Files
AutoGPT/autogpt_platform/backend/test/test_data_creator.py
Nicholas Tindle 56663c5fe9 feat(backend): add backend support for store listings submissions (#9628)
<!-- Clearly explain the need for these changes: -->
The store listing and submissions were previously just a best guess
without much implementation. This updates the database models and
queries and such to be based on discussion around what the process
should look like. It also adds and update the relevant routers for this
change

### Changes 🏗️
Store Listing
- change isApproved to hasApprovedVersion
- Move slug into store listing
- mark an active version in store listing

Store Version
- Move submissions into version
- make name optional
- have state transition timestamps for submitted and approved/rejected
- added a changes field
- added internal comments and clarified review comments field

SubmissionStatus
- Fixed DAFT to DRAFT

StoreListingSubmission
- Dropped table

Graph
- Used more modern format for the params for prisma -- no other changes

Added migrations for all the model movements

<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
- [x] Use the store codepaths from the release testplan doc as the test
plan (claude I can't publish the testplan but I am a maintainer lol,
trust me here my guy, you're supposed to be lenient)
  - [x] Check the db is used as appropriate following the rules

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
2025-03-23 23:30:54 +00:00

441 lines
16 KiB
Python

import asyncio
import random
from datetime import datetime
import prisma.enums
from faker import Faker
from prisma import Json, Prisma
faker = Faker()
# Constants for data generation limits
# Base entities
NUM_USERS = 100 # Creates 100 user records
NUM_AGENT_BLOCKS = 100 # Creates 100 agent block templates
# Per-user entities
MIN_GRAPHS_PER_USER = 1 # Each user will have between 1-5 graphs
MAX_GRAPHS_PER_USER = 5 # Total graphs: 500-2500 (NUM_USERS * MIN/MAX_GRAPHS)
# Per-graph entities
MIN_NODES_PER_GRAPH = 2 # Each graph will have between 2-5 nodes
MAX_NODES_PER_GRAPH = (
5 # Total nodes: 1000-2500 (GRAPHS_PER_USER * NUM_USERS * MIN/MAX_NODES)
)
# Additional per-user entities
MIN_PRESETS_PER_USER = 1 # Each user will have between 1-2 presets
MAX_PRESETS_PER_USER = 5 # Total presets: 500-2500 (NUM_USERS * MIN/MAX_PRESETS)
MIN_AGENTS_PER_USER = 1 # Each user will have between 1-2 agents
MAX_AGENTS_PER_USER = 10 # Total agents: 500-5000 (NUM_USERS * MIN/MAX_AGENTS)
# Execution and review records
MIN_EXECUTIONS_PER_GRAPH = 1 # Each graph will have between 1-5 execution records
MAX_EXECUTIONS_PER_GRAPH = (
20 # Total executions: 1000-5000 (TOTAL_GRAPHS * MIN/MAX_EXECUTIONS)
)
MIN_REVIEWS_PER_VERSION = 1 # Each version will have between 1-3 reviews
MAX_REVIEWS_PER_VERSION = 5 # Total reviews depends on number of versions created
def get_image():
url = faker.image_url()
while "placekitten.com" in url:
url = faker.image_url()
return url
async def main():
db = Prisma()
await db.connect()
# Insert Users
print(f"Inserting {NUM_USERS} users")
users = []
for _ in range(NUM_USERS):
user = await db.user.create(
data={
"id": str(faker.uuid4()),
"email": faker.unique.email(),
"name": faker.name(),
"metadata": prisma.Json({}),
"integrations": "",
}
)
users.append(user)
# Insert AgentBlocks
agent_blocks = []
print(f"Inserting {NUM_AGENT_BLOCKS} agent blocks")
for _ in range(NUM_AGENT_BLOCKS):
block = await db.agentblock.create(
data={
"name": f"{faker.word()}_{str(faker.uuid4())[:8]}",
"inputSchema": "{}",
"outputSchema": "{}",
}
)
agent_blocks.append(block)
# Insert AgentGraphs
agent_graphs = []
print(f"Inserting {NUM_USERS * MAX_GRAPHS_PER_USER} agent graphs")
for user in users:
for _ in range(
random.randint(MIN_GRAPHS_PER_USER, MAX_GRAPHS_PER_USER)
): # Adjust the range to create more graphs per user if desired
graph = await db.agentgraph.create(
data={
"name": faker.sentence(nb_words=3),
"description": faker.text(max_nb_chars=200),
"userId": user.id,
"isActive": True,
}
)
agent_graphs.append(graph)
# Insert AgentNodes
agent_nodes = []
print(
f"Inserting {NUM_USERS * MAX_GRAPHS_PER_USER * MAX_NODES_PER_GRAPH} agent nodes"
)
for graph in agent_graphs:
num_nodes = random.randint(MIN_NODES_PER_GRAPH, MAX_NODES_PER_GRAPH)
for _ in range(num_nodes): # Create 5 AgentNodes per graph
block = random.choice(agent_blocks)
node = await db.agentnode.create(
data={
"agentBlockId": block.id,
"agentGraphId": graph.id,
"agentGraphVersion": graph.version,
"constantInput": Json({}),
"metadata": Json({}),
}
)
agent_nodes.append(node)
# Insert AgentPresets
agent_presets = []
print(f"Inserting {NUM_USERS * MAX_PRESETS_PER_USER} agent presets")
for user in users:
num_presets = random.randint(MIN_PRESETS_PER_USER, MAX_PRESETS_PER_USER)
for _ in range(num_presets): # Create 1 AgentPreset per user
graph = random.choice(agent_graphs)
preset = await db.agentpreset.create(
data={
"name": faker.sentence(nb_words=3),
"description": faker.text(max_nb_chars=200),
"userId": user.id,
"agentId": graph.id,
"agentVersion": graph.version,
"isActive": True,
}
)
agent_presets.append(preset)
# Insert UserAgents
user_agents = []
print(f"Inserting {NUM_USERS * MAX_AGENTS_PER_USER} user agents")
for user in users:
num_agents = random.randint(MIN_AGENTS_PER_USER, MAX_AGENTS_PER_USER)
for _ in range(num_agents): # Create 1 LibraryAgent per user
graph = random.choice(agent_graphs)
preset = random.choice(agent_presets)
user_agent = await db.libraryagent.create(
data={
"userId": user.id,
"agentId": graph.id,
"agentVersion": graph.version,
"agentPresetId": preset.id,
"isFavorite": random.choice([True, False]),
"isCreatedByUser": random.choice([True, False]),
"isArchived": random.choice([True, False]),
"isDeleted": random.choice([True, False]),
}
)
user_agents.append(user_agent)
# Insert AgentGraphExecutions
# Insert AgentGraphExecutions
agent_graph_executions = []
print(
f"Inserting {NUM_USERS * MAX_GRAPHS_PER_USER * MAX_EXECUTIONS_PER_GRAPH} agent graph executions"
)
graph_execution_data = []
for graph in agent_graphs:
user = random.choice(users)
num_executions = random.randint(
MIN_EXECUTIONS_PER_GRAPH, MAX_EXECUTIONS_PER_GRAPH
)
for _ in range(num_executions):
matching_presets = [p for p in agent_presets if p.agentId == graph.id]
preset = (
random.choice(matching_presets)
if matching_presets and random.random() < 0.5
else None
)
graph_execution_data.append(
{
"agentGraphId": graph.id,
"agentGraphVersion": graph.version,
"userId": user.id,
"executionStatus": prisma.enums.AgentExecutionStatus.COMPLETED,
"startedAt": faker.date_time_this_year(),
"agentPresetId": preset.id if preset else None,
}
)
agent_graph_executions = await db.agentgraphexecution.create_many(
data=graph_execution_data
)
# Need to fetch the created records since create_many doesn't return them
agent_graph_executions = await db.agentgraphexecution.find_many()
# Insert AgentNodeExecutions
print(
f"Inserting {NUM_USERS * MAX_GRAPHS_PER_USER * MAX_EXECUTIONS_PER_GRAPH} agent node executions"
)
node_execution_data = []
for execution in agent_graph_executions:
nodes = [
node for node in agent_nodes if node.agentGraphId == execution.agentGraphId
]
for node in nodes:
node_execution_data.append(
{
"agentGraphExecutionId": execution.id,
"agentNodeId": node.id,
"executionStatus": prisma.enums.AgentExecutionStatus.COMPLETED,
"addedTime": datetime.now(),
}
)
agent_node_executions = await db.agentnodeexecution.create_many(
data=node_execution_data
)
# Need to fetch the created records since create_many doesn't return them
agent_node_executions = await db.agentnodeexecution.find_many()
# Insert AgentNodeExecutionInputOutput
print(
f"Inserting {NUM_USERS * MAX_GRAPHS_PER_USER * MAX_EXECUTIONS_PER_GRAPH} agent node execution input/outputs"
)
input_output_data = []
for node_execution in agent_node_executions:
# Input data
input_output_data.append(
{
"name": "input1",
"data": "{}",
"time": datetime.now(),
"referencedByInputExecId": node_execution.id,
}
)
# Output data
input_output_data.append(
{
"name": "output1",
"data": "{}",
"time": datetime.now(),
"referencedByOutputExecId": node_execution.id,
}
)
await db.agentnodeexecutioninputoutput.create_many(data=input_output_data)
# Insert AgentNodeLinks
print(f"Inserting {NUM_USERS * MAX_GRAPHS_PER_USER} agent node links")
for graph in agent_graphs:
nodes = [node for node in agent_nodes if node.agentGraphId == graph.id]
if len(nodes) >= 2:
source_node = nodes[0]
sink_node = nodes[1]
await db.agentnodelink.create(
data={
"agentNodeSourceId": source_node.id,
"sourceName": "output1",
"agentNodeSinkId": sink_node.id,
"sinkName": "input1",
"isStatic": False,
}
)
# Insert AnalyticsDetails
print(f"Inserting {NUM_USERS} analytics details")
for user in users:
for _ in range(1):
await db.analyticsdetails.create(
data={
"userId": user.id,
"type": faker.word(),
"data": prisma.Json({}),
"dataIndex": faker.word(),
}
)
# Insert AnalyticsMetrics
print(f"Inserting {NUM_USERS} analytics metrics")
for user in users:
for _ in range(1):
await db.analyticsmetrics.create(
data={
"userId": user.id,
"analyticMetric": faker.word(),
"value": random.uniform(0, 100),
"dataString": faker.word(),
}
)
# Insert CreditTransaction (formerly UserBlockCredit)
print(f"Inserting {NUM_USERS} credit transactions")
for user in users:
for _ in range(1):
block = random.choice(agent_blocks)
await db.credittransaction.create(
data={
"transactionKey": str(faker.uuid4()),
"userId": user.id,
"amount": random.randint(1, 100),
"type": (
prisma.enums.CreditTransactionType.TOP_UP
if random.random() < 0.5
else prisma.enums.CreditTransactionType.USAGE
),
"metadata": prisma.Json({}),
}
)
# Insert Profiles
profiles = []
print(f"Inserting {NUM_USERS} profiles")
for user in users:
profile = await db.profile.create(
data={
"userId": user.id,
"name": user.name or faker.name(),
"username": faker.unique.user_name(),
"description": faker.text(),
"links": [faker.url() for _ in range(3)],
"avatarUrl": get_image(),
}
)
profiles.append(profile)
# Insert StoreListings
store_listings = []
print(f"Inserting {NUM_USERS} store listings")
for graph in agent_graphs:
user = random.choice(users)
slug = faker.slug()
listing = await db.storelisting.create(
data={
"agentId": graph.id,
"agentVersion": graph.version,
"owningUserId": user.id,
"hasApprovedVersion": random.choice([True, False]),
"slug": slug,
}
)
store_listings.append(listing)
# Insert StoreListingVersions
store_listing_versions = []
print(f"Inserting {NUM_USERS} store listing versions")
for listing in store_listings:
graph = [g for g in agent_graphs if g.id == listing.agentId][0]
version = await db.storelistingversion.create(
data={
"agentId": graph.id,
"agentVersion": graph.version,
"name": graph.name or faker.sentence(nb_words=3),
"subHeading": faker.sentence(),
"videoUrl": faker.url(),
"imageUrls": [get_image() for _ in range(3)],
"description": faker.text(),
"categories": [faker.word() for _ in range(3)],
"isFeatured": random.choice([True, False]),
"isAvailable": True,
"storeListingId": listing.id,
"submissionStatus": random.choice(
[
prisma.enums.SubmissionStatus.PENDING,
prisma.enums.SubmissionStatus.APPROVED,
prisma.enums.SubmissionStatus.REJECTED,
]
),
}
)
store_listing_versions.append(version)
# Insert StoreListingReviews
print(f"Inserting {NUM_USERS * MAX_REVIEWS_PER_VERSION} store listing reviews")
for version in store_listing_versions:
# Create a copy of users list and shuffle it to avoid duplicates
available_reviewers = users.copy()
random.shuffle(available_reviewers)
# Limit number of reviews to available unique reviewers
num_reviews = min(
random.randint(MIN_REVIEWS_PER_VERSION, MAX_REVIEWS_PER_VERSION),
len(available_reviewers),
)
# Take only the first num_reviews reviewers
for reviewer in available_reviewers[:num_reviews]:
await db.storelistingreview.create(
data={
"storeListingVersionId": version.id,
"reviewByUserId": reviewer.id,
"score": random.randint(1, 5),
"comments": faker.text(),
}
)
# Update StoreListingVersions with submission status (StoreListingSubmissions table no longer exists)
print(f"Updating {NUM_USERS} store listing versions with submission status")
for version in store_listing_versions:
reviewer = random.choice(users)
status: prisma.enums.SubmissionStatus = random.choice(
[
prisma.enums.SubmissionStatus.PENDING,
prisma.enums.SubmissionStatus.APPROVED,
prisma.enums.SubmissionStatus.REJECTED,
]
)
await db.storelistingversion.update(
where={"id": version.id},
data={
"submissionStatus": status,
"Reviewer": {"connect": {"id": reviewer.id}},
"reviewComments": faker.text(),
"reviewedAt": datetime.now(),
},
)
# Insert APIKeys
print(f"Inserting {NUM_USERS} api keys")
for user in users:
await db.apikey.create(
data={
"name": faker.word(),
"prefix": str(faker.uuid4())[:8],
"postfix": str(faker.uuid4())[-8:],
"key": str(faker.sha256()),
"status": prisma.enums.APIKeyStatus.ACTIVE,
"permissions": [
prisma.enums.APIKeyPermission.EXECUTE_GRAPH,
prisma.enums.APIKeyPermission.READ_GRAPH,
],
"description": faker.text(),
"userId": user.id,
}
)
await db.disconnect()
if __name__ == "__main__":
asyncio.run(main())