Compare commits

...

32 Commits

Author SHA1 Message Date
Zamil Majdy
1ad8fde75d fix: address PR review comments for agent generator
- Re-raise DatabaseError in get_library_agent_by_id to not swallow DB failures
- Add error details sanitization to strip sensitive info (paths, URLs, etc.)
- Clean up redundant inline comments in edit_agent.py
2026-01-30 07:59:11 -06:00
Zamil Majdy
aef705007b refactor: remove aggressive ERROR status filter from library agent search
The ERROR status filter was too aggressive - a single failed execution
would exclude an agent from sub-agent composition, even if it had many
successful runs. Removed the filter for now.

Future enhancement: Add quality filtering based on execution success rate
or correctness_score (stored in AgentGraphExecution stats) rather than
the binary ERROR status.
2026-01-30 07:45:00 -06:00
Zamil Majdy
be7e1ad9b6 feat: add quality filtering to exclude ERROR status library agents
Filter out library agents with ERROR status when searching for
sub-agent composition candidates. This prevents recommending broken
or draft agents that have failed executions.
2026-01-30 07:40:17 -06:00
Zamil Majdy
ce050abff9 feat: add include_library parameter to get_all_relevant_agents_for_generation
Add configurable include_library parameter (default True) to allow
controlling whether user's library agents are included in the search
results for sub-agent composition.
2026-01-30 07:36:39 -06:00
Zamil Majdy
79eb2889ab style: fix formatting in agent_generator/service.py 2026-01-30 07:29:32 -06:00
Zamil Majdy
5bc5e02dcb Merge branch 'dev' into feat/sub-agent-support 2026-01-30 07:24:08 -06:00
Zamil Majdy
f83366d08d fix: address PR review comments - remove inline comments, add stripInternalReasoning
- Remove remaining inline comments per style guidelines
- Add stripInternalReasoning to error case in formatToolResponse
2026-01-30 07:23:08 -06:00
Reinier van der Leer
350ad3591b fix(backend/chat): Filter credentials for graph execution by scopes (#11881)
[SECRT-1842: run_agent tool does not correctly use credentials - agents
fail with insufficient auth
scopes](https://linear.app/autogpt/issue/SECRT-1842)

### Changes 🏗️

- Include scopes in credentials filter in
`backend.api.features.chat.tools.utils.match_user_credentials_to_graph`

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - CI must pass
- It's broken now and a simple change so we'll test in the dev
deployment
2026-01-30 11:01:51 +00:00
Bently
de0ec3d388 chore(llm): remove deprecated Claude 3.7 Sonnet model with migration and defensive handling (#11841)
## Summary
Remove `claude-3-7-sonnet-20250219` from LLM model definitions ahead of
Anthropic's API retirement, with comprehensive migration and defensive
error handling.

## Background
Anthropic is retiring Claude 3.7 Sonnet (`claude-3-7-sonnet-20250219`)
on **February 19, 2026 at 9:00 AM PT**. This PR removes the model from
the platform and migrates existing users to prevent service
interruptions.

## Changes

### Code Changes
- Remove `CLAUDE_3_7_SONNET` enum member from `LlmModel` in `llm.py`
- Remove corresponding `ModelMetadata` entry
- Remove `CLAUDE_3_7_SONNET` from `StagehandRecommendedLlmModel` enum
- Remove `CLAUDE_3_7_SONNET` from block cost config
- Add `CLAUDE_4_5_SONNET` to `StagehandRecommendedLlmModel` enum
- Update Stagehand block defaults from `CLAUDE_3_7_SONNET` to
`CLAUDE_4_5_SONNET` (staying in Claude family)
- Add defensive error handling in `CredentialsFieldInfo.discriminate()`
for deprecated model values

### Database Migration
- Adds migration `20260126120000_migrate_claude_3_7_to_4_5_sonnet`
- Migrates `AgentNode.constantInput` model references
- Migrates `AgentNodeExecutionInputOutput.data` preset overrides

### Documentation
- Updated `docs/integrations/block-integrations/llm.md` to remove
deprecated model
- Updated `docs/integrations/block-integrations/stagehand/blocks.md` to
remove deprecated model and add Claude 4.5 Sonnet

## Notes
- Agent JSON files in `autogpt_platform/backend/agents/` still reference
this model in their provider mappings. These are auto-generated and
should be regenerated separately.

## Testing
- [ ] Verify LLM block still functions with remaining models
- [ ] Confirm no import errors in affected files
- [ ] Verify migration runs successfully
- [ ] Verify deprecated model gives helpful error message instead of
KeyError
2026-01-30 08:40:55 +00:00
Otto
7cb1e588b0 fix(frontend): Refocus ChatInput after voice transcription completes (#11893)
## Summary
Refocuses the chat input textarea after voice transcription finishes,
allowing users to immediately use `spacebar+enter` to record and send
their prompt.

## Changes
- Added `inputId` parameter to `useVoiceRecording` hook
- After transcription completes, the input is automatically focused
- This improves the voice input UX flow

## Testing
1. Click mic button or press spacebar to record voice
2. Record a message and stop
3. After transcription completes, the input should be focused
4. User can now press Enter to send or spacebar to record again

---------

Co-authored-by: Lluis Agusti <hi@llu.lu>
2026-01-30 14:49:05 +07:00
Zamil Majdy
16ae8ddbe0 fix: correct library agent link path from /library to /library/agents
The "View in Library" link was returning 404 because the path was
missing the /agents/ segment. Fixed in both create_agent.py and
edit_agent.py to match the correct route used elsewhere.
2026-01-29 23:44:54 -06:00
Zamil Majdy
4b04ae2147 fix: address PR review comments
- Add null checks for .lower() on agent names that could be None
- Add isinstance guard for non-string step values in extract_search_terms
- Re-raise DatabaseError instead of swallowing it in agent_search
- Remove inline comments per style guidelines
2026-01-29 23:37:11 -06:00
Zamil Majdy
de71d6134a fix: display user-friendly error message instead of error code
Swap priority to check message field before error field so users see
helpful error messages instead of technical codes
2026-01-29 23:31:29 -06:00
Zamil Majdy
e6eb8a3f57 fix: improve error messages and LLM continuation for agent generation
- Add LLM continuation call when background tool execution fails with
  exception (previously users saw no explanation for errors)
- Improve validation error messages with more helpful guidance
- Add error_details parameter to include technical context in error
  responses when needed
- Update create_agent to pass error details for validation failures
2026-01-29 23:15:53 -06:00
Otto
582c6cad36 fix(e2e): Make E2E test data deterministic and fix flaky tests (#11890)
## Summary
Fixes flaky E2E marketplace and library tests that were causing PRs to
be removed from the merge queue.

## Root Cause
1. **Test data was probabilistic** - `e2e_test_data.py` used random
chances (40% approve, then 20-50% feature), which could result in 0
featured agents
2. **Library pagination threshold wrong** - Checked `>= 10`, but page
size is 20
3. **Fixed timeouts** - Used `waitForTimeout(2000)` /
`waitForTimeout(10000)` instead of proper waits

## Changes

### Backend (`e2e_test_data.py`)
- Add guaranteed minimums: 8 featured agents, 5 featured creators, 10
top agents
- First N submissions are deterministically approved and featured
- Increase agents per user from 15 → 25 (for pagination with
page_size=20)
- Fix library agent creation to use constants instead of hardcoded `10`

### Frontend Tests
- `library.spec.ts`: Fix pagination threshold to `PAGE_SIZE` (20)
- `library.page.ts`: Replace 2s timeout with `networkidle` +
`waitForFunction`
- `marketplace.page.ts`: Add `networkidle` wait, 30s waits in
`getFirst*` methods
- `marketplace.spec.ts`: Replace 10s timeout with `waitForFunction`
- `marketplace-creator.spec.ts`: Add `networkidle` + element waits

## Related
- Closes SECRT-1848, SECRT-1849
- Should unblock #11841 and other PRs in merge queue

---------

Co-authored-by: Ubbe <hi@ubbe.dev>
2026-01-30 05:12:35 +00:00
Zamil Majdy
0d1d275e8d fix: improve library search to match any word instead of exact phrase
Previously, searching for "flight price drop alert" required that exact
phrase to be in the agent name/description. Now it splits into individual
words and matches agents containing ANY of: flight, price, drop, alert.

This fixes the issue where "flight price tracker" wasn't found when
searching for "flight price drop alert" even though they share keywords.
2026-01-29 22:28:49 -06:00
Zamil Majdy
dc92a7b520 chore: add debug logging for find_library_agent tool
Added logging to help diagnose library search issues:
- Log the query and user_id when tool is called
- Log the number of results returned from database
2026-01-29 22:15:19 -06:00
Zamil Majdy
d4047b5439 fix: support UUID lookup in find_library_agent tool
When users paste a library URL or agent UUID, the find_library_agent
tool now does direct ID lookup first (both by graph_id and library
agent ID) before falling back to text search.

This fixes the issue where searching by UUID would fail because
it was only doing text matching on agent names/descriptions.
2026-01-29 22:07:42 -06:00
Zamil Majdy
f00678fd1c fix: support lookup by library agent ID in addition to graph_id
When users paste library URLs (e.g., /library/agents/{id}), the ID is
the LibraryAgent primary key, not the graph_id. The previous code only
looked up by graph_id, causing "agent not found" errors.

Now get_library_agent_by_id() tries both lookup strategies:
1. First by graph_id (AgentGraph primary key)
2. Then by library agent ID (LibraryAgent primary key)

This fixes the issue where users couldn't reference agents by pasting
their library URLs in chat.
2026-01-29 22:02:46 -06:00
Zamil Majdy
aa175e0f4e feat: extract UUIDs from user input to fetch explicitly mentioned agents
When users mention agents by UUID in their goal description, we now:
1. Extract UUID v4 patterns from the search_query text
2. Fetch those agents directly by graph_id
3. Include them in the library_agents list for the LLM

This ensures explicitly referenced agents are always available to the
Agent Generator, even if text search wouldn't find them.

Added:
- extract_uuids_from_text(): extracts UUID v4 patterns from text
- get_library_agent_by_graph_id(): fetches a single agent by graph_id
- Integration in get_all_relevant_agents_for_generation()
2026-01-29 21:26:08 -06:00
Zamil Majdy
9a8838c69a refactor: move internal imports to top-level in core.py
- Move store_db, get_graph, get_graph_all_versions imports to top-level
- Catch specific NotFoundError instead of generic Exception
- Cleaner code organization following standard Python conventions
2026-01-29 21:18:47 -06:00
Zamil Majdy
41beae1122 fix: resolve library agent IDs to graph IDs in get_agent_as_json
get_agent_as_json claimed to accept both graph IDs and library agent IDs
but only tried direct graph lookup. When a library agent ID was passed,
the function would return None (agent_not_found error).

Now the function:
1. First tries direct graph lookup with the provided ID
2. If not found, resolves the ID as a library agent ID to get the graph_id
3. Then fetches the graph using the resolved graph_id
2026-01-29 21:16:20 -06:00
Zamil Majdy
e810f7b0d7 Merge branch 'dev' into feat/sub-agent-support 2026-01-29 19:13:37 -06:00
Zamil Majdy
9c3822fffe chore: remove obvious comments and alphabetize __all__ 2026-01-29 19:03:25 -06:00
Zamil Majdy
c039a2e3ad feat: add two-phase library search for better sub-agent discovery
- Add TypedDict types for agent summaries (LibraryAgentSummary, MarketplaceAgentSummary, DecompositionResult)
- Add extract_search_terms_from_steps() to extract keywords from decomposed instructions
- Add enrich_library_agents_from_steps() for two-phase search after decomposition
- Integrate enrichment into create_agent.py flow
- Add comprehensive tests for new functionality
2026-01-29 18:51:07 -06:00
Nicholas Tindle
3b822cdaf7 chore(branchlet): Remove docs pip install from postCreateCmd (#11883)
### Changes 🏗️

- Removed `cd docs && pip install -r requirements.txt` from
`postCreateCmd` in `.branchlet.json`
- Docs dependencies will no longer be auto-installed during branchlet
worktree creation

### Rationale

The docs setup step was adding unnecessary overhead to the worktree
creation process. Developers who need to work on documentation can
manually install the docs requirements when needed.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified branchlet worktree creation still works without the docs
pip install step

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)
2026-01-30 00:31:34 +00:00
Zamil Majdy
a3fe1ede55 fix: address PR review comments
- Add try/except error handling to get_library_agents_for_generation
  for graceful degradation (consistent with marketplace search)
- Add null checks when deduplicating agents by name to prevent
  AttributeError if agent name is None
- Use actual graph ID from current_agent in edit_agent.py to properly
  exclude the agent being edited (agent_id might be a library agent ID)
2026-01-29 18:22:12 -06:00
Zamil Majdy
552d069a9d feat: add search-based library agent fetching for sub-agent support
- Add get_library_agents_for_generation() with search_term support
- Add search_marketplace_agents_for_generation() for marketplace search
- Add get_all_relevant_agents_for_generation() combining both sources
- Update service.py to pass library_agents in all requests
- Update create_agent.py to fetch and pass relevant library agents
- Update edit_agent.py to fetch and pass relevant library agents
- Add tests for library agent fetching and passthrough
2026-01-29 17:10:42 -06:00
Zamil Majdy
b2eb4831bd feat(chat): improve agent generator error propagation (#11884)
## Summary
- Add helper functions in `service.py` to create standardized error
responses with `error_type` classification
- Update service functions to return error dicts instead of `None`,
preserving error details from the Agent Generator microservice
- Update `core.py` to pass through error responses properly
- Update `create_agent.py` to handle error responses with user-friendly
messages based on error type

## Error Types Now Propagated
| Error Type | Description | User Message |
|------------|-------------|--------------|
| `llm_parse_error` | LLM returned unparseable response | "The AI had
trouble understanding this request" |
| `llm_timeout` / `timeout` | Request timed out | "The request took too
long" |
| `llm_rate_limit` / `rate_limit` | Rate limited | "The service is
currently busy" |
| `validation_error` | Agent validation failed | "The generated agent
failed validation" |
| `connection_error` | Could not connect to Agent Generator | Generic
error message |
| `http_error` | HTTP error from Agent Generator | Generic error message
|
| `unknown` | Unclassified error | Generic error message |

## Motivation
This enables better debugging for issues like SECRT-1817 where
decomposition failed due to transient LLM errors but the root cause was
unclear in the logs. Now:
1. Error details from the Agent Generator microservice are preserved
2. Users get more helpful error messages based on error type
3. Debugging is easier with `error_type` in response details

## Related PR
- Agent Generator side:
https://github.com/Significant-Gravitas/AutoGPT-Agent-Generator/pull/102

## Test Plan
- [ ] Test decomposition with various error scenarios (timeout, parse
error)
- [ ] Verify user-friendly messages are shown based on error type
- [ ] Check that error details are logged properly
2026-01-29 19:53:40 +00:00
Reinier van der Leer
4cd5da678d refactor(claude): Split autogpt_platform/CLAUDE.md into project-specific files (#11788)
Split `autogpt_platform/CLAUDE.md` into project-specific files, to make
the scope of the instructions clearer.

Also, some minor improvements:

- Change references to other Markdown files to @file/path.md syntax that
Claude recognizes
- Update ambiguous/incorrect/outdated instructions
- Remove trailing slashes
- Fix broken file path references in other docs (including comments)
2026-01-29 17:33:02 +00:00
Ubbe
b94c83aacc feat(frontend): Copilot speech to text via Whisper model (#11871)
## Changes 🏗️


https://github.com/user-attachments/assets/d9c12ac0-625c-4b38-8834-e494b5eda9c0

Add a "speech to text" feature in the Chat input fox of Copilot, similar
as what you have in ChatGPT.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Run locally and try the speech to text feature as part of the chat
input box

### For configuration changes:

We need to add `OPENAI_API_KEY=` to Vercel ( used in the Front-end )
both in Dev and Prod.

- [x] `.env.default` is updated or already compatible with my changes

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-29 17:46:36 +07:00
Nicholas Tindle
7668c17d9c feat(platform): add User Workspace for persistent CoPilot file storage (#11867)
Implements persistent User Workspace storage for CoPilot, enabling
blocks to save and retrieve files across sessions. Files are stored in
session-scoped virtual paths (`/sessions/{session_id}/`).

Fixes SECRT-1833

### Changes 🏗️

**Database & Storage:**
- Add `UserWorkspace` and `UserWorkspaceFile` Prisma models
- Implement `WorkspaceStorageBackend` abstraction (GCS for cloud, local
filesystem for self-hosted)
- Add `workspace_id` and `session_id` fields to `ExecutionContext`

**Backend API:**
- Add REST endpoints: `GET/POST /api/workspace/files`, `GET/DELETE
/api/workspace/files/{id}`, `GET /api/workspace/files/{id}/download`
- Add CoPilot tools: `list_workspace_files`, `read_workspace_file`,
`write_workspace_file`
- Integrate workspace storage into `store_media_file()` - returns
`workspace://file-id` references

**Block Updates:**
- Refactor all file-handling blocks to use unified `ExecutionContext`
parameter
- Update media-generating blocks to persist outputs to workspace
(AIImageGenerator, AIImageCustomizer, FluxKontext, TalkingHead, FAL
video, Bannerbear, etc.)

**Frontend:**
- Render `workspace://` image references in chat via proxy endpoint
- Add "AI cannot see this image" overlay indicator

**CoPilot Context Mapping:**
- Session = Agent (graph_id) = Run (graph_exec_id)
- Files scoped to `/sessions/{session_id}/`

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [ ] I have tested my changes according to the test plan:
- [ ] Create CoPilot session, generate image with AIImageGeneratorBlock
  - [ ] Verify image returns `workspace://file-id` (not base64)
  - [ ] Verify image renders in chat with visibility indicator
  - [ ] Verify workspace files persist across sessions
  - [ ] Test list/read/write workspace files via CoPilot tools
  - [ ] Test local storage backend for self-hosted deployments

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

🤖 Generated with [Claude Code](https://claude.ai/code)

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> **Medium Risk**
> Introduces a new persistent file-storage surface area (DB tables,
storage backends, download API, and chat tools) and rewires
`store_media_file()`/block execution context across many blocks, so
regressions could impact file handling, access control, or storage
costs.
> 
> **Overview**
> Adds a **persistent per-user Workspace** (new
`UserWorkspace`/`UserWorkspaceFile` models plus `WorkspaceManager` +
`WorkspaceStorageBackend` with GCS/local implementations) and wires it
into the API via a new `/api/workspace/files/{file_id}/download` route
(including header-sanitized `Content-Disposition`) and shutdown
lifecycle hooks.
> 
> Extends `ExecutionContext` to carry execution identity +
`workspace_id`/`session_id`, updates executor tooling to clone
node-specific contexts, and updates `run_block` (CoPilot) to create a
session-scoped workspace and synthetic graph/run/node IDs.
> 
> Refactors `store_media_file()` to require `execution_context` +
`return_format` and to support `workspace://` references; migrates many
media/file-handling blocks and related tests to the new API and to
persist generated media as `workspace://...` (or fall back to data URIs
outside CoPilot), and adds CoPilot chat tools for
listing/reading/writing/deleting workspace files with safeguards against
context bloat.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
6abc70f793. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2026-01-29 05:49:47 +00:00
98 changed files with 6413 additions and 862 deletions

View File

@@ -29,8 +29,7 @@
"postCreateCmd": [ "postCreateCmd": [
"cd autogpt_platform/autogpt_libs && poetry install", "cd autogpt_platform/autogpt_libs && poetry install",
"cd autogpt_platform/backend && poetry install && poetry run prisma generate", "cd autogpt_platform/backend && poetry install && poetry run prisma generate",
"cd autogpt_platform/frontend && pnpm install", "cd autogpt_platform/frontend && pnpm install"
"cd docs && pip install -r requirements.txt"
], ],
"terminalCommand": "code .", "terminalCommand": "code .",
"deleteBranchWithWorktree": false "deleteBranchWithWorktree": false

View File

@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
**Backend Entry Points:** **Backend Entry Points:**
- `backend/backend/server/server.py` - FastAPI application setup - `backend/backend/api/rest_api.py` - FastAPI application setup
- `backend/backend/data/` - Database models and user management - `backend/backend/data/` - Database models and user management
- `backend/blocks/` - Agent execution blocks and logic - `backend/blocks/` - Agent execution blocks and logic
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
### API Development ### API Development
1. Update routes in `/backend/backend/server/routers/` 1. Update routes in `/backend/backend/api/features/`
2. Add/update Pydantic models in same directory 2. Add/update Pydantic models in same directory
3. Write tests alongside route files 3. Write tests alongside route files
4. For `data/*.py` changes, validate user ID checks 4. For `data/*.py` changes, validate user ID checks
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
### Security Guidelines ### Security Guidelines
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`): **Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private` - Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses allow list approach for cacheable paths (static assets, health checks, public pages) - Uses allow list approach for cacheable paths (static assets, health checks, public pages)

1
.gitignore vendored
View File

@@ -178,4 +178,5 @@ autogpt_platform/backend/settings.py
*.ign.* *.ign.*
.test-contents .test-contents
.claude/settings.local.json .claude/settings.local.json
CLAUDE.local.md
/autogpt_platform/backend/logs /autogpt_platform/backend/logs

View File

@@ -16,7 +16,6 @@ See `docs/content/platform/getting-started.md` for setup instructions.
- Format Python code with `poetry run format`. - Format Python code with `poetry run format`.
- Format frontend code using `pnpm format`. - Format frontend code using `pnpm format`.
## Frontend guidelines: ## Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference: See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
@@ -33,14 +32,17 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only 4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E 5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers 6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component - Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts) - Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible - Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible - Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks - Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports - No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex - Avoid comments at all times unless the code is very complex
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any`, if not types available use `unknown`
## Testing ## Testing
@@ -49,22 +51,8 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
Always run the relevant linters and tests before committing. Always run the relevant linters and tests before committing.
Use conventional commit messages for all commits (e.g. `feat(backend): add API`). Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
Types: Types: - feat - fix - refactor - ci - dx (developer experience)
- feat Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
- fix
- refactor
- ci
- dx (developer experience)
Scopes:
- platform
- platform/library
- platform/marketplace
- backend
- backend/executor
- frontend
- frontend/library
- frontend/marketplace
- blocks
## Pull requests ## Pull requests

View File

@@ -6,152 +6,30 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
AutoGPT Platform is a monorepo containing: AutoGPT Platform is a monorepo containing:
- **Backend** (`/backend`): Python FastAPI server with async support - **Backend** (`backend`): Python FastAPI server with async support
- **Frontend** (`/frontend`): Next.js React application - **Frontend** (`frontend`): Next.js React application
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities - **Shared Libraries** (`autogpt_libs`): Common Python utilities
## Essential Commands ## Component Documentation
### Backend Development - **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
```bash ## Key Concepts
# Install dependencies
cd backend && poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend server
poetry run serve
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in TESTING.md
#### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
### Frontend Development
```bash
# Install dependencies
cd frontend && pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
# Run E2E tests
pnpm test
# Run Storybook for component development
pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
**Key Frontend Conventions:**
- Separate render logic from data/behavior in components
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Use function declarations (not arrow functions) for components/handlers
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Only use Phosphor Icons
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
## Architecture Overview
### Backend Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
### Frontend Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
### Key Concepts
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend 1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks 2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
3. **Integrations**: OAuth and API connections stored per user 3. **Integrations**: OAuth and API connections stored per user
4. **Store**: Marketplace for sharing agent templates 4. **Store**: Marketplace for sharing agent templates
5. **Virus Scanning**: ClamAV integration for file upload security 5. **Virus Scanning**: ClamAV integration for file upload security
### Testing Approach
- Backend uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
- Frontend uses Playwright for E2E tests
- Component testing via Storybook
### Database Schema
Key models (defined in `/backend/schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
### Environment Configuration ### Environment Configuration
#### Configuration Files #### Configuration Files
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides) - **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides) - **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides) - **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
#### Docker Environment Loading Order #### Docker Environment Loading Order
@@ -167,83 +45,12 @@ Key models (defined in `/backend/schema.prisma`):
- Backend/Frontend services use YAML anchors for consistent configuration - Backend/Frontend services use YAML anchors for consistent configuration
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern - Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
### Common Development Tasks
**Adding a new block:**
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `/backend/backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
**Modifying the API:**
1. Update route in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
### Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Add `usePageName.ts` hook for logic
- Put sub-components in local `components/` folder
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex
### Security Implementation
**Cache Protection Middleware:**
- Located in `/backend/backend/server/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications
### Creating Pull Requests ### Creating Pull Requests
- Create the PR aginst the `dev` branch of the repository. - Create the PR against the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/ - Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
- Use conventional commit messages (see below)/ - Use conventional commit messages (see below)
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/ - Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
- Run the github pre-commit hooks to ensure code quality. - Run the github pre-commit hooks to ensure code quality.
### Reviewing/Revising Pull Requests ### Reviewing/Revising Pull Requests

View File

@@ -0,0 +1,170 @@
# CLAUDE.md - Backend
This file provides guidance to Claude Code when working with the backend.
## Essential Commands
To run something with Python package dependencies you MUST use `poetry run ...`.
```bash
# Install dependencies
poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend as a whole
poetry run app
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in @TESTING.md
### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
## Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
## Testing Approach
- Uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
## Database Schema
Key models (defined in `schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
## Environment Configuration
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
## Common Development Tasks
### Adding a new block
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
#### Handling files in blocks with `store_media_file()`
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
| Format | Use When | Returns |
|--------|----------|---------|
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
**Examples:**
```python
# INPUT: Need to process file locally with ffmpeg
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# local_path = "video.mp4" - use with Path/ffmpeg/etc
# INPUT: Need to send to external API like Replicate
image_b64 = await store_media_file(
file=input_data.image,
execution_context=execution_context,
return_format="for_external_api",
)
# image_b64 = "..." - send to API
# OUTPUT: Returning result from block
result_url = await store_media_file(
file=generated_image_url,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", result_url
# In CoPilot: result_url = "workspace://abc123"
# In graphs: result_url = "data:image/png;base64,..."
```
**Key points:**
- `for_block_output` is the ONLY format that auto-adapts to execution context
- Always use `for_block_output` for block outputs unless you have a specific reason not to
- Never hardcode workspace checks - let `for_block_output` handle it
### Modifying the API
1. Update route in `backend/api/features/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
## Security Implementation
### Cache Protection Middleware
- Located in `backend/api/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications

View File

@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
#### Using Global Auth Fixtures #### Using Global Auth Fixtures
Two global auth fixtures are provided by `backend/server/conftest.py`: Two global auth fixtures are provided by `backend/api/conftest.py`:
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id") - `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id") - `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")

View File

@@ -17,7 +17,7 @@ router = fastapi.APIRouter(
) )
# Taken from backend/server/v2/store/db.py # Taken from backend/api/features/store/db.py
def sanitize_query(query: str | None) -> str | None: def sanitize_query(query: str | None) -> str | None:
if query is None: if query is None:
return query return query

View File

@@ -1834,6 +1834,11 @@ async def _execute_long_running_tool(
tool_call_id=tool_call_id, tool_call_id=tool_call_id,
result=error_response.model_dump_json(), result=error_response.model_dump_json(),
) )
# Generate LLM continuation so user sees explanation even for errors
try:
await _generate_llm_continuation(session_id=session_id, user_id=user_id)
except Exception as llm_err:
logger.warning(f"Failed to generate LLM continuation for error: {llm_err}")
finally: finally:
await _mark_operation_completed(tool_call_id) await _mark_operation_completed(tool_call_id)

View File

@@ -0,0 +1,79 @@
# CoPilot Tools - Future Ideas
## Multimodal Image Support for CoPilot
**Problem:** CoPilot uses a vision-capable model but can't "see" workspace images. When a block generates an image and returns `workspace://abc123`, CoPilot can't evaluate it (e.g., checking blog thumbnail quality).
**Backend Solution:**
When preparing messages for the LLM, detect `workspace://` image references and convert them to proper image content blocks:
```python
# Before sending to LLM, scan for workspace image references
# and inject them as image content parts
# Example message transformation:
# FROM: {"role": "assistant", "content": "Generated image: workspace://abc123"}
# TO: {"role": "assistant", "content": [
# {"type": "text", "text": "Generated image: workspace://abc123"},
# {"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}}
# ]}
```
**Where to implement:**
- In the chat stream handler before calling the LLM
- Or in a message preprocessing step
- Need to fetch image from workspace, convert to base64, add as image content
**Considerations:**
- Only do this for image MIME types (image/png, image/jpeg, etc.)
- May want a size limit (don't pass 10MB images)
- Track which images were "shown" to the AI for frontend indicator
- Cost implications - vision API calls are more expensive
**Frontend Solution:**
Show visual indicator on workspace files in chat:
- If AI saw the image: normal display
- If AI didn't see it: overlay icon saying "AI can't see this image"
Requires response metadata indicating which `workspace://` refs were passed to the model.
---
## Output Post-Processing Layer for run_block
**Problem:** Many blocks produce large outputs that:
- Consume massive context (100KB base64 image = ~133KB tokens)
- Can't fit in conversation
- Break things and cause high LLM costs
**Proposed Solution:** Instead of modifying individual blocks or `store_media_file()`, implement a centralized output processor in `run_block.py` that handles outputs before they're returned to CoPilot.
**Benefits:**
1. **Centralized** - one place to handle all output processing
2. **Future-proof** - new blocks automatically get output processing
3. **Keeps blocks pure** - they don't need to know about context constraints
4. **Handles all large outputs** - not just images
**Processing Rules:**
- Detect base64 data URIs → save to workspace, return `workspace://` reference
- Truncate very long strings (>N chars) with truncation note
- Summarize large arrays/lists (e.g., "Array with 1000 items, first 5: [...]")
- Handle nested large outputs in dicts recursively
- Cap total output size
**Implementation Location:** `run_block.py` after block execution, before returning `BlockOutputResponse`
**Example:**
```python
def _process_outputs_for_context(
outputs: dict[str, list[Any]],
workspace_manager: WorkspaceManager,
max_string_length: int = 10000,
max_array_preview: int = 5,
) -> dict[str, list[Any]]:
"""Process block outputs to prevent context bloat."""
processed = {}
for name, values in outputs.items():
processed[name] = [_process_value(v, workspace_manager) for v in values]
return processed
```

View File

@@ -18,6 +18,12 @@ from .get_doc_page import GetDocPageTool
from .run_agent import RunAgentTool from .run_agent import RunAgentTool
from .run_block import RunBlockTool from .run_block import RunBlockTool
from .search_docs import SearchDocsTool from .search_docs import SearchDocsTool
from .workspace_files import (
DeleteWorkspaceFileTool,
ListWorkspaceFilesTool,
ReadWorkspaceFileTool,
WriteWorkspaceFileTool,
)
if TYPE_CHECKING: if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolOutputAvailable from backend.api.features.chat.response_model import StreamToolOutputAvailable
@@ -37,6 +43,11 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"view_agent_output": AgentOutputTool(), "view_agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(), "search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(), "get_doc_page": GetDocPageTool(),
# Workspace tools for CoPilot file operations
"list_workspace_files": ListWorkspaceFilesTool(),
"read_workspace_file": ReadWorkspaceFileTool(),
"write_workspace_file": WriteWorkspaceFileTool(),
"delete_workspace_file": DeleteWorkspaceFileTool(),
} }
# Export individual tool instances for backwards compatibility # Export individual tool instances for backwards compatibility

View File

@@ -2,27 +2,52 @@
from .core import ( from .core import (
AgentGeneratorNotConfiguredError, AgentGeneratorNotConfiguredError,
AgentSummary,
DecompositionResult,
DecompositionStep,
LibraryAgentSummary,
MarketplaceAgentSummary,
decompose_goal, decompose_goal,
enrich_library_agents_from_steps,
extract_search_terms_from_steps,
extract_uuids_from_text,
generate_agent, generate_agent,
generate_agent_patch, generate_agent_patch,
get_agent_as_json, get_agent_as_json,
get_all_relevant_agents_for_generation,
get_library_agent_by_graph_id,
get_library_agent_by_id,
get_library_agents_for_generation,
json_to_graph, json_to_graph,
save_agent_to_library, save_agent_to_library,
search_marketplace_agents_for_generation,
) )
from .errors import get_user_message_for_error
from .service import health_check as check_external_service_health from .service import health_check as check_external_service_health
from .service import is_external_service_configured from .service import is_external_service_configured
__all__ = [ __all__ = [
# Core functions "AgentGeneratorNotConfiguredError",
"AgentSummary",
"DecompositionResult",
"DecompositionStep",
"LibraryAgentSummary",
"MarketplaceAgentSummary",
"check_external_service_health",
"decompose_goal", "decompose_goal",
"enrich_library_agents_from_steps",
"extract_search_terms_from_steps",
"extract_uuids_from_text",
"generate_agent", "generate_agent",
"generate_agent_patch", "generate_agent_patch",
"save_agent_to_library",
"get_agent_as_json", "get_agent_as_json",
"json_to_graph", "get_all_relevant_agents_for_generation",
# Exceptions "get_library_agent_by_graph_id",
"AgentGeneratorNotConfiguredError", "get_library_agent_by_id",
# Service "get_library_agents_for_generation",
"get_user_message_for_error",
"is_external_service_configured", "is_external_service_configured",
"check_external_service_health", "json_to_graph",
"save_agent_to_library",
"search_marketplace_agents_for_generation",
] ]

View File

@@ -1,11 +1,21 @@
"""Core agent generation functions.""" """Core agent generation functions."""
import logging import logging
import re
import uuid import uuid
from typing import Any from typing import Any, TypedDict
from backend.api.features.library import db as library_db from backend.api.features.library import db as library_db
from backend.data.graph import Graph, Link, Node, create_graph from backend.api.features.store import db as store_db
from backend.data.graph import (
Graph,
Link,
Node,
create_graph,
get_graph,
get_graph_all_versions,
)
from backend.util.exceptions import DatabaseError, NotFoundError
from .service import ( from .service import (
decompose_goal_external, decompose_goal_external,
@@ -17,6 +27,60 @@ from .service import (
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
class LibraryAgentSummary(TypedDict):
"""Summary of a library agent for sub-agent composition."""
graph_id: str
graph_version: int
name: str
description: str
input_schema: dict[str, Any]
output_schema: dict[str, Any]
class MarketplaceAgentSummary(TypedDict):
"""Summary of a marketplace agent for sub-agent composition."""
name: str
description: str
sub_heading: str
creator: str
is_marketplace_agent: bool
class DecompositionStep(TypedDict, total=False):
"""A single step in decomposed instructions."""
description: str
action: str
block_name: str
tool: str
name: str
class DecompositionResult(TypedDict, total=False):
"""Result from decompose_goal - can be instructions, questions, or error."""
type: str # "instructions", "clarifying_questions", "error", etc.
steps: list[DecompositionStep]
questions: list[dict[str, Any]]
error: str
error_type: str
# Type alias for agent summaries (can be either library or marketplace)
AgentSummary = LibraryAgentSummary | MarketplaceAgentSummary | dict[str, Any]
def _to_dict_list(
agents: list[AgentSummary] | list[dict[str, Any]] | None,
) -> list[dict[str, Any]] | None:
"""Convert typed agent summaries to plain dicts for external service calls."""
if agents is None:
return None
return [dict(a) for a in agents]
class AgentGeneratorNotConfiguredError(Exception): class AgentGeneratorNotConfiguredError(Exception):
"""Raised when the external Agent Generator service is not configured.""" """Raised when the external Agent Generator service is not configured."""
@@ -36,15 +100,394 @@ def _check_service_configured() -> None:
) )
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None: _UUID_PATTERN = re.compile(
r"[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}",
re.IGNORECASE,
)
def extract_uuids_from_text(text: str) -> list[str]:
"""Extract all UUID v4 strings from text.
Args:
text: Text that may contain UUIDs (e.g., user's goal description)
Returns:
List of unique UUIDs found in the text (lowercase)
"""
matches = _UUID_PATTERN.findall(text)
return list({m.lower() for m in matches})
async def get_library_agent_by_id(
user_id: str, agent_id: str
) -> LibraryAgentSummary | None:
"""Fetch a specific library agent by its ID (library agent ID or graph_id).
This function tries multiple lookup strategies:
1. First tries to find by graph_id (AgentGraph primary key)
2. If not found, tries to find by library agent ID (LibraryAgent primary key)
This handles both cases:
- User provides graph_id (e.g., from AgentExecutorBlock)
- User provides library agent ID (e.g., from library URL)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
LibraryAgentSummary if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except DatabaseError:
raise
except Exception as e:
logger.debug(f"Could not fetch library agent by graph_id {agent_id}: {e}")
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
# Alias for backward compatibility
get_library_agent_by_graph_id = get_library_agent_by_id
async def get_library_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
max_results: int = 15,
) -> list[LibraryAgentSummary]:
"""Fetch user's library agents formatted for Agent Generator.
Uses search-based fetching to return relevant agents instead of all agents.
This is more scalable for users with large libraries.
Args:
user_id: The user ID
search_query: Optional search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
max_results: Maximum number of agents to return (default 15)
Returns:
List of LibraryAgentSummary with schemas for sub-agent composition
Note:
Future enhancement: Add quality filtering based on execution success rate
or correctness_score from AgentGraphExecution stats. The current
LibraryAgentStatus.ERROR is too aggressive (1 failed run = ERROR).
Better approach: filter by success rate (e.g., >50% successful runs)
or require at least 1 successful execution.
"""
try:
response = await library_db.list_library_agents(
user_id=user_id,
search_term=search_query,
page=1,
page_size=max_results,
)
results: list[LibraryAgentSummary] = []
for agent in response.agents:
if exclude_graph_id is not None and agent.graph_id == exclude_graph_id:
continue
results.append(
LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
)
return results
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
return []
async def search_marketplace_agents_for_generation(
search_query: str,
max_results: int = 10,
) -> list[MarketplaceAgentSummary]:
"""Search marketplace agents formatted for Agent Generator.
Note: This returns basic agent info. Full input/output schemas would require
additional graph fetches and is a potential future enhancement.
Args:
search_query: Search term to find relevant public agents
max_results: Maximum number of agents to return (default 10)
Returns:
List of MarketplaceAgentSummary (without detailed schemas for now)
"""
try:
response = await store_db.get_store_agents(
search_query=search_query,
page=1,
page_size=max_results,
)
results: list[MarketplaceAgentSummary] = []
for agent in response.agents:
results.append(
MarketplaceAgentSummary(
name=agent.agent_name,
description=agent.description,
sub_heading=agent.sub_heading,
creator=agent.creator,
is_marketplace_agent=True,
)
)
return results
except Exception as e:
logger.warning(f"Failed to search marketplace agents: {e}")
return []
async def get_all_relevant_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
include_library: bool = True,
include_marketplace: bool = True,
max_library_results: int = 15,
max_marketplace_results: int = 10,
) -> list[AgentSummary]:
"""Fetch relevant agents from library and/or marketplace.
Searches both user's library and marketplace by default.
Explicitly mentioned UUIDs in the search query are always looked up.
Args:
user_id: The user ID
search_query: Search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
include_library: Whether to search user's library (default True)
include_marketplace: Whether to also search marketplace (default True)
max_library_results: Max library agents to return (default 15)
max_marketplace_results: Max marketplace agents to return (default 10)
Returns:
List of AgentSummary, library agents first (with full schemas),
then marketplace agents (basic info only)
"""
agents: list[AgentSummary] = []
seen_graph_ids: set[str] = set()
if search_query:
mentioned_uuids = extract_uuids_from_text(search_query)
for graph_id in mentioned_uuids:
if graph_id == exclude_graph_id:
continue
agent = await get_library_agent_by_graph_id(user_id, graph_id)
if agent and agent["graph_id"] not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(agent["graph_id"])
logger.debug(f"Found explicitly mentioned agent: {agent['name']}")
if include_library:
library_agents = await get_library_agents_for_generation(
user_id=user_id,
search_query=search_query,
exclude_graph_id=exclude_graph_id,
max_results=max_library_results,
)
for agent in library_agents:
if agent["graph_id"] not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(agent["graph_id"])
if include_marketplace and search_query:
marketplace_agents = await search_marketplace_agents_for_generation(
search_query=search_query,
max_results=max_marketplace_results,
)
library_names = {a["name"].lower() for a in agents if a.get("name")}
for agent in marketplace_agents:
agent_name = agent.get("name")
if agent_name and agent_name.lower() not in library_names:
agents.append(agent)
return agents
def extract_search_terms_from_steps(
decomposition_result: DecompositionResult | dict[str, Any],
) -> list[str]:
"""Extract search terms from decomposed instruction steps.
Analyzes the decomposition result to extract relevant keywords
for additional library agent searches.
Args:
decomposition_result: Result from decompose_goal containing steps
Returns:
List of unique search terms extracted from steps
"""
search_terms: list[str] = []
if decomposition_result.get("type") != "instructions":
return search_terms
steps = decomposition_result.get("steps", [])
if not steps:
return search_terms
step_keys: list[str] = ["description", "action", "block_name", "tool", "name"]
for step in steps:
for key in step_keys:
value = step.get(key) # type: ignore[union-attr]
if isinstance(value, str) and len(value) > 3:
search_terms.append(value)
seen: set[str] = set()
unique_terms: list[str] = []
for term in search_terms:
term_lower = term.lower()
if term_lower not in seen:
seen.add(term_lower)
unique_terms.append(term)
return unique_terms
async def enrich_library_agents_from_steps(
user_id: str,
decomposition_result: DecompositionResult | dict[str, Any],
existing_agents: list[AgentSummary] | list[dict[str, Any]],
exclude_graph_id: str | None = None,
include_marketplace: bool = True,
max_additional_results: int = 10,
) -> list[AgentSummary] | list[dict[str, Any]]:
"""Enrich library agents list with additional searches based on decomposed steps.
This implements two-phase search: after decomposition, we search for additional
relevant agents based on the specific steps identified.
Args:
user_id: The user ID
decomposition_result: Result from decompose_goal containing steps
existing_agents: Already fetched library agents from initial search
exclude_graph_id: Optional graph ID to exclude
include_marketplace: Whether to also search marketplace
max_additional_results: Max additional agents per search term (default 10)
Returns:
Combined list of library agents (existing + newly discovered)
"""
search_terms = extract_search_terms_from_steps(decomposition_result)
if not search_terms:
return existing_agents
existing_ids: set[str] = set()
existing_names: set[str] = set()
for agent in existing_agents:
agent_name = agent.get("name", "")
if agent_name:
existing_names.add(agent_name.lower())
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id:
existing_ids.add(graph_id)
all_agents: list[AgentSummary] | list[dict[str, Any]] = list(existing_agents)
for term in search_terms[:3]:
try:
additional_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=term,
exclude_graph_id=exclude_graph_id,
include_marketplace=include_marketplace,
max_library_results=max_additional_results,
max_marketplace_results=5,
)
for agent in additional_agents:
agent_name = agent.get("name", "")
if not agent_name:
continue
agent_name_lower = agent_name.lower()
if agent_name_lower in existing_names:
continue
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id and graph_id in existing_ids:
continue
all_agents.append(agent)
existing_names.add(agent_name_lower)
if graph_id:
existing_ids.add(graph_id)
except Exception as e:
logger.warning(
f"Failed to search for additional agents with term '{term}': {e}"
)
logger.debug(
f"Enriched library agents: {len(existing_agents)} initial + "
f"{len(all_agents) - len(existing_agents)} additional = {len(all_agents)} total"
)
return all_agents
async def decompose_goal(
description: str,
context: str = "",
library_agents: list[AgentSummary] | None = None,
) -> DecompositionResult | None:
"""Break down a goal into steps or return clarifying questions. """Break down a goal into steps or return clarifying questions.
Args: Args:
description: Natural language goal description description: Natural language goal description
context: Additional context (e.g., answers to previous questions) context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns: Returns:
Dict with either: DecompositionResult with either:
- {"type": "clarifying_questions", "questions": [...]} - {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]} - {"type": "instructions", "steps": [...]}
Or None on error Or None on error
@@ -54,26 +497,41 @@ async def decompose_goal(description: str, context: str = "") -> dict[str, Any]
""" """
_check_service_configured() _check_service_configured()
logger.info("Calling external Agent Generator service for decompose_goal") logger.info("Calling external Agent Generator service for decompose_goal")
return await decompose_goal_external(description, context) # Convert typed dicts to plain dicts for external service
result = await decompose_goal_external(
description, context, _to_dict_list(library_agents)
)
# Cast the result to DecompositionResult (external service returns dict)
return result # type: ignore[return-value]
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None: async def generate_agent(
instructions: DecompositionResult | dict[str, Any],
library_agents: list[AgentSummary] | list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None:
"""Generate agent JSON from instructions. """Generate agent JSON from instructions.
Args: Args:
instructions: Structured instructions from decompose_goal instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
Returns: Returns:
Agent JSON dict or None on error Agent JSON dict, error dict {"type": "error", ...}, or None on error
Raises: Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured. AgentGeneratorNotConfiguredError: If the external service is not configured.
""" """
_check_service_configured() _check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent") logger.info("Calling external Agent Generator service for generate_agent")
result = await generate_agent_external(instructions) # Convert typed dicts to plain dicts for external service
result = await generate_agent_external(
dict(instructions), _to_dict_list(library_agents)
)
if result: if result:
# Ensure required fields # Check if it's an error response - pass through as-is
if isinstance(result, dict) and result.get("type") == "error":
return result
# Ensure required fields for successful agent generation
if "id" not in result: if "id" not in result:
result["id"] = str(uuid.uuid4()) result["id"] = str(uuid.uuid4())
if "version" not in result: if "version" not in result:
@@ -159,8 +617,6 @@ async def save_agent_to_library(
Returns: Returns:
Tuple of (created Graph, LibraryAgent) Tuple of (created Graph, LibraryAgent)
""" """
from backend.data.graph import get_graph_all_versions
graph = json_to_graph(agent_json) graph = json_to_graph(agent_json)
if is_update: if is_update:
@@ -197,25 +653,31 @@ async def save_agent_to_library(
async def get_agent_as_json( async def get_agent_as_json(
graph_id: str, user_id: str | None agent_id: str, user_id: str | None
) -> dict[str, Any] | None: ) -> dict[str, Any] | None:
"""Fetch an agent and convert to JSON format for editing. """Fetch an agent and convert to JSON format for editing.
Args: Args:
graph_id: Graph ID or library agent ID agent_id: Graph ID or library agent ID
user_id: User ID user_id: User ID
Returns: Returns:
Agent as JSON dict or None if not found Agent as JSON dict or None if not found
""" """
from backend.data.graph import get_graph graph = await get_graph(agent_id, version=None, user_id=user_id)
if not graph and user_id:
try:
library_agent = await library_db.get_library_agent(agent_id, user_id)
graph = await get_graph(
library_agent.graph_id, version=None, user_id=user_id
)
except NotFoundError:
pass
# Try to get the graph (version=None gets the active version)
graph = await get_graph(graph_id, version=None, user_id=user_id)
if not graph: if not graph:
return None return None
# Convert to JSON format
nodes = [] nodes = []
for node in graph.nodes: for node in graph.nodes:
nodes.append( nodes.append(
@@ -253,7 +715,9 @@ async def get_agent_as_json(
async def generate_agent_patch( async def generate_agent_patch(
update_request: str, current_agent: dict[str, Any] update_request: str,
current_agent: dict[str, Any],
library_agents: list[AgentSummary] | None = None,
) -> dict[str, Any] | None: ) -> dict[str, Any] | None:
"""Update an existing agent using natural language. """Update an existing agent using natural language.
@@ -265,13 +729,18 @@ async def generate_agent_patch(
Args: Args:
update_request: Natural language description of changes update_request: Natural language description of changes
current_agent: Current agent JSON current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
Returns: Returns:
Updated agent JSON, clarifying questions dict, or None on error Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
error dict {"type": "error", ...}, or None on unexpected error
Raises: Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured. AgentGeneratorNotConfiguredError: If the external service is not configured.
""" """
_check_service_configured() _check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent_patch") logger.info("Calling external Agent Generator service for generate_agent_patch")
return await generate_agent_patch_external(update_request, current_agent) # Convert typed dicts to plain dicts for external service
return await generate_agent_patch_external(
update_request, current_agent, _to_dict_list(library_agents)
)

View File

@@ -0,0 +1,104 @@
"""Error handling utilities for agent generator."""
import re
def _sanitize_error_details(details: str) -> str:
"""Sanitize error details to remove sensitive information.
Strips common patterns that could expose internal system info:
- File paths (Unix and Windows)
- Database connection strings
- URLs with credentials
- Stack trace internals
Args:
details: Raw error details string
Returns:
Sanitized error details safe for user display
"""
# Remove file paths (Unix-style)
sanitized = re.sub(
r"/[a-zA-Z0-9_./\-]+\.(py|js|ts|json|yaml|yml)", "[path]", details
)
# Remove file paths (Windows-style)
sanitized = re.sub(r"[A-Z]:\\[a-zA-Z0-9_\\.\\-]+", "[path]", sanitized)
# Remove database URLs
sanitized = re.sub(
r"(postgres|mysql|mongodb|redis)://[^\s]+", "[database_url]", sanitized
)
# Remove URLs with credentials
sanitized = re.sub(r"https?://[^:]+:[^@]+@[^\s]+", "[url]", sanitized)
# Remove line numbers from stack traces
sanitized = re.sub(r", line \d+", "", sanitized)
# Remove "File" references from stack traces
sanitized = re.sub(r'File "[^"]+",?', "", sanitized)
return sanitized.strip()
def get_user_message_for_error(
error_type: str,
operation: str = "process the request",
llm_parse_message: str | None = None,
validation_message: str | None = None,
error_details: str | None = None,
) -> str:
"""Get a user-friendly error message based on error type.
This function maps internal error types to user-friendly messages,
providing a consistent experience across different agent operations.
Args:
error_type: The error type from the external service
(e.g., "llm_parse_error", "timeout", "rate_limit")
operation: Description of what operation failed, used in the default
message (e.g., "analyze the goal", "generate the agent")
llm_parse_message: Custom message for llm_parse_error type
validation_message: Custom message for validation_error type
error_details: Optional additional details about the error
Returns:
User-friendly error message suitable for display to the user
"""
base_message = ""
if error_type == "llm_parse_error":
base_message = (
llm_parse_message
or "The AI had trouble processing this request. Please try again."
)
elif error_type == "validation_error":
base_message = (
validation_message
or "The generated agent failed validation. "
"This usually happens when the agent structure doesn't match "
"what the platform expects. Please try simplifying your goal "
"or breaking it into smaller parts."
)
elif error_type == "patch_error":
base_message = (
"Failed to apply the changes. The modification couldn't be "
"validated. Please try a different approach or simplify the change."
)
elif error_type in ("timeout", "llm_timeout"):
base_message = (
"The request took too long to process. This can happen with "
"complex agents. Please try again or simplify your goal."
)
elif error_type in ("rate_limit", "llm_rate_limit"):
base_message = "The service is currently busy. Please try again in a moment."
else:
base_message = f"Failed to {operation}. Please try again."
# Add error details if provided (sanitized and truncated)
if error_details:
# Sanitize to remove sensitive information
details = _sanitize_error_details(error_details)
# Truncate long error details
if len(details) > 200:
details = details[:200] + "..."
base_message += f"\n\nTechnical details: {details}"
return base_message

View File

@@ -14,6 +14,70 @@ from backend.util.settings import Settings
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
def _create_error_response(
error_message: str,
error_type: str = "unknown",
details: dict[str, Any] | None = None,
) -> dict[str, Any]:
"""Create a standardized error response dict.
Args:
error_message: Human-readable error message
error_type: Machine-readable error type
details: Optional additional error details
Returns:
Error dict with type="error" and error details
"""
response: dict[str, Any] = {
"type": "error",
"error": error_message,
"error_type": error_type,
}
if details:
response["details"] = details
return response
def _classify_http_error(e: httpx.HTTPStatusError) -> tuple[str, str]:
"""Classify an HTTP error into error_type and message.
Args:
e: The HTTP status error
Returns:
Tuple of (error_type, error_message)
"""
status = e.response.status_code
if status == 429:
return "rate_limit", f"Agent Generator rate limited: {e}"
elif status == 503:
return "service_unavailable", f"Agent Generator unavailable: {e}"
elif status == 504 or status == 408:
return "timeout", f"Agent Generator timed out: {e}"
else:
return "http_error", f"HTTP error calling Agent Generator: {e}"
def _classify_request_error(e: httpx.RequestError) -> tuple[str, str]:
"""Classify a request error into error_type and message.
Args:
e: The request error
Returns:
Tuple of (error_type, error_message)
"""
error_str = str(e).lower()
if "timeout" in error_str or "timed out" in error_str:
return "timeout", f"Agent Generator request timed out: {e}"
elif "connect" in error_str:
return "connection_error", f"Could not connect to Agent Generator: {e}"
else:
return "request_error", f"Request error calling Agent Generator: {e}"
_client: httpx.AsyncClient | None = None _client: httpx.AsyncClient | None = None
_settings: Settings | None = None _settings: Settings | None = None
@@ -53,13 +117,16 @@ def _get_client() -> httpx.AsyncClient:
async def decompose_goal_external( async def decompose_goal_external(
description: str, context: str = "" description: str,
context: str = "",
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None: ) -> dict[str, Any] | None:
"""Call the external service to decompose a goal. """Call the external service to decompose a goal.
Args: Args:
description: Natural language goal description description: Natural language goal description
context: Additional context (e.g., answers to previous questions) context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns: Returns:
Dict with either: Dict with either:
@@ -67,7 +134,8 @@ async def decompose_goal_external(
- {"type": "instructions", "steps": [...]} - {"type": "instructions", "steps": [...]}
- {"type": "unachievable_goal", ...} - {"type": "unachievable_goal", ...}
- {"type": "vague_goal", ...} - {"type": "vague_goal", ...}
Or None on error - {"type": "error", "error": "...", "error_type": "..."} on error
Or None on unexpected error
""" """
client = _get_client() client = _get_client()
@@ -76,6 +144,8 @@ async def decompose_goal_external(
if context: if context:
# The external service uses user_instruction for additional context # The external service uses user_instruction for additional context
payload["user_instruction"] = context payload["user_instruction"] = context
if library_agents:
payload["library_agents"] = library_agents
try: try:
response = await client.post("/api/decompose-description", json=payload) response = await client.post("/api/decompose-description", json=payload)
@@ -83,8 +153,13 @@ async def decompose_goal_external(
data = response.json() data = response.json()
if not data.get("success"): if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}") error_msg = data.get("error", "Unknown error from Agent Generator")
return None error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator decomposition failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
# Map the response to the expected format # Map the response to the expected format
response_type = data.get("type") response_type = data.get("type")
@@ -106,88 +181,120 @@ async def decompose_goal_external(
"type": "vague_goal", "type": "vague_goal",
"suggested_goal": data.get("suggested_goal"), "suggested_goal": data.get("suggested_goal"),
} }
elif response_type == "error":
# Pass through error from the service
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
else: else:
logger.error( logger.error(
f"Unknown response type from external service: {response_type}" f"Unknown response type from external service: {response_type}"
) )
return None return _create_error_response(
f"Unknown response type from Agent Generator: {response_type}",
"invalid_response",
)
except httpx.HTTPStatusError as e: except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}") error_type, error_msg = _classify_http_error(e)
return None logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e: except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}") error_type, error_msg = _classify_request_error(e)
return None logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e: except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}") error_msg = f"Unexpected error calling Agent Generator: {e}"
return None logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def generate_agent_external( async def generate_agent_external(
instructions: dict[str, Any] instructions: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None: ) -> dict[str, Any] | None:
"""Call the external service to generate an agent from instructions. """Call the external service to generate an agent from instructions.
Args: Args:
instructions: Structured instructions from decompose_goal instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
Returns: Returns:
Agent JSON dict or None on error Agent JSON dict on success, or error dict {"type": "error", ...} on error
""" """
client = _get_client() client = _get_client()
payload: dict[str, Any] = {"instructions": instructions}
if library_agents:
payload["library_agents"] = library_agents
try: try:
response = await client.post( response = await client.post("/api/generate-agent", json=payload)
"/api/generate-agent", json={"instructions": instructions}
)
response.raise_for_status() response.raise_for_status()
data = response.json() data = response.json()
if not data.get("success"): if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}") error_msg = data.get("error", "Unknown error from Agent Generator")
return None error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator generation failed: {error_msg} (type: {error_type})"
)
return _create_error_response(error_msg, error_type)
return data.get("agent_json") return data.get("agent_json")
except httpx.HTTPStatusError as e: except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}") error_type, error_msg = _classify_http_error(e)
return None logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e: except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}") error_type, error_msg = _classify_request_error(e)
return None logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e: except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}") error_msg = f"Unexpected error calling Agent Generator: {e}"
return None logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def generate_agent_patch_external( async def generate_agent_patch_external(
update_request: str, current_agent: dict[str, Any] update_request: str,
current_agent: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None: ) -> dict[str, Any] | None:
"""Call the external service to generate a patch for an existing agent. """Call the external service to generate a patch for an existing agent.
Args: Args:
update_request: Natural language description of changes update_request: Natural language description of changes
current_agent: Current agent JSON current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
Returns: Returns:
Updated agent JSON, clarifying questions dict, or None on error Updated agent JSON, clarifying questions dict, or error dict on error
""" """
client = _get_client() client = _get_client()
payload: dict[str, Any] = {
"update_request": update_request,
"current_agent_json": current_agent,
}
if library_agents:
payload["library_agents"] = library_agents
try: try:
response = await client.post( response = await client.post("/api/update-agent", json=payload)
"/api/update-agent",
json={
"update_request": update_request,
"current_agent_json": current_agent,
},
)
response.raise_for_status() response.raise_for_status()
data = response.json() data = response.json()
if not data.get("success"): if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}") error_msg = data.get("error", "Unknown error from Agent Generator")
return None error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator patch generation failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
# Check if it's clarifying questions # Check if it's clarifying questions
if data.get("type") == "clarifying_questions": if data.get("type") == "clarifying_questions":
@@ -196,18 +303,28 @@ async def generate_agent_patch_external(
"questions": data.get("questions", []), "questions": data.get("questions", []),
} }
# Check if it's an error passed through
if data.get("type") == "error":
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
# Otherwise return the updated agent JSON # Otherwise return the updated agent JSON
return data.get("agent_json") return data.get("agent_json")
except httpx.HTTPStatusError as e: except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}") error_type, error_msg = _classify_http_error(e)
return None logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e: except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}") error_type, error_msg = _classify_request_error(e)
return None logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e: except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}") error_msg = f"Unexpected error calling Agent Generator: {e}"
return None logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def get_blocks_external() -> list[dict[str, Any]] | None: async def get_blocks_external() -> list[dict[str, Any]] | None:

View File

@@ -1,6 +1,7 @@
"""Shared agent search functionality for find_agent and find_library_agent tools.""" """Shared agent search functionality for find_agent and find_library_agent tools."""
import logging import logging
import re
from typing import Literal from typing import Literal
from backend.api.features.library import db as library_db from backend.api.features.library import db as library_db
@@ -19,6 +20,86 @@ logger = logging.getLogger(__name__)
SearchSource = Literal["marketplace", "library"] SearchSource = Literal["marketplace", "library"]
# UUID v4 pattern for direct agent ID lookup
_UUID_PATTERN = re.compile(
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$",
re.IGNORECASE,
)
def _is_uuid(text: str) -> bool:
"""Check if text is a valid UUID v4."""
return bool(_UUID_PATTERN.match(text.strip()))
async def _get_library_agent_by_id(user_id: str, agent_id: str) -> AgentInfo | None:
"""Fetch a library agent by ID (library agent ID or graph_id).
Tries multiple lookup strategies:
1. First by graph_id (AgentGraph primary key)
2. Then by library agent ID (LibraryAgent primary key)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
AgentInfo if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by graph_id {agent_id}: {e}",
exc_info=True,
)
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
async def search_agents( async def search_agents(
query: str, query: str,
@@ -70,28 +151,38 @@ async def search_agents(
) )
) )
else: # library else: # library
logger.info(f"Searching user library for: {query}") # If query looks like a UUID, try direct lookup first
results = await library_db.list_library_agents( if _is_uuid(query):
user_id=user_id, # type: ignore[arg-type] logger.info(f"Query looks like UUID, trying direct lookup: {query}")
search_term=query, agent = await _get_library_agent_by_id(user_id, query) # type: ignore[arg-type]
page_size=10, if agent:
) agents.append(agent)
for agent in results.agents: logger.info(f"Found agent by direct ID lookup: {agent.name}")
agents.append(
AgentInfo( # If no results from UUID lookup, do text search
id=agent.id, if not agents:
name=agent.name, logger.info(f"Searching user library for: {query}")
description=agent.description or "", results = await library_db.list_library_agents(
source="library", user_id=user_id, # type: ignore[arg-type]
in_library=True, search_term=query,
creator=agent.creator_name, page_size=10,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
) )
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
)
logger.info(f"Found {len(agents)} agents in {source}") logger.info(f"Found {len(agents)} agents in {source}")
except NotFoundError: except NotFoundError:
pass pass

View File

@@ -8,7 +8,10 @@ from backend.api.features.chat.model import ChatSession
from .agent_generator import ( from .agent_generator import (
AgentGeneratorNotConfiguredError, AgentGeneratorNotConfiguredError,
decompose_goal, decompose_goal,
enrich_library_agents_from_steps,
generate_agent, generate_agent,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library, save_agent_to_library,
) )
from .base import BaseTool from .base import BaseTool
@@ -102,9 +105,27 @@ class CreateAgentTool(BaseTool):
session_id=session_id, session_id=session_id,
) )
# Fetch relevant library and marketplace agents for sub-agent composition
library_agents = None
if user_id:
try:
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=description, # Use goal as search term
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
# Log but don't fail - agent generation can work without sub-agents
logger.warning(f"Failed to fetch library agents: {e}")
# Step 1: Decompose goal into steps # Step 1: Decompose goal into steps
try: try:
decomposition_result = await decompose_goal(description, context) decomposition_result = await decompose_goal(
description, context, library_agents
)
except AgentGeneratorNotConfiguredError: except AgentGeneratorNotConfiguredError:
return ErrorResponse( return ErrorResponse(
message=( message=(
@@ -117,11 +138,29 @@ class CreateAgentTool(BaseTool):
if decomposition_result is None: if decomposition_result is None:
return ErrorResponse( return ErrorResponse(
message="Failed to analyze the goal. The agent generation service may be unavailable or timed out. Please try again.", message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.",
error="decomposition_failed", error="decomposition_failed",
details={"description": description[:100]},
session_id=session_id,
)
# Check if the result is an error from the external service
if decomposition_result.get("type") == "error":
error_msg = decomposition_result.get("error", "Unknown error")
error_type = decomposition_result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="analyze the goal",
llm_parse_message="The AI had trouble understanding this request. Please try rephrasing your goal.",
)
return ErrorResponse(
message=user_message,
error=f"decomposition_failed:{error_type}",
details={ details={
"description": description[:100] "description": description[:100],
}, # Include context for debugging "service_error": error_msg,
"error_type": error_type,
},
session_id=session_id, session_id=session_id,
) )
@@ -171,9 +210,26 @@ class CreateAgentTool(BaseTool):
session_id=session_id, session_id=session_id,
) )
# Step 1.5: Enrich library agents with step-based search (two-phase search)
# After decomposition, search for additional relevant agents based on the steps
if user_id and library_agents is not None:
try:
library_agents = await enrich_library_agents_from_steps(
user_id=user_id,
decomposition_result=decomposition_result,
existing_agents=library_agents,
include_marketplace=True,
)
logger.debug(
f"After enrichment: {len(library_agents)} total agents for sub-agent composition"
)
except Exception as e:
# Log but don't fail - continue with existing agents
logger.warning(f"Failed to enrich library agents from steps: {e}")
# Step 2: Generate agent JSON (external service handles fixing and validation) # Step 2: Generate agent JSON (external service handles fixing and validation)
try: try:
agent_json = await generate_agent(decomposition_result) agent_json = await generate_agent(decomposition_result, library_agents)
except AgentGeneratorNotConfiguredError: except AgentGeneratorNotConfiguredError:
return ErrorResponse( return ErrorResponse(
message=( message=(
@@ -186,11 +242,35 @@ class CreateAgentTool(BaseTool):
if agent_json is None: if agent_json is None:
return ErrorResponse( return ErrorResponse(
message="Failed to generate the agent. The agent generation service may be unavailable or timed out. Please try again.", message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.",
error="generation_failed", error="generation_failed",
details={"description": description[:100]},
session_id=session_id,
)
# Check if the result is an error from the external service
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
error_msg = agent_json.get("error", "Unknown error")
error_type = agent_json.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the agent",
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
validation_message=(
"I wasn't able to create a valid agent for this request. "
"The generated workflow had some structural issues. "
"Please try simplifying your goal or breaking it into smaller steps."
),
error_details=error_msg if error_type == "validation_error" else None,
)
return ErrorResponse(
message=user_message,
error=f"generation_failed:{error_type}",
details={ details={
"description": description[:100] "description": description[:100],
}, # Include context for debugging "service_error": error_msg,
"error_type": error_type,
},
session_id=session_id, session_id=session_id,
) )
@@ -232,7 +312,7 @@ class CreateAgentTool(BaseTool):
agent_id=created_graph.id, agent_id=created_graph.id,
agent_name=created_graph.name, agent_name=created_graph.name,
library_agent_id=library_agent.id, library_agent_id=library_agent.id,
library_agent_link=f"/library/{library_agent.id}", library_agent_link=f"/library/agents/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}", agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id, session_id=session_id,
) )

View File

@@ -9,6 +9,8 @@ from .agent_generator import (
AgentGeneratorNotConfiguredError, AgentGeneratorNotConfiguredError,
generate_agent_patch, generate_agent_patch,
get_agent_as_json, get_agent_as_json,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library, save_agent_to_library,
) )
from .base import BaseTool from .base import BaseTool
@@ -126,6 +128,22 @@ class EditAgentTool(BaseTool):
session_id=session_id, session_id=session_id,
) )
library_agents = None
if user_id:
try:
exclude_id = current_agent.get("id") or agent_id
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=changes,
exclude_graph_id=exclude_id,
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
# Build the update request with context # Build the update request with context
update_request = changes update_request = changes
if context: if context:
@@ -133,7 +151,9 @@ class EditAgentTool(BaseTool):
# Step 2: Generate updated agent (external service handles fixing and validation) # Step 2: Generate updated agent (external service handles fixing and validation)
try: try:
result = await generate_agent_patch(update_request, current_agent) result = await generate_agent_patch(
update_request, current_agent, library_agents
)
except AgentGeneratorNotConfiguredError: except AgentGeneratorNotConfiguredError:
return ErrorResponse( return ErrorResponse(
message=( message=(
@@ -152,6 +172,28 @@ class EditAgentTool(BaseTool):
session_id=session_id, session_id=session_id,
) )
# Check if the result is an error from the external service
if isinstance(result, dict) and result.get("type") == "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the changes",
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
validation_message="The generated changes failed validation. Please try rephrasing your request.",
)
return ErrorResponse(
message=user_message,
error=f"update_generation_failed:{error_type}",
details={
"agent_id": agent_id,
"changes": changes[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)
# Check if LLM returned clarifying questions # Check if LLM returned clarifying questions
if result.get("type") == "clarifying_questions": if result.get("type") == "clarifying_questions":
questions = result.get("questions", []) questions = result.get("questions", [])
@@ -213,7 +255,7 @@ class EditAgentTool(BaseTool):
agent_id=created_graph.id, agent_id=created_graph.id,
agent_name=created_graph.name, agent_name=created_graph.name,
library_agent_id=library_agent.id, library_agent_id=library_agent.id,
library_agent_link=f"/library/{library_agent.id}", library_agent_link=f"/library/agents/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}", agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id, session_id=session_id,
) )

View File

@@ -28,6 +28,12 @@ class ResponseType(str, Enum):
BLOCK_OUTPUT = "block_output" BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results" DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page" DOC_PAGE = "doc_page"
# Workspace response types
WORKSPACE_FILE_LIST = "workspace_file_list"
WORKSPACE_FILE_CONTENT = "workspace_file_content"
WORKSPACE_FILE_METADATA = "workspace_file_metadata"
WORKSPACE_FILE_WRITTEN = "workspace_file_written"
WORKSPACE_FILE_DELETED = "workspace_file_deleted"
# Long-running operation types # Long-running operation types
OPERATION_STARTED = "operation_started" OPERATION_STARTED = "operation_started"
OPERATION_PENDING = "operation_pending" OPERATION_PENDING = "operation_pending"

View File

@@ -1,6 +1,7 @@
"""Tool for executing blocks directly.""" """Tool for executing blocks directly."""
import logging import logging
import uuid
from collections import defaultdict from collections import defaultdict
from typing import Any from typing import Any
@@ -8,6 +9,7 @@ from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block from backend.data.block import get_block
from backend.data.execution import ExecutionContext from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsMetaInput from backend.data.model import CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace
from backend.integrations.creds_manager import IntegrationCredentialsManager from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError from backend.util.exceptions import BlockError
@@ -223,11 +225,48 @@ class RunBlockTool(BaseTool):
) )
try: try:
# Fetch actual credentials and prepare kwargs for block execution # Get or create user's workspace for CoPilot file operations
# Create execution context with defaults (blocks may require it) workspace = await get_or_create_workspace(user_id)
# Generate synthetic IDs for CoPilot context
# Each chat session is treated as its own agent with one continuous run
# This means:
# - graph_id (agent) = session (memories scoped to session when limit_to_agent=True)
# - graph_exec_id (run) = session (memories scoped to session when limit_to_run=True)
# - node_exec_id = unique per block execution
synthetic_graph_id = f"copilot-session-{session.session_id}"
synthetic_graph_exec_id = f"copilot-session-{session.session_id}"
synthetic_node_id = f"copilot-node-{block_id}"
synthetic_node_exec_id = (
f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}"
)
# Create unified execution context with all required fields
execution_context = ExecutionContext(
# Execution identity
user_id=user_id,
graph_id=synthetic_graph_id,
graph_exec_id=synthetic_graph_exec_id,
graph_version=1, # Versions are 1-indexed
node_id=synthetic_node_id,
node_exec_id=synthetic_node_exec_id,
# Workspace with session scoping
workspace_id=workspace.id,
session_id=session.session_id,
)
# Prepare kwargs for block execution
# Keep individual kwargs for backwards compatibility with existing blocks
exec_kwargs: dict[str, Any] = { exec_kwargs: dict[str, Any] = {
"user_id": user_id, "user_id": user_id,
"execution_context": ExecutionContext(), "execution_context": execution_context,
# Legacy: individual kwargs for blocks not yet using execution_context
"workspace_id": workspace.id,
"graph_exec_id": synthetic_graph_exec_id,
"node_exec_id": synthetic_node_exec_id,
"node_id": synthetic_node_id,
"graph_version": 1, # Versions are 1-indexed
"graph_id": synthetic_graph_id,
} }
for field_name, cred_meta in matched_credentials.items(): for field_name, cred_meta in matched_credentials.items():

View File

@@ -8,7 +8,7 @@ from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db from backend.api.features.store import db as store_db
from backend.data import graph as graph_db from backend.data import graph as graph_db
from backend.data.graph import GraphModel from backend.data.graph import GraphModel
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput from backend.data.model import Credentials, CredentialsFieldInfo, CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import NotFoundError from backend.util.exceptions import NotFoundError
@@ -266,13 +266,14 @@ async def match_user_credentials_to_graph(
credential_requirements, credential_requirements,
_node_fields, _node_fields,
) in aggregated_creds.items(): ) in aggregated_creds.items():
# Find first matching credential by provider and type # Find first matching credential by provider, type, and scopes
matching_cred = next( matching_cred = next(
( (
cred cred
for cred in available_creds for cred in available_creds
if cred.provider in credential_requirements.provider if cred.provider in credential_requirements.provider
and cred.type in credential_requirements.supported_types and cred.type in credential_requirements.supported_types
and _credential_has_required_scopes(cred, credential_requirements)
), ),
None, None,
) )
@@ -296,10 +297,17 @@ async def match_user_credentials_to_graph(
f"{credential_field_name} (validation failed: {e})" f"{credential_field_name} (validation failed: {e})"
) )
else: else:
# Build a helpful error message including scope requirements
error_parts = [
f"provider in {list(credential_requirements.provider)}",
f"type in {list(credential_requirements.supported_types)}",
]
if credential_requirements.required_scopes:
error_parts.append(
f"scopes including {list(credential_requirements.required_scopes)}"
)
missing_creds.append( missing_creds.append(
f"{credential_field_name} " f"{credential_field_name} (requires {', '.join(error_parts)})"
f"(requires provider in {list(credential_requirements.provider)}, "
f"type in {list(credential_requirements.supported_types)})"
) )
logger.info( logger.info(
@@ -309,6 +317,28 @@ async def match_user_credentials_to_graph(
return graph_credentials_inputs, missing_creds return graph_credentials_inputs, missing_creds
def _credential_has_required_scopes(
credential: Credentials,
requirements: CredentialsFieldInfo,
) -> bool:
"""
Check if a credential has all the scopes required by the block.
For OAuth2 credentials, verifies that the credential's scopes are a superset
of the required scopes. For other credential types, returns True (no scope check).
"""
# Only OAuth2 credentials have scopes to check
if credential.type != "oauth2":
return True
# If no scopes are required, any credential matches
if not requirements.required_scopes:
return True
# Check that credential scopes are a superset of required scopes
return set(credential.scopes).issuperset(requirements.required_scopes)
async def check_user_has_required_credentials( async def check_user_has_required_credentials(
user_id: str, user_id: str,
required_credentials: list[CredentialsMetaInput], required_credentials: list[CredentialsMetaInput],

View File

@@ -0,0 +1,620 @@
"""CoPilot tools for workspace file operations."""
import base64
import logging
from typing import Any, Optional
from pydantic import BaseModel
from backend.api.features.chat.model import ChatSession
from backend.data.workspace import get_or_create_workspace
from backend.util.settings import Config
from backend.util.virus_scanner import scan_content_safe
from backend.util.workspace import WorkspaceManager
from .base import BaseTool
from .models import ErrorResponse, ResponseType, ToolResponseBase
logger = logging.getLogger(__name__)
class WorkspaceFileInfoData(BaseModel):
"""Data model for workspace file information (not a response itself)."""
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
class WorkspaceFileListResponse(ToolResponseBase):
"""Response containing list of workspace files."""
type: ResponseType = ResponseType.WORKSPACE_FILE_LIST
files: list[WorkspaceFileInfoData]
total_count: int
class WorkspaceFileContentResponse(ToolResponseBase):
"""Response containing workspace file content (legacy, for small text files)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_CONTENT
file_id: str
name: str
path: str
mime_type: str
content_base64: str
class WorkspaceFileMetadataResponse(ToolResponseBase):
"""Response containing workspace file metadata and download URL (prevents context bloat)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_METADATA
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
download_url: str
preview: str | None = None # First 500 chars for text files
class WorkspaceWriteResponse(ToolResponseBase):
"""Response after writing a file to workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_WRITTEN
file_id: str
name: str
path: str
size_bytes: int
class WorkspaceDeleteResponse(ToolResponseBase):
"""Response after deleting a file from workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_DELETED
file_id: str
success: bool
class ListWorkspaceFilesTool(BaseTool):
"""Tool for listing files in user's workspace."""
@property
def name(self) -> str:
return "list_workspace_files"
@property
def description(self) -> str:
return (
"List files in the user's workspace. "
"Returns file names, paths, sizes, and metadata. "
"Optionally filter by path prefix."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path_prefix": {
"type": "string",
"description": (
"Optional path prefix to filter files "
"(e.g., '/documents/' to list only files in documents folder). "
"By default, only files from the current session are listed."
),
},
"limit": {
"type": "integer",
"description": "Maximum number of files to return (default 50, max 100)",
"minimum": 1,
"maximum": 100,
},
"include_all_sessions": {
"type": "boolean",
"description": (
"If true, list files from all sessions. "
"Default is false (only current session's files)."
),
},
},
"required": [],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
path_prefix: Optional[str] = kwargs.get("path_prefix")
limit = min(kwargs.get("limit", 50), 100)
include_all_sessions: bool = kwargs.get("include_all_sessions", False)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
files = await manager.list_files(
path=path_prefix,
limit=limit,
include_all_sessions=include_all_sessions,
)
total = await manager.get_file_count(
path=path_prefix,
include_all_sessions=include_all_sessions,
)
file_infos = [
WorkspaceFileInfoData(
file_id=f.id,
name=f.name,
path=f.path,
mime_type=f.mimeType,
size_bytes=f.sizeBytes,
)
for f in files
]
scope_msg = "all sessions" if include_all_sessions else "current session"
return WorkspaceFileListResponse(
files=file_infos,
total_count=total,
message=f"Found {len(files)} files in workspace ({scope_msg})",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error listing workspace files: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to list workspace files: {str(e)}",
error=str(e),
session_id=session_id,
)
class ReadWorkspaceFileTool(BaseTool):
"""Tool for reading file content from workspace."""
# Size threshold for returning full content vs metadata+URL
# Files larger than this return metadata with download URL to prevent context bloat
MAX_INLINE_SIZE_BYTES = 32 * 1024 # 32KB
# Preview size for text files
PREVIEW_SIZE = 500
@property
def name(self) -> str:
return "read_workspace_file"
@property
def description(self) -> str:
return (
"Read a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"For small text files, returns content directly. "
"For large or binary files, returns metadata and a download URL. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
"force_download_url": {
"type": "boolean",
"description": (
"If true, always return metadata+URL instead of inline content. "
"Default is false (auto-selects based on file size/type)."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
def _is_text_mime_type(self, mime_type: str) -> bool:
"""Check if the MIME type is a text-based type."""
text_types = [
"text/",
"application/json",
"application/xml",
"application/javascript",
"application/x-python",
"application/x-sh",
]
return any(mime_type.startswith(t) for t in text_types)
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
force_download_url: bool = kwargs.get("force_download_url", False)
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Get file info
if file_id:
file_info = await manager.get_file_info(file_id)
if file_info is None:
return ErrorResponse(
message=f"File not found: {file_id}",
session_id=session_id,
)
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
# Decide whether to return inline content or metadata+URL
is_small_file = file_info.sizeBytes <= self.MAX_INLINE_SIZE_BYTES
is_text_file = self._is_text_mime_type(file_info.mimeType)
# Return inline content for small text files (unless force_download_url)
if is_small_file and is_text_file and not force_download_url:
content = await manager.read_file_by_id(target_file_id)
content_b64 = base64.b64encode(content).decode("utf-8")
return WorkspaceFileContentResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
content_base64=content_b64,
message=f"Successfully read file: {file_info.name}",
session_id=session_id,
)
# Return metadata + workspace:// reference for large or binary files
# This prevents context bloat (100KB file = ~133KB as base64)
# Use workspace:// format so frontend urlTransform can add proxy prefix
download_url = f"workspace://{target_file_id}"
# Generate preview for text files
preview: str | None = None
if is_text_file:
try:
content = await manager.read_file_by_id(target_file_id)
preview_text = content[: self.PREVIEW_SIZE].decode(
"utf-8", errors="replace"
)
if len(content) > self.PREVIEW_SIZE:
preview_text += "..."
preview = preview_text
except Exception:
pass # Preview is optional
return WorkspaceFileMetadataResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
size_bytes=file_info.sizeBytes,
download_url=download_url,
preview=preview,
message=f"File: {file_info.name} ({file_info.sizeBytes} bytes). Use download_url to retrieve content.",
session_id=session_id,
)
except FileNotFoundError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error reading workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to read workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class WriteWorkspaceFileTool(BaseTool):
"""Tool for writing files to workspace."""
@property
def name(self) -> str:
return "write_workspace_file"
@property
def description(self) -> str:
return (
"Write or create a file in the user's workspace. "
"Provide the content as a base64-encoded string. "
f"Maximum file size is {Config().max_file_size_mb}MB. "
"Files are saved to the current session's folder by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"filename": {
"type": "string",
"description": "Name for the file (e.g., 'report.pdf')",
},
"content_base64": {
"type": "string",
"description": "Base64-encoded file content",
},
"path": {
"type": "string",
"description": (
"Optional virtual path where to save the file "
"(e.g., '/documents/report.pdf'). "
"Defaults to '/{filename}'. Scoped to current session."
),
},
"mime_type": {
"type": "string",
"description": (
"Optional MIME type of the file. "
"Auto-detected from filename if not provided."
),
},
"overwrite": {
"type": "boolean",
"description": "Whether to overwrite if file exists at path (default: false)",
},
},
"required": ["filename", "content_base64"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
filename: str = kwargs.get("filename", "")
content_b64: str = kwargs.get("content_base64", "")
path: Optional[str] = kwargs.get("path")
mime_type: Optional[str] = kwargs.get("mime_type")
overwrite: bool = kwargs.get("overwrite", False)
if not filename:
return ErrorResponse(
message="Please provide a filename",
session_id=session_id,
)
if not content_b64:
return ErrorResponse(
message="Please provide content_base64",
session_id=session_id,
)
# Decode content
try:
content = base64.b64decode(content_b64)
except Exception:
return ErrorResponse(
message="Invalid base64-encoded content",
session_id=session_id,
)
# Check size
max_file_size = Config().max_file_size_mb * 1024 * 1024
if len(content) > max_file_size:
return ErrorResponse(
message=f"File too large. Maximum size is {Config().max_file_size_mb}MB",
session_id=session_id,
)
try:
# Virus scan
await scan_content_safe(content, filename=filename)
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
file_record = await manager.write_file(
content=content,
filename=filename,
path=path,
mime_type=mime_type,
overwrite=overwrite,
)
return WorkspaceWriteResponse(
file_id=file_record.id,
name=file_record.name,
path=file_record.path,
size_bytes=file_record.sizeBytes,
message=f"Successfully wrote file: {file_record.name}",
session_id=session_id,
)
except ValueError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error writing workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to write workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class DeleteWorkspaceFileTool(BaseTool):
"""Tool for deleting files from workspace."""
@property
def name(self) -> str:
return "delete_workspace_file"
@property
def description(self) -> str:
return (
"Delete a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Determine the file_id to delete
target_file_id: str
if file_id:
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
success = await manager.delete_file(target_file_id)
if not success:
return ErrorResponse(
message=f"File not found: {target_file_id}",
session_id=session_id,
)
return WorkspaceDeleteResponse(
file_id=target_file_id,
success=True,
message="File deleted successfully",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error deleting workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to delete workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)

View File

@@ -77,21 +77,32 @@ async def list_library_agents(
} }
# Build search filter if applicable # Build search filter if applicable
# Split into words and match ANY word in name or description
if search_term: if search_term:
where_clause["OR"] = [ words = [w.strip() for w in search_term.split() if len(w.strip()) >= 3]
{ if words:
"AgentGraph": { or_conditions: list[prisma.types.LibraryAgentWhereInput] = []
"is": {"name": {"contains": search_term, "mode": "insensitive"}} for word in words:
} or_conditions.append(
}, {
{ "AgentGraph": {
"AgentGraph": { "is": {"name": {"contains": word, "mode": "insensitive"}}
"is": { }
"description": {"contains": search_term, "mode": "insensitive"}
} }
} )
}, or_conditions.append(
] {
"AgentGraph": {
"is": {
"description": {
"contains": word,
"mode": "insensitive",
}
}
}
}
)
where_clause["OR"] = or_conditions
# Determine sorting # Determine sorting
order_by: prisma.types.LibraryAgentOrderByInput | None = None order_by: prisma.types.LibraryAgentOrderByInput | None = None

View File

@@ -0,0 +1 @@
# Workspace API feature module

View File

@@ -0,0 +1,122 @@
"""
Workspace API routes for managing user file storage.
"""
import logging
import re
from typing import Annotated
from urllib.parse import quote
import fastapi
from autogpt_libs.auth.dependencies import get_user_id, requires_user
from fastapi.responses import Response
from backend.data.workspace import get_workspace, get_workspace_file
from backend.util.workspace_storage import get_workspace_storage
def _sanitize_filename_for_header(filename: str) -> str:
"""
Sanitize filename for Content-Disposition header to prevent header injection.
Removes/replaces characters that could break the header or inject new headers.
Uses RFC5987 encoding for non-ASCII characters.
"""
# Remove CR, LF, and null bytes (header injection prevention)
sanitized = re.sub(r"[\r\n\x00]", "", filename)
# Escape quotes
sanitized = sanitized.replace('"', '\\"')
# For non-ASCII, use RFC5987 filename* parameter
# Check if filename has non-ASCII characters
try:
sanitized.encode("ascii")
return f'attachment; filename="{sanitized}"'
except UnicodeEncodeError:
# Use RFC5987 encoding for UTF-8 filenames
encoded = quote(sanitized, safe="")
return f"attachment; filename*=UTF-8''{encoded}"
logger = logging.getLogger(__name__)
router = fastapi.APIRouter(
dependencies=[fastapi.Security(requires_user)],
)
def _create_streaming_response(content: bytes, file) -> Response:
"""Create a streaming response for file content."""
return Response(
content=content,
media_type=file.mimeType,
headers={
"Content-Disposition": _sanitize_filename_for_header(file.name),
"Content-Length": str(len(content)),
},
)
async def _create_file_download_response(file) -> Response:
"""
Create a download response for a workspace file.
Handles both local storage (direct streaming) and GCS (signed URL redirect
with fallback to streaming).
"""
storage = await get_workspace_storage()
# For local storage, stream the file directly
if file.storagePath.startswith("local://"):
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
# For GCS, try to redirect to signed URL, fall back to streaming
try:
url = await storage.get_download_url(file.storagePath, expires_in=300)
# If we got back an API path (fallback), stream directly instead
if url.startswith("/api/"):
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
return fastapi.responses.RedirectResponse(url=url, status_code=302)
except Exception as e:
# Log the signed URL failure with context
logger.error(
f"Failed to get signed URL for file {file.id} "
f"(storagePath={file.storagePath}): {e}",
exc_info=True,
)
# Fall back to streaming directly from GCS
try:
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
except Exception as fallback_error:
logger.error(
f"Fallback streaming also failed for file {file.id} "
f"(storagePath={file.storagePath}): {fallback_error}",
exc_info=True,
)
raise
@router.get(
"/files/{file_id}/download",
summary="Download file by ID",
)
async def download_file(
user_id: Annotated[str, fastapi.Security(get_user_id)],
file_id: str,
) -> Response:
"""
Download a file by its ID.
Returns the file content directly or redirects to a signed URL for GCS.
"""
workspace = await get_workspace(user_id)
if workspace is None:
raise fastapi.HTTPException(status_code=404, detail="Workspace not found")
file = await get_workspace_file(file_id, workspace.id)
if file is None:
raise fastapi.HTTPException(status_code=404, detail="File not found")
return await _create_file_download_response(file)

View File

@@ -32,6 +32,7 @@ import backend.api.features.postmark.postmark
import backend.api.features.store.model import backend.api.features.store.model
import backend.api.features.store.routes import backend.api.features.store.routes
import backend.api.features.v1 import backend.api.features.v1
import backend.api.features.workspace.routes as workspace_routes
import backend.data.block import backend.data.block
import backend.data.db import backend.data.db
import backend.data.graph import backend.data.graph
@@ -52,6 +53,7 @@ from backend.util.exceptions import (
) )
from backend.util.feature_flag import initialize_launchdarkly, shutdown_launchdarkly from backend.util.feature_flag import initialize_launchdarkly, shutdown_launchdarkly
from backend.util.service import UnhealthyServiceError from backend.util.service import UnhealthyServiceError
from backend.util.workspace_storage import shutdown_workspace_storage
from .external.fastapi_app import external_api from .external.fastapi_app import external_api
from .features.analytics import router as analytics_router from .features.analytics import router as analytics_router
@@ -124,6 +126,11 @@ async def lifespan_context(app: fastapi.FastAPI):
except Exception as e: except Exception as e:
logger.warning(f"Error shutting down cloud storage handler: {e}") logger.warning(f"Error shutting down cloud storage handler: {e}")
try:
await shutdown_workspace_storage()
except Exception as e:
logger.warning(f"Error shutting down workspace storage: {e}")
await backend.data.db.disconnect() await backend.data.db.disconnect()
@@ -315,6 +322,11 @@ app.include_router(
tags=["v2", "chat"], tags=["v2", "chat"],
prefix="/api/chat", prefix="/api/chat",
) )
app.include_router(
workspace_routes.router,
tags=["workspace"],
prefix="/api/workspace",
)
app.include_router( app.include_router(
backend.api.features.oauth.router, backend.api.features.oauth.router,
tags=["oauth"], tags=["oauth"],

View File

@@ -13,6 +13,7 @@ from backend.data.block import (
BlockSchemaInput, BlockSchemaInput,
BlockSchemaOutput, BlockSchemaOutput,
) )
from backend.data.execution import ExecutionContext
from backend.data.model import ( from backend.data.model import (
APIKeyCredentials, APIKeyCredentials,
CredentialsField, CredentialsField,
@@ -117,11 +118,13 @@ class AIImageCustomizerBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT, "credentials": TEST_CREDENTIALS_INPUT,
}, },
test_output=[ test_output=[
("image_url", "https://replicate.delivery/generated-image.jpg"), # Output will be a workspace ref or data URI depending on context
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
], ],
test_mock={ test_mock={
# Use data URI to avoid HTTP requests during tests
"run_model": lambda *args, **kwargs: MediaFileType( "run_model": lambda *args, **kwargs: MediaFileType(
"https://replicate.delivery/generated-image.jpg" ""
), ),
}, },
test_credentials=TEST_CREDENTIALS, test_credentials=TEST_CREDENTIALS,
@@ -132,8 +135,7 @@ class AIImageCustomizerBlock(Block):
input_data: Input, input_data: Input,
*, *,
credentials: APIKeyCredentials, credentials: APIKeyCredentials,
graph_exec_id: str, execution_context: ExecutionContext,
user_id: str,
**kwargs, **kwargs,
) -> BlockOutput: ) -> BlockOutput:
try: try:
@@ -141,10 +143,9 @@ class AIImageCustomizerBlock(Block):
processed_images = await asyncio.gather( processed_images = await asyncio.gather(
*( *(
store_media_file( store_media_file(
graph_exec_id=graph_exec_id,
file=img, file=img,
user_id=user_id, execution_context=execution_context,
return_content=True, return_format="for_external_api", # Get content for Replicate API
) )
for img in input_data.images for img in input_data.images
) )
@@ -158,7 +159,14 @@ class AIImageCustomizerBlock(Block):
aspect_ratio=input_data.aspect_ratio.value, aspect_ratio=input_data.aspect_ratio.value,
output_format=input_data.output_format.value, output_format=input_data.output_format.value,
) )
yield "image_url", result
# Store the generated image to the user's workspace for persistence
stored_url = await store_media_file(
file=result,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
except Exception as e: except Exception as e:
yield "error", str(e) yield "error", str(e)

View File

@@ -6,6 +6,7 @@ from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput from replicate.helpers import FileOutput
from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput
from backend.data.execution import ExecutionContext
from backend.data.model import ( from backend.data.model import (
APIKeyCredentials, APIKeyCredentials,
CredentialsField, CredentialsField,
@@ -13,6 +14,8 @@ from backend.data.model import (
SchemaField, SchemaField,
) )
from backend.integrations.providers import ProviderName from backend.integrations.providers import ProviderName
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
class ImageSize(str, Enum): class ImageSize(str, Enum):
@@ -165,11 +168,13 @@ class AIImageGeneratorBlock(Block):
test_output=[ test_output=[
( (
"image_url", "image_url",
"https://replicate.delivery/generated-image.webp", # Test output is a data URI since we now store images
lambda x: x.startswith(""
}, },
) )
@@ -318,11 +323,24 @@ class AIImageGeneratorBlock(Block):
style_text = style_map.get(style, "") style_text = style_map.get(style, "")
return f"{style_text} of" if style_text else "" return f"{style_text} of" if style_text else ""
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs): async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
try: try:
url = await self.generate_image(input_data, credentials) url = await self.generate_image(input_data, credentials)
if url: if url:
yield "image_url", url # Store the generated image to the user's workspace/execution folder
stored_url = await store_media_file(
file=MediaFileType(url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
else: else:
yield "error", "Image generation returned an empty result." yield "error", "Image generation returned an empty result."
except Exception as e: except Exception as e:

View File

@@ -13,6 +13,7 @@ from backend.data.block import (
BlockSchemaInput, BlockSchemaInput,
BlockSchemaOutput, BlockSchemaOutput,
) )
from backend.data.execution import ExecutionContext
from backend.data.model import ( from backend.data.model import (
APIKeyCredentials, APIKeyCredentials,
CredentialsField, CredentialsField,
@@ -21,7 +22,9 @@ from backend.data.model import (
) )
from backend.integrations.providers import ProviderName from backend.integrations.providers import ProviderName
from backend.util.exceptions import BlockExecutionError from backend.util.exceptions import BlockExecutionError
from backend.util.file import store_media_file
from backend.util.request import Requests from backend.util.request import Requests
from backend.util.type import MediaFileType
TEST_CREDENTIALS = APIKeyCredentials( TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef", id="01234567-89ab-cdef-0123-456789abcdef",
@@ -271,7 +274,10 @@ class AIShortformVideoCreatorBlock(Block):
"voice": Voice.LILY, "voice": Voice.LILY,
"video_style": VisualMediaType.STOCK_VIDEOS, "video_style": VisualMediaType.STOCK_VIDEOS,
}, },
test_output=("video_url", "https://example.com/video.mp4"), test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_mock={ test_mock={
"create_webhook": lambda *args, **kwargs: ( "create_webhook": lambda *args, **kwargs: (
"test_uuid", "test_uuid",
@@ -280,15 +286,21 @@ class AIShortformVideoCreatorBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"}, "create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: { "check_video_status": lambda *args, **kwargs: {
"status": "ready", "status": "ready",
"videoUrl": "https://example.com/video.mp4", "videoUrl": "data:video/mp4;base64,AAAA",
}, },
"wait_for_video": lambda *args, **kwargs: "https://example.com/video.mp4", # Use data URI to avoid HTTP requests during tests
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
}, },
test_credentials=TEST_CREDENTIALS, test_credentials=TEST_CREDENTIALS,
) )
async def run( async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput: ) -> BlockOutput:
# Create a new Webhook.site URL # Create a new Webhook.site URL
webhook_token, webhook_url = await self.create_webhook() webhook_token, webhook_url = await self.create_webhook()
@@ -340,7 +352,13 @@ class AIShortformVideoCreatorBlock(Block):
) )
video_url = await self.wait_for_video(credentials.api_key, pid) video_url = await self.wait_for_video(credentials.api_key, pid)
logger.debug(f"Video ready: {video_url}") logger.debug(f"Video ready: {video_url}")
yield "video_url", video_url # Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
class AIAdMakerVideoCreatorBlock(Block): class AIAdMakerVideoCreatorBlock(Block):
@@ -447,7 +465,10 @@ class AIAdMakerVideoCreatorBlock(Block):
"https://cdn.revid.ai/uploads/1747076315114-image.png", "https://cdn.revid.ai/uploads/1747076315114-image.png",
], ],
}, },
test_output=("video_url", "https://example.com/ad.mp4"), test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_mock={ test_mock={
"create_webhook": lambda *args, **kwargs: ( "create_webhook": lambda *args, **kwargs: (
"test_uuid", "test_uuid",
@@ -456,14 +477,21 @@ class AIAdMakerVideoCreatorBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"}, "create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: { "check_video_status": lambda *args, **kwargs: {
"status": "ready", "status": "ready",
"videoUrl": "https://example.com/ad.mp4", "videoUrl": "data:video/mp4;base64,AAAA",
}, },
"wait_for_video": lambda *args, **kwargs: "https://example.com/ad.mp4", "wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
}, },
test_credentials=TEST_CREDENTIALS, test_credentials=TEST_CREDENTIALS,
) )
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs): async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
webhook_token, webhook_url = await self.create_webhook() webhook_token, webhook_url = await self.create_webhook()
payload = { payload = {
@@ -531,7 +559,13 @@ class AIAdMakerVideoCreatorBlock(Block):
raise RuntimeError("Failed to create video: No project ID returned") raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid) video_url = await self.wait_for_video(credentials.api_key, pid)
yield "video_url", video_url # Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
class AIScreenshotToVideoAdBlock(Block): class AIScreenshotToVideoAdBlock(Block):
@@ -626,7 +660,10 @@ class AIScreenshotToVideoAdBlock(Block):
"script": "Amazing numbers!", "script": "Amazing numbers!",
"screenshot_url": "https://cdn.revid.ai/uploads/1747080376028-image.png", "screenshot_url": "https://cdn.revid.ai/uploads/1747080376028-image.png",
}, },
test_output=("video_url", "https://example.com/screenshot.mp4"), test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_mock={ test_mock={
"create_webhook": lambda *args, **kwargs: ( "create_webhook": lambda *args, **kwargs: (
"test_uuid", "test_uuid",
@@ -635,14 +672,21 @@ class AIScreenshotToVideoAdBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"}, "create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: { "check_video_status": lambda *args, **kwargs: {
"status": "ready", "status": "ready",
"videoUrl": "https://example.com/screenshot.mp4", "videoUrl": "data:video/mp4;base64,AAAA",
}, },
"wait_for_video": lambda *args, **kwargs: "https://example.com/screenshot.mp4", "wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
}, },
test_credentials=TEST_CREDENTIALS, test_credentials=TEST_CREDENTIALS,
) )
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs): async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
webhook_token, webhook_url = await self.create_webhook() webhook_token, webhook_url = await self.create_webhook()
payload = { payload = {
@@ -710,4 +754,10 @@ class AIScreenshotToVideoAdBlock(Block):
raise RuntimeError("Failed to create video: No project ID returned") raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid) video_url = await self.wait_for_video(credentials.api_key, pid)
yield "video_url", video_url # Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url

View File

@@ -6,6 +6,7 @@ if TYPE_CHECKING:
from pydantic import SecretStr from pydantic import SecretStr
from backend.data.execution import ExecutionContext
from backend.sdk import ( from backend.sdk import (
APIKeyCredentials, APIKeyCredentials,
Block, Block,
@@ -17,6 +18,8 @@ from backend.sdk import (
Requests, Requests,
SchemaField, SchemaField,
) )
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
from ._config import bannerbear from ._config import bannerbear
@@ -135,15 +138,17 @@ class BannerbearTextOverlayBlock(Block):
}, },
test_output=[ test_output=[
("success", True), ("success", True),
("image_url", "https://cdn.bannerbear.com/test-image.jpg"), # Output will be a workspace ref or data URI depending on context
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
("uid", "test-uid-123"), ("uid", "test-uid-123"),
("status", "completed"), ("status", "completed"),
], ],
test_mock={ test_mock={
# Use data URI to avoid HTTP requests during tests
"_make_api_request": lambda *args, **kwargs: { "_make_api_request": lambda *args, **kwargs: {
"uid": "test-uid-123", "uid": "test-uid-123",
"status": "completed", "status": "completed",
"image_url": "https://cdn.bannerbear.com/test-image.jpg", "image_url": "",
} }
}, },
test_credentials=TEST_CREDENTIALS, test_credentials=TEST_CREDENTIALS,
@@ -177,7 +182,12 @@ class BannerbearTextOverlayBlock(Block):
raise Exception(error_msg) raise Exception(error_msg)
async def run( async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput: ) -> BlockOutput:
# Build the modifications array # Build the modifications array
modifications = [] modifications = []
@@ -234,6 +244,18 @@ class BannerbearTextOverlayBlock(Block):
# Synchronous request - image should be ready # Synchronous request - image should be ready
yield "success", True yield "success", True
yield "image_url", data.get("image_url", "")
# Store the generated image to workspace for persistence
image_url = data.get("image_url", "")
if image_url:
stored_url = await store_media_file(
file=MediaFileType(image_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
else:
yield "image_url", ""
yield "uid", data.get("uid", "") yield "uid", data.get("uid", "")
yield "status", data.get("status", "completed") yield "status", data.get("status", "completed")

View File

@@ -9,6 +9,7 @@ from backend.data.block import (
BlockSchemaOutput, BlockSchemaOutput,
BlockType, BlockType,
) )
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField from backend.data.model import SchemaField
from backend.util.file import store_media_file from backend.util.file import store_media_file
from backend.util.type import MediaFileType, convert from backend.util.type import MediaFileType, convert
@@ -17,10 +18,10 @@ from backend.util.type import MediaFileType, convert
class FileStoreBlock(Block): class FileStoreBlock(Block):
class Input(BlockSchemaInput): class Input(BlockSchemaInput):
file_in: MediaFileType = SchemaField( file_in: MediaFileType = SchemaField(
description="The file to store in the temporary directory, it can be a URL, data URI, or local path." description="The file to download and store. Can be a URL (https://...), data URI, or local path."
) )
base_64: bool = SchemaField( base_64: bool = SchemaField(
description="Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks).", description="Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks).",
default=False, default=False,
advanced=True, advanced=True,
title="Produce Base64 Output", title="Produce Base64 Output",
@@ -28,13 +29,18 @@ class FileStoreBlock(Block):
class Output(BlockSchemaOutput): class Output(BlockSchemaOutput):
file_out: MediaFileType = SchemaField( file_out: MediaFileType = SchemaField(
description="The relative path to the stored file in the temporary directory." description="Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks."
) )
def __init__(self): def __init__(self):
super().__init__( super().__init__(
id="cbb50872-625b-42f0-8203-a2ae78242d8a", id="cbb50872-625b-42f0-8203-a2ae78242d8a",
description="Stores the input file in the temporary directory.", description=(
"Downloads and stores a file from a URL, data URI, or local path. "
"Use this to fetch images, documents, or other files for processing. "
"In CoPilot: saves to workspace (use list_workspace_files to see it). "
"In graphs: outputs a data URI to pass to other blocks."
),
categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA}, categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA},
input_schema=FileStoreBlock.Input, input_schema=FileStoreBlock.Input,
output_schema=FileStoreBlock.Output, output_schema=FileStoreBlock.Output,
@@ -45,15 +51,18 @@ class FileStoreBlock(Block):
self, self,
input_data: Input, input_data: Input,
*, *,
graph_exec_id: str, execution_context: ExecutionContext,
user_id: str,
**kwargs, **kwargs,
) -> BlockOutput: ) -> BlockOutput:
# Determine return format based on user preference
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
yield "file_out", await store_media_file( yield "file_out", await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.file_in, file=input_data.file_in,
user_id=user_id, execution_context=execution_context,
return_content=input_data.base_64, return_format=return_format,
) )

View File

@@ -15,6 +15,7 @@ from backend.data.block import (
BlockSchemaInput, BlockSchemaInput,
BlockSchemaOutput, BlockSchemaOutput,
) )
from backend.data.execution import ExecutionContext
from backend.data.model import APIKeyCredentials, SchemaField from backend.data.model import APIKeyCredentials, SchemaField
from backend.util.file import store_media_file from backend.util.file import store_media_file
from backend.util.request import Requests from backend.util.request import Requests
@@ -666,8 +667,7 @@ class SendDiscordFileBlock(Block):
file: MediaFileType, file: MediaFileType,
filename: str, filename: str,
message_content: str, message_content: str,
graph_exec_id: str, execution_context: ExecutionContext,
user_id: str,
) -> dict: ) -> dict:
intents = discord.Intents.default() intents = discord.Intents.default()
intents.guilds = True intents.guilds = True
@@ -731,10 +731,9 @@ class SendDiscordFileBlock(Block):
# Local file path - read from stored media file # Local file path - read from stored media file
# This would be a path from a previous block's output # This would be a path from a previous block's output
stored_file = await store_media_file( stored_file = await store_media_file(
graph_exec_id=graph_exec_id,
file=file, file=file,
user_id=user_id, execution_context=execution_context,
return_content=True, # Get as data URI return_format="for_external_api", # Get content to send to Discord
) )
# Now process as data URI # Now process as data URI
header, encoded = stored_file.split(",", 1) header, encoded = stored_file.split(",", 1)
@@ -781,8 +780,7 @@ class SendDiscordFileBlock(Block):
input_data: Input, input_data: Input,
*, *,
credentials: APIKeyCredentials, credentials: APIKeyCredentials,
graph_exec_id: str, execution_context: ExecutionContext,
user_id: str,
**kwargs, **kwargs,
) -> BlockOutput: ) -> BlockOutput:
try: try:
@@ -793,8 +791,7 @@ class SendDiscordFileBlock(Block):
file=input_data.file, file=input_data.file,
filename=input_data.filename, filename=input_data.filename,
message_content=input_data.message_content, message_content=input_data.message_content,
graph_exec_id=graph_exec_id, execution_context=execution_context,
user_id=user_id,
) )
yield "status", result.get("status", "Unknown error") yield "status", result.get("status", "Unknown error")

View File

@@ -17,8 +17,11 @@ from backend.data.block import (
BlockSchemaInput, BlockSchemaInput,
BlockSchemaOutput, BlockSchemaOutput,
) )
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.request import ClientResponseError, Requests from backend.util.request import ClientResponseError, Requests
from backend.util.type import MediaFileType
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -64,9 +67,13 @@ class AIVideoGeneratorBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT, "credentials": TEST_CREDENTIALS_INPUT,
}, },
test_credentials=TEST_CREDENTIALS, test_credentials=TEST_CREDENTIALS,
test_output=[("video_url", "https://fal.media/files/example/video.mp4")], test_output=[
# Output will be a workspace ref or data URI depending on context
("video_url", lambda x: x.startswith(("workspace://", "data:"))),
],
test_mock={ test_mock={
"generate_video": lambda *args, **kwargs: "https://fal.media/files/example/video.mp4" # Use data URI to avoid HTTP requests during tests
"generate_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA"
}, },
) )
@@ -208,11 +215,22 @@ class AIVideoGeneratorBlock(Block):
raise RuntimeError(f"API request failed: {str(e)}") raise RuntimeError(f"API request failed: {str(e)}")
async def run( async def run(
self, input_data: Input, *, credentials: FalCredentials, **kwargs self,
input_data: Input,
*,
credentials: FalCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput: ) -> BlockOutput:
try: try:
video_url = await self.generate_video(input_data, credentials) video_url = await self.generate_video(input_data, credentials)
yield "video_url", video_url # Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
except Exception as e: except Exception as e:
error_message = str(e) error_message = str(e)
yield "error", error_message yield "error", error_message

View File

@@ -12,6 +12,7 @@ from backend.data.block import (
BlockSchemaInput, BlockSchemaInput,
BlockSchemaOutput, BlockSchemaOutput,
) )
from backend.data.execution import ExecutionContext
from backend.data.model import ( from backend.data.model import (
APIKeyCredentials, APIKeyCredentials,
CredentialsField, CredentialsField,
@@ -121,10 +122,12 @@ class AIImageEditorBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT, "credentials": TEST_CREDENTIALS_INPUT,
}, },
test_output=[ test_output=[
("output_image", "https://replicate.com/output/edited-image.png"), # Output will be a workspace ref or data URI depending on context
("output_image", lambda x: x.startswith(("workspace://", "data:"))),
], ],
test_mock={ test_mock={
"run_model": lambda *args, **kwargs: "https://replicate.com/output/edited-image.png", # Use data URI to avoid HTTP requests during tests
"run_model": lambda *args, **kwargs: "",
}, },
test_credentials=TEST_CREDENTIALS, test_credentials=TEST_CREDENTIALS,
) )
@@ -134,8 +137,7 @@ class AIImageEditorBlock(Block):
input_data: Input, input_data: Input,
*, *,
credentials: APIKeyCredentials, credentials: APIKeyCredentials,
graph_exec_id: str, execution_context: ExecutionContext,
user_id: str,
**kwargs, **kwargs,
) -> BlockOutput: ) -> BlockOutput:
result = await self.run_model( result = await self.run_model(
@@ -144,20 +146,25 @@ class AIImageEditorBlock(Block):
prompt=input_data.prompt, prompt=input_data.prompt,
input_image_b64=( input_image_b64=(
await store_media_file( await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.input_image, file=input_data.input_image,
user_id=user_id, execution_context=execution_context,
return_content=True, return_format="for_external_api", # Get content for Replicate API
) )
if input_data.input_image if input_data.input_image
else None else None
), ),
aspect_ratio=input_data.aspect_ratio.value, aspect_ratio=input_data.aspect_ratio.value,
seed=input_data.seed, seed=input_data.seed,
user_id=user_id, user_id=execution_context.user_id or "",
graph_exec_id=graph_exec_id, graph_exec_id=execution_context.graph_exec_id or "",
) )
yield "output_image", result # Store the generated image to the user's workspace for persistence
stored_url = await store_media_file(
file=result,
execution_context=execution_context,
return_format="for_block_output",
)
yield "output_image", stored_url
async def run_model( async def run_model(
self, self,

View File

@@ -21,6 +21,7 @@ from backend.data.block import (
BlockSchemaInput, BlockSchemaInput,
BlockSchemaOutput, BlockSchemaOutput,
) )
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
from backend.util.settings import Settings from backend.util.settings import Settings
@@ -95,8 +96,7 @@ def _make_mime_text(
async def create_mime_message( async def create_mime_message(
input_data, input_data,
graph_exec_id: str, execution_context: ExecutionContext,
user_id: str,
) -> str: ) -> str:
"""Create a MIME message with attachments and return base64-encoded raw message.""" """Create a MIME message with attachments and return base64-encoded raw message."""
@@ -117,12 +117,12 @@ async def create_mime_message(
if input_data.attachments: if input_data.attachments:
for attach in input_data.attachments: for attach in input_data.attachments:
local_path = await store_media_file( local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach, file=attach,
return_content=False, execution_context=execution_context,
return_format="for_local_processing",
) )
abs_path = get_exec_file_path(graph_exec_id, local_path) assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream") part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f: with open(abs_path, "rb") as f:
part.set_payload(f.read()) part.set_payload(f.read())
@@ -582,27 +582,25 @@ class GmailSendBlock(GmailBase):
input_data: Input, input_data: Input,
*, *,
credentials: GoogleCredentials, credentials: GoogleCredentials,
graph_exec_id: str, execution_context: ExecutionContext,
user_id: str,
**kwargs, **kwargs,
) -> BlockOutput: ) -> BlockOutput:
service = self._build_service(credentials, **kwargs) service = self._build_service(credentials, **kwargs)
result = await self._send_email( result = await self._send_email(
service, service,
input_data, input_data,
graph_exec_id, execution_context,
user_id,
) )
yield "result", result yield "result", result
async def _send_email( async def _send_email(
self, service, input_data: Input, graph_exec_id: str, user_id: str self, service, input_data: Input, execution_context: ExecutionContext
) -> dict: ) -> dict:
if not input_data.to or not input_data.subject or not input_data.body: if not input_data.to or not input_data.subject or not input_data.body:
raise ValueError( raise ValueError(
"At least one recipient, subject, and body are required for sending an email" "At least one recipient, subject, and body are required for sending an email"
) )
raw_message = await create_mime_message(input_data, graph_exec_id, user_id) raw_message = await create_mime_message(input_data, execution_context)
sent_message = await asyncio.to_thread( sent_message = await asyncio.to_thread(
lambda: service.users() lambda: service.users()
.messages() .messages()
@@ -692,30 +690,28 @@ class GmailCreateDraftBlock(GmailBase):
input_data: Input, input_data: Input,
*, *,
credentials: GoogleCredentials, credentials: GoogleCredentials,
graph_exec_id: str, execution_context: ExecutionContext,
user_id: str,
**kwargs, **kwargs,
) -> BlockOutput: ) -> BlockOutput:
service = self._build_service(credentials, **kwargs) service = self._build_service(credentials, **kwargs)
result = await self._create_draft( result = await self._create_draft(
service, service,
input_data, input_data,
graph_exec_id, execution_context,
user_id,
) )
yield "result", GmailDraftResult( yield "result", GmailDraftResult(
id=result["id"], message_id=result["message"]["id"], status="draft_created" id=result["id"], message_id=result["message"]["id"], status="draft_created"
) )
async def _create_draft( async def _create_draft(
self, service, input_data: Input, graph_exec_id: str, user_id: str self, service, input_data: Input, execution_context: ExecutionContext
) -> dict: ) -> dict:
if not input_data.to or not input_data.subject: if not input_data.to or not input_data.subject:
raise ValueError( raise ValueError(
"At least one recipient and subject are required for creating a draft" "At least one recipient and subject are required for creating a draft"
) )
raw_message = await create_mime_message(input_data, graph_exec_id, user_id) raw_message = await create_mime_message(input_data, execution_context)
draft = await asyncio.to_thread( draft = await asyncio.to_thread(
lambda: service.users() lambda: service.users()
.drafts() .drafts()
@@ -1100,7 +1096,7 @@ class GmailGetThreadBlock(GmailBase):
async def _build_reply_message( async def _build_reply_message(
service, input_data, graph_exec_id: str, user_id: str service, input_data, execution_context: ExecutionContext
) -> tuple[str, str]: ) -> tuple[str, str]:
""" """
Builds a reply MIME message for Gmail threads. Builds a reply MIME message for Gmail threads.
@@ -1190,12 +1186,12 @@ async def _build_reply_message(
# Handle attachments # Handle attachments
for attach in input_data.attachments: for attach in input_data.attachments:
local_path = await store_media_file( local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach, file=attach,
return_content=False, execution_context=execution_context,
return_format="for_local_processing",
) )
abs_path = get_exec_file_path(graph_exec_id, local_path) assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream") part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f: with open(abs_path, "rb") as f:
part.set_payload(f.read()) part.set_payload(f.read())
@@ -1311,16 +1307,14 @@ class GmailReplyBlock(GmailBase):
input_data: Input, input_data: Input,
*, *,
credentials: GoogleCredentials, credentials: GoogleCredentials,
graph_exec_id: str, execution_context: ExecutionContext,
user_id: str,
**kwargs, **kwargs,
) -> BlockOutput: ) -> BlockOutput:
service = self._build_service(credentials, **kwargs) service = self._build_service(credentials, **kwargs)
message = await self._reply( message = await self._reply(
service, service,
input_data, input_data,
graph_exec_id, execution_context,
user_id,
) )
yield "messageId", message["id"] yield "messageId", message["id"]
yield "threadId", message.get("threadId", input_data.threadId) yield "threadId", message.get("threadId", input_data.threadId)
@@ -1343,11 +1337,11 @@ class GmailReplyBlock(GmailBase):
yield "email", email yield "email", email
async def _reply( async def _reply(
self, service, input_data: Input, graph_exec_id: str, user_id: str self, service, input_data: Input, execution_context: ExecutionContext
) -> dict: ) -> dict:
# Build the reply message using the shared helper # Build the reply message using the shared helper
raw, thread_id = await _build_reply_message( raw, thread_id = await _build_reply_message(
service, input_data, graph_exec_id, user_id service, input_data, execution_context
) )
# Send the message # Send the message
@@ -1441,16 +1435,14 @@ class GmailDraftReplyBlock(GmailBase):
input_data: Input, input_data: Input,
*, *,
credentials: GoogleCredentials, credentials: GoogleCredentials,
graph_exec_id: str, execution_context: ExecutionContext,
user_id: str,
**kwargs, **kwargs,
) -> BlockOutput: ) -> BlockOutput:
service = self._build_service(credentials, **kwargs) service = self._build_service(credentials, **kwargs)
draft = await self._create_draft_reply( draft = await self._create_draft_reply(
service, service,
input_data, input_data,
graph_exec_id, execution_context,
user_id,
) )
yield "draftId", draft["id"] yield "draftId", draft["id"]
yield "messageId", draft["message"]["id"] yield "messageId", draft["message"]["id"]
@@ -1458,11 +1450,11 @@ class GmailDraftReplyBlock(GmailBase):
yield "status", "draft_created" yield "status", "draft_created"
async def _create_draft_reply( async def _create_draft_reply(
self, service, input_data: Input, graph_exec_id: str, user_id: str self, service, input_data: Input, execution_context: ExecutionContext
) -> dict: ) -> dict:
# Build the reply message using the shared helper # Build the reply message using the shared helper
raw, thread_id = await _build_reply_message( raw, thread_id = await _build_reply_message(
service, input_data, graph_exec_id, user_id service, input_data, execution_context
) )
# Create draft with proper thread association # Create draft with proper thread association
@@ -1629,23 +1621,21 @@ class GmailForwardBlock(GmailBase):
input_data: Input, input_data: Input,
*, *,
credentials: GoogleCredentials, credentials: GoogleCredentials,
graph_exec_id: str, execution_context: ExecutionContext,
user_id: str,
**kwargs, **kwargs,
) -> BlockOutput: ) -> BlockOutput:
service = self._build_service(credentials, **kwargs) service = self._build_service(credentials, **kwargs)
result = await self._forward_message( result = await self._forward_message(
service, service,
input_data, input_data,
graph_exec_id, execution_context,
user_id,
) )
yield "messageId", result["id"] yield "messageId", result["id"]
yield "threadId", result.get("threadId", "") yield "threadId", result.get("threadId", "")
yield "status", "forwarded" yield "status", "forwarded"
async def _forward_message( async def _forward_message(
self, service, input_data: Input, graph_exec_id: str, user_id: str self, service, input_data: Input, execution_context: ExecutionContext
) -> dict: ) -> dict:
if not input_data.to: if not input_data.to:
raise ValueError("At least one recipient is required for forwarding") raise ValueError("At least one recipient is required for forwarding")
@@ -1727,12 +1717,12 @@ To: {original_to}
# Add any additional attachments # Add any additional attachments
for attach in input_data.additionalAttachments: for attach in input_data.additionalAttachments:
local_path = await store_media_file( local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach, file=attach,
return_content=False, execution_context=execution_context,
return_format="for_local_processing",
) )
abs_path = get_exec_file_path(graph_exec_id, local_path) assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream") part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f: with open(abs_path, "rb") as f:
part.set_payload(f.read()) part.set_payload(f.read())

View File

@@ -15,6 +15,7 @@ from backend.data.block import (
BlockSchemaInput, BlockSchemaInput,
BlockSchemaOutput, BlockSchemaOutput,
) )
from backend.data.execution import ExecutionContext
from backend.data.model import ( from backend.data.model import (
CredentialsField, CredentialsField,
CredentialsMetaInput, CredentialsMetaInput,
@@ -116,10 +117,9 @@ class SendWebRequestBlock(Block):
@staticmethod @staticmethod
async def _prepare_files( async def _prepare_files(
graph_exec_id: str, execution_context: ExecutionContext,
files_name: str, files_name: str,
files: list[MediaFileType], files: list[MediaFileType],
user_id: str,
) -> list[tuple[str, tuple[str, BytesIO, str]]]: ) -> list[tuple[str, tuple[str, BytesIO, str]]]:
""" """
Prepare files for the request by storing them and reading their content. Prepare files for the request by storing them and reading their content.
@@ -127,11 +127,16 @@ class SendWebRequestBlock(Block):
(files_name, (filename, BytesIO, mime_type)) (files_name, (filename, BytesIO, mime_type))
""" """
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = [] files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
graph_exec_id = execution_context.graph_exec_id
if graph_exec_id is None:
raise ValueError("graph_exec_id is required for file operations")
for media in files: for media in files:
# Normalise to a list so we can repeat the same key # Normalise to a list so we can repeat the same key
rel_path = await store_media_file( rel_path = await store_media_file(
graph_exec_id, media, user_id, return_content=False file=media,
execution_context=execution_context,
return_format="for_local_processing",
) )
abs_path = get_exec_file_path(graph_exec_id, rel_path) abs_path = get_exec_file_path(graph_exec_id, rel_path)
async with aiofiles.open(abs_path, "rb") as f: async with aiofiles.open(abs_path, "rb") as f:
@@ -143,7 +148,7 @@ class SendWebRequestBlock(Block):
return files_payload return files_payload
async def run( async def run(
self, input_data: Input, *, graph_exec_id: str, user_id: str, **kwargs self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
) -> BlockOutput: ) -> BlockOutput:
# ─── Parse/normalise body ──────────────────────────────────── # ─── Parse/normalise body ────────────────────────────────────
body = input_data.body body = input_data.body
@@ -174,7 +179,7 @@ class SendWebRequestBlock(Block):
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = [] files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
if use_files: if use_files:
files_payload = await self._prepare_files( files_payload = await self._prepare_files(
graph_exec_id, input_data.files_name, input_data.files, user_id execution_context, input_data.files_name, input_data.files
) )
# Enforce body format rules # Enforce body format rules
@@ -238,9 +243,8 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
self, self,
input_data: Input, input_data: Input,
*, *,
graph_exec_id: str, execution_context: ExecutionContext,
credentials: HostScopedCredentials, credentials: HostScopedCredentials,
user_id: str,
**kwargs, **kwargs,
) -> BlockOutput: ) -> BlockOutput:
# Create SendWebRequestBlock.Input from our input (removing credentials field) # Create SendWebRequestBlock.Input from our input (removing credentials field)
@@ -271,6 +275,6 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
# Use parent class run method # Use parent class run method
async for output_name, output_data in super().run( async for output_name, output_data in super().run(
base_input, graph_exec_id=graph_exec_id, user_id=user_id, **kwargs base_input, execution_context=execution_context, **kwargs
): ):
yield output_name, output_data yield output_name, output_data

View File

@@ -12,6 +12,7 @@ from backend.data.block import (
BlockSchemaInput, BlockSchemaInput,
BlockType, BlockType,
) )
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField from backend.data.model import SchemaField
from backend.util.file import store_media_file from backend.util.file import store_media_file
from backend.util.mock import MockObject from backend.util.mock import MockObject
@@ -462,18 +463,21 @@ class AgentFileInputBlock(AgentInputBlock):
self, self,
input_data: Input, input_data: Input,
*, *,
graph_exec_id: str, execution_context: ExecutionContext,
user_id: str,
**kwargs, **kwargs,
) -> BlockOutput: ) -> BlockOutput:
if not input_data.value: if not input_data.value:
return return
# Determine return format based on user preference
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
yield "result", await store_media_file( yield "result", await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.value, file=input_data.value,
user_id=user_id, execution_context=execution_context,
return_content=input_data.base_64, return_format=return_format,
) )

View File

@@ -115,7 +115,6 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101" CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929" CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001" CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307" CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models # AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo" AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
@@ -280,9 +279,6 @@ MODEL_METADATA = {
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata( LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2 "anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
), # claude-haiku-4-5-20251001 ), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
), # claude-3-7-sonnet-20250219
LlmModel.CLAUDE_3_HAIKU: ModelMetadata( LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1 "anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
), # claude-3-haiku-20240307 ), # claude-3-haiku-20240307

View File

@@ -1,6 +1,6 @@
import os import os
import tempfile import tempfile
from typing import Literal, Optional from typing import Optional
from moviepy.audio.io.AudioFileClip import AudioFileClip from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.fx.Loop import Loop from moviepy.video.fx.Loop import Loop
@@ -13,6 +13,7 @@ from backend.data.block import (
BlockSchemaInput, BlockSchemaInput,
BlockSchemaOutput, BlockSchemaOutput,
) )
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
@@ -46,18 +47,19 @@ class MediaDurationBlock(Block):
self, self,
input_data: Input, input_data: Input,
*, *,
graph_exec_id: str, execution_context: ExecutionContext,
user_id: str,
**kwargs, **kwargs,
) -> BlockOutput: ) -> BlockOutput:
# 1) Store the input media locally # 1) Store the input media locally
local_media_path = await store_media_file( local_media_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.media_in, file=input_data.media_in,
user_id=user_id, execution_context=execution_context,
return_content=False, return_format="for_local_processing",
)
assert execution_context.graph_exec_id is not None
media_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_media_path
) )
media_abspath = get_exec_file_path(graph_exec_id, local_media_path)
# 2) Load the clip # 2) Load the clip
if input_data.is_video: if input_data.is_video:
@@ -88,10 +90,6 @@ class LoopVideoBlock(Block):
default=None, default=None,
ge=1, ge=1,
) )
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="How to return the output video. Either a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput): class Output(BlockSchemaOutput):
video_out: str = SchemaField( video_out: str = SchemaField(
@@ -111,17 +109,19 @@ class LoopVideoBlock(Block):
self, self,
input_data: Input, input_data: Input,
*, *,
node_exec_id: str, execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs, **kwargs,
) -> BlockOutput: ) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the input video locally # 1) Store the input video locally
local_video_path = await store_media_file( local_video_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.video_in, file=input_data.video_in,
user_id=user_id, execution_context=execution_context,
return_content=False, return_format="for_local_processing",
) )
input_abspath = get_exec_file_path(graph_exec_id, local_video_path) input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
@@ -149,12 +149,11 @@ class LoopVideoBlock(Block):
looped_clip = looped_clip.with_audio(clip.audio) looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac") looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# Return as data URI # Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file( video_out = await store_media_file(
graph_exec_id=graph_exec_id,
file=output_filename, file=output_filename,
user_id=user_id, execution_context=execution_context,
return_content=input_data.output_return_type == "data_uri", return_format="for_block_output",
) )
yield "video_out", video_out yield "video_out", video_out
@@ -177,10 +176,6 @@ class AddAudioToVideoBlock(Block):
description="Volume scale for the newly attached audio track (1.0 = original).", description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0, default=1.0,
) )
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="Return the final output as a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput): class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField( video_out: MediaFileType = SchemaField(
@@ -200,23 +195,24 @@ class AddAudioToVideoBlock(Block):
self, self,
input_data: Input, input_data: Input,
*, *,
node_exec_id: str, execution_context: ExecutionContext,
graph_exec_id: str,
user_id: str,
**kwargs, **kwargs,
) -> BlockOutput: ) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the inputs locally # 1) Store the inputs locally
local_video_path = await store_media_file( local_video_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.video_in, file=input_data.video_in,
user_id=user_id, execution_context=execution_context,
return_content=False, return_format="for_local_processing",
) )
local_audio_path = await store_media_file( local_audio_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.audio_in, file=input_data.audio_in,
user_id=user_id, execution_context=execution_context,
return_content=False, return_format="for_local_processing",
) )
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id) abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
@@ -240,12 +236,11 @@ class AddAudioToVideoBlock(Block):
output_abspath = os.path.join(abs_temp_dir, output_filename) output_abspath = os.path.join(abs_temp_dir, output_filename)
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac") final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# 5) Return either path or data URI # 5) Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file( video_out = await store_media_file(
graph_exec_id=graph_exec_id,
file=output_filename, file=output_filename,
user_id=user_id, execution_context=execution_context,
return_content=input_data.output_return_type == "data_uri", return_format="for_block_output",
) )
yield "video_out", video_out yield "video_out", video_out

View File

@@ -11,6 +11,7 @@ from backend.data.block import (
BlockSchemaInput, BlockSchemaInput,
BlockSchemaOutput, BlockSchemaOutput,
) )
from backend.data.execution import ExecutionContext
from backend.data.model import ( from backend.data.model import (
APIKeyCredentials, APIKeyCredentials,
CredentialsField, CredentialsField,
@@ -112,8 +113,7 @@ class ScreenshotWebPageBlock(Block):
@staticmethod @staticmethod
async def take_screenshot( async def take_screenshot(
credentials: APIKeyCredentials, credentials: APIKeyCredentials,
graph_exec_id: str, execution_context: ExecutionContext,
user_id: str,
url: str, url: str,
viewport_width: int, viewport_width: int,
viewport_height: int, viewport_height: int,
@@ -155,12 +155,11 @@ class ScreenshotWebPageBlock(Block):
return { return {
"image": await store_media_file( "image": await store_media_file(
graph_exec_id=graph_exec_id,
file=MediaFileType( file=MediaFileType(
f"data:image/{format.value};base64,{b64encode(content).decode('utf-8')}" f"data:image/{format.value};base64,{b64encode(content).decode('utf-8')}"
), ),
user_id=user_id, execution_context=execution_context,
return_content=True, return_format="for_block_output",
) )
} }
@@ -169,15 +168,13 @@ class ScreenshotWebPageBlock(Block):
input_data: Input, input_data: Input,
*, *,
credentials: APIKeyCredentials, credentials: APIKeyCredentials,
graph_exec_id: str, execution_context: ExecutionContext,
user_id: str,
**kwargs, **kwargs,
) -> BlockOutput: ) -> BlockOutput:
try: try:
screenshot_data = await self.take_screenshot( screenshot_data = await self.take_screenshot(
credentials=credentials, credentials=credentials,
graph_exec_id=graph_exec_id, execution_context=execution_context,
user_id=user_id,
url=input_data.url, url=input_data.url,
viewport_width=input_data.viewport_width, viewport_width=input_data.viewport_width,
viewport_height=input_data.viewport_height, viewport_height=input_data.viewport_height,

View File

@@ -7,6 +7,7 @@ from backend.data.block import (
BlockSchemaInput, BlockSchemaInput,
BlockSchemaOutput, BlockSchemaOutput,
) )
from backend.data.execution import ExecutionContext
from backend.data.model import ContributorDetails, SchemaField from backend.data.model import ContributorDetails, SchemaField
from backend.util.file import get_exec_file_path, store_media_file from backend.util.file import get_exec_file_path, store_media_file
from backend.util.type import MediaFileType from backend.util.type import MediaFileType
@@ -98,7 +99,7 @@ class ReadSpreadsheetBlock(Block):
) )
async def run( async def run(
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
) -> BlockOutput: ) -> BlockOutput:
import csv import csv
from io import StringIO from io import StringIO
@@ -106,14 +107,16 @@ class ReadSpreadsheetBlock(Block):
# Determine data source - prefer file_input if provided, otherwise use contents # Determine data source - prefer file_input if provided, otherwise use contents
if input_data.file_input: if input_data.file_input:
stored_file_path = await store_media_file( stored_file_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=input_data.file_input, file=input_data.file_input,
return_content=False, execution_context=execution_context,
return_format="for_local_processing",
) )
# Get full file path # Get full file path
file_path = get_exec_file_path(graph_exec_id, stored_file_path) assert execution_context.graph_exec_id # Validated by store_media_file
file_path = get_exec_file_path(
execution_context.graph_exec_id, stored_file_path
)
if not Path(file_path).exists(): if not Path(file_path).exists():
raise ValueError(f"File does not exist: {file_path}") raise ValueError(f"File does not exist: {file_path}")

View File

@@ -83,7 +83,7 @@ class StagehandRecommendedLlmModel(str, Enum):
GPT41_MINI = "gpt-4.1-mini-2025-04-14" GPT41_MINI = "gpt-4.1-mini-2025-04-14"
# Anthropic # Anthropic
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219" CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
@property @property
def provider_name(self) -> str: def provider_name(self) -> str:
@@ -137,7 +137,7 @@ class StagehandObserveBlock(Block):
model: StagehandRecommendedLlmModel = SchemaField( model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model", title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)", description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET, default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
advanced=False, advanced=False,
) )
model_credentials: AICredentials = AICredentialsField() model_credentials: AICredentials = AICredentialsField()
@@ -230,7 +230,7 @@ class StagehandActBlock(Block):
model: StagehandRecommendedLlmModel = SchemaField( model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model", title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)", description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET, default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
advanced=False, advanced=False,
) )
model_credentials: AICredentials = AICredentialsField() model_credentials: AICredentials = AICredentialsField()
@@ -330,7 +330,7 @@ class StagehandExtractBlock(Block):
model: StagehandRecommendedLlmModel = SchemaField( model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model", title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)", description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET, default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
advanced=False, advanced=False,
) )
model_credentials: AICredentials = AICredentialsField() model_credentials: AICredentials = AICredentialsField()

View File

@@ -10,6 +10,7 @@ from backend.data.block import (
BlockSchemaInput, BlockSchemaInput,
BlockSchemaOutput, BlockSchemaOutput,
) )
from backend.data.execution import ExecutionContext
from backend.data.model import ( from backend.data.model import (
APIKeyCredentials, APIKeyCredentials,
CredentialsField, CredentialsField,
@@ -17,7 +18,9 @@ from backend.data.model import (
SchemaField, SchemaField,
) )
from backend.integrations.providers import ProviderName from backend.integrations.providers import ProviderName
from backend.util.file import store_media_file
from backend.util.request import Requests from backend.util.request import Requests
from backend.util.type import MediaFileType
TEST_CREDENTIALS = APIKeyCredentials( TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef", id="01234567-89ab-cdef-0123-456789abcdef",
@@ -102,7 +105,7 @@ class CreateTalkingAvatarVideoBlock(Block):
test_output=[ test_output=[
( (
"video_url", "video_url",
"https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video", lambda x: x.startswith(("workspace://", "data:")),
), ),
], ],
test_mock={ test_mock={
@@ -110,9 +113,10 @@ class CreateTalkingAvatarVideoBlock(Block):
"id": "abcd1234-5678-efgh-ijkl-mnopqrstuvwx", "id": "abcd1234-5678-efgh-ijkl-mnopqrstuvwx",
"status": "created", "status": "created",
}, },
# Use data URI to avoid HTTP requests during tests
"get_clip_status": lambda *args, **kwargs: { "get_clip_status": lambda *args, **kwargs: {
"status": "done", "status": "done",
"result_url": "https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video", "result_url": "data:video/mp4;base64,AAAA",
}, },
}, },
test_credentials=TEST_CREDENTIALS, test_credentials=TEST_CREDENTIALS,
@@ -138,7 +142,12 @@ class CreateTalkingAvatarVideoBlock(Block):
return response.json() return response.json()
async def run( async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput: ) -> BlockOutput:
# Create the clip # Create the clip
payload = { payload = {
@@ -165,7 +174,14 @@ class CreateTalkingAvatarVideoBlock(Block):
for _ in range(input_data.max_polling_attempts): for _ in range(input_data.max_polling_attempts):
status_response = await self.get_clip_status(credentials.api_key, clip_id) status_response = await self.get_clip_status(credentials.api_key, clip_id)
if status_response["status"] == "done": if status_response["status"] == "done":
yield "video_url", status_response["result_url"] # Store the generated video to the user's workspace for persistence
video_url = status_response["result_url"]
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
return return
elif status_response["status"] == "error": elif status_response["status"] == "error":
raise RuntimeError( raise RuntimeError(

View File

@@ -12,6 +12,7 @@ from backend.blocks.iteration import StepThroughItemsBlock
from backend.blocks.llm import AITextSummarizerBlock from backend.blocks.llm import AITextSummarizerBlock
from backend.blocks.text import ExtractTextInformationBlock from backend.blocks.text import ExtractTextInformationBlock
from backend.blocks.xml_parser import XMLParserBlock from backend.blocks.xml_parser import XMLParserBlock
from backend.data.execution import ExecutionContext
from backend.util.file import store_media_file from backend.util.file import store_media_file
from backend.util.type import MediaFileType from backend.util.type import MediaFileType
@@ -233,9 +234,12 @@ class TestStoreMediaFileSecurity:
with pytest.raises(ValueError, match="File too large"): with pytest.raises(ValueError, match="File too large"):
await store_media_file( await store_media_file(
graph_exec_id="test",
file=MediaFileType(large_data_uri), file=MediaFileType(large_data_uri),
user_id="test_user", execution_context=ExecutionContext(
user_id="test_user",
graph_exec_id="test",
),
return_format="for_local_processing",
) )
@patch("backend.util.file.Path") @patch("backend.util.file.Path")
@@ -270,9 +274,12 @@ class TestStoreMediaFileSecurity:
# Should raise an error when directory size exceeds limit # Should raise an error when directory size exceeds limit
with pytest.raises(ValueError, match="Disk usage limit exceeded"): with pytest.raises(ValueError, match="Disk usage limit exceeded"):
await store_media_file( await store_media_file(
graph_exec_id="test",
file=MediaFileType( file=MediaFileType(
"data:text/plain;base64,dGVzdA==" "data:text/plain;base64,dGVzdA=="
), # Small test file ), # Small test file
user_id="test_user", execution_context=ExecutionContext(
user_id="test_user",
graph_exec_id="test",
),
return_format="for_local_processing",
) )

View File

@@ -11,10 +11,22 @@ from backend.blocks.http import (
HttpMethod, HttpMethod,
SendAuthenticatedWebRequestBlock, SendAuthenticatedWebRequestBlock,
) )
from backend.data.execution import ExecutionContext
from backend.data.model import HostScopedCredentials from backend.data.model import HostScopedCredentials
from backend.util.request import Response from backend.util.request import Response
def make_test_context(
graph_exec_id: str = "test-exec-id",
user_id: str = "test-user-id",
) -> ExecutionContext:
"""Helper to create test ExecutionContext."""
return ExecutionContext(
user_id=user_id,
graph_exec_id=graph_exec_id,
)
class TestHttpBlockWithHostScopedCredentials: class TestHttpBlockWithHostScopedCredentials:
"""Test suite for HTTP block integration with HostScopedCredentials.""" """Test suite for HTTP block integration with HostScopedCredentials."""
@@ -105,8 +117,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run( async for output_name, output_data in http_block.run(
input_data, input_data,
credentials=exact_match_credentials, credentials=exact_match_credentials,
graph_exec_id="test-exec-id", execution_context=make_test_context(),
user_id="test-user-id",
): ):
result.append((output_name, output_data)) result.append((output_name, output_data))
@@ -161,8 +172,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run( async for output_name, output_data in http_block.run(
input_data, input_data,
credentials=wildcard_credentials, credentials=wildcard_credentials,
graph_exec_id="test-exec-id", execution_context=make_test_context(),
user_id="test-user-id",
): ):
result.append((output_name, output_data)) result.append((output_name, output_data))
@@ -208,8 +218,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run( async for output_name, output_data in http_block.run(
input_data, input_data,
credentials=non_matching_credentials, credentials=non_matching_credentials,
graph_exec_id="test-exec-id", execution_context=make_test_context(),
user_id="test-user-id",
): ):
result.append((output_name, output_data)) result.append((output_name, output_data))
@@ -258,8 +267,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run( async for output_name, output_data in http_block.run(
input_data, input_data,
credentials=exact_match_credentials, credentials=exact_match_credentials,
graph_exec_id="test-exec-id", execution_context=make_test_context(),
user_id="test-user-id",
): ):
result.append((output_name, output_data)) result.append((output_name, output_data))
@@ -318,8 +326,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run( async for output_name, output_data in http_block.run(
input_data, input_data,
credentials=auto_discovered_creds, # Execution manager found these credentials=auto_discovered_creds, # Execution manager found these
graph_exec_id="test-exec-id", execution_context=make_test_context(),
user_id="test-user-id",
): ):
result.append((output_name, output_data)) result.append((output_name, output_data))
@@ -382,8 +389,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run( async for output_name, output_data in http_block.run(
input_data, input_data,
credentials=multi_header_creds, credentials=multi_header_creds,
graph_exec_id="test-exec-id", execution_context=make_test_context(),
user_id="test-user-id",
): ):
result.append((output_name, output_data)) result.append((output_name, output_data))
@@ -471,8 +477,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run( async for output_name, output_data in http_block.run(
input_data, input_data,
credentials=test_creds, credentials=test_creds,
graph_exec_id="test-exec-id", execution_context=make_test_context(),
user_id="test-user-id",
): ):
result.append((output_name, output_data)) result.append((output_name, output_data))

View File

@@ -11,6 +11,7 @@ from backend.data.block import (
BlockSchemaInput, BlockSchemaInput,
BlockSchemaOutput, BlockSchemaOutput,
) )
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField from backend.data.model import SchemaField
from backend.util import json, text from backend.util import json, text
from backend.util.file import get_exec_file_path, store_media_file from backend.util.file import get_exec_file_path, store_media_file
@@ -444,18 +445,21 @@ class FileReadBlock(Block):
) )
async def run( async def run(
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
) -> BlockOutput: ) -> BlockOutput:
# Store the media file properly (handles URLs, data URIs, etc.) # Store the media file properly (handles URLs, data URIs, etc.)
stored_file_path = await store_media_file( stored_file_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=input_data.file_input, file=input_data.file_input,
return_content=False, execution_context=execution_context,
return_format="for_local_processing",
) )
# Get full file path # Get full file path (graph_exec_id validated by store_media_file above)
file_path = get_exec_file_path(graph_exec_id, stored_file_path) if not execution_context.graph_exec_id:
raise ValueError("execution_context.graph_exec_id is required")
file_path = get_exec_file_path(
execution_context.graph_exec_id, stored_file_path
)
if not Path(file_path).exists(): if not Path(file_path).exists():
raise ValueError(f"File does not exist: {file_path}") raise ValueError(f"File does not exist: {file_path}")

View File

@@ -81,7 +81,6 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.CLAUDE_4_5_HAIKU: 4, LlmModel.CLAUDE_4_5_HAIKU: 4,
LlmModel.CLAUDE_4_5_OPUS: 14, LlmModel.CLAUDE_4_5_OPUS: 14,
LlmModel.CLAUDE_4_5_SONNET: 9, LlmModel.CLAUDE_4_5_SONNET: 9,
LlmModel.CLAUDE_3_7_SONNET: 5,
LlmModel.CLAUDE_3_HAIKU: 1, LlmModel.CLAUDE_3_HAIKU: 1,
LlmModel.AIML_API_QWEN2_5_72B: 1, LlmModel.AIML_API_QWEN2_5_72B: 1,
LlmModel.AIML_API_LLAMA3_1_70B: 1, LlmModel.AIML_API_LLAMA3_1_70B: 1,

View File

@@ -83,12 +83,29 @@ class ExecutionContext(BaseModel):
model_config = {"extra": "ignore"} model_config = {"extra": "ignore"}
# Execution identity
user_id: Optional[str] = None
graph_id: Optional[str] = None
graph_exec_id: Optional[str] = None
graph_version: Optional[int] = None
node_id: Optional[str] = None
node_exec_id: Optional[str] = None
# Safety settings
human_in_the_loop_safe_mode: bool = True human_in_the_loop_safe_mode: bool = True
sensitive_action_safe_mode: bool = False sensitive_action_safe_mode: bool = False
# User settings
user_timezone: str = "UTC" user_timezone: str = "UTC"
# Execution hierarchy
root_execution_id: Optional[str] = None root_execution_id: Optional[str] = None
parent_execution_id: Optional[str] = None parent_execution_id: Optional[str] = None
# Workspace
workspace_id: Optional[str] = None
session_id: Optional[str] = None
# -------------------------- Models -------------------------- # # -------------------------- Models -------------------------- #

View File

@@ -666,10 +666,16 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
if not (self.discriminator and self.discriminator_mapping): if not (self.discriminator and self.discriminator_mapping):
return self return self
try:
provider = self.discriminator_mapping[discriminator_value]
except KeyError:
raise ValueError(
f"Model '{discriminator_value}' is not supported. "
"It may have been deprecated. Please update your agent configuration."
)
return CredentialsFieldInfo( return CredentialsFieldInfo(
credentials_provider=frozenset( credentials_provider=frozenset([provider]),
[self.discriminator_mapping[discriminator_value]]
),
credentials_types=self.supported_types, credentials_types=self.supported_types,
credentials_scopes=self.required_scopes, credentials_scopes=self.required_scopes,
discriminator=self.discriminator, discriminator=self.discriminator,

View File

@@ -0,0 +1,276 @@
"""
Database CRUD operations for User Workspace.
This module provides functions for managing user workspaces and workspace files.
"""
import logging
from datetime import datetime, timezone
from typing import Optional
from prisma.models import UserWorkspace, UserWorkspaceFile
from prisma.types import UserWorkspaceFileWhereInput
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
async def get_or_create_workspace(user_id: str) -> UserWorkspace:
"""
Get user's workspace, creating one if it doesn't exist.
Uses upsert to handle race conditions when multiple concurrent requests
attempt to create a workspace for the same user.
Args:
user_id: The user's ID
Returns:
UserWorkspace instance
"""
workspace = await UserWorkspace.prisma().upsert(
where={"userId": user_id},
data={
"create": {"userId": user_id},
"update": {}, # No updates needed if exists
},
)
return workspace
async def get_workspace(user_id: str) -> Optional[UserWorkspace]:
"""
Get user's workspace if it exists.
Args:
user_id: The user's ID
Returns:
UserWorkspace instance or None
"""
return await UserWorkspace.prisma().find_unique(where={"userId": user_id})
async def create_workspace_file(
workspace_id: str,
file_id: str,
name: str,
path: str,
storage_path: str,
mime_type: str,
size_bytes: int,
checksum: Optional[str] = None,
metadata: Optional[dict] = None,
) -> UserWorkspaceFile:
"""
Create a new workspace file record.
Args:
workspace_id: The workspace ID
file_id: The file ID (same as used in storage path for consistency)
name: User-visible filename
path: Virtual path (e.g., "/documents/report.pdf")
storage_path: Actual storage path (GCS or local)
mime_type: MIME type of the file
size_bytes: File size in bytes
checksum: Optional SHA256 checksum
metadata: Optional additional metadata
Returns:
Created UserWorkspaceFile instance
"""
# Normalize path to start with /
if not path.startswith("/"):
path = f"/{path}"
file = await UserWorkspaceFile.prisma().create(
data={
"id": file_id,
"workspaceId": workspace_id,
"name": name,
"path": path,
"storagePath": storage_path,
"mimeType": mime_type,
"sizeBytes": size_bytes,
"checksum": checksum,
"metadata": SafeJson(metadata or {}),
}
)
logger.info(
f"Created workspace file {file.id} at path {path} "
f"in workspace {workspace_id}"
)
return file
async def get_workspace_file(
file_id: str,
workspace_id: Optional[str] = None,
) -> Optional[UserWorkspaceFile]:
"""
Get a workspace file by ID.
Args:
file_id: The file ID
workspace_id: Optional workspace ID for validation
Returns:
UserWorkspaceFile instance or None
"""
where_clause: dict = {"id": file_id, "isDeleted": False}
if workspace_id:
where_clause["workspaceId"] = workspace_id
return await UserWorkspaceFile.prisma().find_first(where=where_clause)
async def get_workspace_file_by_path(
workspace_id: str,
path: str,
) -> Optional[UserWorkspaceFile]:
"""
Get a workspace file by its virtual path.
Args:
workspace_id: The workspace ID
path: Virtual path
Returns:
UserWorkspaceFile instance or None
"""
# Normalize path
if not path.startswith("/"):
path = f"/{path}"
return await UserWorkspaceFile.prisma().find_first(
where={
"workspaceId": workspace_id,
"path": path,
"isDeleted": False,
}
)
async def list_workspace_files(
workspace_id: str,
path_prefix: Optional[str] = None,
include_deleted: bool = False,
limit: Optional[int] = None,
offset: int = 0,
) -> list[UserWorkspaceFile]:
"""
List files in a workspace.
Args:
workspace_id: The workspace ID
path_prefix: Optional path prefix to filter (e.g., "/documents/")
include_deleted: Whether to include soft-deleted files
limit: Maximum number of files to return
offset: Number of files to skip
Returns:
List of UserWorkspaceFile instances
"""
where_clause: UserWorkspaceFileWhereInput = {"workspaceId": workspace_id}
if not include_deleted:
where_clause["isDeleted"] = False
if path_prefix:
# Normalize prefix
if not path_prefix.startswith("/"):
path_prefix = f"/{path_prefix}"
where_clause["path"] = {"startswith": path_prefix}
return await UserWorkspaceFile.prisma().find_many(
where=where_clause,
order={"createdAt": "desc"},
take=limit,
skip=offset,
)
async def count_workspace_files(
workspace_id: str,
path_prefix: Optional[str] = None,
include_deleted: bool = False,
) -> int:
"""
Count files in a workspace.
Args:
workspace_id: The workspace ID
path_prefix: Optional path prefix to filter (e.g., "/sessions/abc123/")
include_deleted: Whether to include soft-deleted files
Returns:
Number of files
"""
where_clause: dict = {"workspaceId": workspace_id}
if not include_deleted:
where_clause["isDeleted"] = False
if path_prefix:
# Normalize prefix
if not path_prefix.startswith("/"):
path_prefix = f"/{path_prefix}"
where_clause["path"] = {"startswith": path_prefix}
return await UserWorkspaceFile.prisma().count(where=where_clause)
async def soft_delete_workspace_file(
file_id: str,
workspace_id: Optional[str] = None,
) -> Optional[UserWorkspaceFile]:
"""
Soft-delete a workspace file.
The path is modified to include a deletion timestamp to free up the original
path for new files while preserving the record for potential recovery.
Args:
file_id: The file ID
workspace_id: Optional workspace ID for validation
Returns:
Updated UserWorkspaceFile instance or None if not found
"""
# First verify the file exists and belongs to workspace
file = await get_workspace_file(file_id, workspace_id)
if file is None:
return None
deleted_at = datetime.now(timezone.utc)
# Modify path to free up the unique constraint for new files at original path
# Format: {original_path}__deleted__{timestamp}
deleted_path = f"{file.path}__deleted__{int(deleted_at.timestamp())}"
updated = await UserWorkspaceFile.prisma().update(
where={"id": file_id},
data={
"isDeleted": True,
"deletedAt": deleted_at,
"path": deleted_path,
},
)
logger.info(f"Soft-deleted workspace file {file_id}")
return updated
async def get_workspace_total_size(workspace_id: str) -> int:
"""
Get the total size of all files in a workspace.
Args:
workspace_id: The workspace ID
Returns:
Total size in bytes
"""
files = await list_workspace_files(workspace_id)
return sum(file.sizeBytes for file in files)

View File

@@ -236,7 +236,14 @@ async def execute_node(
input_size = len(input_data_str) input_size = len(input_data_str)
log_metadata.debug("Executed node with input", input=input_data_str) log_metadata.debug("Executed node with input", input=input_data_str)
# Create node-specific execution context to avoid race conditions
# (multiple nodes can execute concurrently and would otherwise mutate shared state)
execution_context = execution_context.model_copy(
update={"node_id": node_id, "node_exec_id": node_exec_id}
)
# Inject extra execution arguments for the blocks via kwargs # Inject extra execution arguments for the blocks via kwargs
# Keep individual kwargs for backwards compatibility with existing blocks
extra_exec_kwargs: dict = { extra_exec_kwargs: dict = {
"graph_id": graph_id, "graph_id": graph_id,
"graph_version": graph_version, "graph_version": graph_version,

View File

@@ -892,11 +892,19 @@ async def add_graph_execution(
settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id) settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id)
execution_context = ExecutionContext( execution_context = ExecutionContext(
# Execution identity
user_id=user_id,
graph_id=graph_id,
graph_exec_id=graph_exec.id,
graph_version=graph_exec.graph_version,
# Safety settings
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode, human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=settings.sensitive_action_safe_mode, sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
# User settings
user_timezone=( user_timezone=(
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC" user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
), ),
# Execution hierarchy
root_execution_id=graph_exec.id, root_execution_id=graph_exec.id,
) )

View File

@@ -348,6 +348,7 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
mock_graph_exec.id = "execution-id-123" mock_graph_exec.id = "execution-id-123"
mock_graph_exec.node_executions = [] # Add this to avoid AttributeError mock_graph_exec.node_executions = [] # Add this to avoid AttributeError
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
mock_graph_exec.graph_version = graph_version
mock_graph_exec.to_graph_execution_entry.return_value = mocker.MagicMock() mock_graph_exec.to_graph_execution_entry.return_value = mocker.MagicMock()
# Mock the queue and event bus # Mock the queue and event bus
@@ -434,6 +435,9 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
# Create a second mock execution for the sanity check # Create a second mock execution for the sanity check
mock_graph_exec_2 = mocker.MagicMock(spec=GraphExecutionWithNodes) mock_graph_exec_2 = mocker.MagicMock(spec=GraphExecutionWithNodes)
mock_graph_exec_2.id = "execution-id-456" mock_graph_exec_2.id = "execution-id-456"
mock_graph_exec_2.node_executions = []
mock_graph_exec_2.status = ExecutionStatus.QUEUED
mock_graph_exec_2.graph_version = graph_version
mock_graph_exec_2.to_graph_execution_entry.return_value = mocker.MagicMock() mock_graph_exec_2.to_graph_execution_entry.return_value = mocker.MagicMock()
# Reset mocks and set up for second call # Reset mocks and set up for second call
@@ -614,6 +618,7 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
mock_graph_exec.id = "execution-id-123" mock_graph_exec.id = "execution-id-123"
mock_graph_exec.node_executions = [] mock_graph_exec.node_executions = []
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
mock_graph_exec.graph_version = graph_version
# Track what's passed to to_graph_execution_entry # Track what's passed to to_graph_execution_entry
captured_kwargs = {} captured_kwargs = {}

View File

@@ -13,6 +13,7 @@ import aiohttp
from gcloud.aio import storage as async_gcs_storage from gcloud.aio import storage as async_gcs_storage
from google.cloud import storage as gcs_storage from google.cloud import storage as gcs_storage
from backend.util.gcs_utils import download_with_fresh_session, generate_signed_url
from backend.util.settings import Config from backend.util.settings import Config
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -251,7 +252,7 @@ class CloudStorageHandler:
f"in_task: {current_task is not None}" f"in_task: {current_task is not None}"
) )
# Parse bucket and blob name from path # Parse bucket and blob name from path (path already has gcs:// prefix removed)
parts = path.split("/", 1) parts = path.split("/", 1)
if len(parts) != 2: if len(parts) != 2:
raise ValueError(f"Invalid GCS path: {path}") raise ValueError(f"Invalid GCS path: {path}")
@@ -261,50 +262,19 @@ class CloudStorageHandler:
# Authorization check # Authorization check
self._validate_file_access(blob_name, user_id, graph_exec_id) self._validate_file_access(blob_name, user_id, graph_exec_id)
# Use a fresh client for each download to avoid session issues logger.info(
# This is less efficient but more reliable with the executor's event loop f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}"
logger.info("[CloudStorage] Creating fresh GCS client for download")
# Create a new session specifically for this download
session = aiohttp.ClientSession(
connector=aiohttp.TCPConnector(limit=10, force_close=True)
) )
async_client = None
try: try:
# Create a new GCS client with the fresh session content = await download_with_fresh_session(bucket_name, blob_name)
async_client = async_gcs_storage.Storage(session=session)
logger.info(
f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}"
)
# Download content using the fresh client
content = await async_client.download(bucket_name, blob_name)
logger.info( logger.info(
f"[CloudStorage] GCS download successful - size: {len(content)} bytes" f"[CloudStorage] GCS download successful - size: {len(content)} bytes"
) )
# Clean up
await async_client.close()
await session.close()
return content return content
except FileNotFoundError:
raise
except Exception as e: except Exception as e:
# Always try to clean up
if async_client is not None:
try:
await async_client.close()
except Exception as cleanup_error:
logger.warning(
f"[CloudStorage] Error closing GCS client: {cleanup_error}"
)
try:
await session.close()
except Exception as cleanup_error:
logger.warning(f"[CloudStorage] Error closing session: {cleanup_error}")
# Log the specific error for debugging # Log the specific error for debugging
logger.error( logger.error(
f"[CloudStorage] GCS download failed - error: {str(e)}, " f"[CloudStorage] GCS download failed - error: {str(e)}, "
@@ -319,10 +289,6 @@ class CloudStorageHandler:
f"current_task: {current_task}, " f"current_task: {current_task}, "
f"bucket: {bucket_name}, blob: redacted for privacy" f"bucket: {bucket_name}, blob: redacted for privacy"
) )
# Convert gcloud-aio exceptions to standard ones
if "404" in str(e) or "Not Found" in str(e):
raise FileNotFoundError(f"File not found: gcs://{path}")
raise raise
def _validate_file_access( def _validate_file_access(
@@ -445,8 +411,7 @@ class CloudStorageHandler:
graph_exec_id: str | None = None, graph_exec_id: str | None = None,
) -> str: ) -> str:
"""Generate signed URL for GCS with authorization.""" """Generate signed URL for GCS with authorization."""
# Parse bucket and blob name from path (path already has gcs:// prefix removed)
# Parse bucket and blob name from path
parts = path.split("/", 1) parts = path.split("/", 1)
if len(parts) != 2: if len(parts) != 2:
raise ValueError(f"Invalid GCS path: {path}") raise ValueError(f"Invalid GCS path: {path}")
@@ -456,21 +421,11 @@ class CloudStorageHandler:
# Authorization check # Authorization check
self._validate_file_access(blob_name, user_id, graph_exec_id) self._validate_file_access(blob_name, user_id, graph_exec_id)
# Use sync client for signed URLs since gcloud-aio doesn't support them
sync_client = self._get_sync_gcs_client() sync_client = self._get_sync_gcs_client()
bucket = sync_client.bucket(bucket_name) return await generate_signed_url(
blob = bucket.blob(blob_name) sync_client, bucket_name, blob_name, expiration_hours * 3600
# Generate signed URL asynchronously using sync client
url = await asyncio.to_thread(
blob.generate_signed_url,
version="v4",
expiration=datetime.now(timezone.utc) + timedelta(hours=expiration_hours),
method="GET",
) )
return url
async def delete_expired_files(self, provider: str = "gcs") -> int: async def delete_expired_files(self, provider: str = "gcs") -> int:
""" """
Delete files that have passed their expiration time. Delete files that have passed their expiration time.

View File

@@ -5,13 +5,26 @@ import shutil
import tempfile import tempfile
import uuid import uuid
from pathlib import Path from pathlib import Path
from typing import TYPE_CHECKING, Literal
from urllib.parse import urlparse from urllib.parse import urlparse
from backend.util.cloud_storage import get_cloud_storage_handler from backend.util.cloud_storage import get_cloud_storage_handler
from backend.util.request import Requests from backend.util.request import Requests
from backend.util.settings import Config
from backend.util.type import MediaFileType from backend.util.type import MediaFileType
from backend.util.virus_scanner import scan_content_safe from backend.util.virus_scanner import scan_content_safe
if TYPE_CHECKING:
from backend.data.execution import ExecutionContext
# Return format options for store_media_file
# - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
# - "for_external_api": Returns data URI (base64) - use when sending content to external APIs
# - "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs
MediaReturnFormat = Literal[
"for_local_processing", "for_external_api", "for_block_output"
]
TEMP_DIR = Path(tempfile.gettempdir()).resolve() TEMP_DIR = Path(tempfile.gettempdir()).resolve()
# Maximum filename length (conservative limit for most filesystems) # Maximum filename length (conservative limit for most filesystems)
@@ -67,42 +80,56 @@ def clean_exec_files(graph_exec_id: str, file: str = "") -> None:
async def store_media_file( async def store_media_file(
graph_exec_id: str,
file: MediaFileType, file: MediaFileType,
user_id: str, execution_context: "ExecutionContext",
return_content: bool = False, *,
return_format: MediaReturnFormat,
) -> MediaFileType: ) -> MediaFileType:
""" """
Safely handle 'file' (a data URI, a URL, or a local path relative to {temp}/exec_file/{exec_id}), Safely handle 'file' (a data URI, a URL, a workspace:// reference, or a local path
placing or verifying it under: relative to {temp}/exec_file/{exec_id}), placing or verifying it under:
{tempdir}/exec_file/{exec_id}/... {tempdir}/exec_file/{exec_id}/...
If 'return_content=True', return a data URI (data:<mime>;base64,<content>). For each MediaFileType input:
Otherwise, returns the file media path relative to the exec_id folder. - Data URI: decode and store locally
- URL: download and store locally
- workspace:// reference: read from workspace, store locally
- Local path: verify it exists in exec_file directory
For each MediaFileType type: Return format options:
- Data URI: - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
-> decode and store in a new random file in that folder - "for_external_api": Returns data URI (base64) - use when sending to external APIs
- URL: - "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs
-> download and store in that folder
- Local path:
-> interpret as relative to that folder; verify it exists
(no copying, as it's presumably already there).
We realpath-check so no symlink or '..' can escape the folder.
:param file: Data URI, URL, workspace://, or local (relative) path.
:param graph_exec_id: The unique ID of the graph execution. :param execution_context: ExecutionContext with user_id, graph_exec_id, workspace_id.
:param file: Data URI, URL, or local (relative) path. :param return_format: What to return: "for_local_processing", "for_external_api", or "for_block_output".
:param return_content: If True, return a data URI of the file content. :return: The requested result based on return_format.
If False, return the *relative* path inside the exec_id folder.
:return: The requested result: data URI or relative path of the media.
""" """
# Extract values from execution_context
graph_exec_id = execution_context.graph_exec_id
user_id = execution_context.user_id
if not graph_exec_id:
raise ValueError("execution_context.graph_exec_id is required")
if not user_id:
raise ValueError("execution_context.user_id is required")
# Create workspace_manager if we have workspace_id (with session scoping)
# Import here to avoid circular import (file.py → workspace.py → data → blocks → file.py)
from backend.util.workspace import WorkspaceManager
workspace_manager: WorkspaceManager | None = None
if execution_context.workspace_id:
workspace_manager = WorkspaceManager(
user_id, execution_context.workspace_id, execution_context.session_id
)
# Build base path # Build base path
base_path = Path(get_exec_file_path(graph_exec_id, "")) base_path = Path(get_exec_file_path(graph_exec_id, ""))
base_path.mkdir(parents=True, exist_ok=True) base_path.mkdir(parents=True, exist_ok=True)
# Security fix: Add disk space limits to prevent DoS # Security fix: Add disk space limits to prevent DoS
MAX_FILE_SIZE = 100 * 1024 * 1024 # 100MB per file MAX_FILE_SIZE_BYTES = Config().max_file_size_mb * 1024 * 1024
MAX_TOTAL_DISK_USAGE = 1024 * 1024 * 1024 # 1GB total per execution directory MAX_TOTAL_DISK_USAGE = 1024 * 1024 * 1024 # 1GB total per execution directory
# Check total disk usage in base_path # Check total disk usage in base_path
@@ -142,9 +169,57 @@ async def store_media_file(
""" """
return str(absolute_path.relative_to(base)) return str(absolute_path.relative_to(base))
# Check if this is a cloud storage path # Get cloud storage handler for checking cloud paths
cloud_storage = await get_cloud_storage_handler() cloud_storage = await get_cloud_storage_handler()
if cloud_storage.is_cloud_path(file):
# Track if the input came from workspace (don't re-save it)
is_from_workspace = file.startswith("workspace://")
# Check if this is a workspace file reference
if is_from_workspace:
if workspace_manager is None:
raise ValueError(
"Workspace file reference requires workspace context. "
"This file type is only available in CoPilot sessions."
)
# Parse workspace reference
# workspace://abc123 - by file ID
# workspace:///path/to/file.txt - by virtual path
file_ref = file[12:] # Remove "workspace://"
if file_ref.startswith("/"):
# Path reference
workspace_content = await workspace_manager.read_file(file_ref)
file_info = await workspace_manager.get_file_info_by_path(file_ref)
filename = sanitize_filename(
file_info.name if file_info else f"{uuid.uuid4()}.bin"
)
else:
# ID reference
workspace_content = await workspace_manager.read_file_by_id(file_ref)
file_info = await workspace_manager.get_file_info(file_ref)
filename = sanitize_filename(
file_info.name if file_info else f"{uuid.uuid4()}.bin"
)
try:
target_path = _ensure_inside_base(base_path / filename, base_path)
except OSError as e:
raise ValueError(f"Invalid file path '{filename}': {e}") from e
# Check file size limit
if len(workspace_content) > MAX_FILE_SIZE_BYTES:
raise ValueError(
f"File too large: {len(workspace_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
)
# Virus scan the workspace content before writing locally
await scan_content_safe(workspace_content, filename=filename)
target_path.write_bytes(workspace_content)
# Check if this is a cloud storage path
elif cloud_storage.is_cloud_path(file):
# Download from cloud storage and store locally # Download from cloud storage and store locally
cloud_content = await cloud_storage.retrieve_file( cloud_content = await cloud_storage.retrieve_file(
file, user_id=user_id, graph_exec_id=graph_exec_id file, user_id=user_id, graph_exec_id=graph_exec_id
@@ -159,9 +234,9 @@ async def store_media_file(
raise ValueError(f"Invalid file path '{filename}': {e}") from e raise ValueError(f"Invalid file path '{filename}': {e}") from e
# Check file size limit # Check file size limit
if len(cloud_content) > MAX_FILE_SIZE: if len(cloud_content) > MAX_FILE_SIZE_BYTES:
raise ValueError( raise ValueError(
f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE} bytes" f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
) )
# Virus scan the cloud content before writing locally # Virus scan the cloud content before writing locally
@@ -189,9 +264,9 @@ async def store_media_file(
content = base64.b64decode(b64_content) content = base64.b64decode(b64_content)
# Check file size limit # Check file size limit
if len(content) > MAX_FILE_SIZE: if len(content) > MAX_FILE_SIZE_BYTES:
raise ValueError( raise ValueError(
f"File too large: {len(content)} bytes > {MAX_FILE_SIZE} bytes" f"File too large: {len(content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
) )
# Virus scan the base64 content before writing # Virus scan the base64 content before writing
@@ -199,23 +274,31 @@ async def store_media_file(
target_path.write_bytes(content) target_path.write_bytes(content)
elif file.startswith(("http://", "https://")): elif file.startswith(("http://", "https://")):
# URL # URL - download first to get Content-Type header
resp = await Requests().get(file)
# Check file size limit
if len(resp.content) > MAX_FILE_SIZE_BYTES:
raise ValueError(
f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
)
# Extract filename from URL path
parsed_url = urlparse(file) parsed_url = urlparse(file)
filename = sanitize_filename(Path(parsed_url.path).name or f"{uuid.uuid4()}") filename = sanitize_filename(Path(parsed_url.path).name or f"{uuid.uuid4()}")
# If filename lacks extension, add one from Content-Type header
if "." not in filename:
content_type = resp.headers.get("Content-Type", "").split(";")[0].strip()
if content_type:
ext = _extension_from_mime(content_type)
filename = f"{filename}{ext}"
try: try:
target_path = _ensure_inside_base(base_path / filename, base_path) target_path = _ensure_inside_base(base_path / filename, base_path)
except OSError as e: except OSError as e:
raise ValueError(f"Invalid file path '{filename}': {e}") from e raise ValueError(f"Invalid file path '{filename}': {e}") from e
# Download and save
resp = await Requests().get(file)
# Check file size limit
if len(resp.content) > MAX_FILE_SIZE:
raise ValueError(
f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE} bytes"
)
# Virus scan the downloaded content before writing # Virus scan the downloaded content before writing
await scan_content_safe(resp.content, filename=filename) await scan_content_safe(resp.content, filename=filename)
target_path.write_bytes(resp.content) target_path.write_bytes(resp.content)
@@ -230,12 +313,44 @@ async def store_media_file(
if not target_path.is_file(): if not target_path.is_file():
raise ValueError(f"Local file does not exist: {target_path}") raise ValueError(f"Local file does not exist: {target_path}")
# Return result # Return based on requested format
if return_content: if return_format == "for_local_processing":
return MediaFileType(_file_to_data_uri(target_path)) # Use when processing files locally with tools like ffmpeg, MoviePy, PIL
else: # Returns: relative path in exec_file directory (e.g., "image.png")
return MediaFileType(_strip_base_prefix(target_path, base_path)) return MediaFileType(_strip_base_prefix(target_path, base_path))
elif return_format == "for_external_api":
# Use when sending content to external APIs that need base64
# Returns: data URI (e.g., "...")
return MediaFileType(_file_to_data_uri(target_path))
elif return_format == "for_block_output":
# Use when returning output from a block to user/next block
# Returns: workspace:// ref (CoPilot) or data URI (graph execution)
if workspace_manager is None:
# No workspace available (graph execution without CoPilot)
# Fallback to data URI so the content can still be used/displayed
return MediaFileType(_file_to_data_uri(target_path))
# Don't re-save if input was already from workspace
if is_from_workspace:
# Return original workspace reference
return MediaFileType(file)
# Save new content to workspace
content = target_path.read_bytes()
filename = target_path.name
file_record = await workspace_manager.write_file(
content=content,
filename=filename,
overwrite=True,
)
return MediaFileType(f"workspace://{file_record.id}")
else:
raise ValueError(f"Invalid return_format: {return_format}")
def get_dir_size(path: Path) -> int: def get_dir_size(path: Path) -> int:
"""Get total size of directory.""" """Get total size of directory."""

View File

@@ -7,10 +7,22 @@ from unittest.mock import AsyncMock, MagicMock, patch
import pytest import pytest
from backend.data.execution import ExecutionContext
from backend.util.file import store_media_file from backend.util.file import store_media_file
from backend.util.type import MediaFileType from backend.util.type import MediaFileType
def make_test_context(
graph_exec_id: str = "test-exec-123",
user_id: str = "test-user-123",
) -> ExecutionContext:
"""Helper to create test ExecutionContext."""
return ExecutionContext(
user_id=user_id,
graph_exec_id=graph_exec_id,
)
class TestFileCloudIntegration: class TestFileCloudIntegration:
"""Test cases for cloud storage integration in file utilities.""" """Test cases for cloud storage integration in file utilities."""
@@ -70,10 +82,9 @@ class TestFileCloudIntegration:
mock_path_class.side_effect = path_constructor mock_path_class.side_effect = path_constructor
result = await store_media_file( result = await store_media_file(
graph_exec_id, file=MediaFileType(cloud_path),
MediaFileType(cloud_path), execution_context=make_test_context(graph_exec_id=graph_exec_id),
"test-user-123", return_format="for_local_processing",
return_content=False,
) )
# Verify cloud storage operations # Verify cloud storage operations
@@ -144,10 +155,9 @@ class TestFileCloudIntegration:
mock_path_obj.name = "image.png" mock_path_obj.name = "image.png"
with patch("backend.util.file.Path", return_value=mock_path_obj): with patch("backend.util.file.Path", return_value=mock_path_obj):
result = await store_media_file( result = await store_media_file(
graph_exec_id, file=MediaFileType(cloud_path),
MediaFileType(cloud_path), execution_context=make_test_context(graph_exec_id=graph_exec_id),
"test-user-123", return_format="for_external_api",
return_content=True,
) )
# Verify result is a data URI # Verify result is a data URI
@@ -198,10 +208,9 @@ class TestFileCloudIntegration:
mock_resolved_path.relative_to.return_value = Path("test-uuid-789.txt") mock_resolved_path.relative_to.return_value = Path("test-uuid-789.txt")
await store_media_file( await store_media_file(
graph_exec_id, file=MediaFileType(data_uri),
MediaFileType(data_uri), execution_context=make_test_context(graph_exec_id=graph_exec_id),
"test-user-123", return_format="for_local_processing",
return_content=False,
) )
# Verify cloud handler was checked but not used for retrieval # Verify cloud handler was checked but not used for retrieval
@@ -234,5 +243,7 @@ class TestFileCloudIntegration:
FileNotFoundError, match="File not found in cloud storage" FileNotFoundError, match="File not found in cloud storage"
): ):
await store_media_file( await store_media_file(
graph_exec_id, MediaFileType(cloud_path), "test-user-123" file=MediaFileType(cloud_path),
execution_context=make_test_context(graph_exec_id=graph_exec_id),
return_format="for_local_processing",
) )

View File

@@ -0,0 +1,108 @@
"""
Shared GCS utilities for workspace and cloud storage backends.
This module provides common functionality for working with Google Cloud Storage,
including path parsing, client management, and signed URL generation.
"""
import asyncio
import logging
from datetime import datetime, timedelta, timezone
import aiohttp
from gcloud.aio import storage as async_gcs_storage
from google.cloud import storage as gcs_storage
logger = logging.getLogger(__name__)
def parse_gcs_path(path: str) -> tuple[str, str]:
"""
Parse a GCS path in the format 'gcs://bucket/blob' to (bucket, blob).
Args:
path: GCS path string (e.g., "gcs://my-bucket/path/to/file")
Returns:
Tuple of (bucket_name, blob_name)
Raises:
ValueError: If the path format is invalid
"""
if not path.startswith("gcs://"):
raise ValueError(f"Invalid GCS path: {path}")
path_without_prefix = path[6:] # Remove "gcs://"
parts = path_without_prefix.split("/", 1)
if len(parts) != 2:
raise ValueError(f"Invalid GCS path format: {path}")
return parts[0], parts[1]
async def download_with_fresh_session(bucket: str, blob: str) -> bytes:
"""
Download file content using a fresh session.
This approach avoids event loop issues that can occur when reusing
sessions across different async contexts (e.g., in executors).
Args:
bucket: GCS bucket name
blob: Blob path within the bucket
Returns:
File content as bytes
Raises:
FileNotFoundError: If the file doesn't exist
"""
session = aiohttp.ClientSession(
connector=aiohttp.TCPConnector(limit=10, force_close=True)
)
client: async_gcs_storage.Storage | None = None
try:
client = async_gcs_storage.Storage(session=session)
content = await client.download(bucket, blob)
return content
except Exception as e:
if "404" in str(e) or "Not Found" in str(e):
raise FileNotFoundError(f"File not found: gcs://{bucket}/{blob}")
raise
finally:
if client:
try:
await client.close()
except Exception:
pass # Best-effort cleanup
await session.close()
async def generate_signed_url(
sync_client: gcs_storage.Client,
bucket_name: str,
blob_name: str,
expires_in: int,
) -> str:
"""
Generate a signed URL for temporary access to a GCS file.
Uses asyncio.to_thread() to run the sync operation without blocking.
Args:
sync_client: Sync GCS client with service account credentials
bucket_name: GCS bucket name
blob_name: Blob path within the bucket
expires_in: URL expiration time in seconds
Returns:
Signed URL string
"""
bucket = sync_client.bucket(bucket_name)
blob = bucket.blob(blob_name)
return await asyncio.to_thread(
blob.generate_signed_url,
version="v4",
expiration=datetime.now(timezone.utc) + timedelta(seconds=expires_in),
method="GET",
)

View File

@@ -263,6 +263,12 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="The name of the Google Cloud Storage bucket for media files", description="The name of the Google Cloud Storage bucket for media files",
) )
workspace_storage_dir: str = Field(
default="",
description="Local directory for workspace file storage when GCS is not configured. "
"If empty, defaults to {app_data}/workspaces. Used for self-hosted deployments.",
)
reddit_user_agent: str = Field( reddit_user_agent: str = Field(
default="web:AutoGPT:v0.6.0 (by /u/autogpt)", default="web:AutoGPT:v0.6.0 (by /u/autogpt)",
description="The user agent for the Reddit API", description="The user agent for the Reddit API",
@@ -389,6 +395,13 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="Maximum file size in MB for file uploads (1-1024 MB)", description="Maximum file size in MB for file uploads (1-1024 MB)",
) )
max_file_size_mb: int = Field(
default=100,
ge=1,
le=1024,
description="Maximum file size in MB for workspace files (1-1024 MB)",
)
# AutoMod configuration # AutoMod configuration
automod_enabled: bool = Field( automod_enabled: bool = Field(
default=False, default=False,

View File

@@ -140,14 +140,29 @@ async def execute_block_test(block: Block):
setattr(block, mock_name, mock_obj) setattr(block, mock_name, mock_obj)
# Populate credentials argument(s) # Populate credentials argument(s)
# Generate IDs for execution context
graph_id = str(uuid.uuid4())
node_id = str(uuid.uuid4())
graph_exec_id = str(uuid.uuid4())
node_exec_id = str(uuid.uuid4())
user_id = str(uuid.uuid4())
graph_version = 1 # Default version for tests
extra_exec_kwargs: dict = { extra_exec_kwargs: dict = {
"graph_id": str(uuid.uuid4()), "graph_id": graph_id,
"node_id": str(uuid.uuid4()), "node_id": node_id,
"graph_exec_id": str(uuid.uuid4()), "graph_exec_id": graph_exec_id,
"node_exec_id": str(uuid.uuid4()), "node_exec_id": node_exec_id,
"user_id": str(uuid.uuid4()), "user_id": user_id,
"graph_version": 1, # Default version for tests "graph_version": graph_version,
"execution_context": ExecutionContext(), "execution_context": ExecutionContext(
user_id=user_id,
graph_id=graph_id,
graph_exec_id=graph_exec_id,
graph_version=graph_version,
node_id=node_id,
node_exec_id=node_exec_id,
),
} }
input_model = cast(type[BlockSchema], block.input_schema) input_model = cast(type[BlockSchema], block.input_schema)

View File

@@ -0,0 +1,419 @@
"""
WorkspaceManager for managing user workspace file operations.
This module provides a high-level interface for workspace file operations,
combining the storage backend and database layer.
"""
import logging
import mimetypes
import uuid
from typing import Optional
from prisma.errors import UniqueViolationError
from prisma.models import UserWorkspaceFile
from backend.data.workspace import (
count_workspace_files,
create_workspace_file,
get_workspace_file,
get_workspace_file_by_path,
list_workspace_files,
soft_delete_workspace_file,
)
from backend.util.settings import Config
from backend.util.workspace_storage import compute_file_checksum, get_workspace_storage
logger = logging.getLogger(__name__)
class WorkspaceManager:
"""
Manages workspace file operations.
Combines storage backend operations with database record management.
Supports session-scoped file segmentation where files are stored in
session-specific virtual paths: /sessions/{session_id}/{filename}
"""
def __init__(
self, user_id: str, workspace_id: str, session_id: Optional[str] = None
):
"""
Initialize WorkspaceManager.
Args:
user_id: The user's ID
workspace_id: The workspace ID
session_id: Optional session ID for session-scoped file access
"""
self.user_id = user_id
self.workspace_id = workspace_id
self.session_id = session_id
# Session path prefix for file isolation
self.session_path = f"/sessions/{session_id}" if session_id else ""
def _resolve_path(self, path: str) -> str:
"""
Resolve a path, defaulting to session folder if session_id is set.
Cross-session access is allowed by explicitly using /sessions/other-session-id/...
Args:
path: Virtual path (e.g., "/file.txt" or "/sessions/abc123/file.txt")
Returns:
Resolved path with session prefix if applicable
"""
# If path explicitly references a session folder, use it as-is
if path.startswith("/sessions/"):
return path
# If we have a session context, prepend session path
if self.session_path:
# Normalize the path
if not path.startswith("/"):
path = f"/{path}"
return f"{self.session_path}{path}"
# No session context, use path as-is
return path if path.startswith("/") else f"/{path}"
def _get_effective_path(
self, path: Optional[str], include_all_sessions: bool
) -> Optional[str]:
"""
Get effective path for list/count operations based on session context.
Args:
path: Optional path prefix to filter
include_all_sessions: If True, don't apply session scoping
Returns:
Effective path prefix for database query
"""
if include_all_sessions:
# Normalize path to ensure leading slash (stored paths are normalized)
if path is not None and not path.startswith("/"):
return f"/{path}"
return path
elif path is not None:
# Resolve the provided path with session scoping
return self._resolve_path(path)
elif self.session_path:
# Default to session folder with trailing slash to prevent prefix collisions
# e.g., "/sessions/abc" should not match "/sessions/abc123"
return self.session_path.rstrip("/") + "/"
else:
# No session context, use path as-is
return path
async def read_file(self, path: str) -> bytes:
"""
Read file from workspace by virtual path.
When session_id is set, paths are resolved relative to the session folder
unless they explicitly reference /sessions/...
Args:
path: Virtual path (e.g., "/documents/report.pdf")
Returns:
File content as bytes
Raises:
FileNotFoundError: If file doesn't exist
"""
resolved_path = self._resolve_path(path)
file = await get_workspace_file_by_path(self.workspace_id, resolved_path)
if file is None:
raise FileNotFoundError(f"File not found at path: {resolved_path}")
storage = await get_workspace_storage()
return await storage.retrieve(file.storagePath)
async def read_file_by_id(self, file_id: str) -> bytes:
"""
Read file from workspace by file ID.
Args:
file_id: The file's ID
Returns:
File content as bytes
Raises:
FileNotFoundError: If file doesn't exist
"""
file = await get_workspace_file(file_id, self.workspace_id)
if file is None:
raise FileNotFoundError(f"File not found: {file_id}")
storage = await get_workspace_storage()
return await storage.retrieve(file.storagePath)
async def write_file(
self,
content: bytes,
filename: str,
path: Optional[str] = None,
mime_type: Optional[str] = None,
overwrite: bool = False,
) -> UserWorkspaceFile:
"""
Write file to workspace.
When session_id is set, files are written to /sessions/{session_id}/...
by default. Use explicit /sessions/... paths for cross-session access.
Args:
content: File content as bytes
filename: Filename for the file
path: Virtual path (defaults to "/{filename}", session-scoped if session_id set)
mime_type: MIME type (auto-detected if not provided)
overwrite: Whether to overwrite existing file at path
Returns:
Created UserWorkspaceFile instance
Raises:
ValueError: If file exceeds size limit or path already exists
"""
# Enforce file size limit
max_file_size = Config().max_file_size_mb * 1024 * 1024
if len(content) > max_file_size:
raise ValueError(
f"File too large: {len(content)} bytes exceeds "
f"{Config().max_file_size_mb}MB limit"
)
# Determine path with session scoping
if path is None:
path = f"/{filename}"
elif not path.startswith("/"):
path = f"/{path}"
# Resolve path with session prefix
path = self._resolve_path(path)
# Check if file exists at path (only error for non-overwrite case)
# For overwrite=True, we let the write proceed and handle via UniqueViolationError
# This ensures the new file is written to storage BEFORE the old one is deleted,
# preventing data loss if the new write fails
if not overwrite:
existing = await get_workspace_file_by_path(self.workspace_id, path)
if existing is not None:
raise ValueError(f"File already exists at path: {path}")
# Auto-detect MIME type if not provided
if mime_type is None:
mime_type, _ = mimetypes.guess_type(filename)
mime_type = mime_type or "application/octet-stream"
# Compute checksum
checksum = compute_file_checksum(content)
# Generate unique file ID for storage
file_id = str(uuid.uuid4())
# Store file in storage backend
storage = await get_workspace_storage()
storage_path = await storage.store(
workspace_id=self.workspace_id,
file_id=file_id,
filename=filename,
content=content,
)
# Create database record - handle race condition where another request
# created a file at the same path between our check and create
try:
file = await create_workspace_file(
workspace_id=self.workspace_id,
file_id=file_id,
name=filename,
path=path,
storage_path=storage_path,
mime_type=mime_type,
size_bytes=len(content),
checksum=checksum,
)
except UniqueViolationError:
# Race condition: another request created a file at this path
if overwrite:
# Re-fetch and delete the conflicting file, then retry
existing = await get_workspace_file_by_path(self.workspace_id, path)
if existing:
await self.delete_file(existing.id)
# Retry the create - if this also fails, clean up storage file
try:
file = await create_workspace_file(
workspace_id=self.workspace_id,
file_id=file_id,
name=filename,
path=path,
storage_path=storage_path,
mime_type=mime_type,
size_bytes=len(content),
checksum=checksum,
)
except Exception:
# Clean up orphaned storage file on retry failure
try:
await storage.delete(storage_path)
except Exception as e:
logger.warning(f"Failed to clean up orphaned storage file: {e}")
raise
else:
# Clean up the orphaned storage file before raising
try:
await storage.delete(storage_path)
except Exception as e:
logger.warning(f"Failed to clean up orphaned storage file: {e}")
raise ValueError(f"File already exists at path: {path}")
except Exception:
# Any other database error (connection, validation, etc.) - clean up storage
try:
await storage.delete(storage_path)
except Exception as e:
logger.warning(f"Failed to clean up orphaned storage file: {e}")
raise
logger.info(
f"Wrote file {file.id} ({filename}) to workspace {self.workspace_id} "
f"at path {path}, size={len(content)} bytes"
)
return file
async def list_files(
self,
path: Optional[str] = None,
limit: Optional[int] = None,
offset: int = 0,
include_all_sessions: bool = False,
) -> list[UserWorkspaceFile]:
"""
List files in workspace.
When session_id is set and include_all_sessions is False (default),
only files in the current session's folder are listed.
Args:
path: Optional path prefix to filter (e.g., "/documents/")
limit: Maximum number of files to return
offset: Number of files to skip
include_all_sessions: If True, list files from all sessions.
If False (default), only list current session's files.
Returns:
List of UserWorkspaceFile instances
"""
effective_path = self._get_effective_path(path, include_all_sessions)
return await list_workspace_files(
workspace_id=self.workspace_id,
path_prefix=effective_path,
limit=limit,
offset=offset,
)
async def delete_file(self, file_id: str) -> bool:
"""
Delete a file (soft-delete).
Args:
file_id: The file's ID
Returns:
True if deleted, False if not found
"""
file = await get_workspace_file(file_id, self.workspace_id)
if file is None:
return False
# Delete from storage
storage = await get_workspace_storage()
try:
await storage.delete(file.storagePath)
except Exception as e:
logger.warning(f"Failed to delete file from storage: {e}")
# Continue with database soft-delete even if storage delete fails
# Soft-delete database record
result = await soft_delete_workspace_file(file_id, self.workspace_id)
return result is not None
async def get_download_url(self, file_id: str, expires_in: int = 3600) -> str:
"""
Get download URL for a file.
Args:
file_id: The file's ID
expires_in: URL expiration in seconds (default 1 hour)
Returns:
Download URL (signed URL for GCS, API endpoint for local)
Raises:
FileNotFoundError: If file doesn't exist
"""
file = await get_workspace_file(file_id, self.workspace_id)
if file is None:
raise FileNotFoundError(f"File not found: {file_id}")
storage = await get_workspace_storage()
return await storage.get_download_url(file.storagePath, expires_in)
async def get_file_info(self, file_id: str) -> Optional[UserWorkspaceFile]:
"""
Get file metadata.
Args:
file_id: The file's ID
Returns:
UserWorkspaceFile instance or None
"""
return await get_workspace_file(file_id, self.workspace_id)
async def get_file_info_by_path(self, path: str) -> Optional[UserWorkspaceFile]:
"""
Get file metadata by path.
When session_id is set, paths are resolved relative to the session folder
unless they explicitly reference /sessions/...
Args:
path: Virtual path
Returns:
UserWorkspaceFile instance or None
"""
resolved_path = self._resolve_path(path)
return await get_workspace_file_by_path(self.workspace_id, resolved_path)
async def get_file_count(
self,
path: Optional[str] = None,
include_all_sessions: bool = False,
) -> int:
"""
Get number of files in workspace.
When session_id is set and include_all_sessions is False (default),
only counts files in the current session's folder.
Args:
path: Optional path prefix to filter (e.g., "/documents/")
include_all_sessions: If True, count all files in workspace.
If False (default), only count current session's files.
Returns:
Number of files
"""
effective_path = self._get_effective_path(path, include_all_sessions)
return await count_workspace_files(
self.workspace_id, path_prefix=effective_path
)

View File

@@ -0,0 +1,398 @@
"""
Workspace storage backend abstraction for supporting both cloud and local deployments.
This module provides a unified interface for storing workspace files, with implementations
for Google Cloud Storage (cloud deployments) and local filesystem (self-hosted deployments).
"""
import asyncio
import hashlib
import logging
from abc import ABC, abstractmethod
from datetime import datetime, timezone
from pathlib import Path
from typing import Optional
import aiofiles
import aiohttp
from gcloud.aio import storage as async_gcs_storage
from google.cloud import storage as gcs_storage
from backend.util.data import get_data_path
from backend.util.gcs_utils import (
download_with_fresh_session,
generate_signed_url,
parse_gcs_path,
)
from backend.util.settings import Config
logger = logging.getLogger(__name__)
class WorkspaceStorageBackend(ABC):
"""Abstract interface for workspace file storage."""
@abstractmethod
async def store(
self,
workspace_id: str,
file_id: str,
filename: str,
content: bytes,
) -> str:
"""
Store file content, return storage path.
Args:
workspace_id: The workspace ID
file_id: Unique file ID for storage
filename: Original filename
content: File content as bytes
Returns:
Storage path string (cloud path or local path)
"""
pass
@abstractmethod
async def retrieve(self, storage_path: str) -> bytes:
"""
Retrieve file content from storage.
Args:
storage_path: The storage path returned from store()
Returns:
File content as bytes
"""
pass
@abstractmethod
async def delete(self, storage_path: str) -> None:
"""
Delete file from storage.
Args:
storage_path: The storage path to delete
"""
pass
@abstractmethod
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
"""
Get URL for downloading the file.
Args:
storage_path: The storage path
expires_in: URL expiration time in seconds (default 1 hour)
Returns:
Download URL (signed URL for GCS, direct API path for local)
"""
pass
class GCSWorkspaceStorage(WorkspaceStorageBackend):
"""Google Cloud Storage implementation for workspace storage."""
def __init__(self, bucket_name: str):
self.bucket_name = bucket_name
self._async_client: Optional[async_gcs_storage.Storage] = None
self._sync_client: Optional[gcs_storage.Client] = None
self._session: Optional[aiohttp.ClientSession] = None
async def _get_async_client(self) -> async_gcs_storage.Storage:
"""Get or create async GCS client."""
if self._async_client is None:
self._session = aiohttp.ClientSession(
connector=aiohttp.TCPConnector(limit=100, force_close=False)
)
self._async_client = async_gcs_storage.Storage(session=self._session)
return self._async_client
def _get_sync_client(self) -> gcs_storage.Client:
"""Get or create sync GCS client (for signed URLs)."""
if self._sync_client is None:
self._sync_client = gcs_storage.Client()
return self._sync_client
async def close(self) -> None:
"""Close all client connections."""
if self._async_client is not None:
try:
await self._async_client.close()
except Exception as e:
logger.warning(f"Error closing GCS client: {e}")
self._async_client = None
if self._session is not None:
try:
await self._session.close()
except Exception as e:
logger.warning(f"Error closing session: {e}")
self._session = None
def _build_blob_name(self, workspace_id: str, file_id: str, filename: str) -> str:
"""Build the blob path for workspace files."""
return f"workspaces/{workspace_id}/{file_id}/{filename}"
async def store(
self,
workspace_id: str,
file_id: str,
filename: str,
content: bytes,
) -> str:
"""Store file in GCS."""
client = await self._get_async_client()
blob_name = self._build_blob_name(workspace_id, file_id, filename)
# Upload with metadata
upload_time = datetime.now(timezone.utc)
await client.upload(
self.bucket_name,
blob_name,
content,
metadata={
"uploaded_at": upload_time.isoformat(),
"workspace_id": workspace_id,
"file_id": file_id,
},
)
return f"gcs://{self.bucket_name}/{blob_name}"
async def retrieve(self, storage_path: str) -> bytes:
"""Retrieve file from GCS."""
bucket_name, blob_name = parse_gcs_path(storage_path)
return await download_with_fresh_session(bucket_name, blob_name)
async def delete(self, storage_path: str) -> None:
"""Delete file from GCS."""
bucket_name, blob_name = parse_gcs_path(storage_path)
client = await self._get_async_client()
try:
await client.delete(bucket_name, blob_name)
except Exception as e:
if "404" not in str(e) and "Not Found" not in str(e):
raise
# File already deleted, that's fine
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
"""
Generate download URL for GCS file.
Attempts to generate a signed URL if running with service account credentials.
Falls back to an API proxy endpoint if signed URL generation fails
(e.g., when running locally with user OAuth credentials).
"""
bucket_name, blob_name = parse_gcs_path(storage_path)
# Extract file_id from blob_name for fallback: workspaces/{workspace_id}/{file_id}/{filename}
blob_parts = blob_name.split("/")
file_id = blob_parts[2] if len(blob_parts) >= 3 else None
# Try to generate signed URL (requires service account credentials)
try:
sync_client = self._get_sync_client()
return await generate_signed_url(
sync_client, bucket_name, blob_name, expires_in
)
except AttributeError as e:
# Signed URL generation requires service account with private key.
# When running with user OAuth credentials, fall back to API proxy.
if "private key" in str(e) and file_id:
logger.debug(
"Cannot generate signed URL (no service account credentials), "
"falling back to API proxy endpoint"
)
return f"/api/workspace/files/{file_id}/download"
raise
class LocalWorkspaceStorage(WorkspaceStorageBackend):
"""Local filesystem implementation for workspace storage (self-hosted deployments)."""
def __init__(self, base_dir: Optional[str] = None):
"""
Initialize local storage backend.
Args:
base_dir: Base directory for workspace storage.
If None, defaults to {app_data}/workspaces
"""
if base_dir:
self.base_dir = Path(base_dir)
else:
self.base_dir = Path(get_data_path()) / "workspaces"
# Ensure base directory exists
self.base_dir.mkdir(parents=True, exist_ok=True)
def _build_file_path(self, workspace_id: str, file_id: str, filename: str) -> Path:
"""Build the local file path with path traversal protection."""
# Import here to avoid circular import
# (file.py imports workspace.py which imports workspace_storage.py)
from backend.util.file import sanitize_filename
# Sanitize filename to prevent path traversal (removes / and \ among others)
safe_filename = sanitize_filename(filename)
file_path = (self.base_dir / workspace_id / file_id / safe_filename).resolve()
# Verify the resolved path is still under base_dir
if not file_path.is_relative_to(self.base_dir.resolve()):
raise ValueError("Invalid filename: path traversal detected")
return file_path
def _parse_storage_path(self, storage_path: str) -> Path:
"""Parse local storage path to filesystem path."""
if storage_path.startswith("local://"):
relative_path = storage_path[8:] # Remove "local://"
else:
relative_path = storage_path
full_path = (self.base_dir / relative_path).resolve()
# Security check: ensure path is under base_dir
# Use is_relative_to() for robust path containment check
# (handles case-insensitive filesystems and edge cases)
if not full_path.is_relative_to(self.base_dir.resolve()):
raise ValueError("Invalid storage path: path traversal detected")
return full_path
async def store(
self,
workspace_id: str,
file_id: str,
filename: str,
content: bytes,
) -> str:
"""Store file locally."""
file_path = self._build_file_path(workspace_id, file_id, filename)
# Create parent directories
file_path.parent.mkdir(parents=True, exist_ok=True)
# Write file asynchronously
async with aiofiles.open(file_path, "wb") as f:
await f.write(content)
# Return relative path as storage path
relative_path = file_path.relative_to(self.base_dir)
return f"local://{relative_path}"
async def retrieve(self, storage_path: str) -> bytes:
"""Retrieve file from local storage."""
file_path = self._parse_storage_path(storage_path)
if not file_path.exists():
raise FileNotFoundError(f"File not found: {storage_path}")
async with aiofiles.open(file_path, "rb") as f:
return await f.read()
async def delete(self, storage_path: str) -> None:
"""Delete file from local storage."""
file_path = self._parse_storage_path(storage_path)
if file_path.exists():
# Remove file
file_path.unlink()
# Clean up empty parent directories
parent = file_path.parent
while parent != self.base_dir:
try:
if parent.exists() and not any(parent.iterdir()):
parent.rmdir()
else:
break
except OSError:
break
parent = parent.parent
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
"""
Get download URL for local file.
For local storage, this returns an API endpoint path.
The actual serving is handled by the API layer.
"""
# Parse the storage path to get the components
if storage_path.startswith("local://"):
relative_path = storage_path[8:]
else:
relative_path = storage_path
# Return the API endpoint for downloading
# The file_id is extracted from the path: {workspace_id}/{file_id}/{filename}
parts = relative_path.split("/")
if len(parts) >= 2:
file_id = parts[1] # Second component is file_id
return f"/api/workspace/files/{file_id}/download"
else:
raise ValueError(f"Invalid storage path format: {storage_path}")
# Global storage backend instance
_workspace_storage: Optional[WorkspaceStorageBackend] = None
_storage_lock = asyncio.Lock()
async def get_workspace_storage() -> WorkspaceStorageBackend:
"""
Get the workspace storage backend instance.
Uses GCS if media_gcs_bucket_name is configured, otherwise uses local storage.
"""
global _workspace_storage
if _workspace_storage is None:
async with _storage_lock:
if _workspace_storage is None:
config = Config()
if config.media_gcs_bucket_name:
logger.info(
f"Using GCS workspace storage: {config.media_gcs_bucket_name}"
)
_workspace_storage = GCSWorkspaceStorage(
config.media_gcs_bucket_name
)
else:
storage_dir = (
config.workspace_storage_dir
if config.workspace_storage_dir
else None
)
logger.info(
f"Using local workspace storage: {storage_dir or 'default'}"
)
_workspace_storage = LocalWorkspaceStorage(storage_dir)
return _workspace_storage
async def shutdown_workspace_storage() -> None:
"""
Properly shutdown the global workspace storage backend.
Closes aiohttp sessions and other resources for GCS backend.
Should be called during application shutdown.
"""
global _workspace_storage
if _workspace_storage is not None:
async with _storage_lock:
if _workspace_storage is not None:
if isinstance(_workspace_storage, GCSWorkspaceStorage):
await _workspace_storage.close()
_workspace_storage = None
def compute_file_checksum(content: bytes) -> str:
"""Compute SHA256 checksum of file content."""
return hashlib.sha256(content).hexdigest()

View File

@@ -0,0 +1,22 @@
-- Migrate Claude 3.7 Sonnet to Claude 4.5 Sonnet
-- This updates all AgentNode blocks that use the deprecated Claude 3.7 Sonnet model
-- Anthropic is retiring claude-3-7-sonnet-20250219 on February 19, 2026
-- Update AgentNode constant inputs
UPDATE "AgentNode"
SET "constantInput" = JSONB_SET(
"constantInput"::jsonb,
'{model}',
'"claude-sonnet-4-5-20250929"'::jsonb
)
WHERE "constantInput"::jsonb->>'model' = 'claude-3-7-sonnet-20250219';
-- Update AgentPreset input overrides (stored in AgentNodeExecutionInputOutput)
UPDATE "AgentNodeExecutionInputOutput"
SET "data" = JSONB_SET(
"data"::jsonb,
'{model}',
'"claude-sonnet-4-5-20250929"'::jsonb
)
WHERE "agentPresetId" IS NOT NULL
AND "data"::jsonb->>'model' = 'claude-3-7-sonnet-20250219';

View File

@@ -0,0 +1,52 @@
-- CreateEnum
CREATE TYPE "WorkspaceFileSource" AS ENUM ('UPLOAD', 'EXECUTION', 'COPILOT', 'IMPORT');
-- CreateTable
CREATE TABLE "UserWorkspace" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"userId" TEXT NOT NULL,
CONSTRAINT "UserWorkspace_pkey" PRIMARY KEY ("id")
);
-- CreateTable
CREATE TABLE "UserWorkspaceFile" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"workspaceId" TEXT NOT NULL,
"name" TEXT NOT NULL,
"path" TEXT NOT NULL,
"storagePath" TEXT NOT NULL,
"mimeType" TEXT NOT NULL,
"sizeBytes" BIGINT NOT NULL,
"checksum" TEXT,
"isDeleted" BOOLEAN NOT NULL DEFAULT false,
"deletedAt" TIMESTAMP(3),
"source" "WorkspaceFileSource" NOT NULL DEFAULT 'UPLOAD',
"sourceExecId" TEXT,
"sourceSessionId" TEXT,
"metadata" JSONB NOT NULL DEFAULT '{}',
CONSTRAINT "UserWorkspaceFile_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE UNIQUE INDEX "UserWorkspace_userId_key" ON "UserWorkspace"("userId");
-- CreateIndex
CREATE INDEX "UserWorkspace_userId_idx" ON "UserWorkspace"("userId");
-- CreateIndex
CREATE INDEX "UserWorkspaceFile_workspaceId_isDeleted_idx" ON "UserWorkspaceFile"("workspaceId", "isDeleted");
-- CreateIndex
CREATE UNIQUE INDEX "UserWorkspaceFile_workspaceId_path_key" ON "UserWorkspaceFile"("workspaceId", "path");
-- AddForeignKey
ALTER TABLE "UserWorkspace" ADD CONSTRAINT "UserWorkspace_userId_fkey" FOREIGN KEY ("userId") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "UserWorkspaceFile" ADD CONSTRAINT "UserWorkspaceFile_workspaceId_fkey" FOREIGN KEY ("workspaceId") REFERENCES "UserWorkspace"("id") ON DELETE CASCADE ON UPDATE CASCADE;

View File

@@ -0,0 +1,16 @@
/*
Warnings:
- You are about to drop the column `source` on the `UserWorkspaceFile` table. All the data in the column will be lost.
- You are about to drop the column `sourceExecId` on the `UserWorkspaceFile` table. All the data in the column will be lost.
- You are about to drop the column `sourceSessionId` on the `UserWorkspaceFile` table. All the data in the column will be lost.
*/
-- AlterTable
ALTER TABLE "UserWorkspaceFile" DROP COLUMN "source",
DROP COLUMN "sourceExecId",
DROP COLUMN "sourceSessionId";
-- DropEnum
DROP TYPE "WorkspaceFileSource";

View File

@@ -63,6 +63,7 @@ model User {
IntegrationWebhooks IntegrationWebhook[] IntegrationWebhooks IntegrationWebhook[]
NotificationBatches UserNotificationBatch[] NotificationBatches UserNotificationBatch[]
PendingHumanReviews PendingHumanReview[] PendingHumanReviews PendingHumanReview[]
Workspace UserWorkspace?
// OAuth Provider relations // OAuth Provider relations
OAuthApplications OAuthApplication[] OAuthApplications OAuthApplication[]
@@ -137,6 +138,53 @@ model CoPilotUnderstanding {
@@index([userId]) @@index([userId])
} }
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
//////////////// USER WORKSPACE TABLES /////////////////
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// User's persistent file storage workspace
model UserWorkspace {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
userId String @unique
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
Files UserWorkspaceFile[]
@@index([userId])
}
// Individual files in a user's workspace
model UserWorkspaceFile {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
workspaceId String
Workspace UserWorkspace @relation(fields: [workspaceId], references: [id], onDelete: Cascade)
// File metadata
name String // User-visible filename
path String // Virtual path (e.g., "/documents/report.pdf")
storagePath String // Actual GCS or local storage path
mimeType String
sizeBytes BigInt
checksum String? // SHA256 for integrity
// File state
isDeleted Boolean @default(false)
deletedAt DateTime?
metadata Json @default("{}")
@@unique([workspaceId, path])
@@index([workspaceId, isDeleted])
}
model BuilderSearchHistory { model BuilderSearchHistory {
id String @id @default(uuid()) id String @id @default(uuid())
createdAt DateTime @default(now()) createdAt DateTime @default(now())

View File

@@ -57,7 +57,8 @@ class TestDecomposeGoal:
result = await core.decompose_goal("Build a chatbot") result = await core.decompose_goal("Build a chatbot")
mock_external.assert_called_once_with("Build a chatbot", "") # library_agents defaults to None
mock_external.assert_called_once_with("Build a chatbot", "", None)
assert result == expected_result assert result == expected_result
@pytest.mark.asyncio @pytest.mark.asyncio
@@ -74,7 +75,8 @@ class TestDecomposeGoal:
await core.decompose_goal("Build a chatbot", "Use Python") await core.decompose_goal("Build a chatbot", "Use Python")
mock_external.assert_called_once_with("Build a chatbot", "Use Python") # library_agents defaults to None
mock_external.assert_called_once_with("Build a chatbot", "Use Python", None)
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_returns_none_on_service_failure(self): async def test_returns_none_on_service_failure(self):
@@ -109,7 +111,8 @@ class TestGenerateAgent:
instructions = {"type": "instructions", "steps": ["Step 1"]} instructions = {"type": "instructions", "steps": ["Step 1"]}
result = await core.generate_agent(instructions) result = await core.generate_agent(instructions)
mock_external.assert_called_once_with(instructions) # library_agents defaults to None
mock_external.assert_called_once_with(instructions, None)
# Result should have id, version, is_active added if not present # Result should have id, version, is_active added if not present
assert result is not None assert result is not None
assert result["name"] == "Test Agent" assert result["name"] == "Test Agent"
@@ -174,7 +177,8 @@ class TestGenerateAgentPatch:
current_agent = {"nodes": [], "links": []} current_agent = {"nodes": [], "links": []}
result = await core.generate_agent_patch("Add a node", current_agent) result = await core.generate_agent_patch("Add a node", current_agent)
mock_external.assert_called_once_with("Add a node", current_agent) # library_agents defaults to None
mock_external.assert_called_once_with("Add a node", current_agent, None)
assert result == expected_result assert result == expected_result
@pytest.mark.asyncio @pytest.mark.asyncio

View File

@@ -0,0 +1,838 @@
"""
Tests for library agent fetching functionality in agent generator.
This test suite verifies the search-based library agent fetching,
including the combination of library and marketplace agents.
"""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.agent_generator import core
class TestGetLibraryAgentsForGeneration:
"""Test get_library_agents_for_generation function."""
@pytest.mark.asyncio
async def test_fetches_agents_with_search_term(self):
"""Test that search_term is passed to the library db."""
# Create a mock agent with proper attribute values
mock_agent = MagicMock()
mock_agent.graph_id = "agent-123"
mock_agent.graph_version = 1
mock_agent.name = "Email Agent"
mock_agent.description = "Sends emails"
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
mock_response = MagicMock()
mock_response.agents = [mock_agent]
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_list:
result = await core.get_library_agents_for_generation(
user_id="user-123",
search_query="send email",
)
# Verify search_term was passed
mock_list.assert_called_once_with(
user_id="user-123",
search_term="send email",
page=1,
page_size=15,
)
# Verify result format
assert len(result) == 1
assert result[0]["graph_id"] == "agent-123"
assert result[0]["name"] == "Email Agent"
@pytest.mark.asyncio
async def test_excludes_specified_graph_id(self):
"""Test that agents with excluded graph_id are filtered out."""
mock_response = MagicMock()
mock_response.agents = [
MagicMock(
graph_id="agent-123",
graph_version=1,
name="Agent 1",
description="First agent",
input_schema={},
output_schema={},
),
MagicMock(
graph_id="agent-456",
graph_version=1,
name="Agent 2",
description="Second agent",
input_schema={},
output_schema={},
),
]
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
):
result = await core.get_library_agents_for_generation(
user_id="user-123",
exclude_graph_id="agent-123",
)
# Verify the excluded agent is not in results
assert len(result) == 1
assert result[0]["graph_id"] == "agent-456"
@pytest.mark.asyncio
async def test_respects_max_results(self):
"""Test that max_results parameter limits the page_size."""
mock_response = MagicMock()
mock_response.agents = []
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_list:
await core.get_library_agents_for_generation(
user_id="user-123",
max_results=5,
)
# Verify page_size was set to max_results
mock_list.assert_called_once_with(
user_id="user-123",
search_term=None,
page=1,
page_size=5,
)
class TestSearchMarketplaceAgentsForGeneration:
"""Test search_marketplace_agents_for_generation function."""
@pytest.mark.asyncio
async def test_searches_marketplace_with_query(self):
"""Test that marketplace is searched with the query."""
mock_response = MagicMock()
mock_response.agents = [
MagicMock(
agent_name="Public Agent",
description="A public agent",
sub_heading="Does something useful",
creator="creator-1",
)
]
# The store_db is dynamically imported, so patch the import path
with patch(
"backend.api.features.store.db.get_store_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_search:
result = await core.search_marketplace_agents_for_generation(
search_query="automation",
max_results=10,
)
mock_search.assert_called_once_with(
search_query="automation",
page=1,
page_size=10,
)
assert len(result) == 1
assert result[0]["name"] == "Public Agent"
assert result[0]["is_marketplace_agent"] is True
@pytest.mark.asyncio
async def test_handles_marketplace_error_gracefully(self):
"""Test that marketplace errors don't crash the function."""
with patch(
"backend.api.features.store.db.get_store_agents",
new_callable=AsyncMock,
side_effect=Exception("Marketplace unavailable"),
):
result = await core.search_marketplace_agents_for_generation(
search_query="test"
)
# Should return empty list, not raise exception
assert result == []
class TestGetAllRelevantAgentsForGeneration:
"""Test get_all_relevant_agents_for_generation function."""
@pytest.mark.asyncio
async def test_combines_library_and_marketplace_agents(self):
"""Test that agents from both sources are combined."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Library Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
marketplace_agents = [
{
"name": "Market Agent",
"description": "From marketplace",
"sub_heading": "Sub heading",
"creator": "creator-1",
"is_marketplace_agent": True,
}
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
return_value=marketplace_agents,
):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="test query",
include_marketplace=True,
)
# Library agents should come first
assert len(result) == 2
assert result[0]["name"] == "Library Agent"
assert result[1]["name"] == "Market Agent"
@pytest.mark.asyncio
async def test_deduplicates_by_name(self):
"""Test that marketplace agents with same name as library are excluded."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Shared Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
marketplace_agents = [
{
"name": "Shared Agent", # Same name, should be deduplicated
"description": "From marketplace",
"sub_heading": "Sub heading",
"creator": "creator-1",
"is_marketplace_agent": True,
},
{
"name": "Unique Agent",
"description": "Only in marketplace",
"sub_heading": "Sub heading",
"creator": "creator-2",
"is_marketplace_agent": True,
},
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
return_value=marketplace_agents,
):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="test",
include_marketplace=True,
)
# Shared Agent from marketplace should be excluded
assert len(result) == 2
names = [a["name"] for a in result]
assert "Shared Agent" in names
assert "Unique Agent" in names
@pytest.mark.asyncio
async def test_skips_marketplace_when_disabled(self):
"""Test that marketplace is not searched when include_marketplace=False."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Library Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
) as mock_marketplace:
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="test",
include_marketplace=False,
)
# Marketplace should not be called
mock_marketplace.assert_not_called()
assert len(result) == 1
@pytest.mark.asyncio
async def test_skips_marketplace_when_no_search_query(self):
"""Test that marketplace is not searched without a search query."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Library Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
) as mock_marketplace:
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query=None, # No search query
include_marketplace=True,
)
# Marketplace should not be called without search query
mock_marketplace.assert_not_called()
assert len(result) == 1
class TestExtractSearchTermsFromSteps:
"""Test extract_search_terms_from_steps function."""
def test_extracts_terms_from_instructions_type(self):
"""Test extraction from valid instructions decomposition result."""
decomposition_result = {
"type": "instructions",
"steps": [
{
"description": "Send an email notification",
"block_name": "GmailSendBlock",
},
{"description": "Fetch weather data", "action": "Get weather API"},
],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert "Send an email notification" in result
assert "GmailSendBlock" in result
assert "Fetch weather data" in result
assert "Get weather API" in result
def test_returns_empty_for_non_instructions_type(self):
"""Test that non-instructions types return empty list."""
decomposition_result = {
"type": "clarifying_questions",
"questions": [{"question": "What email?"}],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert result == []
def test_deduplicates_terms_case_insensitively(self):
"""Test that duplicate terms are removed (case-insensitive)."""
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "Send Email", "name": "send email"},
{"description": "Other task"},
],
}
result = core.extract_search_terms_from_steps(decomposition_result)
# Should only have one "send email" variant
email_terms = [t for t in result if "email" in t.lower()]
assert len(email_terms) == 1
def test_filters_short_terms(self):
"""Test that terms with 3 or fewer characters are filtered out."""
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "ab", "action": "xyz"}, # Both too short
{"description": "Valid term here"},
],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert "ab" not in result
assert "xyz" not in result
assert "Valid term here" in result
def test_handles_empty_steps(self):
"""Test handling of empty steps list."""
decomposition_result = {
"type": "instructions",
"steps": [],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert result == []
class TestEnrichLibraryAgentsFromSteps:
"""Test enrich_library_agents_from_steps function."""
@pytest.mark.asyncio
async def test_enriches_with_additional_agents(self):
"""Test that additional agents are found based on steps."""
existing_agents = [
{
"graph_id": "existing-123",
"graph_version": 1,
"name": "Existing Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
additional_agents = [
{
"graph_id": "new-456",
"graph_version": 1,
"name": "Email Agent",
"description": "For sending emails",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "Send email notification"},
],
}
with patch.object(
core,
"get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=additional_agents,
):
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should have both existing and new agents
assert len(result) == 2
names = [a["name"] for a in result]
assert "Existing Agent" in names
assert "Email Agent" in names
@pytest.mark.asyncio
async def test_deduplicates_by_graph_id(self):
"""Test that agents with same graph_id are not duplicated."""
existing_agents = [
{
"graph_id": "agent-123",
"graph_version": 1,
"name": "Existing Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
# Additional search returns same agent
additional_agents = [
{
"graph_id": "agent-123", # Same ID
"graph_version": 1,
"name": "Existing Agent Copy",
"description": "Same agent different name",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "instructions",
"steps": [{"description": "Some action"}],
}
with patch.object(
core,
"get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=additional_agents,
):
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should not duplicate
assert len(result) == 1
@pytest.mark.asyncio
async def test_deduplicates_by_name(self):
"""Test that agents with same name are not duplicated."""
existing_agents = [
{
"graph_id": "agent-123",
"graph_version": 1,
"name": "Email Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
# Additional search returns agent with same name but different ID
additional_agents = [
{
"graph_id": "agent-456", # Different ID
"graph_version": 1,
"name": "Email Agent", # Same name
"description": "Different agent same name",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "instructions",
"steps": [{"description": "Send email"}],
}
with patch.object(
core,
"get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=additional_agents,
):
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should not duplicate by name
assert len(result) == 1
assert result[0].get("graph_id") == "agent-123" # Original kept
@pytest.mark.asyncio
async def test_returns_existing_when_no_steps(self):
"""Test that existing agents are returned when no search terms extracted."""
existing_agents = [
{
"graph_id": "existing-123",
"graph_version": 1,
"name": "Existing Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "clarifying_questions", # Not instructions type
"questions": [],
}
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should return existing unchanged
assert result == existing_agents
@pytest.mark.asyncio
async def test_limits_search_terms_to_three(self):
"""Test that only first 3 search terms are used."""
existing_agents = []
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "First action"},
{"description": "Second action"},
{"description": "Third action"},
{"description": "Fourth action"},
{"description": "Fifth action"},
],
}
call_count = 0
async def mock_get_agents(*args, **kwargs):
nonlocal call_count
call_count += 1
return []
with patch.object(
core,
"get_all_relevant_agents_for_generation",
side_effect=mock_get_agents,
):
await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should only make 3 calls (limited to first 3 terms)
assert call_count == 3
class TestExtractUuidsFromText:
"""Test extract_uuids_from_text function."""
def test_extracts_single_uuid(self):
"""Test extraction of a single UUID from text."""
text = "Use my agent 46631191-e8a8-486f-ad90-84f89738321d for this task"
result = core.extract_uuids_from_text(text)
assert len(result) == 1
assert "46631191-e8a8-486f-ad90-84f89738321d" in result
def test_extracts_multiple_uuids(self):
"""Test extraction of multiple UUIDs from text."""
text = (
"Combine agents 11111111-1111-4111-8111-111111111111 "
"and 22222222-2222-4222-9222-222222222222"
)
result = core.extract_uuids_from_text(text)
assert len(result) == 2
assert "11111111-1111-4111-8111-111111111111" in result
assert "22222222-2222-4222-9222-222222222222" in result
def test_deduplicates_uuids(self):
"""Test that duplicate UUIDs are deduplicated."""
text = (
"Use 46631191-e8a8-486f-ad90-84f89738321d twice: "
"46631191-e8a8-486f-ad90-84f89738321d"
)
result = core.extract_uuids_from_text(text)
assert len(result) == 1
def test_normalizes_to_lowercase(self):
"""Test that UUIDs are normalized to lowercase."""
text = "Use 46631191-E8A8-486F-AD90-84F89738321D"
result = core.extract_uuids_from_text(text)
assert result[0] == "46631191-e8a8-486f-ad90-84f89738321d"
def test_returns_empty_for_no_uuids(self):
"""Test that empty list is returned when no UUIDs found."""
text = "Create an email agent that sends notifications"
result = core.extract_uuids_from_text(text)
assert result == []
def test_ignores_invalid_uuids(self):
"""Test that invalid UUID-like strings are ignored."""
text = "Not a valid UUID: 12345678-1234-1234-1234-123456789abc"
result = core.extract_uuids_from_text(text)
# UUID v4 requires specific patterns (4 in third group, 8/9/a/b in fourth)
assert len(result) == 0
class TestGetLibraryAgentById:
"""Test get_library_agent_by_id function (and its alias get_library_agent_by_graph_id)."""
@pytest.mark.asyncio
async def test_returns_agent_when_found_by_graph_id(self):
"""Test that agent is returned when found by graph_id."""
mock_agent = MagicMock()
mock_agent.graph_id = "agent-123"
mock_agent.graph_version = 1
mock_agent.name = "Test Agent"
mock_agent.description = "Test description"
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
with patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=mock_agent,
):
result = await core.get_library_agent_by_id("user-123", "agent-123")
assert result is not None
assert result["graph_id"] == "agent-123"
assert result["name"] == "Test Agent"
@pytest.mark.asyncio
async def test_falls_back_to_library_agent_id(self):
"""Test that lookup falls back to library agent ID when graph_id not found."""
mock_agent = MagicMock()
mock_agent.graph_id = "graph-456" # Different from the lookup ID
mock_agent.graph_version = 1
mock_agent.name = "Library Agent"
mock_agent.description = "Found by library ID"
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=None, # Not found by graph_id
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
return_value=mock_agent, # Found by library ID
),
):
result = await core.get_library_agent_by_id("user-123", "library-id-123")
assert result is not None
assert result["graph_id"] == "graph-456"
assert result["name"] == "Library Agent"
@pytest.mark.asyncio
async def test_returns_none_when_not_found_by_either_method(self):
"""Test that None is returned when agent not found by either method."""
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=None,
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
side_effect=core.NotFoundError("Not found"),
),
):
result = await core.get_library_agent_by_id("user-123", "nonexistent")
assert result is None
@pytest.mark.asyncio
async def test_returns_none_on_exception(self):
"""Test that None is returned when exception occurs in both lookups."""
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
side_effect=Exception("Database error"),
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
side_effect=Exception("Database error"),
),
):
result = await core.get_library_agent_by_id("user-123", "agent-123")
assert result is None
@pytest.mark.asyncio
async def test_alias_works(self):
"""Test that get_library_agent_by_graph_id is an alias for get_library_agent_by_id."""
assert core.get_library_agent_by_graph_id is core.get_library_agent_by_id
class TestGetAllRelevantAgentsWithUuids:
"""Test UUID extraction in get_all_relevant_agents_for_generation."""
@pytest.mark.asyncio
async def test_fetches_explicitly_mentioned_agents(self):
"""Test that agents mentioned by UUID are fetched directly."""
mock_agent = MagicMock()
mock_agent.graph_id = "46631191-e8a8-486f-ad90-84f89738321d"
mock_agent.graph_version = 1
mock_agent.name = "Mentioned Agent"
mock_agent.description = "Explicitly mentioned"
mock_agent.input_schema = {}
mock_agent.output_schema = {}
mock_response = MagicMock()
mock_response.agents = []
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=mock_agent,
),
patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
),
):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="Use agent 46631191-e8a8-486f-ad90-84f89738321d",
include_marketplace=False,
)
assert len(result) == 1
assert result[0].get("graph_id") == "46631191-e8a8-486f-ad90-84f89738321d"
assert result[0].get("name") == "Mentioned Agent"
if __name__ == "__main__":
pytest.main([__file__, "-v"])

View File

@@ -151,15 +151,20 @@ class TestDecomposeGoalExternal:
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_decompose_goal_handles_http_error(self): async def test_decompose_goal_handles_http_error(self):
"""Test decomposition handles HTTP errors gracefully.""" """Test decomposition handles HTTP errors gracefully."""
mock_response = MagicMock()
mock_response.status_code = 500
mock_client = AsyncMock() mock_client = AsyncMock()
mock_client.post.side_effect = httpx.HTTPStatusError( mock_client.post.side_effect = httpx.HTTPStatusError(
"Server error", request=MagicMock(), response=MagicMock() "Server error", request=MagicMock(), response=mock_response
) )
with patch.object(service, "_get_client", return_value=mock_client): with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot") result = await service.decompose_goal_external("Build a chatbot")
assert result is None assert result is not None
assert result.get("type") == "error"
assert result.get("error_type") == "http_error"
assert "Server error" in result.get("error", "")
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_decompose_goal_handles_request_error(self): async def test_decompose_goal_handles_request_error(self):
@@ -170,7 +175,10 @@ class TestDecomposeGoalExternal:
with patch.object(service, "_get_client", return_value=mock_client): with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot") result = await service.decompose_goal_external("Build a chatbot")
assert result is None assert result is not None
assert result.get("type") == "error"
assert result.get("error_type") == "connection_error"
assert "Connection failed" in result.get("error", "")
@pytest.mark.asyncio @pytest.mark.asyncio
async def test_decompose_goal_handles_service_error(self): async def test_decompose_goal_handles_service_error(self):
@@ -179,6 +187,7 @@ class TestDecomposeGoalExternal:
mock_response.json.return_value = { mock_response.json.return_value = {
"success": False, "success": False,
"error": "Internal error", "error": "Internal error",
"error_type": "internal_error",
} }
mock_response.raise_for_status = MagicMock() mock_response.raise_for_status = MagicMock()
@@ -188,7 +197,10 @@ class TestDecomposeGoalExternal:
with patch.object(service, "_get_client", return_value=mock_client): with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot") result = await service.decompose_goal_external("Build a chatbot")
assert result is None assert result is not None
assert result.get("type") == "error"
assert result.get("error") == "Internal error"
assert result.get("error_type") == "internal_error"
class TestGenerateAgentExternal: class TestGenerateAgentExternal:
@@ -236,7 +248,10 @@ class TestGenerateAgentExternal:
with patch.object(service, "_get_client", return_value=mock_client): with patch.object(service, "_get_client", return_value=mock_client):
result = await service.generate_agent_external({"steps": []}) result = await service.generate_agent_external({"steps": []})
assert result is None assert result is not None
assert result.get("type") == "error"
assert result.get("error_type") == "connection_error"
assert "Connection failed" in result.get("error", "")
class TestGenerateAgentPatchExternal: class TestGenerateAgentPatchExternal:
@@ -418,5 +433,139 @@ class TestGetBlocksExternal:
assert result is None assert result is None
class TestLibraryAgentsPassthrough:
"""Test that library_agents are passed correctly in all requests."""
def setup_method(self):
"""Reset client singleton before each test."""
service._settings = None
service._client = None
@pytest.mark.asyncio
async def test_decompose_goal_passes_library_agents(self):
"""Test that library_agents are included in decompose goal payload."""
library_agents = [
{
"graph_id": "agent-123",
"graph_version": 1,
"name": "Email Sender",
"description": "Sends emails",
"input_schema": {"properties": {"to": {"type": "string"}}},
"output_schema": {"properties": {"sent": {"type": "boolean"}}},
},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"type": "instructions",
"steps": ["Step 1"],
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.decompose_goal_external(
"Send an email",
library_agents=library_agents,
)
# Verify library_agents was passed in the payload
call_args = mock_client.post.call_args
assert call_args[1]["json"]["library_agents"] == library_agents
@pytest.mark.asyncio
async def test_generate_agent_passes_library_agents(self):
"""Test that library_agents are included in generate agent payload."""
library_agents = [
{
"graph_id": "agent-456",
"graph_version": 2,
"name": "Data Fetcher",
"description": "Fetches data from API",
"input_schema": {"properties": {"url": {"type": "string"}}},
"output_schema": {"properties": {"data": {"type": "object"}}},
},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"agent_json": {"name": "Test Agent", "nodes": []},
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.generate_agent_external(
{"steps": ["Step 1"]},
library_agents=library_agents,
)
# Verify library_agents was passed in the payload
call_args = mock_client.post.call_args
assert call_args[1]["json"]["library_agents"] == library_agents
@pytest.mark.asyncio
async def test_generate_agent_patch_passes_library_agents(self):
"""Test that library_agents are included in patch generation payload."""
library_agents = [
{
"graph_id": "agent-789",
"graph_version": 1,
"name": "Slack Notifier",
"description": "Sends Slack messages",
"input_schema": {"properties": {"message": {"type": "string"}}},
"output_schema": {"properties": {"success": {"type": "boolean"}}},
},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"agent_json": {"name": "Updated Agent", "nodes": []},
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.generate_agent_patch_external(
"Add error handling",
{"name": "Original Agent", "nodes": []},
library_agents=library_agents,
)
# Verify library_agents was passed in the payload
call_args = mock_client.post.call_args
assert call_args[1]["json"]["library_agents"] == library_agents
@pytest.mark.asyncio
async def test_decompose_goal_without_library_agents(self):
"""Test that decompose goal works without library_agents."""
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"type": "instructions",
"steps": ["Step 1"],
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.decompose_goal_external("Build a workflow")
# Verify library_agents was NOT passed when not provided
call_args = mock_client.post.call_args
assert "library_agents" not in call_args[1]["json"]
if __name__ == "__main__": if __name__ == "__main__":
pytest.main([__file__, "-v"]) pytest.main([__file__, "-v"])

View File

@@ -43,19 +43,24 @@ faker = Faker()
# Constants for data generation limits (reduced for E2E tests) # Constants for data generation limits (reduced for E2E tests)
NUM_USERS = 15 NUM_USERS = 15
NUM_AGENT_BLOCKS = 30 NUM_AGENT_BLOCKS = 30
MIN_GRAPHS_PER_USER = 15 MIN_GRAPHS_PER_USER = 25
MAX_GRAPHS_PER_USER = 15 MAX_GRAPHS_PER_USER = 25
MIN_NODES_PER_GRAPH = 3 MIN_NODES_PER_GRAPH = 3
MAX_NODES_PER_GRAPH = 6 MAX_NODES_PER_GRAPH = 6
MIN_PRESETS_PER_USER = 2 MIN_PRESETS_PER_USER = 2
MAX_PRESETS_PER_USER = 3 MAX_PRESETS_PER_USER = 3
MIN_AGENTS_PER_USER = 15 MIN_AGENTS_PER_USER = 25
MAX_AGENTS_PER_USER = 15 MAX_AGENTS_PER_USER = 25
MIN_EXECUTIONS_PER_GRAPH = 2 MIN_EXECUTIONS_PER_GRAPH = 2
MAX_EXECUTIONS_PER_GRAPH = 8 MAX_EXECUTIONS_PER_GRAPH = 8
MIN_REVIEWS_PER_VERSION = 2 MIN_REVIEWS_PER_VERSION = 2
MAX_REVIEWS_PER_VERSION = 5 MAX_REVIEWS_PER_VERSION = 5
# Guaranteed minimums for marketplace tests (deterministic)
GUARANTEED_FEATURED_AGENTS = 8
GUARANTEED_FEATURED_CREATORS = 5
GUARANTEED_TOP_AGENTS = 10
def get_image(): def get_image():
"""Generate a consistent image URL using picsum.photos service.""" """Generate a consistent image URL using picsum.photos service."""
@@ -385,7 +390,7 @@ class TestDataCreator:
library_agents = [] library_agents = []
for user in self.users: for user in self.users:
num_agents = 10 # Create exactly 10 agents per user num_agents = random.randint(MIN_AGENTS_PER_USER, MAX_AGENTS_PER_USER)
# Get available graphs for this user # Get available graphs for this user
user_graphs = [ user_graphs = [
@@ -507,14 +512,17 @@ class TestDataCreator:
existing_profiles, min(num_creators, len(existing_profiles)) existing_profiles, min(num_creators, len(existing_profiles))
) )
# Mark about 50% of creators as featured (more for testing) # Guarantee at least GUARANTEED_FEATURED_CREATORS featured creators
num_featured = max(2, int(num_creators * 0.5)) num_featured = max(GUARANTEED_FEATURED_CREATORS, int(num_creators * 0.5))
num_featured = min( num_featured = min(
num_featured, len(selected_profiles) num_featured, len(selected_profiles)
) # Don't exceed available profiles ) # Don't exceed available profiles
featured_profile_ids = set( featured_profile_ids = set(
random.sample([p.id for p in selected_profiles], num_featured) random.sample([p.id for p in selected_profiles], num_featured)
) )
print(
f"🎯 Creating {num_featured} featured creators (min: {GUARANTEED_FEATURED_CREATORS})"
)
for profile in selected_profiles: for profile in selected_profiles:
try: try:
@@ -545,21 +553,25 @@ class TestDataCreator:
return profiles return profiles
async def create_test_store_submissions(self) -> List[Dict[str, Any]]: async def create_test_store_submissions(self) -> List[Dict[str, Any]]:
"""Create test store submissions using the API function.""" """Create test store submissions using the API function.
DETERMINISTIC: Guarantees minimum featured agents for E2E tests.
"""
print("Creating test store submissions...") print("Creating test store submissions...")
submissions = [] submissions = []
approved_submissions = [] approved_submissions = []
featured_count = 0
submission_counter = 0
# Create a special test submission for test123@gmail.com # Create a special test submission for test123@gmail.com (ALWAYS approved + featured)
test_user = next( test_user = next(
(user for user in self.users if user["email"] == "test123@gmail.com"), None (user for user in self.users if user["email"] == "test123@gmail.com"), None
) )
if test_user: if test_user and self.agent_graphs:
# Special test data for consistent testing
test_submission_data = { test_submission_data = {
"user_id": test_user["id"], "user_id": test_user["id"],
"agent_id": self.agent_graphs[0]["id"], # Use first available graph "agent_id": self.agent_graphs[0]["id"],
"agent_version": 1, "agent_version": 1,
"slug": "test-agent-submission", "slug": "test-agent-submission",
"name": "Test Agent Submission", "name": "Test Agent Submission",
@@ -580,37 +592,24 @@ class TestDataCreator:
submissions.append(test_submission.model_dump()) submissions.append(test_submission.model_dump())
print("✅ Created special test store submission for test123@gmail.com") print("✅ Created special test store submission for test123@gmail.com")
# Randomly approve, reject, or leave pending the test submission # ALWAYS approve and feature the test submission
if test_submission.store_listing_version_id: if test_submission.store_listing_version_id:
random_value = random.random() approved_submission = await review_store_submission(
if random_value < 0.4: # 40% chance to approve store_listing_version_id=test_submission.store_listing_version_id,
approved_submission = await review_store_submission( is_approved=True,
store_listing_version_id=test_submission.store_listing_version_id, external_comments="Test submission approved",
is_approved=True, internal_comments="Auto-approved test submission",
external_comments="Test submission approved", reviewer_id=test_user["id"],
internal_comments="Auto-approved test submission", )
reviewer_id=test_user["id"], approved_submissions.append(approved_submission.model_dump())
) print("✅ Approved test store submission")
approved_submissions.append(approved_submission.model_dump())
print("✅ Approved test store submission")
# Mark approved submission as featured await prisma.storelistingversion.update(
await prisma.storelistingversion.update( where={"id": test_submission.store_listing_version_id},
where={"id": test_submission.store_listing_version_id}, data={"isFeatured": True},
data={"isFeatured": True}, )
) featured_count += 1
print("🌟 Marked test agent as FEATURED") print("🌟 Marked test agent as FEATURED")
elif random_value < 0.7: # 30% chance to reject (40% to 70%)
await review_store_submission(
store_listing_version_id=test_submission.store_listing_version_id,
is_approved=False,
external_comments="Test submission rejected - needs improvements",
internal_comments="Auto-rejected test submission for E2E testing",
reviewer_id=test_user["id"],
)
print("❌ Rejected test store submission")
else: # 30% chance to leave pending (70% to 100%)
print("⏳ Left test submission pending for review")
except Exception as e: except Exception as e:
print(f"Error creating test store submission: {e}") print(f"Error creating test store submission: {e}")
@@ -620,7 +619,6 @@ class TestDataCreator:
# Create regular submissions for all users # Create regular submissions for all users
for user in self.users: for user in self.users:
# Get available graphs for this specific user
user_graphs = [ user_graphs = [
g for g in self.agent_graphs if g.get("userId") == user["id"] g for g in self.agent_graphs if g.get("userId") == user["id"]
] ]
@@ -631,18 +629,17 @@ class TestDataCreator:
) )
continue continue
# Create exactly 4 store submissions per user
for submission_index in range(4): for submission_index in range(4):
graph = random.choice(user_graphs) graph = random.choice(user_graphs)
submission_counter += 1
try: try:
print( print(
f"Creating store submission for user {user['id']} with graph {graph['id']} (owner: {graph.get('userId')})" f"Creating store submission for user {user['id']} with graph {graph['id']}"
) )
# Use the API function to create store submission with correct parameters
submission = await create_store_submission( submission = await create_store_submission(
user_id=user["id"], # Must match graph's userId user_id=user["id"],
agent_id=graph["id"], agent_id=graph["id"],
agent_version=graph.get("version", 1), agent_version=graph.get("version", 1),
slug=faker.slug(), slug=faker.slug(),
@@ -651,22 +648,24 @@ class TestDataCreator:
video_url=get_video_url() if random.random() < 0.3 else None, video_url=get_video_url() if random.random() < 0.3 else None,
image_urls=[get_image() for _ in range(3)], image_urls=[get_image() for _ in range(3)],
description=faker.text(), description=faker.text(),
categories=[ categories=[get_category()],
get_category()
], # Single category from predefined list
changes_summary="Initial E2E test submission", changes_summary="Initial E2E test submission",
) )
submissions.append(submission.model_dump()) submissions.append(submission.model_dump())
print(f"✅ Created store submission: {submission.name}") print(f"✅ Created store submission: {submission.name}")
# Randomly approve, reject, or leave pending the submission
if submission.store_listing_version_id: if submission.store_listing_version_id:
random_value = random.random() # DETERMINISTIC: First N submissions are always approved
if random_value < 0.4: # 40% chance to approve # First GUARANTEED_FEATURED_AGENTS of those are always featured
try: should_approve = (
# Pick a random user as the reviewer (admin) submission_counter <= GUARANTEED_TOP_AGENTS
reviewer_id = random.choice(self.users)["id"] or random.random() < 0.4
)
should_feature = featured_count < GUARANTEED_FEATURED_AGENTS
if should_approve:
try:
reviewer_id = random.choice(self.users)["id"]
approved_submission = await review_store_submission( approved_submission = await review_store_submission(
store_listing_version_id=submission.store_listing_version_id, store_listing_version_id=submission.store_listing_version_id,
is_approved=True, is_approved=True,
@@ -681,16 +680,7 @@ class TestDataCreator:
f"✅ Approved store submission: {submission.name}" f"✅ Approved store submission: {submission.name}"
) )
# Mark some agents as featured during creation (30% chance) if should_feature:
# More likely for creators and first submissions
is_creator = user["id"] in [
p.get("userId") for p in self.profiles
]
feature_chance = (
0.5 if is_creator else 0.2
) # 50% for creators, 20% for others
if random.random() < feature_chance:
try: try:
await prisma.storelistingversion.update( await prisma.storelistingversion.update(
where={ where={
@@ -698,8 +688,25 @@ class TestDataCreator:
}, },
data={"isFeatured": True}, data={"isFeatured": True},
) )
featured_count += 1
print( print(
f"🌟 Marked agent as FEATURED: {submission.name}" f"🌟 Marked agent as FEATURED ({featured_count}/{GUARANTEED_FEATURED_AGENTS}): {submission.name}"
)
except Exception as e:
print(
f"Warning: Could not mark submission as featured: {e}"
)
elif random.random() < 0.2:
try:
await prisma.storelistingversion.update(
where={
"id": submission.store_listing_version_id
},
data={"isFeatured": True},
)
featured_count += 1
print(
f"🌟 Marked agent as FEATURED (bonus): {submission.name}"
) )
except Exception as e: except Exception as e:
print( print(
@@ -710,11 +717,9 @@ class TestDataCreator:
print( print(
f"Warning: Could not approve submission {submission.name}: {e}" f"Warning: Could not approve submission {submission.name}: {e}"
) )
elif random_value < 0.7: # 30% chance to reject (40% to 70%) elif random.random() < 0.5:
try: try:
# Pick a random user as the reviewer (admin)
reviewer_id = random.choice(self.users)["id"] reviewer_id = random.choice(self.users)["id"]
await review_store_submission( await review_store_submission(
store_listing_version_id=submission.store_listing_version_id, store_listing_version_id=submission.store_listing_version_id,
is_approved=False, is_approved=False,
@@ -729,7 +734,7 @@ class TestDataCreator:
print( print(
f"Warning: Could not reject submission {submission.name}: {e}" f"Warning: Could not reject submission {submission.name}: {e}"
) )
else: # 30% chance to leave pending (70% to 100%) else:
print( print(
f"⏳ Left submission pending for review: {submission.name}" f"⏳ Left submission pending for review: {submission.name}"
) )
@@ -743,9 +748,13 @@ class TestDataCreator:
traceback.print_exc() traceback.print_exc()
continue continue
print("\n📊 Store Submissions Summary:")
print(f" Created: {len(submissions)}")
print(f" Approved: {len(approved_submissions)}")
print( print(
f"Created {len(submissions)} store submissions, approved {len(approved_submissions)}" f" Featured: {featured_count} (guaranteed min: {GUARANTEED_FEATURED_AGENTS})"
) )
self.store_submissions = submissions self.store_submissions = submissions
return submissions return submissions
@@ -825,12 +834,15 @@ class TestDataCreator:
print(f"✅ Agent blocks available: {len(self.agent_blocks)}") print(f"✅ Agent blocks available: {len(self.agent_blocks)}")
print(f"✅ Agent graphs created: {len(self.agent_graphs)}") print(f"✅ Agent graphs created: {len(self.agent_graphs)}")
print(f"✅ Library agents created: {len(self.library_agents)}") print(f"✅ Library agents created: {len(self.library_agents)}")
print(f"✅ Creator profiles updated: {len(self.profiles)} (some featured)") print(f"✅ Creator profiles updated: {len(self.profiles)}")
print( print(f"✅ Store submissions created: {len(self.store_submissions)}")
f"✅ Store submissions created: {len(self.store_submissions)} (some marked as featured during creation)"
)
print(f"✅ API keys created: {len(self.api_keys)}") print(f"✅ API keys created: {len(self.api_keys)}")
print(f"✅ Presets created: {len(self.presets)}") print(f"✅ Presets created: {len(self.presets)}")
print("\n🎯 Deterministic Guarantees:")
print(f" • Featured agents: >= {GUARANTEED_FEATURED_AGENTS}")
print(f" • Featured creators: >= {GUARANTEED_FEATURED_CREATORS}")
print(f" • Top agents (approved): >= {GUARANTEED_TOP_AGENTS}")
print(f" • Library agents per user: >= {MIN_AGENTS_PER_USER}")
print("\n🚀 Your E2E test database is ready to use!") print("\n🚀 Your E2E test database is ready to use!")

View File

@@ -34,3 +34,6 @@ NEXT_PUBLIC_PREVIEW_STEALING_DEV=
# PostHog Analytics # PostHog Analytics
NEXT_PUBLIC_POSTHOG_KEY= NEXT_PUBLIC_POSTHOG_KEY=
NEXT_PUBLIC_POSTHOG_HOST=https://eu.i.posthog.com NEXT_PUBLIC_POSTHOG_HOST=https://eu.i.posthog.com
# OpenAI (for voice transcription)
OPENAI_API_KEY=

View File

@@ -0,0 +1,76 @@
# CLAUDE.md - Frontend
This file provides guidance to Claude Code when working with the frontend.
## Essential Commands
```bash
# Install dependencies
pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
# Run E2E tests
pnpm test
# Run Storybook for component development
pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
### Code Style
- Fully capitalize acronyms in symbols, e.g. `graphID`, `useBackendAPI`
- Use function declarations (not arrow functions) for components/handlers
## Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
## Environment Configuration
`.env.default` (defaults) → `.env` (user overrides)
## Feature Development
See @CONTRIBUTING.md for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Extract component logic into custom hooks grouped by concern, not by component. Each hook should represent a cohesive domain of functionality (e.g., useSearch, useFilters, usePagination) rather than bundling all state into one useComponentState hook.
- Put each hook in its own `.ts` file
- Put sub-components in local `components/` folder
- Component props should be `type Props = { ... }` (not exported) unless it needs to be used outside the component
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**:
- Use function declarations (not arrow functions) for components/handlers
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any` unless a variable/attribute can ACTUALLY be of any type

View File

@@ -73,9 +73,9 @@ export function useSessionsPagination({ enabled }: UseSessionsPaginationArgs) {
}; };
const reset = () => { const reset = () => {
// Only reset the offset - keep existing sessions visible during refetch
// The effect will replace sessions when new data arrives at offset 0
setOffset(0); setOffset(0);
setAccumulatedSessions([]);
setTotalCount(null);
}; };
return { return {

View File

@@ -5912,6 +5912,40 @@
} }
} }
}, },
"/api/workspace/files/{file_id}/download": {
"get": {
"tags": ["workspace"],
"summary": "Download file by ID",
"description": "Download a file by its ID.\n\nReturns the file content directly or redirects to a signed URL for GCS.",
"operationId": "getWorkspaceDownload file by id",
"security": [{ "HTTPBearerJWT": [] }],
"parameters": [
{
"name": "file_id",
"in": "path",
"required": true,
"schema": { "type": "string", "title": "File Id" }
}
],
"responses": {
"200": {
"description": "Successful Response",
"content": { "application/json": { "schema": {} } }
},
"401": {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
}
}
}
},
"/health": { "/health": {
"get": { "get": {
"tags": ["health"], "tags": ["health"],

View File

@@ -1,5 +1,6 @@
import { import {
ApiError, ApiError,
getServerAuthToken,
makeAuthenticatedFileUpload, makeAuthenticatedFileUpload,
makeAuthenticatedRequest, makeAuthenticatedRequest,
} from "@/lib/autogpt-server-api/helpers"; } from "@/lib/autogpt-server-api/helpers";
@@ -15,6 +16,69 @@ function buildBackendUrl(path: string[], queryString: string): string {
return `${environment.getAGPTServerBaseUrl()}/${backendPath}${queryString}`; return `${environment.getAGPTServerBaseUrl()}/${backendPath}${queryString}`;
} }
/**
* Check if this is a workspace file download request that needs binary response handling.
*/
function isWorkspaceDownloadRequest(path: string[]): boolean {
// Match pattern: api/workspace/files/{id}/download (5 segments)
return (
path.length == 5 &&
path[0] === "api" &&
path[1] === "workspace" &&
path[2] === "files" &&
path[path.length - 1] === "download"
);
}
/**
* Handle workspace file download requests with proper binary response streaming.
*/
async function handleWorkspaceDownload(
req: NextRequest,
backendUrl: string,
): Promise<NextResponse> {
const token = await getServerAuthToken();
const headers: Record<string, string> = {};
if (token && token !== "no-token-found") {
headers["Authorization"] = `Bearer ${token}`;
}
const response = await fetch(backendUrl, {
method: "GET",
headers,
redirect: "follow", // Follow redirects to signed URLs
});
if (!response.ok) {
return NextResponse.json(
{ error: `Failed to download file: ${response.statusText}` },
{ status: response.status },
);
}
// Get the content type from the backend response
const contentType =
response.headers.get("Content-Type") || "application/octet-stream";
const contentDisposition = response.headers.get("Content-Disposition");
// Stream the response body
const responseHeaders: Record<string, string> = {
"Content-Type": contentType,
};
if (contentDisposition) {
responseHeaders["Content-Disposition"] = contentDisposition;
}
// Return the binary content
const arrayBuffer = await response.arrayBuffer();
return new NextResponse(arrayBuffer, {
status: 200,
headers: responseHeaders,
});
}
async function handleJsonRequest( async function handleJsonRequest(
req: NextRequest, req: NextRequest,
method: string, method: string,
@@ -180,6 +244,11 @@ async function handler(
}; };
try { try {
// Handle workspace file downloads separately (binary response)
if (method === "GET" && isWorkspaceDownloadRequest(path)) {
return await handleWorkspaceDownload(req, backendUrl);
}
if (method === "GET" || method === "DELETE") { if (method === "GET" || method === "DELETE") {
responseBody = await handleGetDeleteRequest(method, backendUrl, req); responseBody = await handleGetDeleteRequest(method, backendUrl, req);
} else if (contentType?.includes("application/json")) { } else if (contentType?.includes("application/json")) {

View File

@@ -0,0 +1,77 @@
import { getServerAuthToken } from "@/lib/autogpt-server-api/helpers";
import { NextRequest, NextResponse } from "next/server";
const WHISPER_API_URL = "https://api.openai.com/v1/audio/transcriptions";
const MAX_FILE_SIZE = 25 * 1024 * 1024; // 25MB - Whisper's limit
function getExtensionFromMimeType(mimeType: string): string {
const subtype = mimeType.split("/")[1]?.split(";")[0];
return subtype || "webm";
}
export async function POST(request: NextRequest) {
const token = await getServerAuthToken();
if (!token || token === "no-token-found") {
return NextResponse.json({ error: "Unauthorized" }, { status: 401 });
}
const apiKey = process.env.OPENAI_API_KEY;
if (!apiKey) {
return NextResponse.json(
{ error: "OpenAI API key not configured" },
{ status: 401 },
);
}
try {
const formData = await request.formData();
const audioFile = formData.get("audio");
if (!audioFile || !(audioFile instanceof Blob)) {
return NextResponse.json(
{ error: "No audio file provided" },
{ status: 400 },
);
}
if (audioFile.size > MAX_FILE_SIZE) {
return NextResponse.json(
{ error: "File too large. Maximum size is 25MB." },
{ status: 413 },
);
}
const ext = getExtensionFromMimeType(audioFile.type);
const whisperFormData = new FormData();
whisperFormData.append("file", audioFile, `recording.${ext}`);
whisperFormData.append("model", "whisper-1");
const response = await fetch(WHISPER_API_URL, {
method: "POST",
headers: {
Authorization: `Bearer ${apiKey}`,
},
body: whisperFormData,
});
if (!response.ok) {
const errorData = await response.json().catch(() => ({}));
console.error("Whisper API error:", errorData);
return NextResponse.json(
{ error: errorData.error?.message || "Transcription failed" },
{ status: response.status },
);
}
const result = await response.json();
return NextResponse.json({ text: result.text });
} catch (error) {
console.error("Transcription error:", error);
return NextResponse.json(
{ error: "Failed to process audio" },
{ status: 500 },
);
}
}

View File

@@ -1,7 +1,14 @@
import { Button } from "@/components/atoms/Button/Button"; import { Button } from "@/components/atoms/Button/Button";
import { cn } from "@/lib/utils"; import { cn } from "@/lib/utils";
import { ArrowUpIcon, StopIcon } from "@phosphor-icons/react"; import {
ArrowUpIcon,
CircleNotchIcon,
MicrophoneIcon,
StopIcon,
} from "@phosphor-icons/react";
import { RecordingIndicator } from "./components/RecordingIndicator";
import { useChatInput } from "./useChatInput"; import { useChatInput } from "./useChatInput";
import { useVoiceRecording } from "./useVoiceRecording";
export interface Props { export interface Props {
onSend: (message: string) => void; onSend: (message: string) => void;
@@ -21,13 +28,37 @@ export function ChatInput({
className, className,
}: Props) { }: Props) {
const inputId = "chat-input"; const inputId = "chat-input";
const { value, handleKeyDown, handleSubmit, handleChange, hasMultipleLines } = const {
useChatInput({ value,
onSend, setValue,
disabled: disabled || isStreaming, handleKeyDown: baseHandleKeyDown,
maxRows: 4, handleSubmit,
inputId, handleChange,
}); hasMultipleLines,
} = useChatInput({
onSend,
disabled: disabled || isStreaming,
maxRows: 4,
inputId,
});
const {
isRecording,
isTranscribing,
elapsedTime,
toggleRecording,
handleKeyDown,
showMicButton,
isInputDisabled,
audioStream,
} = useVoiceRecording({
setValue,
disabled: disabled || isStreaming,
isStreaming,
value,
baseHandleKeyDown,
inputId,
});
return ( return (
<form onSubmit={handleSubmit} className={cn("relative flex-1", className)}> <form onSubmit={handleSubmit} className={cn("relative flex-1", className)}>
@@ -35,8 +66,11 @@ export function ChatInput({
<div <div
id={`${inputId}-wrapper`} id={`${inputId}-wrapper`}
className={cn( className={cn(
"relative overflow-hidden border border-neutral-200 bg-white shadow-sm", "relative overflow-hidden border bg-white shadow-sm",
"focus-within:border-zinc-400 focus-within:ring-1 focus-within:ring-zinc-400", "focus-within:ring-1",
isRecording
? "border-red-400 focus-within:border-red-400 focus-within:ring-red-400"
: "border-neutral-200 focus-within:border-zinc-400 focus-within:ring-zinc-400",
hasMultipleLines ? "rounded-xlarge" : "rounded-full", hasMultipleLines ? "rounded-xlarge" : "rounded-full",
)} )}
> >
@@ -46,48 +80,94 @@ export function ChatInput({
value={value} value={value}
onChange={handleChange} onChange={handleChange}
onKeyDown={handleKeyDown} onKeyDown={handleKeyDown}
placeholder={placeholder} placeholder={
disabled={disabled || isStreaming} isTranscribing
? "Transcribing..."
: isRecording
? ""
: placeholder
}
disabled={isInputDisabled}
rows={1} rows={1}
className={cn( className={cn(
"w-full resize-none overflow-y-auto border-0 bg-transparent text-[1rem] leading-6 text-black", "w-full resize-none overflow-y-auto border-0 bg-transparent text-[1rem] leading-6 text-black",
"placeholder:text-zinc-400", "placeholder:text-zinc-400",
"focus:outline-none focus:ring-0", "focus:outline-none focus:ring-0",
"disabled:text-zinc-500", "disabled:text-zinc-500",
hasMultipleLines ? "pb-6 pl-4 pr-4 pt-2" : "pb-4 pl-4 pr-14 pt-4", hasMultipleLines
? "pb-6 pl-4 pr-4 pt-2"
: showMicButton
? "pb-4 pl-14 pr-14 pt-4"
: "pb-4 pl-4 pr-14 pt-4",
)} )}
/> />
{isRecording && !value && (
<div className="pointer-events-none absolute inset-0 flex items-center justify-center">
<RecordingIndicator
elapsedTime={elapsedTime}
audioStream={audioStream}
/>
</div>
)}
</div> </div>
<span id="chat-input-hint" className="sr-only"> <span id="chat-input-hint" className="sr-only">
Press Enter to send, Shift+Enter for new line Press Enter to send, Shift+Enter for new line, Space to record voice
</span> </span>
{isStreaming ? ( {showMicButton && (
<Button <div className="absolute bottom-[7px] left-2 flex items-center gap-1">
type="button" <Button
variant="icon" type="button"
size="icon" variant="icon"
aria-label="Stop generating" size="icon"
onClick={onStop} aria-label={isRecording ? "Stop recording" : "Start recording"}
className="absolute bottom-[7px] right-2 border-red-600 bg-red-600 text-white hover:border-red-800 hover:bg-red-800" onClick={toggleRecording}
> disabled={disabled || isTranscribing}
<StopIcon className="h-4 w-4" weight="bold" /> className={cn(
</Button> isRecording
) : ( ? "animate-pulse border-red-500 bg-red-500 text-white hover:border-red-600 hover:bg-red-600"
<Button : isTranscribing
type="submit" ? "border-zinc-300 bg-zinc-100 text-zinc-400"
variant="icon" : "border-zinc-300 bg-white text-zinc-500 hover:border-zinc-400 hover:bg-zinc-50 hover:text-zinc-700",
size="icon" )}
aria-label="Send message" >
className={cn( {isTranscribing ? (
"absolute bottom-[7px] right-2 border-zinc-800 bg-zinc-800 text-white hover:border-zinc-900 hover:bg-zinc-900", <CircleNotchIcon className="h-4 w-4 animate-spin" />
(disabled || !value.trim()) && "opacity-20", ) : (
)} <MicrophoneIcon className="h-4 w-4" weight="bold" />
disabled={disabled || !value.trim()} )}
> </Button>
<ArrowUpIcon className="h-4 w-4" weight="bold" /> </div>
</Button>
)} )}
<div className="absolute bottom-[7px] right-2 flex items-center gap-1">
{isStreaming ? (
<Button
type="button"
variant="icon"
size="icon"
aria-label="Stop generating"
onClick={onStop}
className="border-red-600 bg-red-600 text-white hover:border-red-800 hover:bg-red-800"
>
<StopIcon className="h-4 w-4" weight="bold" />
</Button>
) : (
<Button
type="submit"
variant="icon"
size="icon"
aria-label="Send message"
className={cn(
"border-zinc-800 bg-zinc-800 text-white hover:border-zinc-900 hover:bg-zinc-900",
(disabled || !value.trim() || isRecording) && "opacity-20",
)}
disabled={disabled || !value.trim() || isRecording}
>
<ArrowUpIcon className="h-4 w-4" weight="bold" />
</Button>
)}
</div>
</div> </div>
</form> </form>
); );

View File

@@ -0,0 +1,142 @@
"use client";
import { useEffect, useRef, useState } from "react";
interface Props {
stream: MediaStream | null;
barCount?: number;
barWidth?: number;
barGap?: number;
barColor?: string;
minBarHeight?: number;
maxBarHeight?: number;
}
export function AudioWaveform({
stream,
barCount = 24,
barWidth = 3,
barGap = 2,
barColor = "#ef4444", // red-500
minBarHeight = 4,
maxBarHeight = 32,
}: Props) {
const [bars, setBars] = useState<number[]>(() =>
Array(barCount).fill(minBarHeight),
);
const analyserRef = useRef<AnalyserNode | null>(null);
const audioContextRef = useRef<AudioContext | null>(null);
const sourceRef = useRef<MediaStreamAudioSourceNode | null>(null);
const animationRef = useRef<number | null>(null);
useEffect(() => {
if (!stream) {
setBars(Array(barCount).fill(minBarHeight));
return;
}
// Create audio context and analyser
const audioContext = new AudioContext();
const analyser = audioContext.createAnalyser();
analyser.fftSize = 512;
analyser.smoothingTimeConstant = 0.8;
// Connect the stream to the analyser
const source = audioContext.createMediaStreamSource(stream);
source.connect(analyser);
audioContextRef.current = audioContext;
analyserRef.current = analyser;
sourceRef.current = source;
const timeData = new Uint8Array(analyser.frequencyBinCount);
const updateBars = () => {
if (!analyserRef.current) return;
analyserRef.current.getByteTimeDomainData(timeData);
// Distribute time-domain data across bars
// This shows waveform amplitude, making all bars respond to audio
const newBars: number[] = [];
const samplesPerBar = timeData.length / barCount;
for (let i = 0; i < barCount; i++) {
// Sample waveform data for this bar
let maxAmplitude = 0;
const startIdx = Math.floor(i * samplesPerBar);
const endIdx = Math.floor((i + 1) * samplesPerBar);
for (let j = startIdx; j < endIdx && j < timeData.length; j++) {
// Convert to amplitude (distance from center 128)
const amplitude = Math.abs(timeData[j] - 128);
maxAmplitude = Math.max(maxAmplitude, amplitude);
}
// Map amplitude (0-128) to bar height
const normalized = (maxAmplitude / 128) * 255;
const height =
minBarHeight + (normalized / 255) * (maxBarHeight - minBarHeight);
newBars.push(height);
}
setBars(newBars);
animationRef.current = requestAnimationFrame(updateBars);
};
updateBars();
return () => {
if (animationRef.current) {
cancelAnimationFrame(animationRef.current);
}
if (sourceRef.current) {
sourceRef.current.disconnect();
}
if (audioContextRef.current) {
audioContextRef.current.close();
}
analyserRef.current = null;
audioContextRef.current = null;
sourceRef.current = null;
};
}, [stream, barCount, minBarHeight, maxBarHeight]);
const totalWidth = barCount * barWidth + (barCount - 1) * barGap;
return (
<div
className="flex items-center justify-center"
style={{
width: totalWidth,
height: maxBarHeight,
gap: barGap,
}}
>
{bars.map((height, i) => {
const barHeight = Math.max(minBarHeight, height);
return (
<div
key={i}
className="relative"
style={{
width: barWidth,
height: maxBarHeight,
}}
>
<div
className="absolute left-0 rounded-full transition-[height] duration-75"
style={{
width: barWidth,
height: barHeight,
top: "50%",
transform: "translateY(-50%)",
backgroundColor: barColor,
}}
/>
</div>
);
})}
</div>
);
}

View File

@@ -0,0 +1,26 @@
import { formatElapsedTime } from "../helpers";
import { AudioWaveform } from "./AudioWaveform";
type Props = {
elapsedTime: number;
audioStream: MediaStream | null;
};
export function RecordingIndicator({ elapsedTime, audioStream }: Props) {
return (
<div className="flex items-center gap-3">
<AudioWaveform
stream={audioStream}
barCount={20}
barWidth={3}
barGap={2}
barColor="#ef4444"
minBarHeight={4}
maxBarHeight={24}
/>
<span className="min-w-[3ch] text-sm font-medium text-red-500">
{formatElapsedTime(elapsedTime)}
</span>
</div>
);
}

View File

@@ -0,0 +1,6 @@
export function formatElapsedTime(ms: number): string {
const seconds = Math.floor(ms / 1000);
const minutes = Math.floor(seconds / 60);
const remainingSeconds = seconds % 60;
return `${minutes}:${remainingSeconds.toString().padStart(2, "0")}`;
}

View File

@@ -6,7 +6,7 @@ import {
useState, useState,
} from "react"; } from "react";
interface UseChatInputArgs { interface Args {
onSend: (message: string) => void; onSend: (message: string) => void;
disabled?: boolean; disabled?: boolean;
maxRows?: number; maxRows?: number;
@@ -18,7 +18,7 @@ export function useChatInput({
disabled = false, disabled = false,
maxRows = 5, maxRows = 5,
inputId = "chat-input", inputId = "chat-input",
}: UseChatInputArgs) { }: Args) {
const [value, setValue] = useState(""); const [value, setValue] = useState("");
const [hasMultipleLines, setHasMultipleLines] = useState(false); const [hasMultipleLines, setHasMultipleLines] = useState(false);

View File

@@ -0,0 +1,251 @@
import { useToast } from "@/components/molecules/Toast/use-toast";
import React, {
KeyboardEvent,
useCallback,
useEffect,
useRef,
useState,
} from "react";
const MAX_RECORDING_DURATION = 2 * 60 * 1000; // 2 minutes in ms
interface Args {
setValue: React.Dispatch<React.SetStateAction<string>>;
disabled?: boolean;
isStreaming?: boolean;
value: string;
baseHandleKeyDown: (event: KeyboardEvent<HTMLTextAreaElement>) => void;
inputId?: string;
}
export function useVoiceRecording({
setValue,
disabled = false,
isStreaming = false,
value,
baseHandleKeyDown,
inputId,
}: Args) {
const [isRecording, setIsRecording] = useState(false);
const [isTranscribing, setIsTranscribing] = useState(false);
const [error, setError] = useState<string | null>(null);
const [elapsedTime, setElapsedTime] = useState(0);
const mediaRecorderRef = useRef<MediaRecorder | null>(null);
const chunksRef = useRef<Blob[]>([]);
const timerRef = useRef<NodeJS.Timeout | null>(null);
const startTimeRef = useRef<number>(0);
const streamRef = useRef<MediaStream | null>(null);
const isRecordingRef = useRef(false);
const isSupported =
typeof window !== "undefined" &&
!!(navigator.mediaDevices && navigator.mediaDevices.getUserMedia);
const clearTimer = useCallback(() => {
if (timerRef.current) {
clearInterval(timerRef.current);
timerRef.current = null;
}
}, []);
const cleanup = useCallback(() => {
clearTimer();
if (streamRef.current) {
streamRef.current.getTracks().forEach((track) => track.stop());
streamRef.current = null;
}
mediaRecorderRef.current = null;
chunksRef.current = [];
setElapsedTime(0);
}, [clearTimer]);
const handleTranscription = useCallback(
(text: string) => {
setValue((prev) => {
const trimmedPrev = prev.trim();
if (trimmedPrev) {
return `${trimmedPrev} ${text}`;
}
return text;
});
},
[setValue],
);
const transcribeAudio = useCallback(
async (audioBlob: Blob) => {
setIsTranscribing(true);
setError(null);
try {
const formData = new FormData();
formData.append("audio", audioBlob);
const response = await fetch("/api/transcribe", {
method: "POST",
body: formData,
});
if (!response.ok) {
const data = await response.json().catch(() => ({}));
throw new Error(data.error || "Transcription failed");
}
const data = await response.json();
if (data.text) {
handleTranscription(data.text);
}
} catch (err) {
const message =
err instanceof Error ? err.message : "Transcription failed";
setError(message);
console.error("Transcription error:", err);
} finally {
setIsTranscribing(false);
}
},
[handleTranscription, inputId],
);
const stopRecording = useCallback(() => {
if (mediaRecorderRef.current && isRecordingRef.current) {
mediaRecorderRef.current.stop();
isRecordingRef.current = false;
setIsRecording(false);
clearTimer();
}
}, [clearTimer]);
const startRecording = useCallback(async () => {
if (disabled || isRecordingRef.current || isTranscribing) return;
setError(null);
chunksRef.current = [];
try {
const stream = await navigator.mediaDevices.getUserMedia({ audio: true });
streamRef.current = stream;
const mediaRecorder = new MediaRecorder(stream, {
mimeType: MediaRecorder.isTypeSupported("audio/webm")
? "audio/webm"
: "audio/mp4",
});
mediaRecorderRef.current = mediaRecorder;
mediaRecorder.ondataavailable = (event) => {
if (event.data.size > 0) {
chunksRef.current.push(event.data);
}
};
mediaRecorder.onstop = async () => {
const audioBlob = new Blob(chunksRef.current, {
type: mediaRecorder.mimeType,
});
// Cleanup stream
if (streamRef.current) {
streamRef.current.getTracks().forEach((track) => track.stop());
streamRef.current = null;
}
if (audioBlob.size > 0) {
await transcribeAudio(audioBlob);
}
};
mediaRecorder.start(1000); // Collect data every second
isRecordingRef.current = true;
setIsRecording(true);
startTimeRef.current = Date.now();
// Start elapsed time timer
timerRef.current = setInterval(() => {
const elapsed = Date.now() - startTimeRef.current;
setElapsedTime(elapsed);
// Auto-stop at max duration
if (elapsed >= MAX_RECORDING_DURATION) {
stopRecording();
}
}, 100);
} catch (err) {
console.error("Failed to start recording:", err);
if (err instanceof DOMException && err.name === "NotAllowedError") {
setError("Microphone permission denied");
} else {
setError("Failed to access microphone");
}
cleanup();
}
}, [disabled, isTranscribing, stopRecording, transcribeAudio, cleanup]);
const toggleRecording = useCallback(() => {
if (isRecording) {
stopRecording();
} else {
startRecording();
}
}, [isRecording, startRecording, stopRecording]);
const { toast } = useToast();
useEffect(() => {
if (error) {
toast({
title: "Voice recording failed",
description: error,
variant: "destructive",
});
}
}, [error, toast]);
useEffect(() => {
if (!isTranscribing && inputId) {
const inputElement = document.getElementById(inputId);
if (inputElement) {
inputElement.focus();
}
}
}, [isTranscribing, inputId]);
const handleKeyDown = useCallback(
(event: KeyboardEvent<HTMLTextAreaElement>) => {
if (event.key === " " && !value.trim() && !isTranscribing) {
event.preventDefault();
toggleRecording();
return;
}
baseHandleKeyDown(event);
},
[value, isTranscribing, toggleRecording, baseHandleKeyDown],
);
const showMicButton = isSupported && !isStreaming;
const isInputDisabled = disabled || isStreaming || isTranscribing;
// Cleanup on unmount
useEffect(() => {
return () => {
cleanup();
};
}, [cleanup]);
return {
isRecording,
isTranscribing,
error,
elapsedTime,
startRecording,
stopRecording,
toggleRecording,
isSupported,
handleKeyDown,
showMicButton,
isInputDisabled,
audioStream: streamRef.current,
};
}

View File

@@ -1,6 +1,8 @@
"use client"; "use client";
import { getGetWorkspaceDownloadFileByIdUrl } from "@/app/api/__generated__/endpoints/workspace/workspace";
import { cn } from "@/lib/utils"; import { cn } from "@/lib/utils";
import { EyeSlash } from "@phosphor-icons/react";
import React from "react"; import React from "react";
import ReactMarkdown from "react-markdown"; import ReactMarkdown from "react-markdown";
import remarkGfm from "remark-gfm"; import remarkGfm from "remark-gfm";
@@ -29,12 +31,88 @@ interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
type?: string; type?: string;
} }
/**
* Converts a workspace:// URL to a proxy URL that routes through Next.js to the backend.
* workspace://abc123 -> /api/proxy/api/workspace/files/abc123/download
*
* Uses the generated API URL helper and routes through the Next.js proxy
* which handles authentication and proper backend routing.
*/
/**
* URL transformer for ReactMarkdown.
* Converts workspace:// URLs to proxy URLs that route through Next.js to the backend.
* workspace://abc123 -> /api/proxy/api/workspace/files/abc123/download
*
* This is needed because ReactMarkdown sanitizes URLs and only allows
* http, https, mailto, and tel protocols by default.
*/
function resolveWorkspaceUrl(src: string): string {
if (src.startsWith("workspace://")) {
const fileId = src.replace("workspace://", "");
// Use the generated API URL helper to get the correct path
const apiPath = getGetWorkspaceDownloadFileByIdUrl(fileId);
// Route through the Next.js proxy (same pattern as customMutator for client-side)
return `/api/proxy${apiPath}`;
}
return src;
}
/**
* Check if the image URL is a workspace file (AI cannot see these yet).
* After URL transformation, workspace files have URLs like /api/proxy/api/workspace/files/...
*/
function isWorkspaceImage(src: string | undefined): boolean {
return src?.includes("/workspace/files/") ?? false;
}
/**
* Custom image component that shows an indicator when the AI cannot see the image.
* Note: src is already transformed by urlTransform, so workspace:// is now /api/workspace/...
*/
function MarkdownImage(props: Record<string, unknown>) {
const src = props.src as string | undefined;
const alt = props.alt as string | undefined;
const aiCannotSee = isWorkspaceImage(src);
// If no src, show a placeholder
if (!src) {
return (
<span className="my-2 inline-block rounded border border-amber-200 bg-amber-50 px-2 py-1 text-sm text-amber-700">
[Image: {alt || "missing src"}]
</span>
);
}
return (
<span className="relative my-2 inline-block">
{/* eslint-disable-next-line @next/next/no-img-element */}
<img
src={src}
alt={alt || "Image"}
className="h-auto max-w-full rounded-md border border-zinc-200"
loading="lazy"
/>
{aiCannotSee && (
<span
className="absolute bottom-2 right-2 flex items-center gap-1 rounded bg-black/70 px-2 py-1 text-xs text-white"
title="The AI cannot see this image"
>
<EyeSlash size={14} />
<span>AI cannot see this image</span>
</span>
)}
</span>
);
}
export function MarkdownContent({ content, className }: MarkdownContentProps) { export function MarkdownContent({ content, className }: MarkdownContentProps) {
return ( return (
<div className={cn("markdown-content", className)}> <div className={cn("markdown-content", className)}>
<ReactMarkdown <ReactMarkdown
skipHtml={true} skipHtml={true}
remarkPlugins={[remarkGfm]} remarkPlugins={[remarkGfm]}
urlTransform={resolveWorkspaceUrl}
components={{ components={{
code: ({ children, className, ...props }: CodeProps) => { code: ({ children, className, ...props }: CodeProps) => {
const isInline = !className?.includes("language-"); const isInline = !className?.includes("language-");
@@ -206,6 +284,9 @@ export function MarkdownContent({ content, className }: MarkdownContentProps) {
{children} {children}
</td> </td>
), ),
img: ({ src, alt, ...props }) => (
<MarkdownImage src={src} alt={alt} {...props} />
),
}} }}
> >
{content} {content}

View File

@@ -30,13 +30,94 @@ export function getErrorMessage(result: unknown): string {
} }
if (typeof result === "object" && result !== null) { if (typeof result === "object" && result !== null) {
const response = result as Record<string, unknown>; const response = result as Record<string, unknown>;
if (response.error) return stripInternalReasoning(String(response.error));
if (response.message) if (response.message)
return stripInternalReasoning(String(response.message)); return stripInternalReasoning(String(response.message));
if (response.error) return stripInternalReasoning(String(response.error));
} }
return "An error occurred"; return "An error occurred";
} }
/**
* Check if a value is a workspace file reference.
*/
function isWorkspaceRef(value: unknown): value is string {
return typeof value === "string" && value.startsWith("workspace://");
}
/**
* Check if a workspace reference appears to be an image based on common patterns.
* Since workspace refs don't have extensions, we check the context or assume image
* for certain block types.
*
* TODO: Replace keyword matching with MIME type encoded in workspace ref.
* e.g., workspace://abc123#image/png or workspace://abc123#video/mp4
* This would let frontend render correctly without fragile keyword matching.
*/
function isLikelyImageRef(value: string, outputKey?: string): boolean {
if (!isWorkspaceRef(value)) return false;
// Check output key name for video-related hints (these are NOT images)
const videoKeywords = ["video", "mp4", "mov", "avi", "webm", "movie", "clip"];
if (outputKey) {
const lowerKey = outputKey.toLowerCase();
if (videoKeywords.some((kw) => lowerKey.includes(kw))) {
return false;
}
}
// Check output key name for image-related hints
const imageKeywords = [
"image",
"img",
"photo",
"picture",
"thumbnail",
"avatar",
"icon",
"screenshot",
];
if (outputKey) {
const lowerKey = outputKey.toLowerCase();
if (imageKeywords.some((kw) => lowerKey.includes(kw))) {
return true;
}
}
// Default to treating workspace refs as potential images
// since that's the most common case for generated content
return true;
}
/**
* Format a single output value, converting workspace refs to markdown images.
*/
function formatOutputValue(value: unknown, outputKey?: string): string {
if (isWorkspaceRef(value) && isLikelyImageRef(value, outputKey)) {
// Format as markdown image
return `![${outputKey || "Generated image"}](${value})`;
}
if (typeof value === "string") {
// Check for data URIs (images)
if (value.startsWith("data:image/")) {
return `![${outputKey || "Generated image"}](${value})`;
}
return value;
}
if (Array.isArray(value)) {
return value
.map((item, idx) => formatOutputValue(item, `${outputKey}_${idx}`))
.join("\n\n");
}
if (typeof value === "object" && value !== null) {
return JSON.stringify(value, null, 2);
}
return String(value);
}
function getToolCompletionPhrase(toolName: string): string { function getToolCompletionPhrase(toolName: string): string {
const toolCompletionPhrases: Record<string, string> = { const toolCompletionPhrases: Record<string, string> = {
add_understanding: "Updated your business information", add_understanding: "Updated your business information",
@@ -127,10 +208,26 @@ export function formatToolResponse(result: unknown, toolName: string): string {
case "block_output": case "block_output":
const blockName = (response.block_name as string) || "Block"; const blockName = (response.block_name as string) || "Block";
const outputs = response.outputs as Record<string, unknown> | undefined; const outputs = response.outputs as Record<string, unknown[]> | undefined;
if (outputs && Object.keys(outputs).length > 0) { if (outputs && Object.keys(outputs).length > 0) {
const outputKeys = Object.keys(outputs); const formattedOutputs: string[] = [];
return `${blockName} executed successfully. Outputs: ${outputKeys.join(", ")}`;
for (const [key, values] of Object.entries(outputs)) {
if (!Array.isArray(values) || values.length === 0) continue;
// Format each value in the output array
for (const value of values) {
const formatted = formatOutputValue(value, key);
if (formatted) {
formattedOutputs.push(formatted);
}
}
}
if (formattedOutputs.length > 0) {
return `${blockName} executed successfully.\n\n${formattedOutputs.join("\n\n")}`;
}
return `${blockName} executed successfully.`;
} }
return `${blockName} executed successfully.`; return `${blockName} executed successfully.`;
@@ -266,8 +363,8 @@ export function formatToolResponse(result: unknown, toolName: string): string {
case "error": case "error":
const errorMsg = const errorMsg =
(response.error as string) || response.message || "An error occurred"; (response.message as string) || response.error || "An error occurred";
return `Error: ${errorMsg}`; return stripInternalReasoning(String(errorMsg));
case "no_results": case "no_results":
const suggestions = (response.suggestions as string[]) || []; const suggestions = (response.suggestions as string[]) || [];

View File

@@ -516,7 +516,7 @@ export type GraphValidationErrorResponse = {
/* *** LIBRARY *** */ /* *** LIBRARY *** */
/* Mirror of backend/server/v2/library/model.py:LibraryAgent */ /* Mirror of backend/api/features/library/model.py:LibraryAgent */
export type LibraryAgent = { export type LibraryAgent = {
id: LibraryAgentID; id: LibraryAgentID;
graph_id: GraphID; graph_id: GraphID;
@@ -616,7 +616,7 @@ export enum LibraryAgentSortEnum {
/* *** CREDENTIALS *** */ /* *** CREDENTIALS *** */
/* Mirror of backend/server/integrations/router.py:CredentialsMetaResponse */ /* Mirror of backend/api/features/integrations/router.py:CredentialsMetaResponse */
export type CredentialsMetaResponse = { export type CredentialsMetaResponse = {
id: string; id: string;
provider: CredentialsProviderName; provider: CredentialsProviderName;
@@ -628,13 +628,13 @@ export type CredentialsMetaResponse = {
is_system?: boolean; is_system?: boolean;
}; };
/* Mirror of backend/server/integrations/router.py:CredentialsDeletionResponse */ /* Mirror of backend/api/features/integrations/router.py:CredentialsDeletionResponse */
export type CredentialsDeleteResponse = { export type CredentialsDeleteResponse = {
deleted: true; deleted: true;
revoked: boolean | null; revoked: boolean | null;
}; };
/* Mirror of backend/server/integrations/router.py:CredentialsDeletionNeedsConfirmationResponse */ /* Mirror of backend/api/features/integrations/router.py:CredentialsDeletionNeedsConfirmationResponse */
export type CredentialsDeleteNeedConfirmationResponse = { export type CredentialsDeleteNeedConfirmationResponse = {
deleted: false; deleted: false;
need_confirmation: true; need_confirmation: true;
@@ -888,7 +888,7 @@ export type Schedule = {
export type ScheduleID = Brand<string, "ScheduleID">; export type ScheduleID = Brand<string, "ScheduleID">;
/* Mirror of backend/server/routers/v1.py:ScheduleCreationRequest */ /* Mirror of backend/api/features/v1.py:ScheduleCreationRequest */
export type ScheduleCreatable = { export type ScheduleCreatable = {
graph_id: GraphID; graph_id: GraphID;
graph_version: number; graph_version: number;

View File

@@ -59,12 +59,13 @@ test.describe("Library", () => {
}); });
test("pagination works correctly", async ({ page }, testInfo) => { test("pagination works correctly", async ({ page }, testInfo) => {
test.setTimeout(testInfo.timeout * 3); // Increase timeout for pagination operations test.setTimeout(testInfo.timeout * 3);
await page.goto("/library"); await page.goto("/library");
const PAGE_SIZE = 20;
const paginationResult = await libraryPage.testPagination(); const paginationResult = await libraryPage.testPagination();
if (paginationResult.initialCount >= 10) { if (paginationResult.initialCount >= PAGE_SIZE) {
expect(paginationResult.finalCount).toBeGreaterThanOrEqual( expect(paginationResult.finalCount).toBeGreaterThanOrEqual(
paginationResult.initialCount, paginationResult.initialCount,
); );
@@ -133,7 +134,10 @@ test.describe("Library", () => {
test.expect(clearedSearchValue).toBe(""); test.expect(clearedSearchValue).toBe("");
}); });
test("pagination while searching works correctly", async ({ page }) => { test("pagination while searching works correctly", async ({
page,
}, testInfo) => {
test.setTimeout(testInfo.timeout * 3);
await page.goto("/library"); await page.goto("/library");
const allAgents = await libraryPage.getAgents(); const allAgents = await libraryPage.getAgents();
@@ -152,9 +156,10 @@ test.describe("Library", () => {
); );
expect(matchingResults.length).toEqual(initialSearchResults.length); expect(matchingResults.length).toEqual(initialSearchResults.length);
const PAGE_SIZE = 20;
const searchPaginationResult = await libraryPage.testPagination(); const searchPaginationResult = await libraryPage.testPagination();
if (searchPaginationResult.initialCount >= 10) { if (searchPaginationResult.initialCount >= PAGE_SIZE) {
expect(searchPaginationResult.finalCount).toBeGreaterThanOrEqual( expect(searchPaginationResult.finalCount).toBeGreaterThanOrEqual(
searchPaginationResult.initialCount, searchPaginationResult.initialCount,
); );

View File

@@ -69,9 +69,12 @@ test.describe("Marketplace Creator Page Basic Functionality", () => {
await marketplacePage.getFirstCreatorProfile(page); await marketplacePage.getFirstCreatorProfile(page);
await firstCreatorProfile.click(); await firstCreatorProfile.click();
await page.waitForURL("**/marketplace/creator/**"); await page.waitForURL("**/marketplace/creator/**");
await page.waitForLoadState("networkidle").catch(() => {});
const firstAgent = page const firstAgent = page
.locator('[data-testid="store-card"]:visible') .locator('[data-testid="store-card"]:visible')
.first(); .first();
await firstAgent.waitFor({ state: "visible", timeout: 30000 });
await firstAgent.click(); await firstAgent.click();
await page.waitForURL("**/marketplace/agent/**"); await page.waitForURL("**/marketplace/agent/**");

View File

@@ -77,7 +77,6 @@ test.describe("Marketplace Basic Functionality", () => {
const firstFeaturedAgent = const firstFeaturedAgent =
await marketplacePage.getFirstFeaturedAgent(page); await marketplacePage.getFirstFeaturedAgent(page);
await firstFeaturedAgent.waitFor({ state: "visible" });
await firstFeaturedAgent.click(); await firstFeaturedAgent.click();
await page.waitForURL("**/marketplace/agent/**"); await page.waitForURL("**/marketplace/agent/**");
await matchesUrl(page, /\/marketplace\/agent\/.+/); await matchesUrl(page, /\/marketplace\/agent\/.+/);
@@ -116,7 +115,15 @@ test.describe("Marketplace Basic Functionality", () => {
const searchTerm = page.getByText("DummyInput").first(); const searchTerm = page.getByText("DummyInput").first();
await isVisible(searchTerm); await isVisible(searchTerm);
await page.waitForTimeout(10000); await page.waitForLoadState("networkidle").catch(() => {});
await page
.waitForFunction(
() =>
document.querySelectorAll('[data-testid="store-card"]').length > 0,
{ timeout: 15000 },
)
.catch(() => console.log("No search results appeared within timeout"));
const results = await marketplacePage.getSearchResultsCount(page); const results = await marketplacePage.getSearchResultsCount(page);
expect(results).toBeGreaterThan(0); expect(results).toBeGreaterThan(0);

View File

@@ -300,21 +300,27 @@ export class LibraryPage extends BasePage {
async scrollToLoadMore(): Promise<void> { async scrollToLoadMore(): Promise<void> {
console.log(`scrolling to load more agents`); console.log(`scrolling to load more agents`);
// Get initial agent count const initialCount = await this.getAgentCountByListLength();
const initialCount = await this.getAgentCount(); console.log(`Initial agent count (DOM cards): ${initialCount}`);
console.log(`Initial agent count: ${initialCount}`);
// Scroll down to trigger pagination
await this.scrollToBottom(); await this.scrollToBottom();
// Wait for potential new agents to load await this.page
await this.page.waitForTimeout(2000); .waitForLoadState("networkidle", { timeout: 10000 })
.catch(() => console.log("Network idle timeout, continuing..."));
// Check if more agents loaded await this.page
const newCount = await this.getAgentCount(); .waitForFunction(
console.log(`New agent count after scroll: ${newCount}`); (prevCount) =>
document.querySelectorAll('[data-testid="library-agent-card"]')
.length > prevCount,
initialCount,
{ timeout: 5000 },
)
.catch(() => {});
return; const newCount = await this.getAgentCountByListLength();
console.log(`New agent count after scroll (DOM cards): ${newCount}`);
} }
async testPagination(): Promise<{ async testPagination(): Promise<{

View File

@@ -9,6 +9,7 @@ export class MarketplacePage extends BasePage {
async goto(page: Page) { async goto(page: Page) {
await page.goto("/marketplace"); await page.goto("/marketplace");
await page.waitForLoadState("networkidle").catch(() => {});
} }
async getMarketplaceTitle(page: Page) { async getMarketplaceTitle(page: Page) {
@@ -109,16 +110,24 @@ export class MarketplacePage extends BasePage {
async getFirstFeaturedAgent(page: Page) { async getFirstFeaturedAgent(page: Page) {
const { getId } = getSelectors(page); const { getId } = getSelectors(page);
return getId("featured-store-card").first(); const card = getId("featured-store-card").first();
await card.waitFor({ state: "visible", timeout: 30000 });
return card;
} }
async getFirstTopAgent() { async getFirstTopAgent() {
return this.page.locator('[data-testid="store-card"]:visible').first(); const card = this.page
.locator('[data-testid="store-card"]:visible')
.first();
await card.waitFor({ state: "visible", timeout: 30000 });
return card;
} }
async getFirstCreatorProfile(page: Page) { async getFirstCreatorProfile(page: Page) {
const { getId } = getSelectors(page); const { getId } = getSelectors(page);
return getId("creator-card").first(); const card = getId("creator-card").first();
await card.waitFor({ state: "visible", timeout: 30000 });
return card;
} }
async getSearchResultsCount(page: Page) { async getSearchResultsCount(page: Page) {

View File

@@ -53,7 +53,7 @@ Below is a comprehensive list of all available blocks, categorized by their prim
| [Block Installation](block-integrations/basic.md#block-installation) | Given a code string, this block allows the verification and installation of a block code into the system | | [Block Installation](block-integrations/basic.md#block-installation) | Given a code string, this block allows the verification and installation of a block code into the system |
| [Concatenate Lists](block-integrations/basic.md#concatenate-lists) | Concatenates multiple lists into a single list | | [Concatenate Lists](block-integrations/basic.md#concatenate-lists) | Concatenates multiple lists into a single list |
| [Dictionary Is Empty](block-integrations/basic.md#dictionary-is-empty) | Checks if a dictionary is empty | | [Dictionary Is Empty](block-integrations/basic.md#dictionary-is-empty) | Checks if a dictionary is empty |
| [File Store](block-integrations/basic.md#file-store) | Stores the input file in the temporary directory | | [File Store](block-integrations/basic.md#file-store) | Downloads and stores a file from a URL, data URI, or local path |
| [Find In Dictionary](block-integrations/basic.md#find-in-dictionary) | A block that looks up a value in a dictionary, list, or object by key or index and returns the corresponding value | | [Find In Dictionary](block-integrations/basic.md#find-in-dictionary) | A block that looks up a value in a dictionary, list, or object by key or index and returns the corresponding value |
| [Find In List](block-integrations/basic.md#find-in-list) | Finds the index of the value in the list | | [Find In List](block-integrations/basic.md#find-in-list) | Finds the index of the value in the list |
| [Get All Memories](block-integrations/basic.md#get-all-memories) | Retrieve all memories from Mem0 with optional conversation filtering | | [Get All Memories](block-integrations/basic.md#get-all-memories) | Retrieve all memories from Mem0 with optional conversation filtering |

View File

@@ -709,7 +709,7 @@ This is useful for conditional logic where you need to verify if data was return
## File Store ## File Store
### What it is ### What it is
Stores the input file in the temporary directory. Downloads and stores a file from a URL, data URI, or local path. Use this to fetch images, documents, or other files for processing. In CoPilot: saves to workspace (use list_workspace_files to see it). In graphs: outputs a data URI to pass to other blocks.
### How it works ### How it works
<!-- MANUAL: how_it_works --> <!-- MANUAL: how_it_works -->
@@ -722,15 +722,15 @@ The block outputs a file path that other blocks can use to access the stored fil
| Input | Description | Type | Required | | Input | Description | Type | Required |
|-------|-------------|------|----------| |-------|-------------|------|----------|
| file_in | The file to store in the temporary directory, it can be a URL, data URI, or local path. | str (file) | Yes | | file_in | The file to download and store. Can be a URL (https://...), data URI, or local path. | str (file) | Yes |
| base_64 | Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks). | bool | No | | base_64 | Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks). | bool | No |
### Outputs ### Outputs
| Output | Description | Type | | Output | Description | Type |
|--------|-------------|------| |--------|-------------|------|
| error | Error message if the operation failed | str | | error | Error message if the operation failed | str |
| file_out | The relative path to the stored file in the temporary directory. | str (file) | | file_out | Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks. | str (file) |
### Possible use case ### Possible use case
<!-- MANUAL: use_case --> <!-- MANUAL: use_case -->

View File

@@ -65,7 +65,7 @@ The result routes data to yes_output or no_output, enabling intelligent branchin
| condition | A plaintext English description of the condition to evaluate | str | Yes | | condition | A plaintext English description of the condition to evaluate | str | Yes |
| yes_value | (Optional) Value to output if the condition is true. If not provided, input_value will be used. | Yes Value | No | | yes_value | (Optional) Value to output if the condition is true. If not provided, input_value will be used. | Yes Value | No |
| no_value | (Optional) Value to output if the condition is false. If not provided, input_value will be used. | No Value | No | | no_value | (Optional) Value to output if the condition is false. If not provided, input_value will be used. | No Value | No |
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No | | model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
### Outputs ### Outputs
@@ -103,7 +103,7 @@ The block sends the entire conversation history to the chosen LLM, including sys
|-------|-------------|------|----------| |-------|-------------|------|----------|
| prompt | The prompt to send to the language model. | str | No | | prompt | The prompt to send to the language model. | str | No |
| messages | List of messages in the conversation. | List[Any] | Yes | | messages | List of messages in the conversation. | List[Any] | Yes |
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No | | model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No | | max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
| ollama_host | Ollama host for local models | str | No | | ollama_host | Ollama host for local models | str | No |
@@ -257,7 +257,7 @@ The block formulates a prompt based on the given focus or source data, sends it
|-------|-------------|------|----------| |-------|-------------|------|----------|
| focus | The focus of the list to generate. | str | No | | focus | The focus of the list to generate. | str | No |
| source_data | The data to generate the list from. | str | No | | source_data | The data to generate the list from. | str | No |
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No | | model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| max_retries | Maximum number of retries for generating a valid list. | int | No | | max_retries | Maximum number of retries for generating a valid list. | int | No |
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No | | force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No | | max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
@@ -424,7 +424,7 @@ The block sends the input prompt to a chosen LLM, along with any system prompts
| prompt | The prompt to send to the language model. | str | Yes | | prompt | The prompt to send to the language model. | str | Yes |
| expected_format | Expected format of the response. If provided, the response will be validated against this format. The keys should be the expected fields in the response, and the values should be the description of the field. | Dict[str, str] | Yes | | expected_format | Expected format of the response. If provided, the response will be validated against this format. The keys should be the expected fields in the response, and the values should be the description of the field. | Dict[str, str] | Yes |
| list_result | Whether the response should be a list of objects in the expected format. | bool | No | | list_result | Whether the response should be a list of objects in the expected format. | bool | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No | | model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No | | force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No | | sys_prompt | The system prompt to provide additional context to the model. | str | No |
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No | | conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |
@@ -464,7 +464,7 @@ The block sends the input prompt to a chosen LLM, processes the response, and re
| Input | Description | Type | Required | | Input | Description | Type | Required |
|-------|-------------|------|----------| |-------|-------------|------|----------|
| prompt | The prompt to send to the language model. You can use any of the {keys} from Prompt Values to fill in the prompt with values from the prompt values dictionary by putting them in curly braces. | str | Yes | | prompt | The prompt to send to the language model. You can use any of the {keys} from Prompt Values to fill in the prompt with values from the prompt values dictionary by putting them in curly braces. | str | Yes |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No | | model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No | | sys_prompt | The system prompt to provide additional context to the model. | str | No |
| retry | Number of times to retry the LLM call if the response does not match the expected format. | int | No | | retry | Number of times to retry the LLM call if the response does not match the expected format. | int | No |
| prompt_values | Values used to fill in the prompt. The values can be used in the prompt by putting them in a double curly braces, e.g. {{variable_name}}. | Dict[str, str] | No | | prompt_values | Values used to fill in the prompt. The values can be used in the prompt by putting them in a double curly braces, e.g. {{variable_name}}. | Dict[str, str] | No |
@@ -501,7 +501,7 @@ The block splits the input text into smaller chunks, sends each chunk to an LLM
| Input | Description | Type | Required | | Input | Description | Type | Required |
|-------|-------------|------|----------| |-------|-------------|------|----------|
| text | The text to summarize. | str | Yes | | text | The text to summarize. | str | Yes |
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No | | model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| focus | The topic to focus on in the summary | str | No | | focus | The topic to focus on in the summary | str | No |
| style | The style of the summary to generate. | "concise" \| "detailed" \| "bullet points" \| "numbered list" | No | | style | The style of the summary to generate. | "concise" \| "detailed" \| "bullet points" \| "numbered list" | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No | | max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
@@ -763,7 +763,7 @@ Configure agent_mode_max_iterations to control loop behavior: 0 for single decis
| Input | Description | Type | Required | | Input | Description | Type | Required |
|-------|-------------|------|----------| |-------|-------------|------|----------|
| prompt | The prompt to send to the language model. | str | Yes | | prompt | The prompt to send to the language model. | str | Yes |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No | | model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| multiple_tool_calls | Whether to allow multiple tool calls in a single response. | bool | No | | multiple_tool_calls | Whether to allow multiple tool calls in a single response. | bool | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No | | sys_prompt | The system prompt to provide additional context to the model. | str | No |
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No | | conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |

View File

@@ -12,7 +12,7 @@ Block to attach an audio file to a video file using moviepy.
<!-- MANUAL: how_it_works --> <!-- MANUAL: how_it_works -->
This block combines a video file with an audio file using the moviepy library. The audio track is attached to the video, optionally with volume adjustment via the volume parameter (1.0 = original volume). This block combines a video file with an audio file using the moviepy library. The audio track is attached to the video, optionally with volume adjustment via the volume parameter (1.0 = original volume).
Input files can be URLs, data URIs, or local paths. The output can be returned as either a file path or base64 data URI. Input files can be URLs, data URIs, or local paths. The output format is automatically determined: `workspace://` URLs in CoPilot, data URIs in graph executions.
<!-- END MANUAL --> <!-- END MANUAL -->
### Inputs ### Inputs
@@ -22,7 +22,6 @@ Input files can be URLs, data URIs, or local paths. The output can be returned a
| video_in | Video input (URL, data URI, or local path). | str (file) | Yes | | video_in | Video input (URL, data URI, or local path). | str (file) | Yes |
| audio_in | Audio input (URL, data URI, or local path). | str (file) | Yes | | audio_in | Audio input (URL, data URI, or local path). | str (file) | Yes |
| volume | Volume scale for the newly attached audio track (1.0 = original). | float | No | | volume | Volume scale for the newly attached audio track (1.0 = original). | float | No |
| output_return_type | Return the final output as a relative path or base64 data URI. | "file_path" \| "data_uri" | No |
### Outputs ### Outputs
@@ -51,7 +50,7 @@ Block to loop a video to a given duration or number of repeats.
<!-- MANUAL: how_it_works --> <!-- MANUAL: how_it_works -->
This block extends a video by repeating it to reach a target duration or number of loops. Set duration to specify the total length in seconds, or use n_loops to repeat the video a specific number of times. This block extends a video by repeating it to reach a target duration or number of loops. Set duration to specify the total length in seconds, or use n_loops to repeat the video a specific number of times.
The looped video is seamlessly concatenated and can be output as a file path or base64 data URI. The looped video is seamlessly concatenated. The output format is automatically determined: `workspace://` URLs in CoPilot, data URIs in graph executions.
<!-- END MANUAL --> <!-- END MANUAL -->
### Inputs ### Inputs
@@ -61,7 +60,6 @@ The looped video is seamlessly concatenated and can be output as a file path or
| video_in | The input video (can be a URL, data URI, or local path). | str (file) | Yes | | video_in | The input video (can be a URL, data URI, or local path). | str (file) | Yes |
| duration | Target duration (in seconds) to loop the video to. If omitted, defaults to no looping. | float | No | | duration | Target duration (in seconds) to loop the video to. If omitted, defaults to no looping. | float | No |
| n_loops | Number of times to repeat the video. If omitted, defaults to 1 (no repeat). | int | No | | n_loops | Number of times to repeat the video. If omitted, defaults to 1 (no repeat). | int | No |
| output_return_type | How to return the output video. Either a relative path or base64 data URI. | "file_path" \| "data_uri" | No |
### Outputs ### Outputs

View File

@@ -20,7 +20,7 @@ Configure timeouts for DOM settlement and page loading. Variables can be passed
| Input | Description | Type | Required | | Input | Description | Type | Required |
|-------|-------------|------|----------| |-------|-------------|------|----------|
| browserbase_project_id | Browserbase project ID (required if using Browserbase) | str | Yes | | browserbase_project_id | Browserbase project ID (required if using Browserbase) | str | Yes |
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-3-7-sonnet-20250219" | No | | model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-sonnet-4-5-20250929" | No |
| url | URL to navigate to. | str | Yes | | url | URL to navigate to. | str | Yes |
| action | Action to perform. Suggested actions are: click, fill, type, press, scroll, select from dropdown. For multi-step actions, add an entry for each step. | List[str] | Yes | | action | Action to perform. Suggested actions are: click, fill, type, press, scroll, select from dropdown. For multi-step actions, add an entry for each step. | List[str] | Yes |
| variables | Variables to use in the action. Variables contains data you want the action to use. | Dict[str, str] | No | | variables | Variables to use in the action. Variables contains data you want the action to use. | Dict[str, str] | No |
@@ -65,7 +65,7 @@ Supports searching within iframes and configurable timeouts for dynamic content
| Input | Description | Type | Required | | Input | Description | Type | Required |
|-------|-------------|------|----------| |-------|-------------|------|----------|
| browserbase_project_id | Browserbase project ID (required if using Browserbase) | str | Yes | | browserbase_project_id | Browserbase project ID (required if using Browserbase) | str | Yes |
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-3-7-sonnet-20250219" | No | | model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-sonnet-4-5-20250929" | No |
| url | URL to navigate to. | str | Yes | | url | URL to navigate to. | str | Yes |
| instruction | Natural language description of elements or actions to discover. | str | Yes | | instruction | Natural language description of elements or actions to discover. | str | Yes |
| iframes | Whether to search within iframes. If True, Stagehand will search for actions within iframes. | bool | No | | iframes | Whether to search within iframes. If True, Stagehand will search for actions within iframes. | bool | No |
@@ -106,7 +106,7 @@ Use this to explore a page's interactive elements before building automated work
| Input | Description | Type | Required | | Input | Description | Type | Required |
|-------|-------------|------|----------| |-------|-------------|------|----------|
| browserbase_project_id | Browserbase project ID (required if using Browserbase) | str | Yes | | browserbase_project_id | Browserbase project ID (required if using Browserbase) | str | Yes |
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-3-7-sonnet-20250219" | No | | model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-sonnet-4-5-20250929" | No |
| url | URL to navigate to. | str | Yes | | url | URL to navigate to. | str | Yes |
| instruction | Natural language description of elements or actions to discover. | str | Yes | | instruction | Natural language description of elements or actions to discover. | str | Yes |
| iframes | Whether to search within iframes. If True, Stagehand will search for actions within iframes. | bool | No | | iframes | Whether to search within iframes. If True, Stagehand will search for actions within iframes. | bool | No |

View File

@@ -277,6 +277,50 @@ async def run(
token = credentials.api_key.get_secret_value() token = credentials.api_key.get_secret_value()
``` ```
### Handling Files
When your block works with files (images, videos, documents), use `store_media_file()`:
```python
from backend.data.execution import ExecutionContext
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
):
# PROCESSING: Need local file path for tools like ffmpeg, MoviePy, PIL
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# EXTERNAL API: Need base64 content for APIs like Replicate, OpenAI
image_b64 = await store_media_file(
file=input_data.image,
execution_context=execution_context,
return_format="for_external_api",
)
# OUTPUT: Return to user/next block (auto-adapts to context)
result = await store_media_file(
file=generated_url,
execution_context=execution_context,
return_format="for_block_output", # workspace:// in CoPilot, data URI in graphs
)
yield "image_url", result
```
**Return format options:**
- `"for_local_processing"` - Local file path for processing tools
- `"for_external_api"` - Data URI for external APIs needing base64
- `"for_block_output"` - **Always use for outputs** - automatically picks best format
## Testing Your Block ## Testing Your Block
```bash ```bash

View File

@@ -25,7 +25,7 @@ This document focuses on the **API Integration OAuth flow** used for connecting
### 2. Backend API Trust Boundary ### 2. Backend API Trust Boundary
- **Location**: Server-side FastAPI application - **Location**: Server-side FastAPI application
- **Components**: - **Components**:
- Integration router (`/backend/backend/server/integrations/router.py`) - Integration router (`/backend/backend/api/features/integrations/router.py`)
- OAuth handlers (`/backend/backend/integrations/oauth/`) - OAuth handlers (`/backend/backend/integrations/oauth/`)
- Credentials store (`/backend/backend/integrations/credentials_store.py`) - Credentials store (`/backend/backend/integrations/credentials_store.py`)
- **Trust Level**: Trusted - server-controlled environment - **Trust Level**: Trusted - server-controlled environment

View File

@@ -111,6 +111,71 @@ Follow these steps to create and test a new block:
- `graph_exec_id`: The ID of the execution of the agent. This changes every time the agent has a new "run" - `graph_exec_id`: The ID of the execution of the agent. This changes every time the agent has a new "run"
- `node_exec_id`: The ID of the execution of the node. This changes every time the node is executed - `node_exec_id`: The ID of the execution of the node. This changes every time the node is executed
- `node_id`: The ID of the node that is being executed. It changes every version of the graph, but not every time the node is executed. - `node_id`: The ID of the node that is being executed. It changes every version of the graph, but not every time the node is executed.
- `execution_context`: An `ExecutionContext` object containing user_id, graph_exec_id, workspace_id, and session_id. Required for file handling.
### Handling Files in Blocks
When your block needs to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. This function handles downloading, validation, virus scanning, and storage.
**Import:**
```python
from backend.data.execution import ExecutionContext
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
```
**The `return_format` parameter determines what you get back:**
| Format | Use When | Returns |
|--------|----------|---------|
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
**Examples:**
```python
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# PROCESSING: Need to work with file locally (ffmpeg, MoviePy, PIL)
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# local_path = "video.mp4" - use with Path, ffmpeg, subprocess, etc.
full_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
# EXTERNAL API: Need to send content to an API like Replicate
image_b64 = await store_media_file(
file=input_data.image,
execution_context=execution_context,
return_format="for_external_api",
)
# image_b64 = "..." - send to external API
# OUTPUT: Returning result from block to user/next block
result_url = await store_media_file(
file=generated_image_url,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", result_url
# In CoPilot: result_url = "workspace://abc123" (persistent, context-efficient)
# In graphs: result_url = "data:image/png;base64,..." (for next block/display)
```
**Key points:**
- `for_block_output` is the **only** format that auto-adapts to execution context
- Always use `for_block_output` for block outputs unless you have a specific reason not to
- Never manually check for `workspace_id` - let `for_block_output` handle the logic
- The function handles URLs, data URIs, `workspace://` references, and local paths as input
### Field Types ### Field Types

View File

@@ -246,7 +246,7 @@ If you encounter any issues, verify that:
```bash ```bash
ollama pull llama3.2 ollama pull llama3.2
``` ```
- If using a custom model, ensure it's added to the model list in `backend/server/model.py` - If using a custom model, ensure it's added to the model list in `backend/api/model.py`
#### Docker Issues #### Docker Issues
- Ensure Docker daemon is running: - Ensure Docker daemon is running: