Compare commits

...

1 Commits

Author SHA1 Message Date
Otto
d0defccdd2 fix(backend): Add diagnostic logging for vector type errors
When 'type vector does not exist' occurs in hybrid search, log search_path,
current_schema, and user info to help diagnose why the pgvector extension
isn't visible.

This is a debug-only change to help track down an intermittent issue
on dev-behave where the vector type occasionally fails to resolve.
2026-02-09 16:06:29 +00:00

View File

@@ -8,6 +8,7 @@ Includes BM25 reranking for improved lexical relevance.
import logging import logging
import re import re
import time
from dataclasses import dataclass from dataclasses import dataclass
from typing import Any, Literal from typing import Any, Literal
@@ -362,7 +363,11 @@ async def unified_hybrid_search(
LIMIT {limit_param} OFFSET {offset_param} LIMIT {limit_param} OFFSET {offset_param}
""" """
results = await query_raw_with_schema(sql_query, *params) try:
results = await query_raw_with_schema(sql_query, *params)
except Exception as e:
await _log_vector_error_diagnostics(e)
raise
total = results[0]["total_count"] if results else 0 total = results[0]["total_count"] if results else 0
# Apply BM25 reranking # Apply BM25 reranking
@@ -686,7 +691,11 @@ async def hybrid_search(
LIMIT {limit_param} OFFSET {offset_param} LIMIT {limit_param} OFFSET {offset_param}
""" """
results = await query_raw_with_schema(sql_query, *params) try:
results = await query_raw_with_schema(sql_query, *params)
except Exception as e:
await _log_vector_error_diagnostics(e)
raise
total = results[0]["total_count"] if results else 0 total = results[0]["total_count"] if results else 0
@@ -718,6 +727,87 @@ async def hybrid_search_simple(
return await hybrid_search(query=query, page=page, page_size=page_size) return await hybrid_search(query=query, page=page, page_size=page_size)
# ============================================================================
# Diagnostics
# ============================================================================
# Rate limit: only log vector error diagnostics once per this interval
_VECTOR_DIAG_INTERVAL_SECONDS = 60
_last_vector_diag_time: float = 0
async def _log_vector_error_diagnostics(error: Exception) -> None:
"""Log diagnostic info when 'type vector does not exist' error occurs.
Note: Diagnostic queries use query_raw_with_schema which may run on a different
pooled connection than the one that failed. Session-level search_path can differ,
so these diagnostics show cluster-wide state, not necessarily the failed session.
Includes rate limiting to avoid log spam - only logs once per minute.
Caller should re-raise the error after calling this function.
"""
global _last_vector_diag_time
# Check if this is the vector type error
error_str = str(error).lower()
if not (
"type" in error_str and "vector" in error_str and "does not exist" in error_str
):
return
# Rate limit: only log once per interval
now = time.time()
if now - _last_vector_diag_time < _VECTOR_DIAG_INTERVAL_SECONDS:
return
_last_vector_diag_time = now
try:
diagnostics: dict[str, object] = {}
try:
search_path_result = await query_raw_with_schema("SHOW search_path")
diagnostics["search_path"] = search_path_result
except Exception as e:
diagnostics["search_path"] = f"Error: {e}"
try:
schema_result = await query_raw_with_schema("SELECT current_schema()")
diagnostics["current_schema"] = schema_result
except Exception as e:
diagnostics["current_schema"] = f"Error: {e}"
try:
user_result = await query_raw_with_schema(
"SELECT current_user, session_user, current_database()"
)
diagnostics["user_info"] = user_result
except Exception as e:
diagnostics["user_info"] = f"Error: {e}"
try:
# Check pgvector extension installation (cluster-wide, stable info)
ext_result = await query_raw_with_schema(
"SELECT extname, extversion, nspname as schema "
"FROM pg_extension e "
"JOIN pg_namespace n ON e.extnamespace = n.oid "
"WHERE extname = 'vector'"
)
diagnostics["pgvector_extension"] = ext_result
except Exception as e:
diagnostics["pgvector_extension"] = f"Error: {e}"
logger.error(
f"Vector type error diagnostics:\n"
f" Error: {error}\n"
f" search_path: {diagnostics.get('search_path')}\n"
f" current_schema: {diagnostics.get('current_schema')}\n"
f" user_info: {diagnostics.get('user_info')}\n"
f" pgvector_extension: {diagnostics.get('pgvector_extension')}"
)
except Exception as diag_error:
logger.error(f"Failed to collect vector error diagnostics: {diag_error}")
# Backward compatibility alias - HybridSearchWeights maps to StoreAgentSearchWeights # Backward compatibility alias - HybridSearchWeights maps to StoreAgentSearchWeights
# for existing code that expects the popularity parameter # for existing code that expects the popularity parameter
HybridSearchWeights = StoreAgentSearchWeights HybridSearchWeights = StoreAgentSearchWeights