Files
AutoGPT/autogpt_platform/backend/backend/executor/automod/manager.py
Reinier van der Leer d23248f065 feat(backend/copilot): Copilot Executor Microservice (#12057)
Uncouple Copilot task execution from the REST API server. This should
help performance and scalability, and allows task execution to continue
regardless of the state of the user's connection.

- Resolves #12023

### Changes 🏗️

- Add `backend.copilot.executor`->`CoPilotExecutor` (setup similar to
`backend.executor`->`ExecutionManager`).

This executor service uses RabbitMQ-based task distribution, and sticks
with the existing Redis Streams setup for task output. It uses a cluster
lock mechanism to ensure a task is only executed by one pod, and the
`DatabaseManager` for pooled DB access.

- Add `backend.data.db_accessors` for automatic choice of direct/proxied
DB access

Chat requests now flow: API → RabbitMQ → CoPilot Executor → Redis
Streams → SSE Client. This enables horizontal scaling of chat processing
and isolates long-running LLM operations from the API service.

- Move non-API Copilot stuff into `backend.copilot` (from
`backend.api.features.chat`)
  - Updated import paths for all usages

- Move `backend.executor.database` to `backend.data.db_manager` and add
methods for copilot executor
  - Updated import paths for all usages
- Make `backend.copilot.db` RPC-compatible (-> DB ops return ~~Prisma~~
Pydantic models)
  - Make `backend.data.workspace` RPC-compatible
  - Make `backend.data.graphs.get_store_listed_graphs` RPC-compatible

DX:
- Add `copilot_executor` service to Docker setup

Config:
- Add `Config.num_copilot_workers` (default 5) and
`Config.copilot_executor_port` (default 8008)
- Remove unused `Config.agent_server_port`

> [!WARNING]
> **This change adds a new microservice to the system, with entrypoint
`backend.copilot.executor`.**
> The `docker compose` setup has been updated, but if you run the
Platform on something else, you'll have to update your deployment config
to include this new service.
>
> When running locally, the `CoPilotExecutor` uses port 8008 by default.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Copilot works
    - [x] Processes messages when triggered
    - [x] Can use its tools

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
2026-02-17 16:15:28 +00:00

362 lines
13 KiB
Python

import asyncio
import json
import logging
from typing import TYPE_CHECKING, Any, Literal
if TYPE_CHECKING:
from backend.data.db_manager import DatabaseManagerAsyncClient
from pydantic import ValidationError
from backend.data.execution import ExecutionStatus
from backend.util.exceptions import ModerationError
from backend.util.feature_flag import Flag, is_feature_enabled
from backend.util.request import Requests
from backend.util.settings import Settings
from .models import AutoModRequest, AutoModResponse, ModerationConfig
logger = logging.getLogger(__name__)
class AutoModManager:
def __init__(self):
self.config = self._load_config()
def _load_config(self) -> ModerationConfig:
"""Load AutoMod configuration from settings"""
settings = Settings()
return ModerationConfig(
enabled=settings.config.automod_enabled,
api_url=settings.config.automod_api_url,
api_key=settings.secrets.automod_api_key,
timeout=settings.config.automod_timeout,
retry_attempts=settings.config.automod_retry_attempts,
retry_delay=settings.config.automod_retry_delay,
fail_open=settings.config.automod_fail_open,
)
async def moderate_graph_execution_inputs(
self, db_client: "DatabaseManagerAsyncClient", graph_exec, timeout: int = 10
) -> Exception | None:
"""
Complete input moderation flow for graph execution
Returns: error_if_failed (None means success)
"""
if not self.config.enabled:
return None
# Check if AutoMod feature is enabled for this user
if not await is_feature_enabled(Flag.AUTOMOD, graph_exec.user_id):
logger.debug(f"AutoMod feature not enabled for user {graph_exec.user_id}")
return None
# Get graph model and collect all inputs
graph_model = await db_client.get_graph(
graph_exec.graph_id,
user_id=graph_exec.user_id,
version=graph_exec.graph_version,
)
if not graph_model or not graph_model.nodes:
return None
all_inputs = []
for node in graph_model.nodes:
if node.input_default:
all_inputs.extend(str(v) for v in node.input_default.values() if v)
if (masks := graph_exec.nodes_input_masks) and (mask := masks.get(node.id)):
all_inputs.extend(str(v) for v in mask.values() if v)
if not all_inputs:
return None
# Combine all content and moderate directly
content = " ".join(all_inputs)
# Run moderation
logger.warning(
f"Moderating inputs for graph execution {graph_exec.graph_exec_id}"
)
try:
moderation_passed, content_id = await self._moderate_content(
content,
{
"user_id": graph_exec.user_id,
"graph_id": graph_exec.graph_id,
"graph_exec_id": graph_exec.graph_exec_id,
"moderation_type": "execution_input",
},
)
if not moderation_passed:
logger.warning(
f"Moderation failed for graph execution {graph_exec.graph_exec_id}"
)
# Update node statuses for frontend display before raising error
await self._update_failed_nodes_for_moderation(
db_client, graph_exec.graph_exec_id, "input", content_id
)
return ModerationError(
message="Execution failed due to input content moderation",
user_id=graph_exec.user_id,
graph_exec_id=graph_exec.graph_exec_id,
moderation_type="input",
content_id=content_id,
)
return None
except asyncio.TimeoutError:
logger.warning(
f"Input moderation timed out for graph execution {graph_exec.graph_exec_id}, bypassing moderation"
)
return None # Bypass moderation on timeout
except Exception as e:
logger.warning(f"Input moderation execution failed: {e}")
return ModerationError(
message="Execution failed due to input content moderation error",
user_id=graph_exec.user_id,
graph_exec_id=graph_exec.graph_exec_id,
moderation_type="input",
)
async def moderate_graph_execution_outputs(
self,
db_client: "DatabaseManagerAsyncClient",
graph_exec_id: str,
user_id: str,
graph_id: str,
timeout: int = 10,
) -> Exception | None:
"""
Complete output moderation flow for graph execution
Returns: error_if_failed (None means success)
"""
if not self.config.enabled:
return None
# Check if AutoMod feature is enabled for this user
if not await is_feature_enabled(Flag.AUTOMOD, user_id):
logger.debug(f"AutoMod feature not enabled for user {user_id}")
return None
# Get completed executions and collect outputs
completed_executions = await db_client.get_node_executions(
graph_exec_id, statuses=[ExecutionStatus.COMPLETED], include_exec_data=True
)
if not completed_executions:
return None
all_outputs = []
for exec_entry in completed_executions:
if exec_entry.output_data:
all_outputs.extend(str(v) for v in exec_entry.output_data.values() if v)
if not all_outputs:
return None
# Combine all content and moderate directly
content = " ".join(all_outputs)
# Run moderation
logger.warning(f"Moderating outputs for graph execution {graph_exec_id}")
try:
moderation_passed, content_id = await self._moderate_content(
content,
{
"user_id": user_id,
"graph_id": graph_id,
"graph_exec_id": graph_exec_id,
"moderation_type": "execution_output",
},
)
if not moderation_passed:
logger.warning(f"Moderation failed for graph execution {graph_exec_id}")
# Update node statuses for frontend display before raising error
await self._update_failed_nodes_for_moderation(
db_client, graph_exec_id, "output", content_id
)
return ModerationError(
message="Execution failed due to output content moderation",
user_id=user_id,
graph_exec_id=graph_exec_id,
moderation_type="output",
content_id=content_id,
)
return None
except asyncio.TimeoutError:
logger.warning(
f"Output moderation timed out for graph execution {graph_exec_id}, bypassing moderation"
)
return None # Bypass moderation on timeout
except Exception as e:
logger.warning(f"Output moderation execution failed: {e}")
return ModerationError(
message="Execution failed due to output content moderation error",
user_id=user_id,
graph_exec_id=graph_exec_id,
moderation_type="output",
)
async def _update_failed_nodes_for_moderation(
self,
db_client: "DatabaseManagerAsyncClient",
graph_exec_id: str,
moderation_type: Literal["input", "output"],
content_id: str | None = None,
):
"""Update node execution statuses for frontend display when moderation fails"""
# Import here to avoid circular imports
from backend.executor.manager import send_async_execution_update
if moderation_type == "input":
# For input moderation, mark queued/running/incomplete nodes as failed
target_statuses = [
ExecutionStatus.QUEUED,
ExecutionStatus.RUNNING,
ExecutionStatus.INCOMPLETE,
]
else:
# For output moderation, mark completed nodes as failed
target_statuses = [ExecutionStatus.COMPLETED]
# Get the executions that need to be updated
executions_to_update = await db_client.get_node_executions(
graph_exec_id, statuses=target_statuses, include_exec_data=True
)
if not executions_to_update:
return
# Create error message with content_id if available
error_message = "Failed due to content moderation"
if content_id:
error_message += f" (Moderation ID: {content_id})"
# Prepare database update tasks
exec_updates = []
for exec_entry in executions_to_update:
# Collect all input and output names to clear
cleared_inputs = {}
cleared_outputs = {}
if exec_entry.input_data:
for name in exec_entry.input_data.keys():
cleared_inputs[name] = [error_message]
if exec_entry.output_data:
for name in exec_entry.output_data.keys():
cleared_outputs[name] = [error_message]
# Add update task to list
exec_updates.append(
db_client.update_node_execution_status(
exec_entry.node_exec_id,
status=ExecutionStatus.FAILED,
stats={
"error": error_message,
"cleared_inputs": cleared_inputs,
"cleared_outputs": cleared_outputs,
},
)
)
# Execute all database updates in parallel
updated_execs = await asyncio.gather(*exec_updates)
# Send all websocket updates in parallel
await asyncio.gather(
*[
send_async_execution_update(updated_exec)
for updated_exec in updated_execs
]
)
async def _moderate_content(
self, content: str, metadata: dict[str, Any]
) -> tuple[bool, str | None]:
"""Moderate content using AutoMod API
Returns:
Tuple of (approval_status, content_id)
- approval_status: True if approved or timeout occurred, False if rejected
- content_id: Reference ID from moderation API, or None if not available
Raises:
asyncio.TimeoutError: When moderation times out (should be bypassed)
"""
try:
request_data = AutoModRequest(
type="text",
content=content,
metadata=metadata,
)
response = await self._make_request(request_data)
if response.success and response.status == "approved":
logger.debug(
f"Content approved for {metadata.get('graph_exec_id', 'unknown')}"
)
return True, response.content_id
else:
reasons = [r.reason for r in response.moderation_results if r.reason]
error_msg = f"Content rejected by AutoMod: {'; '.join(reasons)}"
logger.warning(f"Content rejected: {error_msg}")
return False, response.content_id
except asyncio.TimeoutError:
# Re-raise timeout to be handled by calling methods
logger.warning(
f"AutoMod API timeout for {metadata.get('graph_exec_id', 'unknown')}"
)
raise
except Exception as e:
logger.error(f"AutoMod moderation error: {e}")
return self.config.fail_open, None
async def _make_request(self, request_data: AutoModRequest) -> AutoModResponse:
"""Make HTTP request to AutoMod API using the standard request utility"""
url = f"{self.config.api_url}/moderate"
headers = {
"Content-Type": "application/json",
"X-API-Key": self.config.api_key.strip(),
}
# Create requests instance with timeout and retry configuration
requests = Requests(
extra_headers=headers,
retry_max_wait=float(self.config.timeout),
)
try:
response = await requests.post(
url, json=request_data.model_dump(), timeout=self.config.timeout
)
response_data = response.json()
return AutoModResponse.model_validate(response_data)
except asyncio.TimeoutError:
# Re-raise timeout error to be caught by _moderate_content
raise
except (json.JSONDecodeError, ValidationError) as e:
raise Exception(f"Invalid response from AutoMod API: {e}")
except Exception as e:
# Check if this is an aiohttp timeout that we should convert
if "timeout" in str(e).lower():
raise asyncio.TimeoutError(f"AutoMod API request timed out: {e}")
raise Exception(f"AutoMod API request failed: {e}")
# Global instance
automod_manager = AutoModManager()