Files
BriefGPT/main.py

209 lines
7.8 KiB
Python

import os
import streamlit as st
from streamlit_chat import message as st_message
from dotenv import load_dotenv
from chat_utils import create_and_save_directory_embeddings
from streamlit_app_utils import process_summarize_button, generate_answer, load_db_from_file_and_create_if_not_exists, validate_api_key, load_dir_chat_embeddings
from summary_utils import transcript_loader
import pandas as pd
import glob
#Youtube stuff is kinda broken! I'll fix it soon.
load_dotenv('test.env')
st.set_page_config(page_title='BriefGPT')
accepted_filetypes = ['.txt', '.pdf', '.epub']
def summarize():
"""
The main function for the Streamlit app.
:return: None.
"""
st.title("Summarize")
st.write("Summaries are saved to the 'summaries' folder in the project directory.")
input_method = st.radio("Select input method", ('Document', 'YouTube URL'))
if input_method == 'Document':
directory = 'documents'
files = os.listdir(directory)
files = [file for file in files if file.endswith(tuple(accepted_filetypes))]
if files:
selected_file = st.selectbox('Select a file', files)
st.write('You selected: ' + selected_file)
selected_file_path = os.path.join(directory, selected_file)
else:
st.write('No documents found in documents folder. Add some documents first!')
return
if input_method == 'YouTube URL':
youtube_url = st.text_input("Enter a YouTube URL to summarize")
use_gpt_4 = st.checkbox("Use GPT-4 for the final prompt (STRONGLY recommended, requires GPT-4 API access - progress bar will appear to get stuck as GPT-4 is slow)", value=True)
find_clusters = st.checkbox('Optimal clustering (saves on tokens)', value=False)
if st.button('Summarize (click once and wait)'):
if input_method == 'Document':
process_summarize_button(selected_file_path, use_gpt_4, find_clusters)
else:
doc = transcript_loader(youtube_url)
process_summarize_button(doc, use_gpt_4, find_clusters, file=False)
def chat():
dir_or_doc = st.radio('Select a chat method', ('Document', 'Directory'))
st.title('Chat')
model_name = st.radio('Select a model', ('gpt-3.5-turbo', 'gpt-4'))
hypothetical = st.checkbox('Use hypothetical embeddings', value=False)
if dir_or_doc == 'Document':
if 'text_input' not in st.session_state:
st.session_state.text_input = ''
directory = 'documents'
files = os.listdir(directory)
files = [file for file in files if file.endswith(tuple(accepted_filetypes))]
selected_file = st.selectbox('Select a file', files)
st.write('You selected: ' + selected_file)
selected_file_path = os.path.join(directory, selected_file)
if st.button('Load file (first time might take a second...) pressing this button will reset the chat history'):
db = load_db_from_file_and_create_if_not_exists(selected_file_path)
st.session_state.db = db
st.session_state.history = []
else:
if 'text_input' not in st.session_state:
st.session_state.text_input = ''
load_or_create = st.checkbox('Load from existing directory (already embedded)', value=False)
if load_or_create:
embeddings = os.listdir('directory_embeddings')
embeddings = [file for file in embeddings if file.endswith('.faiss')]
select_embedding = st.selectbox('Select an embedding', embeddings)
load = st.button('Load embeddings')
if load:
embedding_file_path = os.path.join('directory_embeddings', select_embedding)
db = load_dir_chat_embeddings(embedding_file_path)
st.session_state.db = db
st.session_state.history = []
else:
directory = st.text_input('Enter a directory to load from - just "documents" will load the default documents folder')
name = st.text_input('Enter a unique nickname for the directory')
if st.button('Load directory (first time might take a second...) pressing this button will reset the chat history'):
with st.spinner('Loading directory...'):
db = create_and_save_directory_embeddings(directory, name)
st.session_state.db = db
st.success('Directory loaded successfully')
st.session_state.history = []
user_input = st.text_input('Enter your question', key='text_input')
if st.button('Ask') and 'db' in st.session_state and validate_api_key(model_name):
answer = generate_answer(st.session_state.db, model_name, hypothetical)
if 'history' not in st.session_state:
st.session_state.history = []
if 'sources' not in st.session_state:
st.session_state.sources = []
for i, chat in enumerate(st.session_state.history):
st_message(**chat, key=str(i))
for i, source in enumerate(st.session_state.sources):
with st.expander('Sources', expanded=False):
st.markdown(source)
def documents():
st.title('Documents')
st.markdown('Documents are stored in the documents folder in the project directory.')
directory = 'documents'
files = os.listdir(directory)
files = [file for file in files if file.endswith(tuple(accepted_filetypes))]
if files:
files_df = pd.DataFrame(files, columns=['File Name'], index=range(1, len(files) + 1))
st.dataframe(files_df, width=1000)
else:
st.write('No documents found in documents folder. Add some documents first!')
def compare_results():
st.title('Compare')
st.write("Compare retrieval results using hypothetical embeddings vs. normal embeddings. Support for comparing multiple models coming soon.")
model_name = 'gpt-3.5-turbo'
if 'text_input' not in st.session_state:
st.session_state.text_input = ''
directory = 'documents'
files = os.listdir(directory)
files = [file for file in files if file.endswith(tuple(accepted_filetypes))]
selected_file = st.selectbox('Select a file', files)
st.write('You selected: ' + selected_file)
selected_file_path = os.path.join(directory, selected_file)
if st.button('Load file (first time might take a second...) pressing this button will reset the chat history'):
db = load_db_from_file_and_create_if_not_exists(selected_file_path)
st.session_state.db = db
st.session_state.history = []
user_input = st.text_input('Enter your question', key='text_input')
if st.button('Ask') and 'db' in st.session_state and validate_api_key(model_name):
st.markdown('Question: ' + user_input)
answer_a, sources_a = generate_answer(st.session_state.db, model_name, hypothetical=True)
answer_b, sources_b = generate_answer(st.session_state.db, model_name, hypothetical=False)
col1, col2 = st.columns(2)
with col1:
st.header('Hypothetical embeddings')
st.markdown(answer_a)
with st.expander('Sources', expanded=False):
st.markdown(sources_a)
with col2:
st.header('Normal embeddings')
st.markdown(answer_b)
with st.expander('Sources', expanded=False):
st.markdown(sources_b)
st.session_state.history = []
st.session_state.sources = []
PAGES = {
"Chat": chat,
"Summarize": summarize,
"Documents": documents,
"Compare": compare_results
}
st.sidebar.title("Navigation")
selection = st.sidebar.radio("Go to", list(PAGES.keys()))
st.sidebar.markdown(' [Contact author](mailto:ethanujohnston@gmail.com)')
st.sidebar.markdown(' [Github](https://github.com/e-johnstonn/docGPT)')
st.sidebar.markdown('[More info on hypothetical embeddings here](https://arxiv.org/abs/2212.10496)', unsafe_allow_html=True)
page = PAGES[selection]
page()