mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-02-18 18:44:42 -05:00
## Summary - Centralize dynamic field delimiters and helpers in backend/data/dynamic_fields.py. - Refactor SmartDecisionMaker: build function signatures with dynamic-field mapping and re-map tool outputs back to original dynamic names. - Deterministic retry loop with retry-only feedback to avoid polluting final conversation history. - Update executor/utils.py and data/graph.py to use centralized utilities. - Update and extend tests: dynamic-field E2E flow, mapping verification, output yielding, and retry validation; switch mocked llm_call to AsyncMock; align tool-name expectations. - Add a single-tool fallback in schema lookup to support mocked scenarios. ## Validation - Full backend test suite: 1125 passed, 88 skipped, 53 warnings (local). - Backend lint/format pass. ## Scope - Minimal and localized to SmartDecisionMaker and dynamic-field utilities; unrelated pyright warnings remain unchanged. ## Risks/Mitigations - Behavior is backward-compatible; dynamic-field constants are centralized and reused. - Output re-mapping only affects SmartDecisionMaker tool outputs and matches existing link naming conventions. ## Checklist - [x] Formatted and linted - [x] All updated tests pass locally - [x] No secrets introduced --------- Co-authored-by: Claude <noreply@anthropic.com>
424 lines
15 KiB
Python
424 lines
15 KiB
Python
from typing import cast
|
|
|
|
import pytest
|
|
from pytest_mock import MockerFixture
|
|
|
|
from backend.data.dynamic_fields import merge_execution_input, parse_execution_output
|
|
from backend.util.mock import MockObject
|
|
|
|
|
|
def test_parse_execution_output():
|
|
# Test case for basic output
|
|
output = ("result", "value")
|
|
assert parse_execution_output(output, "result") == "value"
|
|
|
|
# Test case for list output
|
|
output = ("result", [10, 20, 30])
|
|
assert parse_execution_output(output, "result_$_1") == 20
|
|
|
|
# Test case for dict output
|
|
output = ("result", {"key1": "value1", "key2": "value2"})
|
|
assert parse_execution_output(output, "result_#_key1") == "value1"
|
|
|
|
# Test case for object output
|
|
class Sample:
|
|
def __init__(self):
|
|
self.attr1 = "value1"
|
|
self.attr2 = "value2"
|
|
|
|
output = ("result", Sample())
|
|
assert parse_execution_output(output, "result_@_attr1") == "value1"
|
|
|
|
# Test case for nested list output
|
|
output = ("result", [[1, 2], [3, 4]])
|
|
assert parse_execution_output(output, "result_$_0_$_1") == 2
|
|
assert parse_execution_output(output, "result_$_1_$_0") == 3
|
|
|
|
# Test case for list containing dict
|
|
output = ("result", [{"key1": "value1"}, {"key2": "value2"}])
|
|
assert parse_execution_output(output, "result_$_0_#_key1") == "value1"
|
|
assert parse_execution_output(output, "result_$_1_#_key2") == "value2"
|
|
|
|
# Test case for dict containing list
|
|
output = ("result", {"key1": [1, 2], "key2": [3, 4]})
|
|
assert parse_execution_output(output, "result_#_key1_$_1") == 2
|
|
assert parse_execution_output(output, "result_#_key2_$_0") == 3
|
|
|
|
# Test case for complex nested structure
|
|
class NestedSample:
|
|
def __init__(self):
|
|
self.attr1 = [1, 2]
|
|
self.attr2 = {"key": "value"}
|
|
|
|
output = ("result", [NestedSample(), {"key": [1, 2]}])
|
|
assert parse_execution_output(output, "result_$_0_@_attr1_$_1") == 2
|
|
assert parse_execution_output(output, "result_$_0_@_attr2_#_key") == "value"
|
|
assert parse_execution_output(output, "result_$_1_#_key_$_0") == 1
|
|
|
|
# Test case for non-existent paths
|
|
output = ("result", [1, 2, 3])
|
|
assert parse_execution_output(output, "result_$_5") is None
|
|
assert parse_execution_output(output, "result_#_key") is None
|
|
assert parse_execution_output(output, "result_@_attr") is None
|
|
assert parse_execution_output(output, "wrong_name") is None
|
|
|
|
# Test cases for delimiter processing order
|
|
# Test case 1: List -> Dict -> List
|
|
output = ("result", [[{"key": [1, 2]}], [3, 4]])
|
|
assert parse_execution_output(output, "result_$_0_$_0_#_key_$_1") == 2
|
|
|
|
# Test case 2: Dict -> List -> Object
|
|
class NestedObj:
|
|
def __init__(self):
|
|
self.value = "nested"
|
|
|
|
output = ("result", {"key": [NestedObj(), 2]})
|
|
assert parse_execution_output(output, "result_#_key_$_0_@_value") == "nested"
|
|
|
|
# Test case 3: Object -> List -> Dict
|
|
class ParentObj:
|
|
def __init__(self):
|
|
self.items = [{"nested": "value"}]
|
|
|
|
output = ("result", ParentObj())
|
|
assert parse_execution_output(output, "result_@_items_$_0_#_nested") == "value"
|
|
|
|
# Test case 4: Complex nested structure with all types
|
|
class ComplexObj:
|
|
def __init__(self):
|
|
self.data = [{"items": [{"value": "deep"}]}]
|
|
|
|
output = ("result", {"key": [ComplexObj()]})
|
|
assert (
|
|
parse_execution_output(
|
|
output, "result_#_key_$_0_@_data_$_0_#_items_$_0_#_value"
|
|
)
|
|
== "deep"
|
|
)
|
|
|
|
# Test case 5: Invalid paths that should return None
|
|
output = ("result", [{"key": [1, 2]}])
|
|
assert parse_execution_output(output, "result_$_0_#_wrong_key") is None
|
|
assert parse_execution_output(output, "result_$_0_#_key_$_5") is None
|
|
assert parse_execution_output(output, "result_$_0_@_attr") is None
|
|
|
|
# Test case 6: Mixed delimiter types in wrong order
|
|
output = ("result", {"key": [1, 2]})
|
|
assert (
|
|
parse_execution_output(output, "result_#_key_$_1_@_attr") is None
|
|
) # Should fail at @_attr
|
|
assert (
|
|
parse_execution_output(output, "result_@_attr_$_0_#_key") is None
|
|
) # Should fail at @_attr
|
|
|
|
|
|
def test_merge_execution_input():
|
|
# Test case for basic list extraction
|
|
data = {
|
|
"list_$_0": "a",
|
|
"list_$_1": "b",
|
|
}
|
|
result = merge_execution_input(data)
|
|
assert "list" in result
|
|
assert result["list"] == ["a", "b"]
|
|
|
|
# Test case for basic dict extraction
|
|
data = {
|
|
"dict_#_key1": "value1",
|
|
"dict_#_key2": "value2",
|
|
}
|
|
result = merge_execution_input(data)
|
|
assert "dict" in result
|
|
assert result["dict"] == {"key1": "value1", "key2": "value2"}
|
|
|
|
# Test case for object extraction
|
|
class Sample:
|
|
def __init__(self):
|
|
self.attr1 = None
|
|
self.attr2 = None
|
|
|
|
data = {
|
|
"object_@_attr1": "value1",
|
|
"object_@_attr2": "value2",
|
|
}
|
|
result = merge_execution_input(data)
|
|
assert "object" in result
|
|
assert isinstance(result["object"], MockObject)
|
|
assert result["object"].attr1 == "value1"
|
|
assert result["object"].attr2 == "value2"
|
|
|
|
# Test case for nested list extraction
|
|
data = {
|
|
"nested_list_$_0_$_0": "a",
|
|
"nested_list_$_0_$_1": "b",
|
|
"nested_list_$_1_$_0": "c",
|
|
}
|
|
result = merge_execution_input(data)
|
|
assert "nested_list" in result
|
|
assert result["nested_list"] == [["a", "b"], ["c"]]
|
|
|
|
# Test case for list containing dict
|
|
data = {
|
|
"list_with_dict_$_0_#_key1": "value1",
|
|
"list_with_dict_$_0_#_key2": "value2",
|
|
"list_with_dict_$_1_#_key3": "value3",
|
|
}
|
|
result = merge_execution_input(data)
|
|
assert "list_with_dict" in result
|
|
assert result["list_with_dict"] == [
|
|
{"key1": "value1", "key2": "value2"},
|
|
{"key3": "value3"},
|
|
]
|
|
|
|
# Test case for dict containing list
|
|
data = {
|
|
"dict_with_list_#_key1_$_0": "value1",
|
|
"dict_with_list_#_key1_$_1": "value2",
|
|
"dict_with_list_#_key2_$_0": "value3",
|
|
}
|
|
result = merge_execution_input(data)
|
|
assert "dict_with_list" in result
|
|
assert result["dict_with_list"] == {
|
|
"key1": ["value1", "value2"],
|
|
"key2": ["value3"],
|
|
}
|
|
|
|
# Test case for complex nested structure
|
|
data = {
|
|
"complex_$_0_#_key1_$_0": "value1",
|
|
"complex_$_0_#_key1_$_1": "value2",
|
|
"complex_$_0_#_key2_@_attr1": "value3",
|
|
"complex_$_1_#_key3_$_0": "value4",
|
|
}
|
|
result = merge_execution_input(data)
|
|
assert "complex" in result
|
|
assert result["complex"][0]["key1"] == ["value1", "value2"]
|
|
assert isinstance(result["complex"][0]["key2"], MockObject)
|
|
assert result["complex"][0]["key2"].attr1 == "value3"
|
|
assert result["complex"][1]["key3"] == ["value4"]
|
|
|
|
# Test case for invalid list index
|
|
data = {"list_$_invalid": "value"}
|
|
with pytest.raises(ValueError, match="index must be an integer"):
|
|
merge_execution_input(data)
|
|
|
|
# Test cases for delimiter ordering
|
|
# Test case 1: List -> Dict -> List
|
|
data = {
|
|
"nested_$_0_#_key_$_0": "value1",
|
|
"nested_$_0_#_key_$_1": "value2",
|
|
}
|
|
result = merge_execution_input(data)
|
|
assert "nested" in result
|
|
assert result["nested"][0]["key"] == ["value1", "value2"]
|
|
|
|
# Test case 2: Dict -> List -> Object
|
|
data = {
|
|
"nested_#_key_$_0_@_attr": "value1",
|
|
"nested_#_key_$_1_@_attr": "value2",
|
|
}
|
|
result = merge_execution_input(data)
|
|
assert "nested" in result
|
|
assert isinstance(result["nested"]["key"][0], MockObject)
|
|
assert result["nested"]["key"][0].attr == "value1"
|
|
assert result["nested"]["key"][1].attr == "value2"
|
|
|
|
# Test case 3: Object -> List -> Dict
|
|
data = {
|
|
"nested_@_items_$_0_#_key": "value1",
|
|
"nested_@_items_$_1_#_key": "value2",
|
|
}
|
|
result = merge_execution_input(data)
|
|
assert "nested" in result
|
|
nested = result["nested"]
|
|
assert isinstance(nested, MockObject)
|
|
items = nested.items
|
|
assert isinstance(items, list)
|
|
assert items[0]["key"] == "value1"
|
|
assert items[1]["key"] == "value2"
|
|
|
|
# Test case 4: Complex nested structure with all types
|
|
data = {
|
|
"deep_#_key_$_0_@_data_$_0_#_items_$_0_#_value": "deep_value",
|
|
"deep_#_key_$_0_@_data_$_1_#_items_$_0_#_value": "another_value",
|
|
}
|
|
result = merge_execution_input(data)
|
|
assert "deep" in result
|
|
deep_key = result["deep"]["key"][0]
|
|
assert deep_key is not None
|
|
data0 = getattr(deep_key, "data", None)
|
|
assert isinstance(data0, list)
|
|
# Check items0
|
|
items0 = None
|
|
if len(data0) > 0 and isinstance(data0[0], dict) and "items" in data0[0]:
|
|
items0 = data0[0]["items"]
|
|
assert isinstance(items0, list)
|
|
items0 = cast(list, items0)
|
|
assert len(items0) > 0
|
|
assert isinstance(items0[0], dict)
|
|
assert items0[0]["value"] == "deep_value" # type: ignore
|
|
# Check items1
|
|
items1 = None
|
|
if len(data0) > 1 and isinstance(data0[1], dict) and "items" in data0[1]:
|
|
items1 = data0[1]["items"]
|
|
assert isinstance(items1, list)
|
|
items1 = cast(list, items1)
|
|
assert len(items1) > 0
|
|
assert isinstance(items1[0], dict)
|
|
assert items1[0]["value"] == "another_value" # type: ignore
|
|
|
|
# Test case 5: Mixed delimiter types in different orders
|
|
# the last one should replace the type
|
|
data = {
|
|
"mixed_$_0_#_key_@_attr": "value1", # List -> Dict -> Object
|
|
"mixed_#_key_$_0_@_attr": "value2", # Dict -> List -> Object
|
|
"mixed_@_attr_$_0_#_key": "value3", # Object -> List -> Dict
|
|
}
|
|
result = merge_execution_input(data)
|
|
assert "mixed" in result
|
|
assert result["mixed"].attr[0]["key"] == "value3"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
|
"""
|
|
Verify that calling the function with its own output creates the same execution again.
|
|
"""
|
|
from backend.data.execution import GraphExecutionWithNodes
|
|
from backend.data.model import CredentialsMetaInput
|
|
from backend.executor.utils import add_graph_execution
|
|
from backend.integrations.providers import ProviderName
|
|
|
|
# Mock data
|
|
graph_id = "test-graph-id"
|
|
user_id = "test-user-id"
|
|
inputs = {"test_input": "test_value"}
|
|
preset_id = "test-preset-id"
|
|
graph_version = 1
|
|
graph_credentials_inputs = {
|
|
"cred_key": CredentialsMetaInput(
|
|
id="cred-id", provider=ProviderName("test_provider"), type="oauth2"
|
|
)
|
|
}
|
|
nodes_input_masks = {"node1": {"input1": "masked_value"}}
|
|
|
|
# Mock the graph object returned by validate_and_construct_node_execution_input
|
|
mock_graph = mocker.MagicMock()
|
|
mock_graph.version = graph_version
|
|
|
|
# Mock the starting nodes input and compiled nodes input masks
|
|
starting_nodes_input = [
|
|
("node1", {"input1": "value1"}),
|
|
("node2", {"input1": "value2"}),
|
|
]
|
|
compiled_nodes_input_masks = {"node1": {"input1": "compiled_mask"}}
|
|
|
|
# Mock the graph execution object
|
|
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionWithNodes)
|
|
mock_graph_exec.id = "execution-id-123"
|
|
mock_graph_exec.node_executions = [] # Add this to avoid AttributeError
|
|
mock_graph_exec.to_graph_execution_entry.return_value = mocker.MagicMock()
|
|
|
|
# Mock user context
|
|
mock_user_context = {"user_id": user_id, "context": "test_context"}
|
|
|
|
# Mock the queue and event bus
|
|
mock_queue = mocker.AsyncMock()
|
|
mock_event_bus = mocker.MagicMock()
|
|
mock_event_bus.publish = mocker.AsyncMock()
|
|
|
|
# Setup mocks
|
|
mock_validate = mocker.patch(
|
|
"backend.executor.utils.validate_and_construct_node_execution_input"
|
|
)
|
|
mock_edb = mocker.patch("backend.executor.utils.execution_db")
|
|
mock_prisma = mocker.patch("backend.executor.utils.prisma")
|
|
mock_get_user_context = mocker.patch("backend.executor.utils.get_user_context")
|
|
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
|
|
mock_get_event_bus = mocker.patch(
|
|
"backend.executor.utils.get_async_execution_event_bus"
|
|
)
|
|
|
|
# Setup mock returns
|
|
mock_validate.return_value = (
|
|
mock_graph,
|
|
starting_nodes_input,
|
|
compiled_nodes_input_masks,
|
|
)
|
|
mock_prisma.is_connected.return_value = True
|
|
mock_edb.create_graph_execution = mocker.AsyncMock(return_value=mock_graph_exec)
|
|
mock_edb.update_graph_execution_stats = mocker.AsyncMock(
|
|
return_value=mock_graph_exec
|
|
)
|
|
mock_edb.update_node_execution_status_batch = mocker.AsyncMock()
|
|
mock_get_user_context.return_value = mock_user_context
|
|
mock_get_queue.return_value = mock_queue
|
|
mock_get_event_bus.return_value = mock_event_bus
|
|
|
|
# Call the function - first execution
|
|
result1 = await add_graph_execution(
|
|
graph_id=graph_id,
|
|
user_id=user_id,
|
|
inputs=inputs,
|
|
preset_id=preset_id,
|
|
graph_version=graph_version,
|
|
graph_credentials_inputs=graph_credentials_inputs,
|
|
nodes_input_masks=nodes_input_masks,
|
|
)
|
|
|
|
# Store the parameters used in the first call to create_graph_execution
|
|
first_call_kwargs = mock_edb.create_graph_execution.call_args[1]
|
|
|
|
# Verify the create_graph_execution was called with correct parameters
|
|
mock_edb.create_graph_execution.assert_called_once_with(
|
|
user_id=user_id,
|
|
graph_id=graph_id,
|
|
graph_version=mock_graph.version,
|
|
inputs=inputs,
|
|
credential_inputs=graph_credentials_inputs,
|
|
nodes_input_masks=nodes_input_masks,
|
|
starting_nodes_input=starting_nodes_input,
|
|
preset_id=preset_id,
|
|
)
|
|
|
|
# Set up the graph execution mock to have properties we can extract
|
|
mock_graph_exec.graph_id = graph_id
|
|
mock_graph_exec.user_id = user_id
|
|
mock_graph_exec.graph_version = graph_version
|
|
mock_graph_exec.inputs = inputs
|
|
mock_graph_exec.credential_inputs = graph_credentials_inputs
|
|
mock_graph_exec.nodes_input_masks = nodes_input_masks
|
|
mock_graph_exec.preset_id = preset_id
|
|
|
|
# Create a second mock execution for the sanity check
|
|
mock_graph_exec_2 = mocker.MagicMock(spec=GraphExecutionWithNodes)
|
|
mock_graph_exec_2.id = "execution-id-456"
|
|
mock_graph_exec_2.to_graph_execution_entry.return_value = mocker.MagicMock()
|
|
|
|
# Reset mocks and set up for second call
|
|
mock_edb.create_graph_execution.reset_mock()
|
|
mock_edb.create_graph_execution.return_value = mock_graph_exec_2
|
|
mock_validate.reset_mock()
|
|
|
|
# Sanity check: call add_graph_execution with properties from first result
|
|
# This should create the same execution parameters
|
|
result2 = await add_graph_execution(
|
|
graph_id=mock_graph_exec.graph_id,
|
|
user_id=mock_graph_exec.user_id,
|
|
inputs=mock_graph_exec.inputs,
|
|
preset_id=mock_graph_exec.preset_id,
|
|
graph_version=mock_graph_exec.graph_version,
|
|
graph_credentials_inputs=mock_graph_exec.credential_inputs,
|
|
nodes_input_masks=mock_graph_exec.nodes_input_masks,
|
|
)
|
|
|
|
# Verify that create_graph_execution was called with identical parameters
|
|
second_call_kwargs = mock_edb.create_graph_execution.call_args[1]
|
|
|
|
# The sanity check: both calls should use identical parameters
|
|
assert first_call_kwargs == second_call_kwargs
|
|
|
|
# Both executions should succeed (though they create different objects)
|
|
assert result1 == mock_graph_exec
|
|
assert result2 == mock_graph_exec_2
|