await core.generate_agent(instructions)
|
||||||
|
|
||||||
# library_agents defaults to None
|
mock_external.assert_called_once_with(instructions, None, None, None)
|
||||||
mock_external.assert_called_once_with(instructions, None)
|
|
||||||
# Result should have id, version, is_active added if not present
|
|
||||||
assert result is not None
|
assert result is not None
|
||||||
assert result["name"] == "Test Agent"
|
assert result["name"] == "Test Agent"
|
||||||
assert "id" in result
|
assert "id" in result
|
||||||
@@ -177,8 +175,9 @@ class TestGenerateAgentPatch:
|
|||||||
current_agent = {"nodes": [], "links": []}
|
current_agent = {"nodes": [], "links": []}
|
||||||
result = await core.generate_agent_patch("Add a node", current_agent)
|
result = await core.generate_agent_patch("Add a node", current_agent)
|
||||||
|
|
||||||
# library_agents defaults to None
|
mock_external.assert_called_once_with(
|
||||||
mock_external.assert_called_once_with("Add a node", current_agent, None)
|
"Add a node", current_agent, None, None, None
|
||||||
|
)
|
||||||
assert result == expected_result
|
assert result == expected_result
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
|
|||||||
@@ -134,15 +134,28 @@ class TestSearchMarketplaceAgentsForGeneration:
|
|||||||
description="A public agent",
|
description="A public agent",
|
||||||
sub_heading="Does something useful",
|
sub_heading="Does something useful",
|
||||||
creator="creator-1",
|
creator="creator-1",
|
||||||
|
agent_graph_id="graph-123",
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
|
|
||||||
# The store_db is dynamically imported, so patch the import path
|
mock_graph = MagicMock()
|
||||||
with patch(
|
mock_graph.id = "graph-123"
|
||||||
"backend.api.features.store.db.get_store_agents",
|
mock_graph.version = 1
|
||||||
new_callable=AsyncMock,
|
mock_graph.input_schema = {"type": "object"}
|
||||||
return_value=mock_response,
|
mock_graph.output_schema = {"type": "object"}
|
||||||
) as mock_search:
|
|
||||||
|
with (
|
||||||
|
patch(
|
||||||
|
"backend.api.features.store.db.get_store_agents",
|
||||||
|
new_callable=AsyncMock,
|
||||||
|
return_value=mock_response,
|
||||||
|
) as mock_search,
|
||||||
|
patch(
|
||||||
|
"backend.api.features.chat.tools.agent_generator.core.get_store_listed_graphs",
|
||||||
|
new_callable=AsyncMock,
|
||||||
|
return_value={"graph-123": mock_graph},
|
||||||
|
),
|
||||||
|
):
|
||||||
result = await core.search_marketplace_agents_for_generation(
|
result = await core.search_marketplace_agents_for_generation(
|
||||||
search_query="automation",
|
search_query="automation",
|
||||||
max_results=10,
|
max_results=10,
|
||||||
@@ -156,7 +169,7 @@ class TestSearchMarketplaceAgentsForGeneration:
|
|||||||
|
|
||||||
assert len(result) == 1
|
assert len(result) == 1
|
||||||
assert result[0]["name"] == "Public Agent"
|
assert result[0]["name"] == "Public Agent"
|
||||||
assert result[0]["is_marketplace_agent"] is True
|
assert result[0]["graph_id"] == "graph-123"
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_handles_marketplace_error_gracefully(self):
|
async def test_handles_marketplace_error_gracefully(self):
|
||||||
@@ -193,11 +206,12 @@ class TestGetAllRelevantAgentsForGeneration:
|
|||||||
|
|
||||||
marketplace_agents = [
|
marketplace_agents = [
|
||||||
{
|
{
|
||||||
|
"graph_id": "market-456",
|
||||||
|
"graph_version": 1,
|
||||||
"name": "Market Agent",
|
"name": "Market Agent",
|
||||||
"description": "From marketplace",
|
"description": "From marketplace",
|
||||||
"sub_heading": "Sub heading",
|
"input_schema": {},
|
||||||
"creator": "creator-1",
|
"output_schema": {},
|
||||||
"is_marketplace_agent": True,
|
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
|
|
||||||
@@ -225,11 +239,11 @@ class TestGetAllRelevantAgentsForGeneration:
|
|||||||
assert result[1]["name"] == "Market Agent"
|
assert result[1]["name"] == "Market Agent"
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_deduplicates_by_name(self):
|
async def test_deduplicates_by_graph_id(self):
|
||||||
"""Test that marketplace agents with same name as library are excluded."""
|
"""Test that marketplace agents with same graph_id as library are excluded."""
|
||||||
library_agents = [
|
library_agents = [
|
||||||
{
|
{
|
||||||
"graph_id": "lib-123",
|
"graph_id": "shared-123",
|
||||||
"graph_version": 1,
|
"graph_version": 1,
|
||||||
"name": "Shared Agent",
|
"name": "Shared Agent",
|
||||||
"description": "From library",
|
"description": "From library",
|
||||||
@@ -240,18 +254,20 @@ class TestGetAllRelevantAgentsForGeneration:
|
|||||||
|
|
||||||
marketplace_agents = [
|
marketplace_agents = [
|
||||||
{
|
{
|
||||||
"name": "Shared Agent", # Same name, should be deduplicated
|
"graph_id": "shared-123", # Same graph_id, should be deduplicated
|
||||||
|
"graph_version": 1,
|
||||||
|
"name": "Shared Agent",
|
||||||
"description": "From marketplace",
|
"description": "From marketplace",
|
||||||
"sub_heading": "Sub heading",
|
"input_schema": {},
|
||||||
"creator": "creator-1",
|
"output_schema": {},
|
||||||
"is_marketplace_agent": True,
|
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"graph_id": "unique-456",
|
||||||
|
"graph_version": 1,
|
||||||
"name": "Unique Agent",
|
"name": "Unique Agent",
|
||||||
"description": "Only in marketplace",
|
"description": "Only in marketplace",
|
||||||
"sub_heading": "Sub heading",
|
"input_schema": {},
|
||||||
"creator": "creator-2",
|
"output_schema": {},
|
||||||
"is_marketplace_agent": True,
|
|
||||||
},
|
},
|
||||||
]
|
]
|
||||||
|
|
||||||
@@ -273,7 +289,7 @@ class TestGetAllRelevantAgentsForGeneration:
|
|||||||
include_marketplace=True,
|
include_marketplace=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Shared Agent from marketplace should be excluded
|
# Shared Agent from marketplace should be excluded by graph_id
|
||||||
assert len(result) == 2
|
assert len(result) == 2
|
||||||
names = [a["name"] for a in result]
|
names = [a["name"] for a in result]
|
||||||
assert "Shared Agent" in names
|
assert "Shared Agent" in names
|
||||||
|
|||||||
@@ -102,7 +102,7 @@ class TestDecomposeGoalExternal:
|
|||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_decompose_goal_with_context(self):
|
async def test_decompose_goal_with_context(self):
|
||||||
"""Test decomposition with additional context."""
|
"""Test decomposition with additional context enriched into description."""
|
||||||
mock_response = MagicMock()
|
mock_response = MagicMock()
|
||||||
mock_response.json.return_value = {
|
mock_response.json.return_value = {
|
||||||
"success": True,
|
"success": True,
|
||||||
@@ -119,9 +119,12 @@ class TestDecomposeGoalExternal:
|
|||||||
"Build a chatbot", context="Use Python"
|
"Build a chatbot", context="Use Python"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
expected_description = (
|
||||||
|
"Build a chatbot\n\nAdditional context from user:\nUse Python"
|
||||||
|
)
|
||||||
mock_client.post.assert_called_once_with(
|
mock_client.post.assert_called_once_with(
|
||||||
"/api/decompose-description",
|
"/api/decompose-description",
|
||||||
json={"description": "Build a chatbot", "user_instruction": "Use Python"},
|
json={"description": expected_description},
|
||||||
)
|
)
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
|
|||||||
@@ -1,10 +1,9 @@
|
|||||||
"use client";
|
"use client";
|
||||||
|
import { getV1OnboardingState } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
|
||||||
|
import { getOnboardingStatus, resolveResponse } from "@/app/api/helpers";
|
||||||
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
|
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
|
||||||
import { useRouter } from "next/navigation";
|
import { useRouter } from "next/navigation";
|
||||||
import { useEffect } from "react";
|
import { useEffect } from "react";
|
||||||
import { resolveResponse, getOnboardingStatus } from "@/app/api/helpers";
|
|
||||||
import { getV1OnboardingState } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
|
|
||||||
import { getHomepageRoute } from "@/lib/constants";
|
|
||||||
|
|
||||||
export default function OnboardingPage() {
|
export default function OnboardingPage() {
|
||||||
const router = useRouter();
|
const router = useRouter();
|
||||||
@@ -13,12 +12,10 @@ export default function OnboardingPage() {
|
|||||||
async function redirectToStep() {
|
async function redirectToStep() {
|
||||||
try {
|
try {
|
||||||
// Check if onboarding is enabled (also gets chat flag for redirect)
|
// Check if onboarding is enabled (also gets chat flag for redirect)
|
||||||
const { shouldShowOnboarding, isChatEnabled } =
|
const { shouldShowOnboarding } = await getOnboardingStatus();
|
||||||
await getOnboardingStatus();
|
|
||||||
const homepageRoute = getHomepageRoute(isChatEnabled);
|
|
||||||
|
|
||||||
if (!shouldShowOnboarding) {
|
if (!shouldShowOnboarding) {
|
||||||
router.replace(homepageRoute);
|
router.replace("/");
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -26,7 +23,7 @@ export default function OnboardingPage() {
|
|||||||
|
|
||||||
// Handle completed onboarding
|
// Handle completed onboarding
|
||||||
if (onboarding.completedSteps.includes("GET_RESULTS")) {
|
if (onboarding.completedSteps.includes("GET_RESULTS")) {
|
||||||
router.replace(homepageRoute);
|
router.replace("/");
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -1,9 +1,8 @@
|
|||||||
import { getServerSupabase } from "@/lib/supabase/server/getServerSupabase";
|
|
||||||
import { getHomepageRoute } from "@/lib/constants";
|
|
||||||
import BackendAPI from "@/lib/autogpt-server-api";
|
|
||||||
import { NextResponse } from "next/server";
|
|
||||||
import { revalidatePath } from "next/cache";
|
|
||||||
import { getOnboardingStatus } from "@/app/api/helpers";
|
import { getOnboardingStatus } from "@/app/api/helpers";
|
||||||
|
import BackendAPI from "@/lib/autogpt-server-api";
|
||||||
|
import { getServerSupabase } from "@/lib/supabase/server/getServerSupabase";
|
||||||
|
import { revalidatePath } from "next/cache";
|
||||||
|
import { NextResponse } from "next/server";
|
||||||
|
|
||||||
// Handle the callback to complete the user session login
|
// Handle the callback to complete the user session login
|
||||||
export async function GET(request: Request) {
|
export async function GET(request: Request) {
|
||||||
@@ -27,13 +26,12 @@ export async function GET(request: Request) {
|
|||||||
await api.createUser();
|
await api.createUser();
|
||||||
|
|
||||||
// Get onboarding status from backend (includes chat flag evaluated for this user)
|
// Get onboarding status from backend (includes chat flag evaluated for this user)
|
||||||
const { shouldShowOnboarding, isChatEnabled } =
|
const { shouldShowOnboarding } = await getOnboardingStatus();
|
||||||
await getOnboardingStatus();
|
|
||||||
if (shouldShowOnboarding) {
|
if (shouldShowOnboarding) {
|
||||||
next = "/onboarding";
|
next = "/onboarding";
|
||||||
revalidatePath("/onboarding", "layout");
|
revalidatePath("/onboarding", "layout");
|
||||||
} else {
|
} else {
|
||||||
next = getHomepageRoute(isChatEnabled);
|
next = "/";
|
||||||
revalidatePath(next, "layout");
|
revalidatePath(next, "layout");
|
||||||
}
|
}
|
||||||
} catch (createUserError) {
|
} catch (createUserError) {
|
||||||
|
|||||||
@@ -1,6 +1,17 @@
|
|||||||
import { OAuthPopupResultMessage } from "./types";
|
import { OAuthPopupResultMessage } from "./types";
|
||||||
import { NextResponse } from "next/server";
|
import { NextResponse } from "next/server";
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Safely encode a value as JSON for embedding in a script tag.
|
||||||
|
* Escapes characters that could break out of the script context to prevent XSS.
|
||||||
|
*/
|
||||||
|
function safeJsonStringify(value: unknown): string {
|
||||||
|
return JSON.stringify(value)
|
||||||
|
.replace(/</g, "\\u003c")
|
||||||
|
.replace(/>/g, "\\u003e")
|
||||||
|
.replace(/&/g, "\\u0026");
|
||||||
|
}
|
||||||
|
|
||||||
// This route is intended to be used as the callback for integration OAuth flows,
|
// This route is intended to be used as the callback for integration OAuth flows,
|
||||||
// controlled by the CredentialsInput component. The CredentialsInput opens the login
|
// controlled by the CredentialsInput component. The CredentialsInput opens the login
|
||||||
// page in a pop-up window, which then redirects to this route to close the loop.
|
// page in a pop-up window, which then redirects to this route to close the loop.
|
||||||
@@ -23,12 +34,13 @@ export async function GET(request: Request) {
|
|||||||
console.debug("Sending message to opener:", message);
|
console.debug("Sending message to opener:", message);
|
||||||
|
|
||||||
// Return a response with the message as JSON and a script to close the window
|
// Return a response with the message as JSON and a script to close the window
|
||||||
|
// Use safeJsonStringify to prevent XSS by escaping <, >, and & characters
|
||||||
return new NextResponse(
|
return new NextResponse(
|
||||||
`
|
`
|
||||||
<html>
|
<html>
|
||||||
<body>
|
<body>
|
||||||
<script>
|
<script>
|
||||||
window.opener.postMessage(${JSON.stringify(message)});
|
window.opener.postMessage(${safeJsonStringify(message)});
|
||||||
window.close();
|
window.close();
|
||||||
</script>
|
</script>
|
||||||
</body>
|
</body>
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
import { beautifyString } from "@/lib/utils";
|
import { beautifyString } from "@/lib/utils";
|
||||||
import { Clipboard, Maximize2 } from "lucide-react";
|
import { Clipboard, Maximize2 } from "lucide-react";
|
||||||
import React, { useState } from "react";
|
import React, { useMemo, useState } from "react";
|
||||||
import { Button } from "../../../../../components/__legacy__/ui/button";
|
import { Button } from "../../../../../components/__legacy__/ui/button";
|
||||||
import { ContentRenderer } from "../../../../../components/__legacy__/ui/render";
|
import { ContentRenderer } from "../../../../../components/__legacy__/ui/render";
|
||||||
import {
|
import {
|
||||||
@@ -11,6 +11,12 @@ import {
|
|||||||
TableHeader,
|
TableHeader,
|
||||||
TableRow,
|
TableRow,
|
||||||
} from "../../../../../components/__legacy__/ui/table";
|
} from "../../../../../components/__legacy__/ui/table";
|
||||||
|
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
|
||||||
|
import {
|
||||||
|
globalRegistry,
|
||||||
|
OutputItem,
|
||||||
|
} from "@/components/contextual/OutputRenderers";
|
||||||
|
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
|
||||||
import { useToast } from "../../../../../components/molecules/Toast/use-toast";
|
import { useToast } from "../../../../../components/molecules/Toast/use-toast";
|
||||||
import ExpandableOutputDialog from "./ExpandableOutputDialog";
|
import ExpandableOutputDialog from "./ExpandableOutputDialog";
|
||||||
|
|
||||||
@@ -26,6 +32,9 @@ export default function DataTable({
|
|||||||
data,
|
data,
|
||||||
}: DataTableProps) {
|
}: DataTableProps) {
|
||||||
const { toast } = useToast();
|
const { toast } = useToast();
|
||||||
|
const enableEnhancedOutputHandling = useGetFlag(
|
||||||
|
Flag.ENABLE_ENHANCED_OUTPUT_HANDLING,
|
||||||
|
);
|
||||||
const [expandedDialog, setExpandedDialog] = useState<{
|
const [expandedDialog, setExpandedDialog] = useState<{
|
||||||
isOpen: boolean;
|
isOpen: boolean;
|
||||||
execId: string;
|
execId: string;
|
||||||
@@ -33,6 +42,15 @@ export default function DataTable({
|
|||||||
data: any[];
|
data: any[];
|
||||||
} | null>(null);
|
} | null>(null);
|
||||||
|
|
||||||
|
// Prepare renderers for each item when enhanced mode is enabled
|
||||||
|
const getItemRenderer = useMemo(() => {
|
||||||
|
if (!enableEnhancedOutputHandling) return null;
|
||||||
|
return (item: unknown) => {
|
||||||
|
const metadata: OutputMetadata = {};
|
||||||
|
return globalRegistry.getRenderer(item, metadata);
|
||||||
|
};
|
||||||
|
}, [enableEnhancedOutputHandling]);
|
||||||
|
|
||||||
const copyData = (pin: string, data: string) => {
|
const copyData = (pin: string, data: string) => {
|
||||||
navigator.clipboard.writeText(data).then(() => {
|
navigator.clipboard.writeText(data).then(() => {
|
||||||
toast({
|
toast({
|
||||||
@@ -102,15 +120,31 @@ export default function DataTable({
|
|||||||
<Clipboard size={18} />
|
<Clipboard size={18} />
|
||||||
</Button>
|
</Button>
|
||||||
</div>
|
</div>
|
||||||
{value.map((item, index) => (
|
{value.map((item, index) => {
|
||||||
<React.Fragment key={index}>
|
const renderer = getItemRenderer?.(item);
|
||||||
<ContentRenderer
|
if (enableEnhancedOutputHandling && renderer) {
|
||||||
value={item}
|
const metadata: OutputMetadata = {};
|
||||||
truncateLongData={truncateLongData}
|
return (
|
||||||
/>
|
<React.Fragment key={index}>
|
||||||
{index < value.length - 1 && ", "}
|
<OutputItem
|
||||||
</React.Fragment>
|
value={item}
|
||||||
))}
|
metadata={metadata}
|
||||||
|
renderer={renderer}
|
||||||
|
/>
|
||||||
|
{index < value.length - 1 && ", "}
|
||||||
|
</React.Fragment>
|
||||||
|
);
|
||||||
|
}
|
||||||
|
return (
|
||||||
|
<React.Fragment key={index}>
|
||||||
|
<ContentRenderer
|
||||||
|
value={item}
|
||||||
|
truncateLongData={truncateLongData}
|
||||||
|
/>
|
||||||
|
{index < value.length - 1 && ", "}
|
||||||
|
</React.Fragment>
|
||||||
|
);
|
||||||
|
})}
|
||||||
</div>
|
</div>
|
||||||
</TableCell>
|
</TableCell>
|
||||||
</TableRow>
|
</TableRow>
|
||||||
|
|||||||
@@ -1,8 +1,14 @@
|
|||||||
import React, { useContext, useState } from "react";
|
import React, { useContext, useMemo, useState } from "react";
|
||||||
import { Button } from "@/components/__legacy__/ui/button";
|
import { Button } from "@/components/__legacy__/ui/button";
|
||||||
import { Maximize2 } from "lucide-react";
|
import { Maximize2 } from "lucide-react";
|
||||||
import * as Separator from "@radix-ui/react-separator";
|
import * as Separator from "@radix-ui/react-separator";
|
||||||
import { ContentRenderer } from "@/components/__legacy__/ui/render";
|
import { ContentRenderer } from "@/components/__legacy__/ui/render";
|
||||||
|
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
|
||||||
|
import {
|
||||||
|
globalRegistry,
|
||||||
|
OutputItem,
|
||||||
|
} from "@/components/contextual/OutputRenderers";
|
||||||
|
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
|
||||||
|
|
||||||
import { beautifyString } from "@/lib/utils";
|
import { beautifyString } from "@/lib/utils";
|
||||||
|
|
||||||
@@ -21,6 +27,9 @@ export default function NodeOutputs({
|
|||||||
data,
|
data,
|
||||||
}: NodeOutputsProps) {
|
}: NodeOutputsProps) {
|
||||||
const builderContext = useContext(BuilderContext);
|
const builderContext = useContext(BuilderContext);
|
||||||
|
const enableEnhancedOutputHandling = useGetFlag(
|
||||||
|
Flag.ENABLE_ENHANCED_OUTPUT_HANDLING,
|
||||||
|
);
|
||||||
|
|
||||||
const [expandedDialog, setExpandedDialog] = useState<{
|
const [expandedDialog, setExpandedDialog] = useState<{
|
||||||
isOpen: boolean;
|
isOpen: boolean;
|
||||||
@@ -37,6 +46,15 @@ export default function NodeOutputs({
|
|||||||
|
|
||||||
const { getNodeTitle } = builderContext;
|
const { getNodeTitle } = builderContext;
|
||||||
|
|
||||||
|
// Prepare renderers for each item when enhanced mode is enabled
|
||||||
|
const getItemRenderer = useMemo(() => {
|
||||||
|
if (!enableEnhancedOutputHandling) return null;
|
||||||
|
return (item: unknown) => {
|
||||||
|
const metadata: OutputMetadata = {};
|
||||||
|
return globalRegistry.getRenderer(item, metadata);
|
||||||
|
};
|
||||||
|
}, [enableEnhancedOutputHandling]);
|
||||||
|
|
||||||
const getBeautifiedPinName = (pin: string) => {
|
const getBeautifiedPinName = (pin: string) => {
|
||||||
if (!pin.startsWith("tools_^_")) {
|
if (!pin.startsWith("tools_^_")) {
|
||||||
return beautifyString(pin);
|
return beautifyString(pin);
|
||||||
@@ -87,15 +105,31 @@ export default function NodeOutputs({
|
|||||||
<div className="mt-2">
|
<div className="mt-2">
|
||||||
<strong className="mr-2">Data:</strong>
|
<strong className="mr-2">Data:</strong>
|
||||||
<div className="mt-1">
|
<div className="mt-1">
|
||||||
{dataArray.slice(0, 10).map((item, index) => (
|
{dataArray.slice(0, 10).map((item, index) => {
|
||||||
<React.Fragment key={index}>
|
const renderer = getItemRenderer?.(item);
|
||||||
<ContentRenderer
|
if (enableEnhancedOutputHandling && renderer) {
|
||||||
value={item}
|
const metadata: OutputMetadata = {};
|
||||||
truncateLongData={truncateLongData}
|
return (
|
||||||
/>
|
<React.Fragment key={index}>
|
||||||
{index < Math.min(dataArray.length, 10) - 1 && ", "}
|
<OutputItem
|
||||||
</React.Fragment>
|
value={item}
|
||||||
))}
|
metadata={metadata}
|
||||||
|
renderer={renderer}
|
||||||
|
/>
|
||||||
|
{index < Math.min(dataArray.length, 10) - 1 && ", "}
|
||||||
|
</React.Fragment>
|
||||||
|
);
|
||||||
|
}
|
||||||
|
return (
|
||||||
|
<React.Fragment key={index}>
|
||||||
|
<ContentRenderer
|
||||||
|
value={item}
|
||||||
|
truncateLongData={truncateLongData}
|
||||||
|
/>
|
||||||
|
{index < Math.min(dataArray.length, 10) - 1 && ", "}
|
||||||
|
</React.Fragment>
|
||||||
|
);
|
||||||
|
})}
|
||||||
{dataArray.length > 10 && (
|
{dataArray.length > 10 && (
|
||||||
<span style={{ color: "#888" }}>
|
<span style={{ color: "#888" }}>
|
||||||
<br />
|
<br />
|
||||||
|
|||||||
@@ -11,7 +11,6 @@ import { useBreakpoint } from "@/lib/hooks/useBreakpoint";
|
|||||||
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
|
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
|
||||||
import { useQueryClient } from "@tanstack/react-query";
|
import { useQueryClient } from "@tanstack/react-query";
|
||||||
import { usePathname, useSearchParams } from "next/navigation";
|
import { usePathname, useSearchParams } from "next/navigation";
|
||||||
import { useRef } from "react";
|
|
||||||
import { useCopilotStore } from "../../copilot-page-store";
|
import { useCopilotStore } from "../../copilot-page-store";
|
||||||
import { useCopilotSessionId } from "../../useCopilotSessionId";
|
import { useCopilotSessionId } from "../../useCopilotSessionId";
|
||||||
import { useMobileDrawer } from "./components/MobileDrawer/useMobileDrawer";
|
import { useMobileDrawer } from "./components/MobileDrawer/useMobileDrawer";
|
||||||
@@ -70,41 +69,16 @@ export function useCopilotShell() {
|
|||||||
});
|
});
|
||||||
|
|
||||||
const stopStream = useChatStore((s) => s.stopStream);
|
const stopStream = useChatStore((s) => s.stopStream);
|
||||||
const onStreamComplete = useChatStore((s) => s.onStreamComplete);
|
|
||||||
const isStreaming = useCopilotStore((s) => s.isStreaming);
|
|
||||||
const isCreatingSession = useCopilotStore((s) => s.isCreatingSession);
|
const isCreatingSession = useCopilotStore((s) => s.isCreatingSession);
|
||||||
const setIsSwitchingSession = useCopilotStore((s) => s.setIsSwitchingSession);
|
|
||||||
const openInterruptModal = useCopilotStore((s) => s.openInterruptModal);
|
|
||||||
|
|
||||||
const pendingActionRef = useRef<(() => void) | null>(null);
|
function handleSessionClick(sessionId: string) {
|
||||||
|
|
||||||
async function stopCurrentStream() {
|
|
||||||
if (!currentSessionId) return;
|
|
||||||
|
|
||||||
setIsSwitchingSession(true);
|
|
||||||
await new Promise<void>((resolve) => {
|
|
||||||
const unsubscribe = onStreamComplete((completedId) => {
|
|
||||||
if (completedId === currentSessionId) {
|
|
||||||
clearTimeout(timeout);
|
|
||||||
unsubscribe();
|
|
||||||
resolve();
|
|
||||||
}
|
|
||||||
});
|
|
||||||
const timeout = setTimeout(() => {
|
|
||||||
unsubscribe();
|
|
||||||
resolve();
|
|
||||||
}, 3000);
|
|
||||||
stopStream(currentSessionId);
|
|
||||||
});
|
|
||||||
|
|
||||||
queryClient.invalidateQueries({
|
|
||||||
queryKey: getGetV2GetSessionQueryKey(currentSessionId),
|
|
||||||
});
|
|
||||||
setIsSwitchingSession(false);
|
|
||||||
}
|
|
||||||
|
|
||||||
function selectSession(sessionId: string) {
|
|
||||||
if (sessionId === currentSessionId) return;
|
if (sessionId === currentSessionId) return;
|
||||||
|
|
||||||
|
// Stop current stream - SSE reconnection allows resuming later
|
||||||
|
if (currentSessionId) {
|
||||||
|
stopStream(currentSessionId);
|
||||||
|
}
|
||||||
|
|
||||||
if (recentlyCreatedSessionsRef.current.has(sessionId)) {
|
if (recentlyCreatedSessionsRef.current.has(sessionId)) {
|
||||||
queryClient.invalidateQueries({
|
queryClient.invalidateQueries({
|
||||||
queryKey: getGetV2GetSessionQueryKey(sessionId),
|
queryKey: getGetV2GetSessionQueryKey(sessionId),
|
||||||
@@ -114,7 +88,12 @@ export function useCopilotShell() {
|
|||||||
if (isMobile) handleCloseDrawer();
|
if (isMobile) handleCloseDrawer();
|
||||||
}
|
}
|
||||||
|
|
||||||
function startNewChat() {
|
function handleNewChatClick() {
|
||||||
|
// Stop current stream - SSE reconnection allows resuming later
|
||||||
|
if (currentSessionId) {
|
||||||
|
stopStream(currentSessionId);
|
||||||
|
}
|
||||||
|
|
||||||
resetPagination();
|
resetPagination();
|
||||||
queryClient.invalidateQueries({
|
queryClient.invalidateQueries({
|
||||||
queryKey: getGetV2ListSessionsQueryKey(),
|
queryKey: getGetV2ListSessionsQueryKey(),
|
||||||
@@ -123,32 +102,6 @@ export function useCopilotShell() {
|
|||||||
if (isMobile) handleCloseDrawer();
|
if (isMobile) handleCloseDrawer();
|
||||||
}
|
}
|
||||||
|
|
||||||
function handleSessionClick(sessionId: string) {
|
|
||||||
if (sessionId === currentSessionId) return;
|
|
||||||
|
|
||||||
if (isStreaming) {
|
|
||||||
pendingActionRef.current = async () => {
|
|
||||||
await stopCurrentStream();
|
|
||||||
selectSession(sessionId);
|
|
||||||
};
|
|
||||||
openInterruptModal(pendingActionRef.current);
|
|
||||||
} else {
|
|
||||||
selectSession(sessionId);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
function handleNewChatClick() {
|
|
||||||
if (isStreaming) {
|
|
||||||
pendingActionRef.current = async () => {
|
|
||||||
await stopCurrentStream();
|
|
||||||
startNewChat();
|
|
||||||
};
|
|
||||||
openInterruptModal(pendingActionRef.current);
|
|
||||||
} else {
|
|
||||||
startNewChat();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return {
|
return {
|
||||||
isMobile,
|
isMobile,
|
||||||
isDrawerOpen,
|
isDrawerOpen,
|
||||||
|
|||||||
@@ -26,8 +26,20 @@ export function buildCopilotChatUrl(prompt: string): string {
|
|||||||
|
|
||||||
export function getQuickActions(): string[] {
|
export function getQuickActions(): string[] {
|
||||||
return [
|
return [
|
||||||
"Show me what I can automate",
|
"I don't know where to start, just ask me stuff",
|
||||||
"Design a custom workflow",
|
"I do the same thing every week and it's killing me",
|
||||||
"Help me with content creation",
|
"Help me find where I'm wasting my time",
|
||||||
];
|
];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
export function getInputPlaceholder(width?: number) {
|
||||||
|
if (!width) return "What's your role and what eats up most of your day?";
|
||||||
|
|
||||||
|
if (width < 500) {
|
||||||
|
return "I'm a chef and I hate...";
|
||||||
|
}
|
||||||
|
if (width <= 1080) {
|
||||||
|
return "What's your role and what eats up most of your day?";
|
||||||
|
}
|
||||||
|
return "What's your role and what eats up most of your day? e.g. 'I'm a recruiter and I hate...'";
|
||||||
|
}
|
||||||
|
|||||||
@@ -1,6 +1,13 @@
|
|||||||
import type { ReactNode } from "react";
|
"use client";
|
||||||
|
import { FeatureFlagPage } from "@/services/feature-flags/FeatureFlagPage";
|
||||||
|
import { Flag } from "@/services/feature-flags/use-get-flag";
|
||||||
|
import { type ReactNode } from "react";
|
||||||
import { CopilotShell } from "./components/CopilotShell/CopilotShell";
|
import { CopilotShell } from "./components/CopilotShell/CopilotShell";
|
||||||
|
|
||||||
export default function CopilotLayout({ children }: { children: ReactNode }) {
|
export default function CopilotLayout({ children }: { children: ReactNode }) {
|
||||||
return <CopilotShell>{children}</CopilotShell>;
|
return (
|
||||||
|
<FeatureFlagPage flag={Flag.CHAT} whenDisabled="/library">
|
||||||
|
<CopilotShell>{children}</CopilotShell>
|
||||||
|
</FeatureFlagPage>
|
||||||
|
);
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -6,7 +6,9 @@ import { Text } from "@/components/atoms/Text/Text";
|
|||||||
import { Chat } from "@/components/contextual/Chat/Chat";
|
import { Chat } from "@/components/contextual/Chat/Chat";
|
||||||
import { ChatInput } from "@/components/contextual/Chat/components/ChatInput/ChatInput";
|
import { ChatInput } from "@/components/contextual/Chat/components/ChatInput/ChatInput";
|
||||||
import { Dialog } from "@/components/molecules/Dialog/Dialog";
|
import { Dialog } from "@/components/molecules/Dialog/Dialog";
|
||||||
|
import { useEffect, useState } from "react";
|
||||||
import { useCopilotStore } from "./copilot-page-store";
|
import { useCopilotStore } from "./copilot-page-store";
|
||||||
|
import { getInputPlaceholder } from "./helpers";
|
||||||
import { useCopilotPage } from "./useCopilotPage";
|
import { useCopilotPage } from "./useCopilotPage";
|
||||||
|
|
||||||
export default function CopilotPage() {
|
export default function CopilotPage() {
|
||||||
@@ -14,14 +16,25 @@ export default function CopilotPage() {
|
|||||||
const isInterruptModalOpen = useCopilotStore((s) => s.isInterruptModalOpen);
|
const isInterruptModalOpen = useCopilotStore((s) => s.isInterruptModalOpen);
|
||||||
const confirmInterrupt = useCopilotStore((s) => s.confirmInterrupt);
|
const confirmInterrupt = useCopilotStore((s) => s.confirmInterrupt);
|
||||||
const cancelInterrupt = useCopilotStore((s) => s.cancelInterrupt);
|
const cancelInterrupt = useCopilotStore((s) => s.cancelInterrupt);
|
||||||
const {
|
|
||||||
greetingName,
|
const [inputPlaceholder, setInputPlaceholder] = useState(
|
||||||
quickActions,
|
getInputPlaceholder(),
|
||||||
isLoading,
|
);
|
||||||
hasSession,
|
|
||||||
initialPrompt,
|
useEffect(() => {
|
||||||
isReady,
|
const handleResize = () => {
|
||||||
} = state;
|
setInputPlaceholder(getInputPlaceholder(window.innerWidth));
|
||||||
|
};
|
||||||
|
|
||||||
|
handleResize();
|
||||||
|
|
||||||
|
window.addEventListener("resize", handleResize);
|
||||||
|
return () => window.removeEventListener("resize", handleResize);
|
||||||
|
}, []);
|
||||||
|
|
||||||
|
const { greetingName, quickActions, isLoading, hasSession, initialPrompt } =
|
||||||
|
state;
|
||||||
|
|
||||||
const {
|
const {
|
||||||
handleQuickAction,
|
handleQuickAction,
|
||||||
startChatWithPrompt,
|
startChatWithPrompt,
|
||||||
@@ -29,8 +42,6 @@ export default function CopilotPage() {
|
|||||||
handleStreamingChange,
|
handleStreamingChange,
|
||||||
} = handlers;
|
} = handlers;
|
||||||
|
|
||||||
if (!isReady) return null;
|
|
||||||
|
|
||||||
if (hasSession) {
|
if (hasSession) {
|
||||||
return (
|
return (
|
||||||
<div className="flex h-full flex-col">
|
<div className="flex h-full flex-col">
|
||||||
@@ -81,7 +92,7 @@ export default function CopilotPage() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
return (
|
return (
|
||||||
<div className="flex h-full flex-1 items-center justify-center overflow-y-auto bg-[#f8f8f9] px-6 py-10">
|
<div className="flex h-full flex-1 items-center justify-center overflow-y-auto bg-[#f8f8f9] px-3 py-5 md:px-6 md:py-10">
|
||||||
<div className="w-full text-center">
|
<div className="w-full text-center">
|
||||||
{isLoading ? (
|
{isLoading ? (
|
||||||
<div className="mx-auto max-w-2xl">
|
<div className="mx-auto max-w-2xl">
|
||||||
@@ -98,25 +109,25 @@ export default function CopilotPage() {
|
|||||||
</div>
|
</div>
|
||||||
) : (
|
) : (
|
||||||
<>
|
<>
|
||||||
<div className="mx-auto max-w-2xl">
|
<div className="mx-auto max-w-3xl">
|
||||||
<Text
|
<Text
|
||||||
variant="h3"
|
variant="h3"
|
||||||
className="mb-3 !text-[1.375rem] text-zinc-700"
|
className="mb-1 !text-[1.375rem] text-zinc-700"
|
||||||
>
|
>
|
||||||
Hey, <span className="text-violet-600">{greetingName}</span>
|
Hey, <span className="text-violet-600">{greetingName}</span>
|
||||||
</Text>
|
</Text>
|
||||||
<Text variant="h3" className="mb-8 !font-normal">
|
<Text variant="h3" className="mb-8 !font-normal">
|
||||||
What do you want to automate?
|
Tell me about your work — I'll find what to automate.
|
||||||
</Text>
|
</Text>
|
||||||
|
|
||||||
<div className="mb-6">
|
<div className="mb-6">
|
||||||
<ChatInput
|
<ChatInput
|
||||||
onSend={startChatWithPrompt}
|
onSend={startChatWithPrompt}
|
||||||
placeholder='You can search or just ask - e.g. "create a blog post outline"'
|
placeholder={inputPlaceholder}
|
||||||
/>
|
/>
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
<div className="flex flex-nowrap items-center justify-center gap-3 overflow-x-auto [-ms-overflow-style:none] [scrollbar-width:none] [&::-webkit-scrollbar]:hidden">
|
<div className="flex flex-wrap items-center justify-center gap-3 overflow-x-auto [-ms-overflow-style:none] [scrollbar-width:none] [&::-webkit-scrollbar]:hidden">
|
||||||
{quickActions.map((action) => (
|
{quickActions.map((action) => (
|
||||||
<Button
|
<Button
|
||||||
key={action}
|
key={action}
|
||||||
@@ -124,7 +135,7 @@ export default function CopilotPage() {
|
|||||||
variant="outline"
|
variant="outline"
|
||||||
size="small"
|
size="small"
|
||||||
onClick={() => handleQuickAction(action)}
|
onClick={() => handleQuickAction(action)}
|
||||||
className="h-auto shrink-0 border-zinc-600 !px-4 !py-2 text-[1rem] text-zinc-600"
|
className="h-auto shrink-0 border-zinc-300 px-3 py-2 text-[.9rem] text-zinc-600"
|
||||||
>
|
>
|
||||||
{action}
|
{action}
|
||||||
</Button>
|
</Button>
|
||||||
|
|||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user