Files
AutoGPT/benchmark/agbenchmark/challenges/base.py
Reinier van der Leer f107ff8cf0 Set up unified pre-commit + CI w/ linting + type checking & FIX EVERYTHING (#7171)
- **FIX ALL LINT/TYPE ERRORS IN AUTOGPT, FORGE, AND BENCHMARK**

### Linting
- Clean up linter configs for `autogpt`, `forge`, and `benchmark`
- Add type checking with Pyright
- Create unified pre-commit config
- Create unified linting and type checking CI workflow

### Testing
- Synchronize CI test setups for `autogpt`, `forge`, and `benchmark`
   - Add missing pytest-cov to benchmark dependencies
- Mark GCS tests as slow to speed up pre-commit test runs
- Repair `forge` test suite
  - Add `AgentDB.close()` method for test DB teardown in db_test.py
  - Use actual temporary dir instead of forge/test_workspace/
- Move left-behind dependencies for moved `forge`-code to from autogpt to forge

### Notable type changes
- Replace uses of `ChatModelProvider` by `MultiProvider`
- Removed unnecessary exports from various __init__.py
- Simplify `FileStorage.open_file` signature by removing `IOBase` from return type union
  - Implement `S3BinaryIOWrapper(BinaryIO)` type interposer for `S3FileStorage`

- Expand overloads of `GCSFileStorage.open_file` for improved typing of read and write modes

  Had to silence type checking for the extra overloads, because (I think) Pyright is reporting a false-positive:
  https://github.com/microsoft/pyright/issues/8007

- Change `count_tokens`, `get_tokenizer`, `count_message_tokens` methods on `ModelProvider`s from class methods to instance methods

- Move `CompletionModelFunction.schema` method -> helper function `format_function_def_for_openai` in `forge.llm.providers.openai`

- Rename `ModelProvider` -> `BaseModelProvider`
- Rename `ChatModelProvider` -> `BaseChatModelProvider`
- Add type `ChatModelProvider` which is a union of all subclasses of `BaseChatModelProvider`

### Removed rather than fixed
- Remove deprecated and broken autogpt/agbenchmark_config/benchmarks.py
- Various base classes and properties on base classes in `forge.llm.providers.schema` and `forge.models.providers`

### Fixes for other issues that came to light
- Clean up `forge.agent_protocol.api_router`, `forge.agent_protocol.database`, and `forge.agent.agent`

- Add fallback behavior to `ImageGeneratorComponent`
   - Remove test for deprecated failure behavior

- Fix `agbenchmark.challenges.builtin` challenge exclusion mechanism on Windows

- Fix `_tool_calls_compat_extract_calls` in `forge.llm.providers.openai`

- Add support for `any` (= no type specified) in `JSONSchema.typescript_type`
2024-05-28 05:04:21 +02:00

108 lines
3.3 KiB
Python

import logging
from abc import ABC, abstractmethod
from pathlib import Path
from typing import AsyncIterator, Awaitable, ClassVar, Optional
import pytest
from agent_protocol_client import AgentApi, Step
from colorama import Fore, Style
from pydantic import BaseModel, Field
from agbenchmark.config import AgentBenchmarkConfig
from agbenchmark.utils.data_types import Category, DifficultyLevel, EvalResult
logger = logging.getLogger(__name__)
class ChallengeInfo(BaseModel):
eval_id: str = ""
name: str
task: str
task_artifacts_dir: Optional[Path] = None
category: list[Category]
difficulty: Optional[DifficultyLevel] = None
description: Optional[str] = None
dependencies: list[str] = Field(default_factory=list)
reference_answer: Optional[str]
source_uri: str
"""Internal reference indicating the source of the challenge specification"""
available: bool = True
unavailable_reason: str = ""
class BaseChallenge(ABC):
"""
The base class and shared interface for all specific challenge implementations.
"""
info: ClassVar[ChallengeInfo]
@classmethod
@abstractmethod
def from_source_uri(cls, source_uri: str) -> type["BaseChallenge"]:
"""
Construct an individual challenge subclass from a suitable `source_uri` (as in
`ChallengeInfo.source_uri`).
"""
...
@abstractmethod
def test_method(
self,
config: AgentBenchmarkConfig,
request: pytest.FixtureRequest,
i_attempt: int,
) -> None | Awaitable[None]:
"""
Test method for use by Pytest-based benchmark sessions. Should return normally
if the challenge passes, and raise a (preferably descriptive) error otherwise.
"""
...
@classmethod
async def run_challenge(
cls, config: AgentBenchmarkConfig, timeout: int, *, mock: bool = False
) -> AsyncIterator[Step]:
"""
Runs the challenge on the subject agent with the specified timeout.
Also prints basic challenge and status info to STDOUT.
Params:
config: The subject agent's benchmark config.
timeout: Timeout (seconds) after which to stop the run if not finished.
Yields:
Step: The steps generated by the agent for the challenge task.
"""
# avoid circular import
from agbenchmark.agent_api_interface import run_api_agent
print()
print(
f"{Fore.MAGENTA + Style.BRIGHT}{'='*24} "
f"Starting {cls.info.name} challenge"
f" {'='*24}{Style.RESET_ALL}"
)
print(f"{Fore.CYAN}Timeout:{Fore.RESET} {timeout} seconds")
print(f"{Fore.CYAN}Task:{Fore.RESET} {cls.info.task}")
print()
logger.debug(f"Starting {cls.info.name} challenge run")
i = 0
async for step in run_api_agent(
cls.info.task, config, timeout, cls.info.task_artifacts_dir, mock=mock
):
i += 1
print(f"[{cls.info.name}] - step {step.name} ({i}. request)")
yield step
logger.debug(f"Finished {cls.info.name} challenge run")
@classmethod
@abstractmethod
async def evaluate_task_state(
cls, agent: AgentApi, task_id: str
) -> list[EvalResult]:
...