Files
AutoGPT/autogpt_platform/backend/backend/executor/utils.py
Zamil Majdy 4d05a27388 feat(backend): Avoid executor over-consuming messages when it's fully occupied (#10449)
When we run multiple instances of the executor, some of the executors
can oversubscribe the messages and end up queuing the agent execution
request instead of letting another executor handle the job. This change
solves the problem.

### Changes 🏗️

* Reject execution request when the executor is full.
* Improve `active_graph_runs` tracking for better horizontal scaling
heuristics.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Manual graph execution & CI
2025-07-28 23:08:27 +00:00

997 lines
32 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import asyncio
import logging
import threading
import time
from collections import defaultdict
from concurrent.futures import Future
from typing import TYPE_CHECKING, Any, Callable, Optional, cast
from autogpt_libs.utils.cache import thread_cached
from pydantic import BaseModel, JsonValue
from backend.data import execution as execution_db
from backend.data import graph as graph_db
from backend.data.block import (
Block,
BlockData,
BlockInput,
BlockSchema,
BlockType,
get_block,
)
from backend.data.block_cost_config import BLOCK_COSTS
from backend.data.cost import BlockCostType
from backend.data.db import prisma
from backend.data.execution import (
AsyncRedisExecutionEventBus,
ExecutionStatus,
GraphExecutionStats,
GraphExecutionWithNodes,
RedisExecutionEventBus,
)
from backend.data.graph import GraphModel, Node
from backend.data.model import CredentialsMetaInput
from backend.data.rabbitmq import (
AsyncRabbitMQ,
Exchange,
ExchangeType,
Queue,
RabbitMQConfig,
SyncRabbitMQ,
)
from backend.util.exceptions import NotFoundError
from backend.util.logging import TruncatedLogger
from backend.util.mock import MockObject
from backend.util.service import get_service_client
from backend.util.settings import Config
from backend.util.type import convert
if TYPE_CHECKING:
from backend.executor import DatabaseManagerAsyncClient, DatabaseManagerClient
from backend.integrations.credentials_store import IntegrationCredentialsStore
config = Config()
logger = TruncatedLogger(logging.getLogger(__name__), prefix="[GraphExecutorUtil]")
# ============ Resource Helpers ============ #
class LogMetadata(TruncatedLogger):
def __init__(
self,
logger: logging.Logger,
user_id: str,
graph_eid: str,
graph_id: str,
node_eid: str,
node_id: str,
block_name: str,
max_length: int = 1000,
):
metadata = {
"component": "ExecutionManager",
"user_id": user_id,
"graph_eid": graph_eid,
"graph_id": graph_id,
"node_eid": node_eid,
"node_id": node_id,
"block_name": block_name,
}
prefix = f"[ExecutionManager|uid:{user_id}|gid:{graph_id}|nid:{node_id}]|geid:{graph_eid}|neid:{node_eid}|{block_name}]"
super().__init__(
logger,
max_length=max_length,
prefix=prefix,
metadata=metadata,
)
@thread_cached
def get_execution_event_bus() -> RedisExecutionEventBus:
return RedisExecutionEventBus()
@thread_cached
def get_async_execution_event_bus() -> AsyncRedisExecutionEventBus:
return AsyncRedisExecutionEventBus()
@thread_cached
def get_execution_queue() -> SyncRabbitMQ:
client = SyncRabbitMQ(create_execution_queue_config())
client.connect()
return client
@thread_cached
async def get_async_execution_queue() -> AsyncRabbitMQ:
client = AsyncRabbitMQ(create_execution_queue_config())
await client.connect()
return client
@thread_cached
def get_integration_credentials_store() -> "IntegrationCredentialsStore":
from backend.integrations.credentials_store import IntegrationCredentialsStore
return IntegrationCredentialsStore()
@thread_cached
def get_db_client() -> "DatabaseManagerClient":
from backend.executor import DatabaseManagerClient
return get_service_client(DatabaseManagerClient)
@thread_cached
def get_db_async_client() -> "DatabaseManagerAsyncClient":
from backend.executor import DatabaseManagerAsyncClient
return get_service_client(DatabaseManagerAsyncClient)
# ============ Execution Cost Helpers ============ #
def execution_usage_cost(execution_count: int) -> tuple[int, int]:
"""
Calculate the cost of executing a graph based on the current number of node executions.
Args:
execution_count: Number of node executions
Returns:
Tuple of cost amount and the number of execution count that is included in the cost.
"""
return (
(
config.execution_cost_per_threshold
if execution_count % config.execution_cost_count_threshold == 0
else 0
),
config.execution_cost_count_threshold,
)
def block_usage_cost(
block: Block,
input_data: BlockInput,
data_size: float = 0,
run_time: float = 0,
) -> tuple[int, BlockInput]:
"""
Calculate the cost of using a block based on the input data and the block type.
Args:
block: Block object
input_data: Input data for the block
data_size: Size of the input data in bytes
run_time: Execution time of the block in seconds
Returns:
Tuple of cost amount and cost filter
"""
block_costs = BLOCK_COSTS.get(type(block))
if not block_costs:
return 0, {}
for block_cost in block_costs:
if not _is_cost_filter_match(block_cost.cost_filter, input_data):
continue
if block_cost.cost_type == BlockCostType.RUN:
return block_cost.cost_amount, block_cost.cost_filter
if block_cost.cost_type == BlockCostType.SECOND:
return (
int(run_time * block_cost.cost_amount),
block_cost.cost_filter,
)
if block_cost.cost_type == BlockCostType.BYTE:
return (
int(data_size * block_cost.cost_amount),
block_cost.cost_filter,
)
return 0, {}
def _is_cost_filter_match(cost_filter: BlockInput, input_data: BlockInput) -> bool:
"""
Filter rules:
- If cost_filter is an object, then check if cost_filter is the subset of input_data
- Otherwise, check if cost_filter is equal to input_data.
- Undefined, null, and empty string are considered as equal.
"""
if not isinstance(cost_filter, dict) or not isinstance(input_data, dict):
return cost_filter == input_data
return all(
(not input_data.get(k) and not v)
or (input_data.get(k) and _is_cost_filter_match(v, input_data[k]))
for k, v in cost_filter.items()
)
# ============ Execution Input Helpers ============ #
# --------------------------------------------------------------------------- #
# Delimiters
# --------------------------------------------------------------------------- #
LIST_SPLIT = "_$_"
DICT_SPLIT = "_#_"
OBJC_SPLIT = "_@_"
_DELIMS = (LIST_SPLIT, DICT_SPLIT, OBJC_SPLIT)
# --------------------------------------------------------------------------- #
# Tokenisation utilities
# --------------------------------------------------------------------------- #
def _next_delim(s: str) -> tuple[str | None, int]:
"""
Return the *earliest* delimiter appearing in `s` and its index.
If none present → (None, -1).
"""
first: str | None = None
pos = len(s) # sentinel: larger than any real index
for d in _DELIMS:
i = s.find(d)
if 0 <= i < pos:
first, pos = d, i
return first, (pos if first else -1)
def _tokenise(path: str) -> list[tuple[str, str]] | None:
"""
Convert the raw path string (starting with a delimiter) into
[ (delimiter, identifier), … ] or None if the syntax is malformed.
"""
tokens: list[tuple[str, str]] = []
while path:
# 1. Which delimiter starts this chunk?
delim = next((d for d in _DELIMS if path.startswith(d)), None)
if delim is None:
return None # invalid syntax
# 2. Slice off the delimiter, then up to the next delimiter (or EOS)
path = path[len(delim) :]
nxt_delim, pos = _next_delim(path)
token, path = (
path[: pos if pos != -1 else len(path)],
path[pos if pos != -1 else len(path) :],
)
if token == "":
return None # empty identifier is invalid
tokens.append((delim, token))
return tokens
# --------------------------------------------------------------------------- #
# Public API parsing (flattened ➜ concrete)
# --------------------------------------------------------------------------- #
def parse_execution_output(output: BlockData, name: str) -> Any | None:
"""
Retrieve a nested value out of `output` using the flattened *name*.
On any failure (wrong name, wrong type, out-of-range, bad path)
returns **None**.
"""
base_name, data = output
# Exact match → whole object
if name == base_name:
return data
# Must start with the expected name
if not name.startswith(base_name):
return None
path = name[len(base_name) :]
if not path:
return None # nothing left to parse
tokens = _tokenise(path)
if tokens is None:
return None
cur: Any = data
for delim, ident in tokens:
if delim == LIST_SPLIT:
# list[index]
try:
idx = int(ident)
except ValueError:
return None
if not isinstance(cur, list) or idx >= len(cur):
return None
cur = cur[idx]
elif delim == DICT_SPLIT:
if not isinstance(cur, dict) or ident not in cur:
return None
cur = cur[ident]
elif delim == OBJC_SPLIT:
if not hasattr(cur, ident):
return None
cur = getattr(cur, ident)
else:
return None # unreachable
return cur
def _assign(container: Any, tokens: list[tuple[str, str]], value: Any) -> Any:
"""
Recursive helper that *returns* the (possibly new) container with
`value` assigned along the remaining `tokens` path.
"""
if not tokens:
return value # leaf reached
delim, ident = tokens[0]
rest = tokens[1:]
# ---------- list ----------
if delim == LIST_SPLIT:
try:
idx = int(ident)
except ValueError:
raise ValueError("index must be an integer")
if container is None:
container = []
elif not isinstance(container, list):
container = list(container) if hasattr(container, "__iter__") else []
while len(container) <= idx:
container.append(None)
container[idx] = _assign(container[idx], rest, value)
return container
# ---------- dict ----------
if delim == DICT_SPLIT:
if container is None:
container = {}
elif not isinstance(container, dict):
container = dict(container) if hasattr(container, "items") else {}
container[ident] = _assign(container.get(ident), rest, value)
return container
# ---------- object ----------
if delim == OBJC_SPLIT:
if container is None or not isinstance(container, MockObject):
container = MockObject()
setattr(
container,
ident,
_assign(getattr(container, ident, None), rest, value),
)
return container
return value # unreachable
def merge_execution_input(data: BlockInput) -> BlockInput:
"""
Reconstruct nested objects from a *flattened* dict of key → value.
Raises ValueError on syntactically invalid list indices.
"""
merged: BlockInput = {}
for key, value in data.items():
# Split off the base name (before the first delimiter, if any)
delim, pos = _next_delim(key)
if delim is None:
merged[key] = value
continue
base, path = key[:pos], key[pos:]
tokens = _tokenise(path)
if tokens is None:
# Invalid key; treat as scalar under the raw name
merged[key] = value
continue
merged[base] = _assign(merged.get(base), tokens, value)
data.update(merged)
return data
def validate_exec(
node: Node,
data: BlockInput,
resolve_input: bool = True,
) -> tuple[BlockInput | None, str]:
"""
Validate the input data for a node execution.
Args:
node: The node to execute.
data: The input data for the node execution.
resolve_input: Whether to resolve dynamic pins into dict/list/object.
Returns:
A tuple of the validated data and the block name.
If the data is invalid, the first element will be None, and the second element
will be an error message.
If the data is valid, the first element will be the resolved input data, and
the second element will be the block name.
"""
node_block = get_block(node.block_id)
if not node_block:
return None, f"Block for {node.block_id} not found."
schema = node_block.input_schema
# Input data (without default values) should contain all required fields.
error_prefix = f"Input data missing or mismatch for `{node_block.name}`:"
if missing_links := schema.get_missing_links(data, node.input_links):
return None, f"{error_prefix} unpopulated links {missing_links}"
# Merge input data with default values and resolve dynamic dict/list/object pins.
input_default = schema.get_input_defaults(node.input_default)
data = {**input_default, **data}
if resolve_input:
data = merge_execution_input(data)
# Convert non-matching data types to the expected input schema.
for name, data_type in schema.__annotations__.items():
value = data.get(name)
if (value is not None) and (type(value) is not data_type):
data[name] = convert(value, data_type)
# Input data post-merge should contain all required fields from the schema.
if missing_input := schema.get_missing_input(data):
return None, f"{error_prefix} missing input {missing_input}"
# Last validation: Validate the input values against the schema.
if error := schema.get_mismatch_error(data):
error_message = f"{error_prefix} {error}"
logger.error(error_message)
return None, error_message
return data, node_block.name
async def _validate_node_input_credentials(
graph: GraphModel,
user_id: str,
nodes_input_masks: Optional[dict[str, dict[str, JsonValue]]] = None,
):
"""Checks all credentials for all nodes of the graph"""
for node in graph.nodes:
block = node.block
# Find any fields of type CredentialsMetaInput
credentials_fields = cast(
type[BlockSchema], block.input_schema
).get_credentials_fields()
if not credentials_fields:
continue
for field_name, credentials_meta_type in credentials_fields.items():
if (
nodes_input_masks
and (node_input_mask := nodes_input_masks.get(node.id))
and field_name in node_input_mask
):
credentials_meta = credentials_meta_type.model_validate(
node_input_mask[field_name]
)
elif field_name in node.input_default:
credentials_meta = credentials_meta_type.model_validate(
node.input_default[field_name]
)
else:
raise ValueError(
f"Credentials absent for {block.name} node #{node.id} "
f"input '{field_name}'"
)
# Fetch the corresponding Credentials and perform sanity checks
credentials = await get_integration_credentials_store().get_creds_by_id(
user_id, credentials_meta.id
)
if not credentials:
raise ValueError(
f"Unknown credentials #{credentials_meta.id} "
f"for node #{node.id} input '{field_name}'"
)
if (
credentials.provider != credentials_meta.provider
or credentials.type != credentials_meta.type
):
logger.warning(
f"Invalid credentials #{credentials.id} for node #{node.id}: "
"type/provider mismatch: "
f"{credentials_meta.type}<>{credentials.type};"
f"{credentials_meta.provider}<>{credentials.provider}"
)
raise ValueError(
f"Invalid credentials #{credentials.id} for node #{node.id}: "
"type/provider mismatch"
)
def make_node_credentials_input_map(
graph: GraphModel,
graph_credentials_input: dict[str, CredentialsMetaInput],
) -> dict[str, dict[str, JsonValue]]:
"""
Maps credentials for an execution to the correct nodes.
Params:
graph: The graph to be executed.
graph_credentials_input: A (graph_input_name, credentials_meta) map.
Returns:
dict[node_id, dict[field_name, CredentialsMetaRaw]]: Node credentials input map.
"""
result: dict[str, dict[str, JsonValue]] = {}
# Get aggregated credentials fields for the graph
graph_cred_inputs = graph.aggregate_credentials_inputs()
for graph_input_name, (_, compatible_node_fields) in graph_cred_inputs.items():
# Best-effort map: skip missing items
if graph_input_name not in graph_credentials_input:
continue
# Use passed-in credentials for all compatible node input fields
for node_id, node_field_name in compatible_node_fields:
if node_id not in result:
result[node_id] = {}
result[node_id][node_field_name] = graph_credentials_input[
graph_input_name
].model_dump(exclude_none=True)
return result
async def construct_node_execution_input(
graph: GraphModel,
user_id: str,
graph_inputs: BlockInput,
nodes_input_masks: Optional[dict[str, dict[str, JsonValue]]] = None,
) -> list[tuple[str, BlockInput]]:
"""
Validates and prepares the input data for executing a graph.
This function checks the graph for starting nodes, validates the input data
against the schema, and resolves dynamic input pins into a single list,
dictionary, or object.
Args:
graph (GraphModel): The graph model to execute.
user_id (str): The ID of the user executing the graph.
data (BlockInput): The input data for the graph execution.
node_credentials_map: `dict[node_id, dict[input_name, CredentialsMetaInput]]`
Returns:
list[tuple[str, BlockInput]]: A list of tuples, each containing the node ID and
the corresponding input data for that node.
"""
graph.validate_graph(for_run=True, nodes_input_masks=nodes_input_masks)
await _validate_node_input_credentials(graph, user_id, nodes_input_masks)
nodes_input = []
for node in graph.starting_nodes:
input_data = {}
block = node.block
# Note block should never be executed.
if block.block_type == BlockType.NOTE:
continue
# Extract request input data, and assign it to the input pin.
if block.block_type == BlockType.INPUT:
input_name = node.input_default.get("name")
if input_name and input_name in graph_inputs:
input_data = {"value": graph_inputs[input_name]}
# Apply node input overrides
if nodes_input_masks and (node_input_mask := nodes_input_masks.get(node.id)):
input_data.update(node_input_mask)
input_data, error = validate_exec(node, input_data)
if input_data is None:
raise ValueError(error)
else:
nodes_input.append((node.id, input_data))
if not nodes_input:
raise ValueError(
"No starting nodes found for the graph, make sure an AgentInput or blocks with no inbound links are present as starting nodes."
)
return nodes_input
def _merge_nodes_input_masks(
overrides_map_1: dict[str, dict[str, JsonValue]],
overrides_map_2: dict[str, dict[str, JsonValue]],
) -> dict[str, dict[str, JsonValue]]:
"""Perform a per-node merge of input overrides"""
result = overrides_map_1.copy()
for node_id, overrides2 in overrides_map_2.items():
if node_id in result:
result[node_id] = {**result[node_id], **overrides2}
else:
result[node_id] = overrides2
return result
# ============ Execution Queue Helpers ============ #
class CancelExecutionEvent(BaseModel):
graph_exec_id: str
GRAPH_EXECUTION_EXCHANGE = Exchange(
name="graph_execution",
type=ExchangeType.DIRECT,
durable=True,
auto_delete=False,
)
GRAPH_EXECUTION_QUEUE_NAME = "graph_execution_queue"
GRAPH_EXECUTION_ROUTING_KEY = "graph_execution.run"
GRAPH_EXECUTION_CANCEL_EXCHANGE = Exchange(
name="graph_execution_cancel",
type=ExchangeType.FANOUT,
durable=True,
auto_delete=True,
)
GRAPH_EXECUTION_CANCEL_QUEUE_NAME = "graph_execution_cancel_queue"
def create_execution_queue_config() -> RabbitMQConfig:
"""
Define two exchanges and queues:
- 'graph_execution' (DIRECT) for run tasks.
- 'graph_execution_cancel' (FANOUT) for cancel requests.
"""
run_queue = Queue(
name=GRAPH_EXECUTION_QUEUE_NAME,
exchange=GRAPH_EXECUTION_EXCHANGE,
routing_key=GRAPH_EXECUTION_ROUTING_KEY,
durable=True,
auto_delete=False,
arguments={
# x-consumer-timeout (0 = disabled)
# Problem: Default 30-minute consumer timeout kills long-running graph executions
# Original error: "Consumer acknowledgement timed out after 1800000 ms (30 minutes)"
# Solution: Disable consumer timeout entirely - let graphs run indefinitely
# Safety: Heartbeat mechanism now handles dead consumer detection instead
# Use case: Graph executions that take hours to complete (AI model training, etc.)
"x-consumer-timeout": 0,
},
)
cancel_queue = Queue(
name=GRAPH_EXECUTION_CANCEL_QUEUE_NAME,
exchange=GRAPH_EXECUTION_CANCEL_EXCHANGE,
routing_key="", # not used for FANOUT
durable=True,
auto_delete=False,
)
return RabbitMQConfig(
vhost="/",
exchanges=[GRAPH_EXECUTION_EXCHANGE, GRAPH_EXECUTION_CANCEL_EXCHANGE],
queues=[run_queue, cancel_queue],
)
async def stop_graph_execution(
user_id: str,
graph_exec_id: str,
wait_timeout: float = 15.0,
):
"""
Mechanism:
1. Set the cancel event
2. Graph executor's cancel handler thread detects the event, terminates workers,
reinitializes worker pool, and returns.
3. Update execution statuses in DB and set `error` outputs to `"TERMINATED"`.
"""
queue_client = await get_async_execution_queue()
db = execution_db if prisma.is_connected() else get_db_async_client()
await queue_client.publish_message(
routing_key="",
message=CancelExecutionEvent(graph_exec_id=graph_exec_id).model_dump_json(),
exchange=GRAPH_EXECUTION_CANCEL_EXCHANGE,
)
if not wait_timeout:
return
start_time = time.time()
while time.time() - start_time < wait_timeout:
graph_exec = await db.get_graph_execution_meta(
execution_id=graph_exec_id, user_id=user_id
)
if not graph_exec:
raise NotFoundError(f"Graph execution #{graph_exec_id} not found.")
if graph_exec.status in [
ExecutionStatus.TERMINATED,
ExecutionStatus.COMPLETED,
ExecutionStatus.FAILED,
]:
# If graph execution is terminated/completed/failed, cancellation is complete
await get_async_execution_event_bus().publish(graph_exec)
return
if graph_exec.status in [
ExecutionStatus.QUEUED,
ExecutionStatus.INCOMPLETE,
]:
break
if graph_exec.status == ExecutionStatus.RUNNING:
await asyncio.sleep(0.1)
# Set the termination status if the graph is not stopped after the timeout.
if graph_exec := await db.get_graph_execution_meta(
execution_id=graph_exec_id, user_id=user_id
):
# If the graph is still on the queue, we can prevent them from being executed
# by setting the status to TERMINATED.
node_execs = await db.get_node_executions(
graph_exec_id=graph_exec_id,
statuses=[
ExecutionStatus.QUEUED,
ExecutionStatus.RUNNING,
],
include_exec_data=False,
)
graph_exec.status = ExecutionStatus.TERMINATED
for node_exec in node_execs:
node_exec.status = ExecutionStatus.TERMINATED
await asyncio.gather(
# Update node execution statuses
db.update_node_execution_status_batch(
[node_exec.node_exec_id for node_exec in node_execs],
ExecutionStatus.TERMINATED,
),
# Publish node execution events
*[
get_async_execution_event_bus().publish(node_exec)
for node_exec in node_execs
],
)
await asyncio.gather(
# Update graph execution status
db.update_graph_execution_stats(
graph_exec_id=graph_exec_id,
status=ExecutionStatus.TERMINATED,
),
# Publish graph execution event
get_async_execution_event_bus().publish(graph_exec),
)
async def add_graph_execution(
graph_id: str,
user_id: str,
inputs: Optional[BlockInput] = None,
preset_id: Optional[str] = None,
graph_version: Optional[int] = None,
graph_credentials_inputs: Optional[dict[str, CredentialsMetaInput]] = None,
nodes_input_masks: Optional[dict[str, dict[str, JsonValue]]] = None,
) -> GraphExecutionWithNodes:
"""
Adds a graph execution to the queue and returns the execution entry.
Args:
graph_id: The ID of the graph to execute.
user_id: The ID of the user executing the graph.
inputs: The input data for the graph execution.
preset_id: The ID of the preset to use.
graph_version: The version of the graph to execute.
graph_credentials_inputs: Credentials inputs to use in the execution.
Keys should map to the keys generated by `GraphModel.aggregate_credentials_inputs`.
nodes_input_masks: Node inputs to use in the execution.
Returns:
GraphExecutionEntry: The entry for the graph execution.
Raises:
ValueError: If the graph is not found or if there are validation errors.
"""
if prisma.is_connected():
gdb = graph_db
edb = execution_db
else:
gdb = get_db_async_client()
edb = get_db_async_client()
graph: GraphModel | None = await gdb.get_graph(
graph_id=graph_id,
user_id=user_id,
version=graph_version,
include_subgraphs=True,
)
if not graph:
raise NotFoundError(f"Graph #{graph_id} not found.")
nodes_input_masks = _merge_nodes_input_masks(
(
make_node_credentials_input_map(graph, graph_credentials_inputs)
if graph_credentials_inputs
else {}
),
nodes_input_masks or {},
)
starting_nodes_input = await construct_node_execution_input(
graph=graph,
user_id=user_id,
graph_inputs=inputs or {},
nodes_input_masks=nodes_input_masks,
)
graph_exec = await edb.create_graph_execution(
user_id=user_id,
graph_id=graph_id,
graph_version=graph.version,
starting_nodes_input=starting_nodes_input,
preset_id=preset_id,
)
try:
queue = await get_async_execution_queue()
graph_exec_entry = graph_exec.to_graph_execution_entry()
if nodes_input_masks:
graph_exec_entry.nodes_input_masks = nodes_input_masks
await queue.publish_message(
routing_key=GRAPH_EXECUTION_ROUTING_KEY,
message=graph_exec_entry.model_dump_json(),
exchange=GRAPH_EXECUTION_EXCHANGE,
)
bus = get_async_execution_event_bus()
await bus.publish(graph_exec)
return graph_exec
except Exception as e:
logger.error(f"Unable to publish graph #{graph_id} exec #{graph_exec.id}: {e}")
await edb.update_node_execution_status_batch(
[node_exec.node_exec_id for node_exec in graph_exec.node_executions],
ExecutionStatus.FAILED,
)
await edb.update_graph_execution_stats(
graph_exec_id=graph_exec.id,
status=ExecutionStatus.FAILED,
stats=GraphExecutionStats(error=str(e)),
)
raise
# ============ Execution Output Helpers ============ #
class ExecutionOutputEntry(BaseModel):
node: Node
node_exec_id: str
data: BlockData
class NodeExecutionProgress:
def __init__(
self,
on_done_task: Callable[[str, object], None],
):
self.output: dict[str, list[ExecutionOutputEntry]] = defaultdict(list)
self.tasks: dict[str, Future] = {}
self.on_done_task = on_done_task
self._lock = threading.Lock()
def add_task(self, node_exec_id: str, task: Future):
self.tasks[node_exec_id] = task
def add_output(self, output: ExecutionOutputEntry):
with self._lock:
self.output[output.node_exec_id].append(output)
def pop_output(self) -> ExecutionOutputEntry | None:
exec_id = self._next_exec()
if not exec_id:
return None
if self._pop_done_task(exec_id):
return self.pop_output()
with self._lock:
if next_output := self.output[exec_id]:
return next_output.pop(0)
return None
def is_done(self, wait_time: float = 0.0) -> bool:
exec_id = self._next_exec()
if not exec_id:
return True
if self._pop_done_task(exec_id):
return self.is_done(wait_time)
if wait_time <= 0:
return False
try:
self.tasks[exec_id].result(wait_time)
except TimeoutError:
pass
except Exception as e:
logger.error(f"Task for exec ID {exec_id} failed with error: {str(e)}")
pass
return self.is_done(0)
def stop(self) -> list[str]:
"""
Stops all tasks and clears the output.
This is useful for cleaning up when the execution is cancelled or terminated.
Returns a list of execution IDs that were stopped.
"""
cancelled_ids = []
for task_id, task in self.tasks.items():
if task.done():
continue
task.cancel()
cancelled_ids.append(task_id)
return cancelled_ids
def wait_for_cancellation(self, timeout: float = 5.0):
"""
Wait for all cancelled tasks to complete cancellation.
Args:
timeout: Maximum time to wait for cancellation in seconds
"""
start_time = time.time()
while time.time() - start_time < timeout:
# Check if all tasks are done (either completed or cancelled)
if all(task.done() for task in self.tasks.values()):
return True
time.sleep(0.1) # Small delay to avoid busy waiting
raise TimeoutError(
f"Timeout waiting for cancellation of tasks: {list(self.tasks.keys())}"
)
def _pop_done_task(self, exec_id: str) -> bool:
task = self.tasks.get(exec_id)
if not task:
return True
if not task.done():
return False
with self._lock:
if self.output[exec_id]:
return False
if task := self.tasks.pop(exec_id):
try:
self.on_done_task(exec_id, task.result())
except Exception as e:
logger.error(f"Task for exec ID {exec_id} failed with error: {str(e)}")
return True
def _next_exec(self) -> str | None:
if not self.tasks:
return None
return next(iter(self.tasks.keys()))