Files
AutoGPT/autogpt_platform/backend/test/e2e_test_data.py
Otto 582c6cad36 fix(e2e): Make E2E test data deterministic and fix flaky tests (#11890)
## Summary
Fixes flaky E2E marketplace and library tests that were causing PRs to
be removed from the merge queue.

## Root Cause
1. **Test data was probabilistic** - `e2e_test_data.py` used random
chances (40% approve, then 20-50% feature), which could result in 0
featured agents
2. **Library pagination threshold wrong** - Checked `>= 10`, but page
size is 20
3. **Fixed timeouts** - Used `waitForTimeout(2000)` /
`waitForTimeout(10000)` instead of proper waits

## Changes

### Backend (`e2e_test_data.py`)
- Add guaranteed minimums: 8 featured agents, 5 featured creators, 10
top agents
- First N submissions are deterministically approved and featured
- Increase agents per user from 15 → 25 (for pagination with
page_size=20)
- Fix library agent creation to use constants instead of hardcoded `10`

### Frontend Tests
- `library.spec.ts`: Fix pagination threshold to `PAGE_SIZE` (20)
- `library.page.ts`: Replace 2s timeout with `networkidle` +
`waitForFunction`
- `marketplace.page.ts`: Add `networkidle` wait, 30s waits in
`getFirst*` methods
- `marketplace.spec.ts`: Replace 10s timeout with `waitForFunction`
- `marketplace-creator.spec.ts`: Add `networkidle` + element waits

## Related
- Closes SECRT-1848, SECRT-1849
- Should unblock #11841 and other PRs in merge queue

---------

Co-authored-by: Ubbe <hi@ubbe.dev>
2026-01-30 05:12:35 +00:00

864 lines
34 KiB
Python

"""
E2E Test Data Creator for AutoGPT Platform
This script creates test data for E2E tests by using API functions instead of direct Prisma calls.
This approach ensures compatibility with future model changes by using the API layer.
Image/Video URL Domains Used:
- Images: picsum.photos (for all image URLs - avatars, store listing images, etc.)
- Videos: youtube.com (for store listing video URLs)
Add these domains to your Next.js config:
```javascript
// next.config.js
images: {
domains: ['picsum.photos'],
}
```
"""
import asyncio
import random
from typing import Any, Dict, List
from faker import Faker
# Import API functions from the backend
from backend.api.features.library.db import create_library_agent, create_preset
from backend.api.features.library.model import LibraryAgentPresetCreatable
from backend.api.features.store.db import (
create_store_submission,
review_store_submission,
)
from backend.data.auth.api_key import create_api_key
from backend.data.credit import get_user_credit_model
from backend.data.db import prisma
from backend.data.graph import Graph, Link, Node, create_graph
from backend.data.user import get_or_create_user
from backend.util.clients import get_supabase
faker = Faker()
# Constants for data generation limits (reduced for E2E tests)
NUM_USERS = 15
NUM_AGENT_BLOCKS = 30
MIN_GRAPHS_PER_USER = 25
MAX_GRAPHS_PER_USER = 25
MIN_NODES_PER_GRAPH = 3
MAX_NODES_PER_GRAPH = 6
MIN_PRESETS_PER_USER = 2
MAX_PRESETS_PER_USER = 3
MIN_AGENTS_PER_USER = 25
MAX_AGENTS_PER_USER = 25
MIN_EXECUTIONS_PER_GRAPH = 2
MAX_EXECUTIONS_PER_GRAPH = 8
MIN_REVIEWS_PER_VERSION = 2
MAX_REVIEWS_PER_VERSION = 5
# Guaranteed minimums for marketplace tests (deterministic)
GUARANTEED_FEATURED_AGENTS = 8
GUARANTEED_FEATURED_CREATORS = 5
GUARANTEED_TOP_AGENTS = 10
def get_image():
"""Generate a consistent image URL using picsum.photos service."""
width = random.choice([200, 300, 400, 500, 600, 800])
height = random.choice([200, 300, 400, 500, 600, 800])
seed = random.randint(1, 1000)
return f"https://picsum.photos/seed/{seed}/{width}/{height}"
def get_video_url():
"""Generate a consistent video URL using YouTube."""
video_ids = [
"dQw4w9WgXcQ",
"9bZkp7q19f0",
"kJQP7kiw5Fk",
"RgKAFK5djSk",
"L_jWHffIx5E",
]
video_id = random.choice(video_ids)
return f"https://www.youtube.com/watch?v={video_id}"
def get_category():
"""Generate a random category from the predefined list."""
categories = [
"productivity",
"writing",
"development",
"data",
"marketing",
"research",
"creative",
"business",
"personal",
"other",
]
return random.choice(categories)
class TestDataCreator:
"""Creates test data using API functions for E2E tests."""
def __init__(self):
self.users: List[Dict[str, Any]] = []
self.agent_blocks: List[Dict[str, Any]] = []
self.agent_graphs: List[Dict[str, Any]] = []
self.library_agents: List[Dict[str, Any]] = []
self.store_submissions: List[Dict[str, Any]] = []
self.api_keys: List[Dict[str, Any]] = []
self.presets: List[Dict[str, Any]] = []
self.profiles: List[Dict[str, Any]] = []
async def create_test_users(self) -> List[Dict[str, Any]]:
"""Create test users using Supabase client."""
print(f"Creating {NUM_USERS} test users...")
supabase = get_supabase()
users = []
for i in range(NUM_USERS):
try:
# Generate test user data
if i == 0:
# First user should have test123@gmail.com email for testing
email = "test123@gmail.com"
else:
email = faker.unique.email()
password = "testpassword123" # Standard test password
user_id = f"test-user-{i}-{faker.uuid4()}"
# Create user in Supabase Auth (if needed)
try:
auth_response = supabase.auth.admin.create_user(
{"email": email, "password": password, "email_confirm": True}
)
if auth_response.user:
user_id = auth_response.user.id
except Exception as supabase_error:
print(
f"Supabase user creation failed for {email}, using fallback: {supabase_error}"
)
# Fall back to direct database creation
# Create mock user data similar to what auth middleware would provide
user_data = {
"sub": user_id,
"email": email,
}
# Use the API function to create user in local database
user = await get_or_create_user(user_data)
users.append(user.model_dump())
except Exception as e:
print(f"Error creating user {i}: {e}")
continue
self.users = users
return users
async def get_available_blocks(self) -> List[Dict[str, Any]]:
"""Get available agent blocks from database."""
print("Getting available agent blocks...")
# Get blocks from database instead of the registry
db_blocks = await prisma.agentblock.find_many()
if not db_blocks:
print("No blocks found in database, creating some basic blocks...")
# Create some basic blocks if none exist
from backend.blocks.io import AgentInputBlock, AgentOutputBlock
from backend.blocks.maths import CalculatorBlock
from backend.blocks.time_blocks import GetCurrentTimeBlock
blocks_to_create = [
AgentInputBlock(),
AgentOutputBlock(),
CalculatorBlock(),
GetCurrentTimeBlock(),
]
for block in blocks_to_create:
try:
await prisma.agentblock.create(
data={
"id": block.id,
"name": block.name,
"inputSchema": "{}",
"outputSchema": "{}",
}
)
except Exception as e:
print(f"Error creating block {block.name}: {e}")
# Get blocks again after creation
db_blocks = await prisma.agentblock.find_many()
self.agent_blocks = [
{"id": block.id, "name": block.name} for block in db_blocks
]
print(f"Found {len(self.agent_blocks)} blocks in database")
return self.agent_blocks
async def create_test_graphs(self) -> List[Dict[str, Any]]:
"""Create test graphs using the API function."""
print("Creating test graphs...")
graphs = []
for user in self.users:
num_graphs = random.randint(MIN_GRAPHS_PER_USER, MAX_GRAPHS_PER_USER)
for graph_num in range(num_graphs):
# Create a simple graph with nodes and links
graph_id = str(faker.uuid4())
nodes = []
links = []
# Determine if this should be a DummyInput graph (first 3-4 graphs per user)
is_dummy_input = graph_num < 4
# Create nodes based on graph type
if is_dummy_input:
# For dummy input graphs: only GetCurrentTimeBlock
node_id = str(faker.uuid4())
block = next(
b
for b in self.agent_blocks
if b["name"] == "GetCurrentTimeBlock"
)
input_default = {"trigger": "start", "format": "%H:%M:%S"}
node = Node(
id=node_id,
block_id=block["id"],
input_default=input_default,
metadata={"position": {"x": 0, "y": 0}},
)
nodes.append(node)
else:
# For regular graphs: Create calculator agent pattern with 4 nodes
# Node 1: AgentInputBlock for 'a'
input_a_id = str(faker.uuid4())
input_a_block = next(
b for b in self.agent_blocks if b["name"] == "AgentInputBlock"
)
input_a_node = Node(
id=input_a_id,
block_id=input_a_block["id"],
input_default={
"name": "a",
"title": None,
"value": "",
"advanced": False,
"description": None,
"placeholder_values": [],
},
metadata={"position": {"x": -1012, "y": 674}},
)
nodes.append(input_a_node)
# Node 2: AgentInputBlock for 'b'
input_b_id = str(faker.uuid4())
input_b_block = next(
b for b in self.agent_blocks if b["name"] == "AgentInputBlock"
)
input_b_node = Node(
id=input_b_id,
block_id=input_b_block["id"],
input_default={
"name": "b",
"title": None,
"value": "",
"advanced": False,
"description": None,
"placeholder_values": [],
},
metadata={"position": {"x": -1117, "y": 78}},
)
nodes.append(input_b_node)
# Node 3: CalculatorBlock
calc_id = str(faker.uuid4())
calc_block = next(
b for b in self.agent_blocks if b["name"] == "CalculatorBlock"
)
calc_node = Node(
id=calc_id,
block_id=calc_block["id"],
input_default={"operation": "Add", "round_result": False},
metadata={"position": {"x": -435, "y": 363}},
)
nodes.append(calc_node)
# Node 4: AgentOutputBlock
output_id = str(faker.uuid4())
output_block = next(
b for b in self.agent_blocks if b["name"] == "AgentOutputBlock"
)
output_node = Node(
id=output_id,
block_id=output_block["id"],
input_default={
"name": "result",
"title": None,
"value": "",
"format": "",
"advanced": False,
"description": None,
},
metadata={"position": {"x": 402, "y": 0}},
)
nodes.append(output_node)
# Create links between nodes (only for non-dummy graphs with multiple nodes)
if len(nodes) >= 4:
# Use the actual node IDs from the created nodes instead of our variables
actual_input_a_id = nodes[0].id # First node (input_a)
actual_input_b_id = nodes[1].id # Second node (input_b)
actual_calc_id = nodes[2].id # Third node (calculator)
actual_output_id = nodes[3].id # Fourth node (output)
# Link input_a to calculator.a
link1 = Link(
source_id=actual_input_a_id,
sink_id=actual_calc_id,
source_name="result",
sink_name="a",
is_static=True,
)
links.append(link1)
# Link input_b to calculator.b
link2 = Link(
source_id=actual_input_b_id,
sink_id=actual_calc_id,
source_name="result",
sink_name="b",
is_static=True,
)
links.append(link2)
# Link calculator.result to output.value
link3 = Link(
source_id=actual_calc_id,
sink_id=actual_output_id,
source_name="result",
sink_name="value",
is_static=False,
)
links.append(link3)
# Create graph object with DummyInput in name if it's a dummy input graph
graph_name = faker.sentence(nb_words=3)
if is_dummy_input:
graph_name = f"DummyInput {graph_name}"
graph_name = f"{graph_name} Agents"
graph = Graph(
id=graph_id,
name=graph_name,
description=faker.text(max_nb_chars=200),
nodes=nodes,
links=links,
is_active=True,
)
try:
# Use the API function to create graph
created_graph = await create_graph(graph, user["id"])
graph_dict = created_graph.model_dump()
# Ensure userId is included for store submissions
graph_dict["userId"] = user["id"]
graphs.append(graph_dict)
print(
f"✅ Created graph for user {user['id']}: {graph_dict['name']}"
)
except Exception as e:
print(f"Error creating graph: {e}")
continue
self.agent_graphs = graphs
return graphs
async def create_test_library_agents(self) -> List[Dict[str, Any]]:
"""Create test library agents using the API function."""
print("Creating test library agents...")
library_agents = []
for user in self.users:
num_agents = random.randint(MIN_AGENTS_PER_USER, MAX_AGENTS_PER_USER)
# Get available graphs for this user
user_graphs = [
g for g in self.agent_graphs if g.get("userId") == user["id"]
]
if not user_graphs:
continue
# Shuffle and take unique graphs to avoid duplicates
random.shuffle(user_graphs)
selected_graphs = user_graphs[: min(num_agents, len(user_graphs))]
for graph_data in selected_graphs:
try:
# Get the graph model from the database
from backend.data.graph import get_graph
graph = await get_graph(
graph_data["id"],
graph_data.get("version", 1),
user_id=user["id"],
)
if graph:
# Use the API function to create library agent
library_agents.extend(
v.model_dump()
for v in await create_library_agent(graph, user["id"])
)
except Exception as e:
print(f"Error creating library agent: {e}")
continue
self.library_agents = library_agents
return library_agents
async def create_test_presets(self) -> List[Dict[str, Any]]:
"""Create test presets using the API function."""
print("Creating test presets...")
presets = []
for user in self.users:
num_presets = random.randint(MIN_PRESETS_PER_USER, MAX_PRESETS_PER_USER)
# Get available graphs for this user
user_graphs = [
g for g in self.agent_graphs if g.get("userId") == user["id"]
]
if not user_graphs:
continue
for _ in range(min(num_presets, len(user_graphs))):
graph = random.choice(user_graphs)
preset_data = LibraryAgentPresetCreatable(
name=faker.sentence(nb_words=3),
description=faker.text(max_nb_chars=200),
graph_id=graph["id"], # Fixed field name
graph_version=graph.get("version", 1), # Fixed field name
inputs={}, # Required field - empty inputs for test data
credentials={}, # Required field - empty credentials for test data
is_active=True,
)
try:
# Use the API function to create preset
preset = await create_preset(user["id"], preset_data)
presets.append(preset.model_dump())
except Exception as e:
print(f"Error creating preset: {e}")
continue
self.presets = presets
return presets
async def create_test_api_keys(self) -> List[Dict[str, Any]]:
"""Create test API keys using the API function."""
print("Creating test API keys...")
api_keys = []
for user in self.users:
from backend.data.auth.api_key import APIKeyPermission
try:
# Use the API function to create API key
api_key, _ = await create_api_key(
name=faker.word(),
user_id=user["id"],
permissions=[
APIKeyPermission.EXECUTE_GRAPH,
APIKeyPermission.READ_GRAPH,
],
description=faker.text(),
)
api_keys.append(api_key.model_dump())
except Exception as e:
print(f"Error creating API key for user {user['id']}: {e}")
continue
self.api_keys = api_keys
return api_keys
async def update_test_profiles(self) -> List[Dict[str, Any]]:
"""Update existing user profiles to make some into featured creators."""
print("Updating user profiles to create featured creators...")
# Get all existing profiles (auto-created when users were created)
existing_profiles = await prisma.profile.find_many(
where={"userId": {"in": [user["id"] for user in self.users]}}
)
if not existing_profiles:
print("No existing profiles found. Profiles may not be auto-created.")
return []
profiles = []
# Select about 70% of users to become creators (update their profiles)
num_creators = max(1, int(len(existing_profiles) * 0.7))
selected_profiles = random.sample(
existing_profiles, min(num_creators, len(existing_profiles))
)
# Guarantee at least GUARANTEED_FEATURED_CREATORS featured creators
num_featured = max(GUARANTEED_FEATURED_CREATORS, int(num_creators * 0.5))
num_featured = min(
num_featured, len(selected_profiles)
) # Don't exceed available profiles
featured_profile_ids = set(
random.sample([p.id for p in selected_profiles], num_featured)
)
print(
f"🎯 Creating {num_featured} featured creators (min: {GUARANTEED_FEATURED_CREATORS})"
)
for profile in selected_profiles:
try:
is_featured = profile.id in featured_profile_ids
# Update the profile with creator data
updated_profile = await prisma.profile.update(
where={"id": profile.id},
data={
"name": faker.name(),
"username": faker.user_name()
+ str(random.randint(100, 999)), # Ensure uniqueness
"description": faker.text(max_nb_chars=200),
"links": [faker.url() for _ in range(random.randint(1, 3))],
"avatarUrl": get_image(),
"isFeatured": is_featured,
},
)
if updated_profile:
profiles.append(updated_profile.model_dump())
except Exception as e:
print(f"Error updating profile {profile.id}: {e}")
continue
self.profiles = profiles
return profiles
async def create_test_store_submissions(self) -> List[Dict[str, Any]]:
"""Create test store submissions using the API function.
DETERMINISTIC: Guarantees minimum featured agents for E2E tests.
"""
print("Creating test store submissions...")
submissions = []
approved_submissions = []
featured_count = 0
submission_counter = 0
# Create a special test submission for test123@gmail.com (ALWAYS approved + featured)
test_user = next(
(user for user in self.users if user["email"] == "test123@gmail.com"), None
)
if test_user and self.agent_graphs:
test_submission_data = {
"user_id": test_user["id"],
"agent_id": self.agent_graphs[0]["id"],
"agent_version": 1,
"slug": "test-agent-submission",
"name": "Test Agent Submission",
"sub_heading": "A test agent for frontend testing",
"video_url": "https://www.youtube.com/watch?v=test123",
"image_urls": [
"https://picsum.photos/200/300",
"https://picsum.photos/200/301",
"https://picsum.photos/200/302",
],
"description": "This is a test agent submission specifically created for frontend testing purposes.",
"categories": ["test", "demo", "frontend"],
"changes_summary": "Initial test submission",
}
try:
test_submission = await create_store_submission(**test_submission_data)
submissions.append(test_submission.model_dump())
print("✅ Created special test store submission for test123@gmail.com")
# ALWAYS approve and feature the test submission
if test_submission.store_listing_version_id:
approved_submission = await review_store_submission(
store_listing_version_id=test_submission.store_listing_version_id,
is_approved=True,
external_comments="Test submission approved",
internal_comments="Auto-approved test submission",
reviewer_id=test_user["id"],
)
approved_submissions.append(approved_submission.model_dump())
print("✅ Approved test store submission")
await prisma.storelistingversion.update(
where={"id": test_submission.store_listing_version_id},
data={"isFeatured": True},
)
featured_count += 1
print("🌟 Marked test agent as FEATURED")
except Exception as e:
print(f"Error creating test store submission: {e}")
import traceback
traceback.print_exc()
# Create regular submissions for all users
for user in self.users:
user_graphs = [
g for g in self.agent_graphs if g.get("userId") == user["id"]
]
print(f"User {user['id']} has {len(user_graphs)} graphs")
if not user_graphs:
print(
f"No graphs found for user {user['id']}, skipping store submissions"
)
continue
for submission_index in range(4):
graph = random.choice(user_graphs)
submission_counter += 1
try:
print(
f"Creating store submission for user {user['id']} with graph {graph['id']}"
)
submission = await create_store_submission(
user_id=user["id"],
agent_id=graph["id"],
agent_version=graph.get("version", 1),
slug=faker.slug(),
name=graph.get("name", faker.sentence(nb_words=3)),
sub_heading=faker.sentence(),
video_url=get_video_url() if random.random() < 0.3 else None,
image_urls=[get_image() for _ in range(3)],
description=faker.text(),
categories=[get_category()],
changes_summary="Initial E2E test submission",
)
submissions.append(submission.model_dump())
print(f"✅ Created store submission: {submission.name}")
if submission.store_listing_version_id:
# DETERMINISTIC: First N submissions are always approved
# First GUARANTEED_FEATURED_AGENTS of those are always featured
should_approve = (
submission_counter <= GUARANTEED_TOP_AGENTS
or random.random() < 0.4
)
should_feature = featured_count < GUARANTEED_FEATURED_AGENTS
if should_approve:
try:
reviewer_id = random.choice(self.users)["id"]
approved_submission = await review_store_submission(
store_listing_version_id=submission.store_listing_version_id,
is_approved=True,
external_comments="Auto-approved for E2E testing",
internal_comments="Automatically approved by E2E test data script",
reviewer_id=reviewer_id,
)
approved_submissions.append(
approved_submission.model_dump()
)
print(
f"✅ Approved store submission: {submission.name}"
)
if should_feature:
try:
await prisma.storelistingversion.update(
where={
"id": submission.store_listing_version_id
},
data={"isFeatured": True},
)
featured_count += 1
print(
f"🌟 Marked agent as FEATURED ({featured_count}/{GUARANTEED_FEATURED_AGENTS}): {submission.name}"
)
except Exception as e:
print(
f"Warning: Could not mark submission as featured: {e}"
)
elif random.random() < 0.2:
try:
await prisma.storelistingversion.update(
where={
"id": submission.store_listing_version_id
},
data={"isFeatured": True},
)
featured_count += 1
print(
f"🌟 Marked agent as FEATURED (bonus): {submission.name}"
)
except Exception as e:
print(
f"Warning: Could not mark submission as featured: {e}"
)
except Exception as e:
print(
f"Warning: Could not approve submission {submission.name}: {e}"
)
elif random.random() < 0.5:
try:
reviewer_id = random.choice(self.users)["id"]
await review_store_submission(
store_listing_version_id=submission.store_listing_version_id,
is_approved=False,
external_comments="Submission rejected - needs improvements",
internal_comments="Automatically rejected by E2E test data script",
reviewer_id=reviewer_id,
)
print(
f"❌ Rejected store submission: {submission.name}"
)
except Exception as e:
print(
f"Warning: Could not reject submission {submission.name}: {e}"
)
else:
print(
f"⏳ Left submission pending for review: {submission.name}"
)
except Exception as e:
print(
f"Error creating store submission for user {user['id']} graph {graph['id']}: {e}"
)
import traceback
traceback.print_exc()
continue
print("\n📊 Store Submissions Summary:")
print(f" Created: {len(submissions)}")
print(f" Approved: {len(approved_submissions)}")
print(
f" Featured: {featured_count} (guaranteed min: {GUARANTEED_FEATURED_AGENTS})"
)
self.store_submissions = submissions
return submissions
async def add_user_credits(self):
"""Add credits to users."""
print("Adding credits to users...")
for user in self.users:
try:
# Get user-specific credit model
credit_model = await get_user_credit_model(user["id"])
# Skip credits for disabled credit model to avoid errors
if (
hasattr(credit_model, "__class__")
and "Disabled" in credit_model.__class__.__name__
):
print(f"Skipping credits for user {user['id']} - credits disabled")
continue
# Add random credits to each user
credit_amount = random.randint(100, 1000)
await credit_model.top_up_credits(
user_id=user["id"], amount=credit_amount
)
print(f"Added {credit_amount} credits to user {user['id']}")
except Exception:
print(
f"Skipping credits for user {user['id']}: credits may be disabled"
)
continue
async def create_all_test_data(self):
"""Create all test data."""
print("Starting E2E test data creation...")
# Create users first
await self.create_test_users()
# Get available blocks
await self.get_available_blocks()
# Create graphs
await self.create_test_graphs()
# Create library agents
await self.create_test_library_agents()
# Create presets
await self.create_test_presets()
# Create API keys
await self.create_test_api_keys()
# Update user profiles to create featured creators
await self.update_test_profiles()
# Create store submissions
await self.create_test_store_submissions()
# Add user credits
await self.add_user_credits()
# Refresh materialized views
print("Refreshing materialized views...")
try:
await prisma.execute_raw("SELECT refresh_store_materialized_views();")
except Exception as e:
print(f"Error refreshing materialized views: {e}")
print("E2E test data creation completed successfully!")
# Print summary
print("\n🎉 E2E Test Data Creation Summary:")
print(f"✅ Users created: {len(self.users)}")
print(f"✅ Agent blocks available: {len(self.agent_blocks)}")
print(f"✅ Agent graphs created: {len(self.agent_graphs)}")
print(f"✅ Library agents created: {len(self.library_agents)}")
print(f"✅ Creator profiles updated: {len(self.profiles)}")
print(f"✅ Store submissions created: {len(self.store_submissions)}")
print(f"✅ API keys created: {len(self.api_keys)}")
print(f"✅ Presets created: {len(self.presets)}")
print("\n🎯 Deterministic Guarantees:")
print(f" • Featured agents: >= {GUARANTEED_FEATURED_AGENTS}")
print(f" • Featured creators: >= {GUARANTEED_FEATURED_CREATORS}")
print(f" • Top agents (approved): >= {GUARANTEED_TOP_AGENTS}")
print(f" • Library agents per user: >= {MIN_AGENTS_PER_USER}")
print("\n🚀 Your E2E test database is ready to use!")
async def main():
"""Main function to run the test data creation."""
# Connect to database
await prisma.connect()
try:
creator = TestDataCreator()
await creator.create_all_test_data()
finally:
# Disconnect from database
await prisma.disconnect()
if __name__ == "__main__":
asyncio.run(main())