Files
AutoGPT/autogpt_platform/backend/backend/api/features/chat/service.py
Zamil Majdy a78145505b fix(copilot): merge split assistant messages to prevent Anthropic API errors (#12062)
## Summary
- When the copilot model responds with both text content AND a
long-running tool call (e.g., `create_agent`), the streaming code
created two separate consecutive assistant messages — one with text, one
with `tool_calls`. This caused Anthropic's API to reject with
`"unexpected tool_use_id found in tool_result blocks"` because the
`tool_result` couldn't find a matching `tool_use` in the immediately
preceding assistant message.
- Added a defensive merge of consecutive assistant messages in
`to_openai_messages()` (fixes existing corrupt sessions too)
- Fixed `_yield_tool_call` to add tool_calls to the existing
current-turn assistant message instead of creating a new one
- Changed `accumulated_tool_calls` assignment to use `extend` to prevent
overwriting tool_calls added by long-running tool flow

## Test plan
- [x] All 23 chat feature tests pass (`backend/api/features/chat/`)
- [x] All 44 prompt utility tests pass (`backend/util/prompt_test.py`)
- [x] All pre-commit hooks pass (ruff, isort, black, pyright)
- [ ] Manual test: create an agent via copilot, then ask a follow-up
question — should no longer get 400 error

<!-- greptile_comment -->

<h2>Greptile Overview</h2>

<details><summary><h3>Greptile Summary</h3></summary>

Fixes a critical bug where long-running tool calls (like `create_agent`)
caused Anthropic API 400 errors due to split assistant messages. The fix
ensures tool calls are added to the existing assistant message instead
of creating new ones, and adds a defensive merge function to repair any
existing corrupt sessions.

**Key changes:**
- Added `_merge_consecutive_assistant_messages()` to defensively merge
split assistant messages in `to_openai_messages()`
- Modified `_yield_tool_call()` to append tool calls to the current-turn
assistant message instead of creating a new one
- Changed `accumulated_tool_calls` from assignment to `extend` to
preserve tool calls already added by long-running tool flow

**Impact:** Resolves the issue where users received 400 errors after
creating agents via copilot and asking follow-up questions.
</details>


<details><summary><h3>Confidence Score: 4/5</h3></summary>

- Safe to merge with minor verification recommended
- The changes are well-targeted and solve a real API compatibility
issue. The logic is sound: searching backwards for the current assistant
message is correct, and using `extend` instead of assignment prevents
overwriting. The defensive merge in `to_openai_messages()` also fixes
existing corrupt sessions. All existing tests pass according to the PR
description.
- No files require special attention - changes are localized and
defensive
</details>


<details><summary><h3>Sequence Diagram</h3></summary>

```mermaid
sequenceDiagram
    participant User
    participant StreamAPI as stream_chat_completion
    participant Chunks as _stream_chat_chunks
    participant ToolCall as _yield_tool_call
    participant Session as ChatSession
    
    User->>StreamAPI: Send message
    StreamAPI->>Chunks: Stream chat chunks
    
    alt Text + Long-running tool call
        Chunks->>StreamAPI: Text delta (content)
        StreamAPI->>Session: Append assistant message with content
        Chunks->>ToolCall: Tool call detected
        
        Note over ToolCall: OLD: Created new assistant message<br/>NEW: Appends to existing assistant
        
        ToolCall->>Session: Search backwards for current assistant
        ToolCall->>Session: Append tool_call to existing message
        ToolCall->>Session: Add pending tool result
    end
    
    StreamAPI->>StreamAPI: Merge accumulated_tool_calls
    Note over StreamAPI: Use extend (not assign)<br/>to preserve existing tool_calls
    
    StreamAPI->>Session: to_openai_messages()
    Session->>Session: _merge_consecutive_assistant_messages()
    Note over Session: Defensive: Merges any split<br/>assistant messages
    Session-->>StreamAPI: Merged messages
    
    StreamAPI->>User: Return response
```
</details>


<!-- greptile_other_comments_section -->

<!-- /greptile_comment -->
2026-02-12 01:52:17 +00:00

2053 lines
81 KiB
Python

import asyncio
import logging
import time
from asyncio import CancelledError
from collections.abc import AsyncGenerator
from typing import TYPE_CHECKING, Any, cast
import openai
if TYPE_CHECKING:
from backend.util.prompt import CompressResult
import orjson
from langfuse import get_client
from openai import (
APIConnectionError,
APIError,
APIStatusError,
PermissionDeniedError,
RateLimitError,
)
from openai.types.chat import (
ChatCompletionChunk,
ChatCompletionMessageParam,
ChatCompletionStreamOptionsParam,
ChatCompletionSystemMessageParam,
ChatCompletionToolParam,
)
from backend.data.redis_client import get_redis_async
from backend.data.understanding import (
format_understanding_for_prompt,
get_business_understanding,
)
from backend.util.exceptions import NotFoundError
from backend.util.settings import AppEnvironment, Settings
from . import db as chat_db
from . import stream_registry
from .config import ChatConfig
from .model import (
ChatMessage,
ChatSession,
Usage,
cache_chat_session,
get_chat_session,
invalidate_session_cache,
update_session_title,
upsert_chat_session,
)
from .response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamFinishStep,
StreamHeartbeat,
StreamStart,
StreamStartStep,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
StreamToolInputAvailable,
StreamToolInputStart,
StreamToolOutputAvailable,
StreamUsage,
)
from .tools import execute_tool, get_tool, tools
from .tools.models import (
ErrorResponse,
OperationInProgressResponse,
OperationPendingResponse,
OperationStartedResponse,
)
from .tracking import track_user_message
logger = logging.getLogger(__name__)
config = ChatConfig()
settings = Settings()
client = openai.AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
langfuse = get_client()
# Redis key prefix for tracking running long-running operations
# Used for idempotency across Kubernetes pods - prevents duplicate executions on browser refresh
RUNNING_OPERATION_PREFIX = "chat:running_operation:"
# Default system prompt used when Langfuse is not configured
# This is a snapshot of the "CoPilot Prompt" from Langfuse (version 11)
DEFAULT_SYSTEM_PROMPT = """You are **Otto**, an AI Co-Pilot for AutoGPT and a Forward-Deployed Automation Engineer serving small business owners. Your mission is to help users automate business tasks with AI by delivering tangible value through working automations—not through documentation or lengthy explanations.
Here is everything you know about the current user from previous interactions:
<users_information>
{users_information}
</users_information>
## YOUR CORE MANDATE
You are action-oriented. Your success is measured by:
- **Value Delivery**: Does the user think "wow, that was amazing" or "what was the point"?
- **Demonstrable Proof**: Show working automations, not descriptions of what's possible
- **Time Saved**: Focus on tangible efficiency gains
- **Quality Output**: Deliver results that meet or exceed expectations
## YOUR WORKFLOW
Adapt flexibly to the conversation context. Not every interaction requires all stages:
1. **Explore & Understand**: Learn about the user's business, tasks, and goals. Use `add_understanding` to capture important context that will improve future conversations.
2. **Assess Automation Potential**: Help the user understand whether and how AI can automate their task.
3. **Prepare for AI**: Provide brief, actionable guidance on prerequisites (data, access, etc.).
4. **Discover or Create Agents**:
- **Always check the user's library first** with `find_library_agent` (these may be customized to their needs)
- Search the marketplace with `find_agent` for pre-built automations
- Find reusable components with `find_block`
- Create custom solutions with `create_agent` if nothing suitable exists
- Modify existing library agents with `edit_agent`
5. **Execute**: Run automations immediately, schedule them, or set up webhooks using `run_agent`. Test specific components with `run_block`.
6. **Show Results**: Display outputs using `agent_output`.
## AVAILABLE TOOLS
**Understanding & Discovery:**
- `add_understanding`: Create a memory about the user's business or use cases for future sessions
- `search_docs`: Search platform documentation for specific technical information
- `get_doc_page`: Retrieve full text of a specific documentation page
**Agent Discovery:**
- `find_library_agent`: Search the user's existing agents (CHECK HERE FIRST—these may be customized)
- `find_agent`: Search the marketplace for pre-built automations
- `find_block`: Find pre-written code units that perform specific tasks (agents are built from blocks)
**Agent Creation & Editing:**
- `create_agent`: Create a new automation agent
- `edit_agent`: Modify an agent in the user's library
**Execution & Output:**
- `run_agent`: Run an agent now, schedule it, or set up a webhook trigger
- `run_block`: Test or run a specific block independently
- `agent_output`: View results from previous agent runs
## BEHAVIORAL GUIDELINES
**Be Concise:**
- Target 2-5 short lines maximum
- Make every word count—no repetition or filler
- Use lightweight structure for scannability (bullets, numbered lists, short prompts)
- Avoid jargon (blocks, slugs, cron) unless the user asks
**Be Proactive:**
- Suggest next steps before being asked
- Anticipate needs based on conversation context and user information
- Look for opportunities to expand scope when relevant
- Reveal capabilities through action, not explanation
**Use Tools Effectively:**
- Select the right tool for each task
- **Always check `find_library_agent` before searching the marketplace**
- Use `add_understanding` to capture valuable business context
- When tool calls fail, try alternative approaches
## CRITICAL REMINDER
You are NOT a chatbot. You are NOT documentation. You are a partner who helps busy business owners get value quickly by showing proof through working automations. Bias toward action over explanation."""
# Module-level set to hold strong references to background tasks.
# This prevents asyncio from garbage collecting tasks before they complete.
# Tasks are automatically removed on completion via done_callback.
_background_tasks: set[asyncio.Task] = set()
async def _mark_operation_started(tool_call_id: str) -> bool:
"""Mark a long-running operation as started (Redis-based).
Returns True if successfully marked (operation was not already running),
False if operation was already running (lost race condition).
Raises exception if Redis is unavailable (fail-closed).
"""
redis = await get_redis_async()
key = f"{RUNNING_OPERATION_PREFIX}{tool_call_id}"
# SETNX with TTL - atomic "set if not exists"
result = await redis.set(key, "1", ex=config.long_running_operation_ttl, nx=True)
return result is not None
async def _mark_operation_completed(tool_call_id: str) -> None:
"""Mark a long-running operation as completed (remove Redis key).
This is best-effort - if Redis fails, the TTL will eventually clean up.
"""
try:
redis = await get_redis_async()
key = f"{RUNNING_OPERATION_PREFIX}{tool_call_id}"
await redis.delete(key)
except Exception as e:
# Non-critical: TTL will clean up eventually
logger.warning(f"Failed to delete running operation key {tool_call_id}: {e}")
def _is_langfuse_configured() -> bool:
"""Check if Langfuse credentials are configured."""
return bool(
settings.secrets.langfuse_public_key and settings.secrets.langfuse_secret_key
)
async def _get_system_prompt_template(context: str) -> str:
"""Get the system prompt, trying Langfuse first with fallback to default.
Args:
context: The user context/information to compile into the prompt.
Returns:
The compiled system prompt string.
"""
if _is_langfuse_configured():
try:
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
# Use asyncio.to_thread to avoid blocking the event loop
# In non-production environments, fetch the latest prompt version
# instead of the production-labeled version for easier testing
label = (
None
if settings.config.app_env == AppEnvironment.PRODUCTION
else "latest"
)
prompt = await asyncio.to_thread(
langfuse.get_prompt,
config.langfuse_prompt_name,
label=label,
cache_ttl_seconds=0,
)
return prompt.compile(users_information=context)
except Exception as e:
logger.warning(f"Failed to fetch prompt from Langfuse, using default: {e}")
# Fallback to default prompt
return DEFAULT_SYSTEM_PROMPT.format(users_information=context)
async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
"""Build the full system prompt including business understanding if available.
Args:
user_id: The user ID for fetching business understanding
If "default" and this is the user's first session, will use "onboarding" instead.
Returns:
Tuple of (compiled prompt string, business understanding object)
"""
# If user is authenticated, try to fetch their business understanding
understanding = None
if user_id:
try:
understanding = await get_business_understanding(user_id)
except Exception as e:
logger.warning(f"Failed to fetch business understanding: {e}")
understanding = None
if understanding:
context = format_understanding_for_prompt(understanding)
else:
context = "This is the first time you are meeting the user. Greet them and introduce them to the platform"
compiled = await _get_system_prompt_template(context)
return compiled, understanding
async def _generate_session_title(
message: str,
user_id: str | None = None,
session_id: str | None = None,
) -> str | None:
"""Generate a concise title for a chat session based on the first message.
Args:
message: The first user message in the session
user_id: User ID for OpenRouter tracing (optional)
session_id: Session ID for OpenRouter tracing (optional)
Returns:
A short title (3-6 words) or None if generation fails
"""
try:
# Build extra_body for OpenRouter tracing and PostHog analytics
extra_body: dict[str, Any] = {}
if user_id:
extra_body["user"] = user_id[:128] # OpenRouter limit
extra_body["posthogDistinctId"] = user_id
if session_id:
extra_body["session_id"] = session_id[:128] # OpenRouter limit
extra_body["posthogProperties"] = {
"environment": settings.config.app_env.value,
}
response = await client.chat.completions.create(
model=config.title_model,
messages=[
{
"role": "system",
"content": (
"Generate a very short title (3-6 words) for a chat conversation "
"based on the user's first message. The title should capture the "
"main topic or intent. Return ONLY the title, no quotes or punctuation."
),
},
{"role": "user", "content": message[:500]}, # Limit input length
],
max_tokens=20,
extra_body=extra_body,
)
title = response.choices[0].message.content
if title:
# Clean up the title
title = title.strip().strip("\"'")
# Limit length
if len(title) > 50:
title = title[:47] + "..."
return title
return None
except Exception as e:
logger.warning(f"Failed to generate session title: {e}")
return None
async def assign_user_to_session(
session_id: str,
user_id: str,
) -> ChatSession:
"""
Assign a user to a chat session.
"""
session = await get_chat_session(session_id, None)
if not session:
raise NotFoundError(f"Session {session_id} not found")
session.user_id = user_id
return await upsert_chat_session(session)
async def stream_chat_completion(
session_id: str,
message: str | None = None,
tool_call_response: str | None = None,
is_user_message: bool = True,
user_id: str | None = None,
retry_count: int = 0,
session: ChatSession | None = None,
context: dict[str, str] | None = None, # {url: str, content: str}
_continuation_message_id: (
str | None
) = None, # Internal: reuse message ID for tool call continuations
_task_id: str | None = None, # Internal: task ID for SSE reconnection support
) -> AsyncGenerator[StreamBaseResponse, None]:
"""Main entry point for streaming chat completions with database handling.
This function handles all database operations and delegates streaming
to the internal _stream_chat_chunks function.
Args:
session_id: Chat session ID
user_message: User's input message
user_id: User ID for authentication (None for anonymous)
session: Optional pre-loaded session object (for recursive calls to avoid Redis refetch)
Yields:
StreamBaseResponse objects formatted as SSE
Raises:
NotFoundError: If session_id is invalid
ValueError: If max_context_messages is exceeded
"""
completion_start = time.monotonic()
# Build log metadata for structured logging
log_meta = {"component": "ChatService", "session_id": session_id}
if user_id:
log_meta["user_id"] = user_id
logger.info(
f"[TIMING] stream_chat_completion STARTED, session={session_id}, user={user_id}, "
f"message_len={len(message) if message else 0}, is_user={is_user_message}",
extra={
"json_fields": {
**log_meta,
"message_len": len(message) if message else 0,
"is_user_message": is_user_message,
}
},
)
# Only fetch from Redis if session not provided (initial call)
if session is None:
fetch_start = time.monotonic()
session = await get_chat_session(session_id, user_id)
fetch_time = (time.monotonic() - fetch_start) * 1000
logger.info(
f"[TIMING] get_chat_session took {fetch_time:.1f}ms, "
f"n_messages={len(session.messages) if session else 0}",
extra={
"json_fields": {
**log_meta,
"duration_ms": fetch_time,
"n_messages": len(session.messages) if session else 0,
}
},
)
else:
logger.info(
f"[TIMING] Using provided session, messages={len(session.messages)}",
extra={"json_fields": {**log_meta, "n_messages": len(session.messages)}},
)
if not session:
raise NotFoundError(
f"Session {session_id} not found. Please create a new session first."
)
if message:
session.messages.append(
ChatMessage(
role="user" if is_user_message else "assistant", content=message
)
)
logger.info(
f"Appended message (role={'user' if is_user_message else 'assistant'}), "
f"new message_count={len(session.messages)}"
)
# Track user message in PostHog
if is_user_message:
posthog_start = time.monotonic()
track_user_message(
user_id=user_id,
session_id=session_id,
message_length=len(message),
)
posthog_time = (time.monotonic() - posthog_start) * 1000
logger.info(
f"[TIMING] track_user_message took {posthog_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": posthog_time}},
)
upsert_start = time.monotonic()
session = await upsert_chat_session(session)
upsert_time = (time.monotonic() - upsert_start) * 1000
logger.info(
f"[TIMING] upsert_chat_session took {upsert_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": upsert_time}},
)
assert session, "Session not found"
# Generate title for new sessions on first user message (non-blocking)
# Check: is_user_message, no title yet, and this is the first user message
if is_user_message and message and not session.title:
user_messages = [m for m in session.messages if m.role == "user"]
if len(user_messages) == 1:
# First user message - generate title in background
import asyncio
# Capture only the values we need (not the session object) to avoid
# stale data issues when the main flow modifies the session
captured_session_id = session_id
captured_message = message
captured_user_id = user_id
async def _update_title():
try:
title = await _generate_session_title(
captured_message,
user_id=captured_user_id,
session_id=captured_session_id,
)
if title:
# Use dedicated title update function that doesn't
# touch messages, avoiding race conditions
await update_session_title(captured_session_id, title)
logger.info(
f"Generated title for session {captured_session_id}: {title}"
)
except Exception as e:
logger.warning(f"Failed to update session title: {e}")
# Fire and forget - don't block the chat response
asyncio.create_task(_update_title())
# Build system prompt with business understanding
prompt_start = time.monotonic()
system_prompt, understanding = await _build_system_prompt(user_id)
prompt_time = (time.monotonic() - prompt_start) * 1000
logger.info(
f"[TIMING] _build_system_prompt took {prompt_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": prompt_time}},
)
# Initialize variables for streaming
assistant_response = ChatMessage(
role="assistant",
content="",
)
accumulated_tool_calls: list[dict[str, Any]] = []
has_saved_assistant_message = False
has_appended_streaming_message = False
last_cache_time = 0.0
last_cache_content_len = 0
has_yielded_end = False
has_yielded_error = False
has_done_tool_call = False
has_long_running_tool_call = False # Track if we had a long-running tool call
has_received_text = False
text_streaming_ended = False
tool_response_messages: list[ChatMessage] = []
should_retry = False
# Generate unique IDs for AI SDK protocol
import uuid as uuid_module
is_continuation = _continuation_message_id is not None
message_id = _continuation_message_id or str(uuid_module.uuid4())
text_block_id = str(uuid_module.uuid4())
# Only yield message start for the initial call, not for continuations.
setup_time = (time.monotonic() - completion_start) * 1000
logger.info(
f"[TIMING] Setup complete, yielding StreamStart at {setup_time:.1f}ms",
extra={"json_fields": {**log_meta, "setup_time_ms": setup_time}},
)
if not is_continuation:
yield StreamStart(messageId=message_id, taskId=_task_id)
# Emit start-step before each LLM call (AI SDK uses this to add step boundaries)
yield StreamStartStep()
try:
logger.info(
"[TIMING] Calling _stream_chat_chunks",
extra={"json_fields": log_meta},
)
async for chunk in _stream_chat_chunks(
session=session,
tools=tools,
system_prompt=system_prompt,
text_block_id=text_block_id,
):
if isinstance(chunk, StreamTextStart):
# Emit text-start before first text delta
if not has_received_text:
yield chunk
elif isinstance(chunk, StreamTextDelta):
delta = chunk.delta or ""
assert assistant_response.content is not None
assistant_response.content += delta
has_received_text = True
if not has_appended_streaming_message:
session.messages.append(assistant_response)
has_appended_streaming_message = True
current_time = time.monotonic()
content_len = len(assistant_response.content)
if (
current_time - last_cache_time >= 1.0
and content_len > last_cache_content_len
):
try:
await cache_chat_session(session)
except Exception as e:
logger.warning(
f"Failed to cache partial session {session.session_id}: {e}"
)
last_cache_time = current_time
last_cache_content_len = content_len
yield chunk
elif isinstance(chunk, StreamTextEnd):
# Emit text-end after text completes
if has_received_text and not text_streaming_ended:
text_streaming_ended = True
yield chunk
elif isinstance(chunk, StreamToolInputStart):
# Emit text-end before first tool call, but only if we've received text
if has_received_text and not text_streaming_ended:
yield StreamTextEnd(id=text_block_id)
text_streaming_ended = True
yield chunk
elif isinstance(chunk, StreamToolInputAvailable):
# Accumulate tool calls in OpenAI format
accumulated_tool_calls.append(
{
"id": chunk.toolCallId,
"type": "function",
"function": {
"name": chunk.toolName,
"arguments": orjson.dumps(chunk.input).decode("utf-8"),
},
}
)
yield chunk
elif isinstance(chunk, StreamToolOutputAvailable):
result_content = (
chunk.output
if isinstance(chunk.output, str)
else orjson.dumps(chunk.output).decode("utf-8")
)
# Skip saving long-running operation responses - messages already saved in _yield_tool_call
# Use JSON parsing instead of substring matching to avoid false positives
is_long_running_response = False
try:
parsed = orjson.loads(result_content)
if isinstance(parsed, dict) and parsed.get("type") in (
"operation_started",
"operation_in_progress",
):
is_long_running_response = True
except (orjson.JSONDecodeError, TypeError):
pass # Not JSON or not a dict - treat as regular response
if is_long_running_response:
# Remove from accumulated_tool_calls since assistant message was already saved
accumulated_tool_calls[:] = [
tc
for tc in accumulated_tool_calls
if tc["id"] != chunk.toolCallId
]
has_long_running_tool_call = True
else:
tool_response_messages.append(
ChatMessage(
role="tool",
content=result_content,
tool_call_id=chunk.toolCallId,
)
)
has_done_tool_call = True
# Track if any tool execution failed
if not chunk.success:
logger.warning(
f"Tool {chunk.toolName} (ID: {chunk.toolCallId}) execution failed"
)
yield chunk
elif isinstance(chunk, StreamFinish):
if has_done_tool_call:
# Tool calls happened — close the step but don't send message-level finish.
# The continuation will open a new step, and finish will come at the end.
yield StreamFinishStep()
if not has_done_tool_call:
# Emit text-end before finish if we received text but haven't closed it
if has_received_text and not text_streaming_ended:
yield StreamTextEnd(id=text_block_id)
text_streaming_ended = True
# Save assistant message before yielding finish to ensure it's persisted
# even if client disconnects immediately after receiving StreamFinish
if not has_saved_assistant_message:
messages_to_save_early: list[ChatMessage] = []
if accumulated_tool_calls:
assistant_response.tool_calls = accumulated_tool_calls
if not has_appended_streaming_message and (
assistant_response.content or assistant_response.tool_calls
):
messages_to_save_early.append(assistant_response)
messages_to_save_early.extend(tool_response_messages)
if messages_to_save_early:
session.messages.extend(messages_to_save_early)
logger.info(
f"Saving assistant message before StreamFinish: "
f"content_len={len(assistant_response.content or '')}, "
f"tool_calls={len(assistant_response.tool_calls or [])}, "
f"tool_responses={len(tool_response_messages)}"
)
if messages_to_save_early or has_appended_streaming_message:
await upsert_chat_session(session)
has_saved_assistant_message = True
has_yielded_end = True
# Emit finish-step before finish (resets AI SDK text/reasoning state)
yield StreamFinishStep()
yield chunk
elif isinstance(chunk, StreamError):
has_yielded_error = True
yield chunk
elif isinstance(chunk, StreamUsage):
session.usage.append(
Usage(
prompt_tokens=chunk.promptTokens,
completion_tokens=chunk.completionTokens,
total_tokens=chunk.totalTokens,
)
)
elif isinstance(chunk, StreamHeartbeat):
# Pass through heartbeat to keep SSE connection alive
yield chunk
else:
logger.error(f"Unknown chunk type: {type(chunk)}", exc_info=True)
except CancelledError:
if not has_saved_assistant_message:
if accumulated_tool_calls:
assistant_response.tool_calls = accumulated_tool_calls
if assistant_response.content:
assistant_response.content = (
f"{assistant_response.content}\n\n[interrupted]"
)
else:
assistant_response.content = "[interrupted]"
if not has_appended_streaming_message:
session.messages.append(assistant_response)
if tool_response_messages:
session.messages.extend(tool_response_messages)
try:
await upsert_chat_session(session)
except Exception as e:
logger.warning(
f"Failed to save interrupted session {session.session_id}: {e}"
)
raise
except Exception as e:
logger.error(f"Error during stream: {e!s}", exc_info=True)
# Check if this is a retryable error (JSON parsing, incomplete tool calls, etc.)
is_retryable = isinstance(e, (orjson.JSONDecodeError, KeyError, TypeError))
if is_retryable and retry_count < config.max_retries:
logger.info(
f"Retryable error encountered. Attempt {retry_count + 1}/{config.max_retries}"
)
# Close the current step before retrying so the recursive call's
# StreamStartStep doesn't produce unbalanced step events.
if not has_yielded_end:
yield StreamFinishStep()
should_retry = True
else:
# Non-retryable error or max retries exceeded
# Save any partial progress before reporting error
messages_to_save: list[ChatMessage] = []
# Add assistant message if it has content or tool calls
if accumulated_tool_calls:
assistant_response.tool_calls = accumulated_tool_calls
if not has_appended_streaming_message and (
assistant_response.content or assistant_response.tool_calls
):
messages_to_save.append(assistant_response)
# Add tool response messages after assistant message
messages_to_save.extend(tool_response_messages)
if not has_saved_assistant_message:
if messages_to_save:
session.messages.extend(messages_to_save)
if messages_to_save or has_appended_streaming_message:
await upsert_chat_session(session)
if not has_yielded_error:
error_message = str(e)
if not is_retryable:
error_message = f"Non-retryable error: {error_message}"
elif retry_count >= config.max_retries:
error_message = (
f"Max retries ({config.max_retries}) exceeded: {error_message}"
)
error_response = StreamError(errorText=error_message)
yield error_response
if not has_yielded_end:
yield StreamFinishStep()
yield StreamFinish()
return
# Handle retry outside of exception handler to avoid nesting
if should_retry and retry_count < config.max_retries:
logger.info(
f"Retrying stream_chat_completion for session {session_id}, attempt {retry_count + 1}"
)
async for chunk in stream_chat_completion(
session_id=session.session_id,
user_id=user_id,
retry_count=retry_count + 1,
session=session,
context=context,
_continuation_message_id=message_id, # Reuse message ID since start was already sent
_task_id=_task_id,
):
yield chunk
return # Exit after retry to avoid double-saving in finally block
# Normal completion path - save session and handle tool call continuation
# Only save if we haven't already saved when StreamFinish was received
if not has_saved_assistant_message:
logger.info(
f"Normal completion path: session={session.session_id}, "
f"current message_count={len(session.messages)}"
)
# Build the messages list in the correct order
messages_to_save: list[ChatMessage] = []
# Add assistant message with tool_calls if any.
# Use extend (not assign) to preserve tool_calls already added by
# _yield_tool_call for long-running tools.
if accumulated_tool_calls:
if not assistant_response.tool_calls:
assistant_response.tool_calls = []
assistant_response.tool_calls.extend(accumulated_tool_calls)
logger.info(
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
)
if not has_appended_streaming_message and (
assistant_response.content or assistant_response.tool_calls
):
messages_to_save.append(assistant_response)
logger.info(
f"Saving assistant message with content_len={len(assistant_response.content or '')}, tool_calls={len(assistant_response.tool_calls or [])}"
)
# Add tool response messages after assistant message
messages_to_save.extend(tool_response_messages)
logger.info(
f"Saving {len(tool_response_messages)} tool response messages, "
f"total_to_save={len(messages_to_save)}"
)
if messages_to_save:
session.messages.extend(messages_to_save)
logger.info(
f"Extended session messages, new message_count={len(session.messages)}"
)
# Save if there are regular (non-long-running) tool responses or streaming message.
# Long-running tools save their own state, but we still need to save regular tools
# that may be in the same response.
has_regular_tool_responses = len(tool_response_messages) > 0
if has_regular_tool_responses or (
not has_long_running_tool_call
and (messages_to_save or has_appended_streaming_message)
):
await upsert_chat_session(session)
else:
logger.info(
"Assistant message already saved when StreamFinish was received, "
"skipping duplicate save"
)
# If we did a tool call, stream the chat completion again to get the next response
# Skip only if ALL tools were long-running (they handle their own completion)
has_regular_tools = len(tool_response_messages) > 0
if has_done_tool_call and (has_regular_tools or not has_long_running_tool_call):
logger.info(
"Tool call executed, streaming chat completion again to get assistant response"
)
async for chunk in stream_chat_completion(
session_id=session.session_id,
user_id=user_id,
session=session, # Pass session object to avoid Redis refetch
context=context,
tool_call_response=str(tool_response_messages),
_continuation_message_id=message_id, # Reuse message ID to avoid duplicates
_task_id=_task_id,
):
yield chunk
# Retry configuration for OpenAI API calls
MAX_RETRIES = 3
BASE_DELAY_SECONDS = 1.0
MAX_DELAY_SECONDS = 30.0
def _is_retryable_error(error: Exception) -> bool:
"""Determine if an error is retryable."""
if isinstance(error, RateLimitError):
return True
if isinstance(error, APIConnectionError):
return True
if isinstance(error, APIStatusError):
# APIStatusError has a response with status_code
# Retry on 5xx status codes (server errors)
if error.response.status_code >= 500:
return True
if isinstance(error, APIError):
# Retry on overloaded errors or 500 errors (may not have status code)
error_message = str(error).lower()
if "overloaded" in error_message or "internal server error" in error_message:
return True
return False
def _is_region_blocked_error(error: Exception) -> bool:
if isinstance(error, PermissionDeniedError):
return "not available in your region" in str(error).lower()
return "not available in your region" in str(error).lower()
async def _manage_context_window(
messages: list,
model: str,
api_key: str | None = None,
base_url: str | None = None,
) -> "CompressResult":
"""
Manage context window using the unified compress_context function.
This is a thin wrapper that creates an OpenAI client for summarization
and delegates to the shared compression logic in prompt.py.
Args:
messages: List of messages in OpenAI format
model: Model name for token counting and summarization
api_key: API key for summarization calls
base_url: Base URL for summarization calls
Returns:
CompressResult with compacted messages and metadata
"""
import openai
from backend.util.prompt import compress_context
# Convert messages to dict format
messages_dict = []
for msg in messages:
if isinstance(msg, dict):
msg_dict = {k: v for k, v in msg.items() if v is not None}
else:
msg_dict = dict(msg)
messages_dict.append(msg_dict)
# Only create client if api_key is provided (enables summarization)
# Use context manager to avoid socket leaks
if api_key:
async with openai.AsyncOpenAI(
api_key=api_key, base_url=base_url, timeout=30.0
) as client:
return await compress_context(
messages=messages_dict,
model=model,
client=client,
)
else:
# No API key - use truncation-only mode
return await compress_context(
messages=messages_dict,
model=model,
client=None,
)
async def _stream_chat_chunks(
session: ChatSession,
tools: list[ChatCompletionToolParam],
system_prompt: str | None = None,
text_block_id: str | None = None,
) -> AsyncGenerator[StreamBaseResponse, None]:
"""
Pure streaming function for OpenAI chat completions with tool calling.
This function is database-agnostic and focuses only on streaming logic.
Implements exponential backoff retry for transient API errors.
Args:
session: Chat session with conversation history
tools: Available tools for the model
system_prompt: System prompt to prepend to messages
Yields:
SSE formatted JSON response objects
"""
import time as time_module
stream_chunks_start = time_module.perf_counter()
model = config.model
# Build log metadata for structured logging
log_meta = {"component": "ChatService", "session_id": session.session_id}
if session.user_id:
log_meta["user_id"] = session.user_id
logger.info(
f"[TIMING] _stream_chat_chunks STARTED, session={session.session_id}, "
f"user={session.user_id}, n_messages={len(session.messages)}",
extra={"json_fields": {**log_meta, "n_messages": len(session.messages)}},
)
messages = session.to_openai_messages()
if system_prompt:
system_message = ChatCompletionSystemMessageParam(
role="system",
content=system_prompt,
)
messages = [system_message] + messages
# Apply context window management
context_start = time_module.perf_counter()
context_result = await _manage_context_window(
messages=messages,
model=model,
api_key=config.api_key,
base_url=config.base_url,
)
context_time = (time_module.perf_counter() - context_start) * 1000
logger.info(
f"[TIMING] _manage_context_window took {context_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": context_time}},
)
if context_result.error:
if "System prompt dropped" in context_result.error:
# Warning only - continue with reduced context
yield StreamError(
errorText=(
"Warning: System prompt dropped due to size constraints. "
"Assistant behavior may be affected."
)
)
else:
# Any other error - abort to prevent failed LLM calls
yield StreamError(
errorText=(
f"Context window management failed: {context_result.error}. "
"Please start a new conversation."
)
)
yield StreamFinish()
return
messages = context_result.messages
if context_result.was_compacted:
logger.info(
f"Context compacted for streaming: {context_result.token_count} tokens"
)
# Loop to handle tool calls and continue conversation
while True:
retry_count = 0
last_error: Exception | None = None
while retry_count <= MAX_RETRIES:
try:
elapsed = (time_module.perf_counter() - stream_chunks_start) * 1000
retry_info = (
f" (retry {retry_count}/{MAX_RETRIES})" if retry_count > 0 else ""
)
logger.info(
f"[TIMING] Creating OpenAI stream at {elapsed:.1f}ms{retry_info}",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": elapsed,
"retry_count": retry_count,
}
},
)
# Build extra_body for OpenRouter tracing and PostHog analytics
extra_body: dict[str, Any] = {
"posthogProperties": {
"environment": settings.config.app_env.value,
},
}
if session.user_id:
extra_body["user"] = session.user_id[:128] # OpenRouter limit
extra_body["posthogDistinctId"] = session.user_id
if session.session_id:
extra_body["session_id"] = session.session_id[
:128
] # OpenRouter limit
# Enable adaptive thinking for Anthropic models via OpenRouter
if config.thinking_enabled and "anthropic" in model.lower():
extra_body["reasoning"] = {"enabled": True}
api_call_start = time_module.perf_counter()
stream = await client.chat.completions.create(
model=model,
messages=cast(list[ChatCompletionMessageParam], messages),
tools=tools,
tool_choice="auto",
stream=True,
stream_options=ChatCompletionStreamOptionsParam(include_usage=True),
extra_body=extra_body,
)
api_init_time = (time_module.perf_counter() - api_call_start) * 1000
logger.info(
f"[TIMING] OpenAI stream object returned in {api_init_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": api_init_time}},
)
# Variables to accumulate tool calls
tool_calls: list[dict[str, Any]] = []
active_tool_call_idx: int | None = None
finish_reason: str | None = None
# Track which tool call indices have had their start event emitted
emitted_start_for_idx: set[int] = set()
# Track if we've started the text block
text_started = False
first_content_chunk = True
chunk_count = 0
# Process the stream
chunk: ChatCompletionChunk
async for chunk in stream:
chunk_count += 1
if chunk.usage:
yield StreamUsage(
promptTokens=chunk.usage.prompt_tokens,
completionTokens=chunk.usage.completion_tokens,
totalTokens=chunk.usage.total_tokens,
)
if chunk.choices:
choice = chunk.choices[0]
delta = choice.delta
# Capture finish reason
if choice.finish_reason:
finish_reason = choice.finish_reason
logger.info(f"Finish reason: {finish_reason}")
# Handle content streaming
if delta.content:
# Emit text-start on first text content
if not text_started and text_block_id:
yield StreamTextStart(id=text_block_id)
text_started = True
# Log timing for first content chunk
if first_content_chunk:
first_content_chunk = False
ttfc = (
time_module.perf_counter() - api_call_start
) * 1000
logger.info(
f"[TIMING] FIRST CONTENT CHUNK at {ttfc:.1f}ms "
f"(since API call), n_chunks={chunk_count}",
extra={
"json_fields": {
**log_meta,
"time_to_first_chunk_ms": ttfc,
"n_chunks": chunk_count,
}
},
)
# Stream the text delta
text_response = StreamTextDelta(
id=text_block_id or "",
delta=delta.content,
)
yield text_response
# Handle tool calls
if delta.tool_calls:
for tc_chunk in delta.tool_calls:
idx = tc_chunk.index
# Update active tool call index if needed
if (
active_tool_call_idx is None
or active_tool_call_idx != idx
):
active_tool_call_idx = idx
# Ensure we have a tool call object at this index
while len(tool_calls) <= idx:
tool_calls.append(
{
"id": "",
"type": "function",
"function": {
"name": "",
"arguments": "",
},
},
)
# Accumulate the tool call data
if tc_chunk.id:
tool_calls[idx]["id"] = tc_chunk.id
if tc_chunk.function:
if tc_chunk.function.name:
tool_calls[idx]["function"][
"name"
] = tc_chunk.function.name
if tc_chunk.function.arguments:
tool_calls[idx]["function"][
"arguments"
] += tc_chunk.function.arguments
# Emit StreamToolInputStart only after we have the tool call ID
if (
idx not in emitted_start_for_idx
and tool_calls[idx]["id"]
and tool_calls[idx]["function"]["name"]
):
yield StreamToolInputStart(
toolCallId=tool_calls[idx]["id"],
toolName=tool_calls[idx]["function"]["name"],
)
emitted_start_for_idx.add(idx)
stream_duration = time_module.perf_counter() - api_call_start
logger.info(
f"[TIMING] OpenAI stream COMPLETE, finish_reason={finish_reason}, "
f"duration={stream_duration:.2f}s, "
f"n_chunks={chunk_count}, n_tool_calls={len(tool_calls)}",
extra={
"json_fields": {
**log_meta,
"stream_duration_ms": stream_duration * 1000,
"finish_reason": finish_reason,
"n_chunks": chunk_count,
"n_tool_calls": len(tool_calls),
}
},
)
# Yield all accumulated tool calls after the stream is complete
# This ensures all tool call arguments have been fully received
for idx, tool_call in enumerate(tool_calls):
try:
async for tc in _yield_tool_call(tool_calls, idx, session):
yield tc
except (orjson.JSONDecodeError, KeyError, TypeError) as e:
logger.error(
f"Failed to parse tool call {idx}: {e}",
exc_info=True,
extra={"tool_call": tool_call},
)
yield StreamError(
errorText=f"Invalid tool call arguments for tool {tool_call.get('function', {}).get('name', 'unknown')}: {e}",
)
# Re-raise to trigger retry logic in the parent function
raise
total_time = (time_module.perf_counter() - stream_chunks_start) * 1000
logger.info(
f"[TIMING] _stream_chat_chunks COMPLETED in {total_time/1000:.1f}s; "
f"session={session.session_id}, user={session.user_id}",
extra={"json_fields": {**log_meta, "total_time_ms": total_time}},
)
yield StreamFinish()
return
except Exception as e:
last_error = e
if _is_retryable_error(e) and retry_count < MAX_RETRIES:
retry_count += 1
# Calculate delay with exponential backoff
delay = min(
BASE_DELAY_SECONDS * (2 ** (retry_count - 1)),
MAX_DELAY_SECONDS,
)
logger.warning(
f"Retryable error in stream: {e!s}. "
f"Retrying in {delay:.1f}s (attempt {retry_count}/{MAX_RETRIES})"
)
await asyncio.sleep(delay)
continue # Retry the stream
else:
# Non-retryable error or max retries exceeded
logger.error(
f"Error in stream (not retrying): {e!s}",
exc_info=True,
)
error_code = None
error_text = str(e)
if _is_region_blocked_error(e):
error_code = "MODEL_NOT_AVAILABLE_REGION"
error_text = (
"This model is not available in your region. "
"Please connect via VPN and try again."
)
error_response = StreamError(
errorText=error_text,
code=error_code,
)
yield error_response
yield StreamFinish()
return
# If we exit the retry loop without returning, it means we exhausted retries
if last_error:
logger.error(
f"Max retries ({MAX_RETRIES}) exceeded. Last error: {last_error!s}",
exc_info=True,
)
yield StreamError(errorText=f"Max retries exceeded: {last_error!s}")
yield StreamFinish()
return
async def _yield_tool_call(
tool_calls: list[dict[str, Any]],
yield_idx: int,
session: ChatSession,
) -> AsyncGenerator[StreamBaseResponse, None]:
"""
Yield a tool call and its execution result.
For tools marked with `is_long_running=True` (like agent generation), spawns a
background task so the operation survives SSE disconnections. For other tools,
yields heartbeat events every 15 seconds to keep the SSE connection alive.
Raises:
orjson.JSONDecodeError: If tool call arguments cannot be parsed as JSON
KeyError: If expected tool call fields are missing
TypeError: If tool call structure is invalid
"""
import uuid as uuid_module
tool_name = tool_calls[yield_idx]["function"]["name"]
tool_call_id = tool_calls[yield_idx]["id"]
# Parse tool call arguments - handle empty arguments gracefully
raw_arguments = tool_calls[yield_idx]["function"]["arguments"]
if raw_arguments:
arguments = orjson.loads(raw_arguments)
else:
arguments = {}
yield StreamToolInputAvailable(
toolCallId=tool_call_id,
toolName=tool_name,
input=arguments,
)
# Check if this tool is long-running (survives SSE disconnection)
tool = get_tool(tool_name)
if tool and tool.is_long_running:
# Atomic check-and-set: returns False if operation already running (lost race)
if not await _mark_operation_started(tool_call_id):
logger.info(
f"Tool call {tool_call_id} already in progress, returning status"
)
# Build dynamic message based on tool name
if tool_name == "create_agent":
in_progress_msg = "Agent creation already in progress. Please wait..."
elif tool_name == "edit_agent":
in_progress_msg = "Agent edit already in progress. Please wait..."
else:
in_progress_msg = f"{tool_name} already in progress. Please wait..."
yield StreamToolOutputAvailable(
toolCallId=tool_call_id,
toolName=tool_name,
output=OperationInProgressResponse(
message=in_progress_msg,
tool_call_id=tool_call_id,
).model_dump_json(),
success=True,
)
return
# Generate operation ID and task ID
operation_id = str(uuid_module.uuid4())
task_id = str(uuid_module.uuid4())
# Build a user-friendly message based on tool and arguments
if tool_name == "create_agent":
agent_desc = arguments.get("description", "")
# Truncate long descriptions for the message
desc_preview = (
(agent_desc[:100] + "...") if len(agent_desc) > 100 else agent_desc
)
pending_msg = (
f"Creating your agent: {desc_preview}"
if desc_preview
else "Creating agent... This may take a few minutes."
)
started_msg = (
"Agent creation started. You can close this tab - "
"check your library in a few minutes."
)
elif tool_name == "edit_agent":
changes = arguments.get("changes", "")
changes_preview = (changes[:100] + "...") if len(changes) > 100 else changes
pending_msg = (
f"Editing agent: {changes_preview}"
if changes_preview
else "Editing agent... This may take a few minutes."
)
started_msg = (
"Agent edit started. You can close this tab - "
"check your library in a few minutes."
)
else:
pending_msg = f"Running {tool_name}... This may take a few minutes."
started_msg = (
f"{tool_name} started. You can close this tab - "
"check back in a few minutes."
)
# Track appended messages for rollback on failure
assistant_message: ChatMessage | None = None
pending_message: ChatMessage | None = None
# Wrap session save and task creation in try-except to release lock on failure
try:
# Create task in stream registry for SSE reconnection support
await stream_registry.create_task(
task_id=task_id,
session_id=session.session_id,
user_id=session.user_id,
tool_call_id=tool_call_id,
tool_name=tool_name,
operation_id=operation_id,
)
# Attach the tool_call to the current turn's assistant message
# (or create one if this is a tool-only response with no text).
session.add_tool_call_to_current_turn(tool_calls[yield_idx])
# Then save pending tool result
pending_message = ChatMessage(
role="tool",
content=OperationPendingResponse(
message=pending_msg,
operation_id=operation_id,
tool_name=tool_name,
).model_dump_json(),
tool_call_id=tool_call_id,
)
session.messages.append(pending_message)
await upsert_chat_session(session)
logger.info(
f"Saved pending operation {operation_id} (task_id={task_id}) "
f"for tool {tool_name} in session {session.session_id}"
)
# Store task reference in module-level set to prevent GC before completion
bg_task = asyncio.create_task(
_execute_long_running_tool_with_streaming(
tool_name=tool_name,
parameters=arguments,
tool_call_id=tool_call_id,
operation_id=operation_id,
task_id=task_id,
session_id=session.session_id,
user_id=session.user_id,
)
)
_background_tasks.add(bg_task)
bg_task.add_done_callback(_background_tasks.discard)
# Associate the asyncio task with the stream registry task
await stream_registry.set_task_asyncio_task(task_id, bg_task)
except Exception as e:
# Roll back appended messages to prevent data corruption on subsequent saves
if (
pending_message
and session.messages
and session.messages[-1] == pending_message
):
session.messages.pop()
if (
assistant_message
and session.messages
and session.messages[-1] == assistant_message
):
session.messages.pop()
# Release the Redis lock since the background task won't be spawned
await _mark_operation_completed(tool_call_id)
# Mark stream registry task as failed if it was created
try:
await stream_registry.mark_task_completed(task_id, status="failed")
except Exception:
pass
logger.error(
f"Failed to setup long-running tool {tool_name}: {e}", exc_info=True
)
raise
# Return immediately - don't wait for completion
yield StreamToolOutputAvailable(
toolCallId=tool_call_id,
toolName=tool_name,
output=OperationStartedResponse(
message=started_msg,
operation_id=operation_id,
tool_name=tool_name,
task_id=task_id, # Include task_id for SSE reconnection
).model_dump_json(),
success=True,
)
return
# Normal flow: Run tool execution in background task with heartbeats
tool_task = asyncio.create_task(
execute_tool(
tool_name=tool_name,
parameters=arguments,
tool_call_id=tool_call_id,
user_id=session.user_id,
session=session,
)
)
# Yield heartbeats every 15 seconds while waiting for tool to complete
heartbeat_interval = 15.0 # seconds
while not tool_task.done():
try:
# Wait for either the task to complete or the heartbeat interval
await asyncio.wait_for(
asyncio.shield(tool_task), timeout=heartbeat_interval
)
except asyncio.TimeoutError:
# Task still running, send heartbeat to keep connection alive
logger.debug(f"Sending heartbeat for tool {tool_name} ({tool_call_id})")
yield StreamHeartbeat(toolCallId=tool_call_id)
except CancelledError:
# Task was cancelled, clean up and propagate
tool_task.cancel()
logger.warning(f"Tool execution cancelled: {tool_name} ({tool_call_id})")
raise
# Get the result - handle any exceptions that occurred during execution
try:
tool_execution_response: StreamToolOutputAvailable = await tool_task
except Exception as e:
# Task raised an exception - ensure we send an error response to the frontend
logger.error(
f"Tool execution failed: {tool_name} ({tool_call_id}): {e}", exc_info=True
)
error_response = ErrorResponse(
message=f"Tool execution failed: {e!s}",
error=type(e).__name__,
session_id=session.session_id,
)
tool_execution_response = StreamToolOutputAvailable(
toolCallId=tool_call_id,
toolName=tool_name,
output=error_response.model_dump_json(),
success=False,
)
yield tool_execution_response
async def _execute_long_running_tool(
tool_name: str,
parameters: dict[str, Any],
tool_call_id: str,
operation_id: str,
session_id: str,
user_id: str | None,
) -> None:
"""Execute a long-running tool in background and update chat history with result.
This function runs independently of the SSE connection, so the operation
survives if the user closes their browser tab.
NOTE: This is the legacy function without stream registry support.
Use _execute_long_running_tool_with_streaming for new implementations.
"""
try:
# Load fresh session (not stale reference)
session = await get_chat_session(session_id, user_id)
if not session:
logger.error(f"Session {session_id} not found for background tool")
return
# Execute the actual tool
result = await execute_tool(
tool_name=tool_name,
parameters=parameters,
tool_call_id=tool_call_id,
user_id=user_id,
session=session,
)
# Update the pending message with result
await _update_pending_operation(
session_id=session_id,
tool_call_id=tool_call_id,
result=(
result.output
if isinstance(result.output, str)
else orjson.dumps(result.output).decode("utf-8")
),
)
logger.info(f"Background tool {tool_name} completed for session {session_id}")
# Generate LLM continuation so user sees response when they poll/refresh
await _generate_llm_continuation(session_id=session_id, user_id=user_id)
except Exception as e:
logger.error(f"Background tool {tool_name} failed: {e}", exc_info=True)
error_response = ErrorResponse(
message=f"Tool {tool_name} failed: {str(e)}",
)
await _update_pending_operation(
session_id=session_id,
tool_call_id=tool_call_id,
result=error_response.model_dump_json(),
)
# Generate LLM continuation so user sees explanation even for errors
try:
await _generate_llm_continuation(session_id=session_id, user_id=user_id)
except Exception as llm_err:
logger.warning(f"Failed to generate LLM continuation for error: {llm_err}")
finally:
await _mark_operation_completed(tool_call_id)
async def _execute_long_running_tool_with_streaming(
tool_name: str,
parameters: dict[str, Any],
tool_call_id: str,
operation_id: str,
task_id: str,
session_id: str,
user_id: str | None,
) -> None:
"""Execute a long-running tool with stream registry support for SSE reconnection.
This function runs independently of the SSE connection, publishes progress
to the stream registry, and survives if the user closes their browser tab.
Clients can reconnect via GET /chat/tasks/{task_id}/stream to resume streaming.
If the external service returns a 202 Accepted (async), this function exits
early and lets the Redis Streams completion consumer handle the rest.
"""
# Track whether we delegated to async processing - if so, the Redis Streams
# completion consumer (stream_registry / completion_consumer) will handle cleanup, not us
delegated_to_async = False
try:
# Load fresh session (not stale reference)
session = await get_chat_session(session_id, user_id)
if not session:
logger.error(f"Session {session_id} not found for background tool")
await stream_registry.mark_task_completed(task_id, status="failed")
return
# Pass operation_id and task_id to the tool for async processing
enriched_parameters = {
**parameters,
"_operation_id": operation_id,
"_task_id": task_id,
}
# Execute the actual tool
result = await execute_tool(
tool_name=tool_name,
parameters=enriched_parameters,
tool_call_id=tool_call_id,
user_id=user_id,
session=session,
)
# Check if the tool result indicates async processing
# (e.g., Agent Generator returned 202 Accepted)
try:
if isinstance(result.output, dict):
result_data = result.output
elif result.output:
result_data = orjson.loads(result.output)
else:
result_data = {}
if result_data.get("status") == "accepted":
logger.info(
f"Tool {tool_name} delegated to async processing "
f"(operation_id={operation_id}, task_id={task_id}). "
f"Redis Streams completion consumer will handle the rest."
)
# Don't publish result, don't continue with LLM, and don't cleanup
# The Redis Streams consumer (completion_consumer) will handle
# everything when the external service completes via webhook
delegated_to_async = True
return
except (orjson.JSONDecodeError, TypeError):
pass # Not JSON or not async - continue normally
# Publish tool result to stream registry
await stream_registry.publish_chunk(task_id, result)
# Update the pending message with result
result_str = (
result.output
if isinstance(result.output, str)
else orjson.dumps(result.output).decode("utf-8")
)
await _update_pending_operation(
session_id=session_id,
tool_call_id=tool_call_id,
result=result_str,
)
logger.info(
f"Background tool {tool_name} completed for session {session_id} "
f"(task_id={task_id})"
)
# Generate LLM continuation and stream chunks to registry
await _generate_llm_continuation_with_streaming(
session_id=session_id,
user_id=user_id,
task_id=task_id,
)
# Mark task as completed in stream registry
await stream_registry.mark_task_completed(task_id, status="completed")
except Exception as e:
logger.error(f"Background tool {tool_name} failed: {e}", exc_info=True)
error_response = ErrorResponse(
message=f"Tool {tool_name} failed: {str(e)}",
)
# Publish error to stream registry followed by finish event
await stream_registry.publish_chunk(
task_id,
StreamError(errorText=str(e)),
)
await stream_registry.publish_chunk(task_id, StreamFinishStep())
await stream_registry.publish_chunk(task_id, StreamFinish())
await _update_pending_operation(
session_id=session_id,
tool_call_id=tool_call_id,
result=error_response.model_dump_json(),
)
# Mark task as failed in stream registry
await stream_registry.mark_task_completed(task_id, status="failed")
finally:
# Only cleanup if we didn't delegate to async processing
# For async path, the Redis Streams completion consumer handles cleanup
if not delegated_to_async:
await _mark_operation_completed(tool_call_id)
async def _update_pending_operation(
session_id: str,
tool_call_id: str,
result: str,
) -> None:
"""Update the pending tool message with final result.
This is called by background tasks when long-running operations complete.
"""
# Update the message in database
updated = await chat_db.update_tool_message_content(
session_id=session_id,
tool_call_id=tool_call_id,
new_content=result,
)
if updated:
# Invalidate Redis cache so next load gets fresh data
# Wrap in try/except to prevent cache failures from triggering error handling
# that would overwrite our successful DB update
try:
await invalidate_session_cache(session_id)
except Exception as e:
# Non-critical: cache will eventually be refreshed on next load
logger.warning(f"Failed to invalidate cache for session {session_id}: {e}")
logger.info(
f"Updated pending operation for tool_call_id {tool_call_id} "
f"in session {session_id}"
)
else:
logger.warning(
f"Failed to update pending operation for tool_call_id {tool_call_id} "
f"in session {session_id}"
)
async def _generate_llm_continuation(
session_id: str,
user_id: str | None,
) -> None:
"""Generate an LLM response after a long-running tool completes.
This is called by background tasks to continue the conversation
after a tool result is saved. The response is saved to the database
so users see it when they refresh or poll.
"""
try:
# Load fresh session from DB (bypass cache to get the updated tool result)
await invalidate_session_cache(session_id)
session = await get_chat_session(session_id, user_id)
if not session:
logger.error(f"Session {session_id} not found for LLM continuation")
return
# Build system prompt
system_prompt, _ = await _build_system_prompt(user_id)
messages = session.to_openai_messages()
if system_prompt:
system_message = ChatCompletionSystemMessageParam(
role="system",
content=system_prompt,
)
messages = [system_message] + messages
# Apply context window management to prevent oversized requests
context_result = await _manage_context_window(
messages=messages,
model=config.model,
api_key=config.api_key,
base_url=config.base_url,
)
if context_result.error and "System prompt dropped" not in context_result.error:
logger.error(
f"Context window management failed for session {session_id}: "
f"{context_result.error} (tokens={context_result.token_count})"
)
return
messages = context_result.messages
if context_result.was_compacted:
logger.info(
f"Context compacted for LLM continuation: "
f"{context_result.token_count} tokens"
)
# Build extra_body for tracing
extra_body: dict[str, Any] = {
"posthogProperties": {
"environment": settings.config.app_env.value,
},
}
if user_id:
extra_body["user"] = user_id[:128]
extra_body["posthogDistinctId"] = user_id
if session_id:
extra_body["session_id"] = session_id[:128]
# Enable adaptive thinking for Anthropic models via OpenRouter
if config.thinking_enabled and "anthropic" in config.model.lower():
extra_body["reasoning"] = {"enabled": True}
retry_count = 0
last_error: Exception | None = None
response = None
while retry_count <= MAX_RETRIES:
try:
logger.info(
f"Generating LLM continuation for session {session_id}"
f"{f' (retry {retry_count}/{MAX_RETRIES})' if retry_count > 0 else ''}"
)
response = await client.chat.completions.create(
model=config.model,
messages=cast(list[ChatCompletionMessageParam], messages),
extra_body=extra_body,
)
last_error = None # Clear any previous error on success
break # Success, exit retry loop
except Exception as e:
last_error = e
if _is_retryable_error(e) and retry_count < MAX_RETRIES:
retry_count += 1
delay = min(
BASE_DELAY_SECONDS * (2 ** (retry_count - 1)),
MAX_DELAY_SECONDS,
)
logger.warning(
f"Retryable error in LLM continuation: {e!s}. "
f"Retrying in {delay:.1f}s (attempt {retry_count}/{MAX_RETRIES})"
)
await asyncio.sleep(delay)
continue
else:
# Non-retryable error - log and exit gracefully
logger.error(
f"Non-retryable error in LLM continuation: {e!s}",
exc_info=True,
)
return
if last_error:
logger.error(
f"Max retries ({MAX_RETRIES}) exceeded for LLM continuation. "
f"Last error: {last_error!s}"
)
return
if response and response.choices and response.choices[0].message.content:
assistant_content = response.choices[0].message.content
# Reload session from DB to avoid race condition with user messages
# that may have been sent while we were generating the LLM response
fresh_session = await get_chat_session(session_id, user_id)
if not fresh_session:
logger.error(
f"Session {session_id} disappeared during LLM continuation"
)
return
# Save assistant message to database
assistant_message = ChatMessage(
role="assistant",
content=assistant_content,
)
fresh_session.messages.append(assistant_message)
# Save to database (not cache) to persist the response
await upsert_chat_session(fresh_session)
# Invalidate cache so next poll/refresh gets fresh data
await invalidate_session_cache(session_id)
logger.info(
f"Generated LLM continuation for session {session_id}, "
f"response length: {len(assistant_content)}"
)
else:
logger.warning(f"LLM continuation returned empty response for {session_id}")
except Exception as e:
logger.error(f"Failed to generate LLM continuation: {e}", exc_info=True)
async def _generate_llm_continuation_with_streaming(
session_id: str,
user_id: str | None,
task_id: str,
) -> None:
"""Generate an LLM response with streaming to the stream registry.
This is called by background tasks to continue the conversation
after a tool result is saved. Chunks are published to the stream registry
so reconnecting clients can receive them.
"""
import uuid as uuid_module
try:
# Load fresh session from DB (bypass cache to get the updated tool result)
await invalidate_session_cache(session_id)
session = await get_chat_session(session_id, user_id)
if not session:
logger.error(f"Session {session_id} not found for LLM continuation")
return
# Build system prompt
system_prompt, _ = await _build_system_prompt(user_id)
# Build messages in OpenAI format
messages = session.to_openai_messages()
if system_prompt:
from openai.types.chat import ChatCompletionSystemMessageParam
system_message = ChatCompletionSystemMessageParam(
role="system",
content=system_prompt,
)
messages = [system_message] + messages
# Build extra_body for tracing
extra_body: dict[str, Any] = {
"posthogProperties": {
"environment": settings.config.app_env.value,
},
}
if user_id:
extra_body["user"] = user_id[:128]
extra_body["posthogDistinctId"] = user_id
if session_id:
extra_body["session_id"] = session_id[:128]
# Enable adaptive thinking for Anthropic models via OpenRouter
if config.thinking_enabled and "anthropic" in config.model.lower():
extra_body["reasoning"] = {"enabled": True}
# Make streaming LLM call (no tools - just text response)
from typing import cast
from openai.types.chat import ChatCompletionMessageParam
# Generate unique IDs for AI SDK protocol
message_id = str(uuid_module.uuid4())
text_block_id = str(uuid_module.uuid4())
# Publish start event
await stream_registry.publish_chunk(task_id, StreamStart(messageId=message_id))
await stream_registry.publish_chunk(task_id, StreamStartStep())
await stream_registry.publish_chunk(task_id, StreamTextStart(id=text_block_id))
# Stream the response
stream = await client.chat.completions.create(
model=config.model,
messages=cast(list[ChatCompletionMessageParam], messages),
extra_body=extra_body,
stream=True,
)
assistant_content = ""
async for chunk in stream:
if chunk.choices and chunk.choices[0].delta.content:
delta = chunk.choices[0].delta.content
assistant_content += delta
# Publish delta to stream registry
await stream_registry.publish_chunk(
task_id,
StreamTextDelta(id=text_block_id, delta=delta),
)
# Publish end events
await stream_registry.publish_chunk(task_id, StreamTextEnd(id=text_block_id))
await stream_registry.publish_chunk(task_id, StreamFinishStep())
if assistant_content:
# Reload session from DB to avoid race condition with user messages
fresh_session = await get_chat_session(session_id, user_id)
if not fresh_session:
logger.error(
f"Session {session_id} disappeared during LLM continuation"
)
return
# Save assistant message to database
assistant_message = ChatMessage(
role="assistant",
content=assistant_content,
)
fresh_session.messages.append(assistant_message)
# Save to database (not cache) to persist the response
await upsert_chat_session(fresh_session)
# Invalidate cache so next poll/refresh gets fresh data
await invalidate_session_cache(session_id)
logger.info(
f"Generated streaming LLM continuation for session {session_id} "
f"(task_id={task_id}), response length: {len(assistant_content)}"
)
else:
logger.warning(
f"Streaming LLM continuation returned empty response for {session_id}"
)
except Exception as e:
logger.error(
f"Failed to generate streaming LLM continuation: {e}", exc_info=True
)
# Publish error to stream registry followed by finish event
await stream_registry.publish_chunk(
task_id,
StreamError(errorText=f"Failed to generate response: {e}"),
)
await stream_registry.publish_chunk(task_id, StreamFinishStep())
await stream_registry.publish_chunk(task_id, StreamFinish())