Files
AutoGPT/benchmark/tests/test_benchmark_workflow.py
Reinier van der Leer f107ff8cf0 Set up unified pre-commit + CI w/ linting + type checking & FIX EVERYTHING (#7171)
- **FIX ALL LINT/TYPE ERRORS IN AUTOGPT, FORGE, AND BENCHMARK**

### Linting
- Clean up linter configs for `autogpt`, `forge`, and `benchmark`
- Add type checking with Pyright
- Create unified pre-commit config
- Create unified linting and type checking CI workflow

### Testing
- Synchronize CI test setups for `autogpt`, `forge`, and `benchmark`
   - Add missing pytest-cov to benchmark dependencies
- Mark GCS tests as slow to speed up pre-commit test runs
- Repair `forge` test suite
  - Add `AgentDB.close()` method for test DB teardown in db_test.py
  - Use actual temporary dir instead of forge/test_workspace/
- Move left-behind dependencies for moved `forge`-code to from autogpt to forge

### Notable type changes
- Replace uses of `ChatModelProvider` by `MultiProvider`
- Removed unnecessary exports from various __init__.py
- Simplify `FileStorage.open_file` signature by removing `IOBase` from return type union
  - Implement `S3BinaryIOWrapper(BinaryIO)` type interposer for `S3FileStorage`

- Expand overloads of `GCSFileStorage.open_file` for improved typing of read and write modes

  Had to silence type checking for the extra overloads, because (I think) Pyright is reporting a false-positive:
  https://github.com/microsoft/pyright/issues/8007

- Change `count_tokens`, `get_tokenizer`, `count_message_tokens` methods on `ModelProvider`s from class methods to instance methods

- Move `CompletionModelFunction.schema` method -> helper function `format_function_def_for_openai` in `forge.llm.providers.openai`

- Rename `ModelProvider` -> `BaseModelProvider`
- Rename `ChatModelProvider` -> `BaseChatModelProvider`
- Add type `ChatModelProvider` which is a union of all subclasses of `BaseChatModelProvider`

### Removed rather than fixed
- Remove deprecated and broken autogpt/agbenchmark_config/benchmarks.py
- Various base classes and properties on base classes in `forge.llm.providers.schema` and `forge.models.providers`

### Fixes for other issues that came to light
- Clean up `forge.agent_protocol.api_router`, `forge.agent_protocol.database`, and `forge.agent.agent`

- Add fallback behavior to `ImageGeneratorComponent`
   - Remove test for deprecated failure behavior

- Fix `agbenchmark.challenges.builtin` challenge exclusion mechanism on Windows

- Fix `_tool_calls_compat_extract_calls` in `forge.llm.providers.openai`

- Add support for `any` (= no type specified) in `JSONSchema.typescript_type`
2024-05-28 05:04:21 +02:00

94 lines
3.1 KiB
Python

import datetime
import time
import pytest
import requests
URL_BENCHMARK = "http://localhost:8080/ap/v1"
URL_AGENT = "http://localhost:8000/ap/v1"
try:
response = requests.get(f"{URL_AGENT}/agent/tasks")
except requests.exceptions.ConnectionError:
pytest.skip("No agent available to test against", allow_module_level=True)
@pytest.mark.parametrize(
"eval_id, input_text, expected_artifact_length, test_name, should_be_successful",
[
(
"021c695a-6cc4-46c2-b93a-f3a9b0f4d123",
"Write the word 'Washington' to a .txt file",
0,
"WriteFile",
True,
),
(
"f219f3d3-a41b-45a9-a3d0-389832086ee8",
"Read the file called file_to_read.txt "
"and write its content to a file called output.txt",
1,
"ReadFile",
False,
),
],
)
def test_entire_workflow(
eval_id: str,
input_text: str,
expected_artifact_length: int,
test_name: str,
should_be_successful: bool,
):
task_request = {"eval_id": eval_id, "input": input_text}
response = requests.get(f"{URL_AGENT}/agent/tasks")
task_count_before = response.json()["pagination"]["total_items"]
# First POST request
task_response_benchmark = requests.post(
URL_BENCHMARK + "/agent/tasks", json=task_request
)
response = requests.get(f"{URL_AGENT}/agent/tasks")
task_count_after = response.json()["pagination"]["total_items"]
assert task_count_after == task_count_before + 1
timestamp_after_task_eval_created = datetime.datetime.now(datetime.timezone.utc)
time.sleep(1.1) # To make sure the 2 timestamps to compare are different
assert task_response_benchmark.status_code == 200
task_response_benchmark = task_response_benchmark.json()
assert task_response_benchmark["input"] == input_text
task_response_benchmark_id = task_response_benchmark["task_id"]
response_task_agent = requests.get(
f"{URL_AGENT}/agent/tasks/{task_response_benchmark_id}"
)
assert response_task_agent.status_code == 200
response_task_agent = response_task_agent.json()
assert len(response_task_agent["artifacts"]) == expected_artifact_length
step_request = {"input": input_text}
step_response = requests.post(
URL_BENCHMARK + "/agent/tasks/" + task_response_benchmark_id + "/steps",
json=step_request,
)
assert step_response.status_code == 200
step_response = step_response.json()
assert step_response["is_last"] is True # Assuming is_last is always True
eval_response = requests.post(
URL_BENCHMARK + "/agent/tasks/" + task_response_benchmark_id + "/evaluations",
json={},
)
assert eval_response.status_code == 200
eval_response = eval_response.json()
print("eval_response")
print(eval_response)
assert eval_response["run_details"]["test_name"] == test_name
assert eval_response["metrics"]["success"] == should_be_successful
benchmark_start_time = datetime.datetime.fromisoformat(
eval_response["run_details"]["benchmark_start_time"]
)
assert benchmark_start_time < timestamp_after_task_eval_created