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Adding Conditional Control to Text-to-Image
Diffusion Models
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We present a neural network structure, ControlNet, to control pretrained large
diffusion models to support additional input conditions. The ControlNet learns
task-specific conditions in an end-to-end way, and the learning is robust even when
the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as
fine-tuning a diffusion model, and the model can be trained on a personal devices.
Alternatively, if powerful computation clusters are available, the model can scale to
large amounts (millions to billions) of data. We report that large diffusion models
like Stable Diffusion can be augmented with ControlNets to enable conditional
inputs like edge maps, segmentation maps, keypoints, efc. This may enrich the
methods to control large diffusion models and further facilitate related applications.

https://github.com/111lyasviel/ControlNet

1 Introduction

With the presence of large text-to-image models, generating a visually appealing image may require
only a short descriptive prompt entered by users. After typing some texts and getting the images, we
may naturally come up with several questions: does this prompt-based control satisfy our needs? For
example in image processing, considering many long-standing tasks with clear problem formulations,
can these large models be applied to facilitate these specific tasks? What kind of framework should
we build to handle the wide range of problem conditions and user controls? In specific tasks, can
large models preserve the advantages and capabilities obtained from billions of images?

To answer these questions, we investigate various image processing applications and have three
findings. First, the available data scale in a task-specific domain is not always as large as that in
the general image-text domain. The largest dataset size of many specific problems (e.g., object
shape/normal, pose understanding, efc.) is often under 100Kk, i.e., 5 X 10% times smaller than LAION-
5B. This would require robust neural network training method to avoid overfitting and to preserve
generalization ability when the large models are trained for specific problems.

Second, when image processing tasks are handled with data-driven solutions, large computation
clusters are not always available. This makes fast training methods important for optimizing large
models to specific tasks within an acceptable amount of time and memory space (e.g., on personal
devices). This would further require the utilization of pretrained weights, as well as fine-tuning
strategies or transfer learning.

Third, various image processing problems have diverse forms of problem definitions, user controls,
or image annotations. When addressing these problems, although an image diffusion algorithm can
be regulated in a “procedural” way, e.g., constraining denoising process, editing multi-head attention
activations, etc., the behaviors of these hand-crafted rules are fundamentally prescribed by human
directives. Considering some specific tasks like depth-to-image, pose-to-human, etc., these problems
essentially require the interpretation of raw inputs into object-level or scene-level understandings,
making hand-crafted procedural methods less feasible. To achieve learned solutions in many tasks,
the end-to-end learning is indispensable.
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Figure 1: Control Stable Diffusion with Canny edge map. The canny edge map is input, and the
source image is not used when we generate the images on the right. The outputs are achieved with a
default prompt “a high-quality, detailed, and professional image”. This prompt is used in this paper
as a default prompt that does not mention anything about the image contents and object names. Most
of figures in this paper are high-resolution images and best viewed when zoomed in.

This paper presents ControlNet, an end-to-end neural network architecture that controls large image
diffusion models (like Stable Diffusion) to learn task-specific input conditions. The ControlNet clones
the weights of a large diffusion model into a "trainable copy" and a "locked copy": the locked copy
preserves the network capability learned from billions of images, while the trainable copy is trained
on task-specific datasets to learn the conditional control. The trainable and locked neural network
blocks are connected with an unique type of convolution layer called "zero convolution", where the
convolution weights progressively grow from zeros to optimized parameters in a learned manner.
Since the production-ready weights are preserved, the training is robust at datasets of different scale.
Since the zero convolution does not add new noise to deep features, the training is as fast as fine
tuning a diffusion model, compared to training new layers from scratch.

We train several ControlNets with various datasets of different conditions, e.g., Canny edges, Hough
lines, user scribbles, human key points, segmentation maps, shape normals, depths, efc. We also
experiment ControlNets with both small datasets (with samples less than 50k or even 1k) and
large datasets (millions of samples). We also show that in some tasks like depth-to-image, training
ControlNets on a personal computer (one Nvidia RTX 3090TI) can achieve competitive results
to commercial models trained on large computation clusters with terabytes of GPU memory and
thousands of GPU hours.



2 Related Work

2.1 HyperNetwork and Neural Network Structure

HyperNetwork originates from a neural language processing method [14] to train a small recurrent
neural network to influence the weights of a larger one. Successful results of HyperNetwork are
also reported in image generation using generative adversarial networks [1, 10] and other machine
learning tasks [51]. Inspired by these ideas, [15] provided a method to attach a smaller neural network
to Stable Diffusion [44] so as to change the artistic style of its output images. This approach gained
more popularity after [28] provided the pretrained weights of several HyperNetworks. ControlNet
and HyperNetwork have similarities in the way they influence the behaviors of neural networks.

ControlNet uses a special type of convolution layer called “zero convolution”. Early neural network
studies [31, 47, 32] have extensively discussed the initialization of network weights, including the
rationality of initializing the weights with Gaussian distributions and the risks that may incur by
initializing the weights with zeros. More recently, [37] discussed a method to scale the initial weight
of several convolution layers in a diffusion model to improve the training, which shares similarity with
the idea of zero convolution (and their codes contain a function called “zero_module”). Manipulating
the initial convolution weights is also discussed in ProGAN [21] and StyleGAN [22], as well as
Noise2Noise [33] and [65]. Stability’s model cards [55] also mention the use of zero weights in
neural layers.

2.2 Diffusion Probabilistic Model

Diffusion probabilistic model was proposed in [52]. Successful results of image generation are first
reported at small scale [25] and then relatively large scale [9]. This architecture was improved by
important training and sampling methods like Denoising Diffusion Probabilistic Model (DDPM) [17],
Denoising Diffusion Implicit Model (DDIM) [53], and score-based diffusion [54]. Image diffusion
methods can directly use pixel colors as training data, and in that case, researches often consider
strategies to save computation powers when handling high-resolution images [53, 50, 26], or directly
use pyramid-based or multiple-stage methods [18, 43]. These methods essentially use U-net [45] as
their neural network architecture. In order to reduce the computation power required for training a
diffusion model, based on the idea of latent image [11], the approach Latent Diffusion Model (LDM)
[44] was proposed and further extended to Stable Diffusion.

2.3 Text-to-Image Diffusion

Diffusion models can be applied to text-to-image generating tasks to achieve state-of-the-art image
generating results. This is often achieved by encoding text inputs into latent vectors using pretrained
language models like CLIP [41]. For instances, Glide [38] is a text-guided diffusion models supporting
both image generating and editing. Disco Diffusion is a clip-guided implementation of [9] to process
text prompts. Stable Diffusion is a large scale implementation of latent diffusion [44] to achieve
text-to-image generation. Imagen [49] is a text-to-image structure that does not use latent images and
directly diffuse pixels using a pyramid structure.

2.4 Personalization,Customization, and Control of Pretrained Diffusion Model

Because state-of-the-art image diffusion models are dominated by text-to-image methods, the most
straight-forward ways to enhance the control over a diffusion model are often text-guided [38, 24,
2,3, 23,43, 16]. This type of control can also be achieved by manipulating CLIP features [43].
The image diffusion process by itself can provide some functionalities to achieve color-level detail
variations [35] (the community of Stable Diffusion call it img2img). Image diffusion algorithms
naturally supports inpainting as an important way to control the results [43, 2]. Textual Inversion
[12] and DreamBooth [46] are proposed to customize (or personalize) the contents in the generated
results using a small set of images with same topics or objects.

2.5 Image-to-Image Translation

We would like to point out that, although the ControlNet and image-to-image translation may have
several overlapped applications, their motivations are essentially different. Image-to-image translation



is targeted to learn a mapping between images in different domains, while a ControlNet is targeted to
control a diffusion model with task-specific conditions.

Pix2Pix [20] presented the concept of image-to-image translation, and early methods are dominated
by conditional generative neural networks [20, 69, 60, 39, 8, 63, 68]. After transformers and Vision
Transformers (ViTs) gained popularity, successful results have been reported using autoregressive
methods [42, 11, 7]. Some researches also show that multi-model methods can learn a robust
generator from various translation tasks [64, 29, 19, 40].

We discuss the current strongest methods in image-to-image translation. Taming Transformer [11]
is a vision transformer with the capability to both generate images and perform image-to-image
translations. Palette [48] is an unified diffusion-based image-to-image translation framework. PITI
[59] is a diffusion-based image-to-image translation method that utilizes large-scale pretraining as a
way to improve the quality of generated results. In specific fields like sketch-guided diffusion, [58] is
a optimization-based method that manipulates the diffusion process. These methods are tested in the
experiments.

3 Method

ControlNet is a neural network architecture that can enhance pretrained image diffusion models
with task-specific conditions. We introduce ControlNet’s essential structure and motivate of each
part in Section 3.1. We detail the method to apply ControlNets to image diffusion models using the
example of Stable Diffusion in Section 3.2. We elaborate the learning objective and general training
method in Section 3.3, and then describe several approaches to improve the training in extreme
cases such as training with one single laptop or using large-scale computing clusters in Section 3.4.
Finally, we include the details of several ControlNet implementations with different input conditions
in Section 3.5.

3.1 ControlNet

ControlNet manipulates the input conditions of neural network blocks so as to further control the
overall behavior of an entire neural network. Herein, a "network block" refers to a set of neural
layers that are put together as a frequently used unit to build neural networks, e.g., “resnet” block,
“conv-bn-relu” block, multi-head attention block, transformer block, etc.

Using 2D feature as an example, given a feature map & € R"*“*¢ with {h,w, c} being height,
width, and channel numbers, a neural network block F(+; ©) with a set of parameters © transforms x
into another feature map y with

y = F(z;0) ()
and this procedure is visualized in Fig. 2-(a).

We lock all parameters in © and then clone it into a trainable copy ©.. The copied O is trained with
an external condition vector c. In this paper, we call the original and new parameters “locked copy”
and “trainable copy”. The motivation of making such copies rather than directly training the original
weights is to avoid overfitting when dataset is small and to preserve the production-ready quality of
large models learned from billions of images.

The neural network blocks are connected by an unique type of convolution layer called “zero
convolution”, i.e., 1 x 1 convolution layer with both weight and bias initialized with zeros. We denote
the zero convolution operation as Z(-; -) and use two instances of parameters {©,;, O, } to compose
the ControlNet structure with

Yo =F(x;0) + Z(F(x + Z(c;0,);0:); 0,2) 2)
where y. becomes the output of this neural network block, as visualized in Fig. 2-(b).

Because both the weight and bias of a zero convolution layer are initialized as zeros, in the first
training step, we have
Z(¢;0,)=0
F(x+ 2(¢;0,);0,) = F(x;0,) = F(x;0) 3)
Z(F(x+ Z(c;0,1);0.);0,) = Z(F(x;0.);0,) =0

N
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Figure 2: ControlNet. We show the approach to apply a ControlNet to an arbitrary neural network
block. The z, y are deep features in neural networks. The “+” refers to feature addition. The “c” is
an extra condition that we want to add to the neural network. The “zero convolution” is an 1 x 1

convolution layer with both weight and bias initialized as zeros.

and this can be converted to

Y=Y “)
and Eq-(2,3,4) indicate that, in the first training step, all the inputs and outputs of both the trainable and
locked copy of neural network blocks are consistent with what they would be as if the ControlNet does
not exist. In other words, when a ControlNet is applied to some neural network blocks, before any
optimization, it will not cause any influence to the deep neural features. The capability, functionality,
and result quality of any neural network block is perfectly preserved, and any further optimization
will become as fast as fine tuning (compared to train those layers from scratch).

We briefly deduce the gradient calculation of a zero convolution layer. Considering an 1 x 1
convolution layer with weight W and bias B, at any spatial position p and channel-wise index ¢,
given an input map I € R"X"*¢, the forward pass can be written as

Z(L{W,B})p:i = Bi+ Y _I,;Wi; (5)
J

and since zero convolution has W = 0 and B = 0 (before optimization), for anywhere with I, ;
being non-zero, the gradients become

OZ(L{W,B})pi _ 1
OB,
0Z(I;{W,B}),;
( {81 ‘ D :Zm,j:o ©
P, j
OZ(L{W,B}),: .
8VV¢J — Ep 7é 0

and we can see that although a zero convolution can cause the gradient on the feature term I to
become zero, the weight’s and bias’s gradients are not influenced. As long as the feature I is non-zero,
the weight W will be optimized into non-zero matrix in the first gradient descent iteration. Notably,
in our case, the feature term is input data or condition vectors sampled from datasets, which naturally
ensures non-zero I. For example, considering a classic gradient descent with an overall loss function
L and a learning rate S, # 0, if the “outside” gradient 0L/0Z(I; {W, B}) is not zero, we will have

or OZ(I, {W, B))
9Z(T; (W, B}) ow 70 ™

where W* is the weight after one gradient descent step; ® is Hadamard product. After this step, we
will have

W*:W_/Blr'

OZ(I;{W", B}),.i
oI, ;

=Y W #0 (8)
J
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Figure 3: ControlNet in Stable Diffusion. The gray blocks are the structure of Stable Diffusion 1.5
(or SD V2.1, since they use the same U-Net architecture), while the blue blocks are ControlNet.

where non-zero gradients are obtained and the neural network begins to learn. In this way, the
zero convolutions become an unique type of connection layer that progressively grow from zeros to
optimized parameters in a learned way.

3.2 ControlNet in Image Diffusion Model

We use the Stable Diffusion [44] as an example to introduce the method to use ControlNet to control
a large diffusion model with task-specific conditions.

Stable Diffusion is a large text-to-image diffusion model trained on billions of images. The model
is essentially an U-net with an encoder, a middle block, and a skip-connected decoder. Both the
encoder and decoder have 12 blocks, and the full model has 25 blocks (including the middle block).
In those blocks, 8 blocks are down-sampling or up-sampling convolution layers, 17 blocks are main
blocks that each contains four resnet layers and two Vision Transformers (ViTs). Each Vit contains
several cross-attention and/or self-attention mechanisms. The texts are encoded by OpenAl CLIP,
and diffusion time steps are encoded by positional encoding.

Stable Diffusion uses a pre-processing method similar to VQ-GAN [11] to convert the entire dataset
of 512 x 512 images into smaller 64 x 64 “latent images” for stabilized training. This requires
ControlNets to convert image-based conditions to 64 x 64 feature space to match the convolution
size. We use a tiny network £(-) of four convolution layers with 4 x 4 kernels and 2 x 2 strides
(activated by ReL.U, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly
with the full model) to encode image-space conditions ¢; into feature maps with

Cf = S(Ci) (9)



where ¢ is the converted feature map. This network convert 512 x 512 image conditions to 64 x 64
feature maps.

As shown in Fig. 3, we use ControlNet to control each level of the U-net. Note that the way we
connect the ControlNet is computationally efficient: since the original weights are locked, no gradient
computation on the original encoder is needed for training. This can speed up training and save GPU
memory, as half of the gradient computation on the original model can be avoided. Training a stable
diffusion model with ControlNet requires only about 23% more GPU memory and 34% more time in
each training iteration (as tested on a single Nvidia A100 PCIE 40G).

To be specific, we use ControlNet to create the trainable copy of the 12 encoding blocks and 1 middle
block of Stable Diffusion. The 12 blocks are in 4 resolutions (64 x 64,32 x 32,16 x 16,8 x 8) with
each having 3 blocks. The outputs are added to the 12 skip-connections and 1 middle block of the
U-net. Since SD is a typical U-net structure, this ControlNet architecture is likely to be usable in
other diffusion models.

3.3 Training

Image diffusion models learn to progressively denoise images to generate samples. The denoising
can happen in pixel space or a “latent” space encoded from training data. Stable Diffusion uses latent

images as the training domain. In this context, the terminology “image”, "pixel”, and “denoising” all
refers to corresponding concepts in the “perceptual latent space” [44].

Given an image 2, diffusion algorithms progressively add noise to the image and produces a noisy
image z;, with ¢ being how many times the noise is added. When ¢ is large enough, the image
approximates pure noise. Given a set of conditions including time step ¢, text prompts c;, as well as a
task-specific conditions ¢, image diffusion algorithms learn a network ¢y to predict the noise added
to the noisy image z; with

L= E207t,Ct7Cf,ENN(O71) HE - Gg(zt, t,ct, Cf))”% (10)

where L is the overall learning objective of the entire diffusion model. This learning objective can be
directly used in fine tuning diffusion models.

During the training, we randomly replace 50% text prompts c; with empty strings. This facilitates
ControlNet’s capability to recognize semantic contents from input condition maps, e.g., Canny edge
maps or human scribbles, efc. This is mainly because when the prompt is not visible for the SD
model, the encoder tends to learn more semantics from input control maps as a replacement for the
prompt.

3.4 Improved Training

We discuss several strategies to improve the training of ControlNets, especially in extreme cases when
the computation device is very limited (e.g., on a laptop) or very powerful (e.g., on a computation
cluster with large-scale GPUs available). In our experiments, if any of these strategies are used, we
will mention in the experimental settings.

Small-Scale Training When computation device is limited, we find that partially breaking the
connection between a ControlNet and the Stable Diffusion can accelerate convergence. By default,
we connect the ControlNet to “SD Middle Block™ and “SD Decoder Block 1,2,3,4” as shown in
Fig. 3. We find that disconnecting the link to decoder 1,2,3,4 and only connecting the middle block
can improve the training speed by about a factor of 1.6 (tested on RTX 3070TI laptop GPU). When
the model shows reasonable association between results and conditions, those disconnected links can
be connected again in a continued training to facilitate accurate control.

Large-Scale Training Herein, the large-scale training refers to the situation where both powerful
computation clusters (at least 8§ Nvidia A100 80G or equivalent) and large dataset (at least 1 million
of training image pairs) are available. This usually applies to tasks where data is easily available, e.g.,
edge maps detected by Canny. In this case, since the risk of over-fitting is relatively low, we can first
train ControlNets for a large enough number of iterations (usually more than 50k steps), and then
unlock all weights of the Stable Diffusion and jointly train the entire model as a whole. This would
lead to a more problem-specific model.



3.5 Implementation

We present several implementations of ControlNets with different image-based conditions to control
large diffusion models in various ways.

Canny Edge We use Canny edge detector [5] (with random thresholds) to obtain 3M edge-image-
caption pairs from the internet. The model is trained with 600 GPU-hours with Nvidia A100 80G.
The base model is Stable Diffusion 1.5. (See also Fig. 4.)

Canny Edge (Alter) We rank the image resolutions of the above Canny edge dataset and sampled
several sub-set with 1k, 10k, 50k, 500k samples. We use the same experimental setting to test the
effect of dataset scale. (See also Fig. 22.)

Hough Line We use a learning-based deep Hough transform [13] to detect straight lines from
Places2 [66], and then use BLIP [34] to generate captions. We obtain 600k edge-image-caption pairs.
We use the above Canny model as a starting checkpoint and train the model with 150 GPU-hours
with Nvidia A100 80G. (See also Fig. 5.)

HED Boundary We use HED boundary detection [62] to obtain 3M edge-image-caption pairs
from internet. The model is trained with 300 GPU-hours with Nvidia A100 80G. The base model is
Stable Diffusion 1.5. (See also Fig. 7.)

User Sketching We synthesize human scribbles from images using a combination of HED boundary
detection [62] and a set of strong data augmentations (random thresholds, randomly masking out a
random percentage of scribbles, random morphological transformations, and random non-maximum
suppression). We obtain 500k scribble-image-caption pairs from internet. We use the above Canny
model as a starting checkpoint and train the model with 150 GPU-hours with Nvidia A100 80G. Note
that we also tried a more “human-like” synthesizing method [57] but the method is much slower than
a simple HED and we do not notice visible improvements. (See also Fig. 6.)

Human Pose (Openpifpaf) We use learning-based pose estimation method [27] to “find”” humans
from internet using a simple rule: an image with human must have at least 30% of the key points
of the whole body detected. We obtain 80k pose-image-caption pairs. Note that we directly use
visualized pose images with human skeletons as training condition. The model is trained with 400
GPU-hours on Nvidia RTX 3090TI. The base model is Stable Diffusion 2.1. (See also Fig. 8.)

Human Pose (Openpose) We use learning-based pose estimation method [6] to find humans from
internet using the same rule in the above Openpifpaf setting. We obtain 200k pose-image-caption
pairs. Note that we directly use visualized pose images with human skeletons as training condition.
The model is trained with 300 GPU-hours with Nvidia A100 80G. Other settings are same with the
above Openpifpaf. (See also Fig. 9.)

Semantic Segmentation (COCQO) The COCO-Stuff dataset [4] captioned by BLIP [34]. We obtain
164K segmentation-image-caption pairs. The model is trained with 400 GPU-hours on Nvidia RTX
3090TI. The base model is Stable Diffusion 1.5. (See also Fig. 12.)

Semantic Segmentation (ADE20K) The ADE20K dataset [67] captioned by BLIP [34]. We
obtain 164K segmentation-image-caption pairs. The model is trained with 200 GPU-hours on Nvidia
A100 80G. The base model is Stable Diffusion 1.5. (See also Fig. 11.)

Depth (large-scale) We use the Midas [30] to obtain 3M depth-image-caption pairs from internet.
The model is trained with 500 GPU-hours with Nvidia A100 80G. The base model is Stable Diffusion
1.5. (See also Fig. 23,24,25.)

Depth (small-scale) We rank the image resolutions of the above depth dataset to sample a subset
of 200k pairs. This set is used in experimenting the minimal required dataset size to train the model.
(See also Fig. 14.)



Normal Maps The DIODE dataset [56] captioned by BLIP [34]. We obtain 25,452 normal-image-
caption pairs. The model is trained with 100 GPU-hours on Nvidia A100 80G. The base model is
Stable Diffusion 1.5. (See also Fig. 13.)

Normal Maps (extended) We use the Midas [30] to compute depth map and then perform normal-
from-distance to achieve “coarse” normal maps. We use the above Normal model as a starting
checkpoint and train the model with 200 GPU-hours with Nvidia A100 80G. (See also Fig. 23,24,25.)

Cartoon Line Drawing We use a cartoon line drawing extracting method [61] to extract line
drawings from cartoon illustration from internet. By sorting the cartoon images with popularity, we
obtain the top 1M lineart-cartoon-caption pairs. The model is trained with 300 GPU-hours with
Nvidia A100 80G. The base model is Waifu Diffusion (an interesting community-developed variation
model from stable diffusion [36]). (See also Fig. 15.)

4 Experiment

4.1 Experimental Settings

All results in this paper is achieved with CFG-scale at 9.0. The sampler is DDIM. We use 20 steps by
default. We use three types of prompts to test the models:
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(1) No prompt: We use empty string ‘”’ as prompt.

(2) Default prompt: Since Stable diffusion is essentially trained with prompts, the empty string might
be an unexpected input for the model, and SD tends to generate random texture maps if no prompt

LEINT3 CEINT3

is provided. A better setting is to use meaningless prompts like “an image”, “a nice image”, “a
professional image”, efc. In our setting, we use “a professional, detailed, high-quality image” as
default prompt.

(3) Automatic prompt: In order to test the state-of-the-art maximized quality of a fully automatic
pipeline, we also try to use automatic image captioning methods (e.g., BLIP [34]) to generate prompts
using the results obtained by “default prompt” mode. We use the generated prompt to diffusion again.

(4) User prompt: Users give the prompts.

4.2 Qualitative Results

We present qualitative results in Fig. 4, 5,6,7,8,9,10,11,12,13,14,15.

4.3 Ablation Study

Fig. 20 shows a comparison to a model trained without using ControlNet. That model is trained
with exactly same method with Stability’s Depth-to-Image model (Adding a channel to the SD and
continue the training).

Fig. 21 shows the training process. We would like to point out a “sudden convergence phenomenon”
where the model suddenly be able to follow the input conditions. This can happen during the training
process from 5000 to 10000 steps when using le-5 as the learning rate.

Fig. 22 shows Canny-edge-based ControlNets trained with different dataset scales.

4.4 Comparison to previous methods

Fig. 14 shows the comparison to Stability’s Depth-to-Image model.
Fig. 17 shows a comparison to PITI [59].
Fig. 18 shows a comparison to sketch-guided diffusion [58].

Fig. 19 shows a comparison to Taming transformer [11].



4.5 Comparison of pre-trained models

We show comparisons of different pre-trained models in Fig. 23, 24, 25.

4.6 More Applications

Fig. 16 show that if the diffusion process is masked, the models can be used in pen-based image
editing.

Fig. 26 show that when object is relatively simple, the model can achieve relatively accurate control
of the details.

Fig. 27 shows that when ControlNet is only applied to 50% diffusion iterations, users can get results
that do not follow the input shapes.

5 Limitation

Fig. 28 shows that when the semantic interpretation is wrong, the model may have difficulty to
generate correct contents.

Appendix

Fig. 29 shows all source images in this paper for edge detection, pose extraction, efc.
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Input (Canny Edge) Default Automatic Prompt User Prompt

7

‘ a man standing on top of a cliff”

— Aol \ \
_,—4'&“': ;%E{ /
;AR

“a robot head with gears” “robot, cybernetic, cyberpunk, science fiction”

Figure 4: Controlling Stable Diffusion with Canny edges. The “automatic prompts” are generated by BLIP based on the default result images
without using user prompts. See also the Appendix for source images for canny edge detection.
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Input (Hough Line) Default Automatic Prompt User Prompt

“a desk in a room” “hacker’s room at night”

Figure 5: Controlling Stable Diffusion with Hough lines (M-LSD). The “automatic prompts” are generated by BLIP based on the default
result images without using user prompts. See also the Appendix for source images for line detection.
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Input (User Scribble)

B2 @ D

Automatic Prompt

e , /

“a turtle in river”

e
. )...'t

“an elephant with background in the field”

User Prompt

|
L

“Egyptian elephant sculpture”

Figure 6: Controlling Stable Diffusion with Human scribbles. The “automatic prompts” are generated by BLIP based on the default result
images without using user prompts. These scribbles are from [58].
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Input (HED Edge) Default Automatic Prompt User Prompt

‘

“a toy elephant sitting on a table” “science fiction elephant toy”

Figure 7: Controlling Stable Diffusion with HED boundary map. The “automatic prompts” are generated by BLIP based on the default result
images without using user prompts. See also the Appendix for source images for HED boundary detection.
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Input (openpifpaf)

Automatic Prompt

“a woman dancing near a street corner”

User Prompt

g

“artwork of Michael Jordan playing basketball”

Figure 8: Controlling Stable Diffusion with Openpifpaf pose. See also the Appendix for source images for Openpifpaf pose detection.

Input (openpose)

Default

User Prompt

Figure 9: Controlling Stable Diffusion with Openpose. See also the Appendix for source images for Openpose pose detection.
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“Michael Jackson's concert”

Figure 10: Controlling Stable Diffusion with human pose to generate different poses for a same
person (“Michael Jackson’s concert”). Images are not cherry picked. See also the Appendix for
source images for Openpose pose detection.
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Figure 11: Controlling Stable Diffusion with ADE20K [67] segmentation map. All results are achieved with default prompt. See also the
Appendix for source images for semantic segmentation map extraction.
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COCO Segmentation Default User Prompt

~ ‘
o 2
. lv“

“cyberpunk, city at night”

Figure 12: Controlling Stable Diffusion with COCO-Stuff [4] segmentation map.

Normal Default User Prompt

“cars parked in a city night”

Figure 13: Controlling Stable Diffusion with DIODE [56] normal map.
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Images and Midas Depth

-
Stable Diffusion V2 Depth-to-Image

resumed from SD 2.0, continued training on Large-scale Nvidia A100 Clusters,
more than 12M training data, more than 2000 GPU-hours (estimation)

Stable Diffusion with Depth-based ControlNet
controlling SD 1.5, trained on one single Nvidia RTX 3090TI,
with 200K training data, trained less than one week

Figure 14: Comparison of Depth-based ControlNet and Stable Diffusion V2 Depth-to-Image. Note
that in this experiment, the Depth-based ControlNet is trained at a relatively small scale to test
minimal required computation resources. We also provide relatively stronger models that are trained
at relatively large scale.
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Figure 15: Controlling Stable Diffusion (anime weights) with cartoon line drawings. The line
drawings are inputs and there are no corresponding “ground truths”. This model may be used in
artistic creation tools.
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User input

Source image

Results

Figure 16: Masked Diffusion. By diffusing images in masked areas, the Canny-edge model can be
used to support pen-based editing of image contents. Since all diffusion models naturally support
masked diffusion, the other models are also likely to be used in manipulating images.
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Segmentation

Ours (default) Ours (“golden retriever”)

Figure 17: Comparison to Pretraining-Image-to-Image (PITI) [59]. Note that the semantic consistency
of the “wall”, “paper”, and “cup” is difficult to handle in this task.

Ours (“electric fan”)

Figure 18: Comparison to Sketch-guided diffusion [58]. This input is one of the most challenging
cases in their paper.
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Ours (default) Ours (“white helmet on table”)
Figure 19: Comparison to Taming Transformers [11]. This input is one of the most challenging cases
in their paper.
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Input canny map
Same CFG scale (9.0)
Same DDIM sampler
Same default prompt setting
(“detailed high-quality professional
image” without mentioning image
contents)

without ControlNet SD + ControlNet
(using Stability’s “official” method to add
the channels to input layer, same as their
depth-to-image structure)

Figure 20: Ablative study. We compare the ControlNet structure with a standard method that Stable
Diffusion uses as default way to add conditions to diffusion models.
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Same prompt:

“apple”

+ default “a detailed high-quality professional
image”

Same CFG scale (9.0)

Learning rate le-5
AdamW
without using tricks like ema

100 steps 1000 steps 2000 steps 6100 steps 6133 steps 8000 steps 10000 steps 12000 steps

N/ N

Training steps >

The phenomenon of
sudden convergence

Figure 21: The sudden converge phenomenon. Because we use zero convolutions, the neural network always predict high-quality images during
the entire training. At a certain point of training step, the model suddenly learns to adapt to the input conditions. We call this “sudden converge
phenomenon”.

Input Canny edge 1k training samples 10k training samples 50k training samples 500k training samples ~ 3m training samples

Figure 22: Training on different scale. We show the Canny-edge-based ControlNet trained on different experimental settings with various dataset size.
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Same prompt:

“room”

+ default “a detailed high-quality professional image”
Same CFG scale (9.0)

Depth (midas)

Normal (from midas)

Line (M-LSD) Scribbles (synthesized)

Figure 23: Comparison of six detection types and the corresponding results. The scribble map is extracted from the HED map with
morphological transforms.
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Same prompt:

“robotics”

+ default “a detailed high-quality professional image”
Same CFG scale (9.0)

Depth (midas)

Line (M-LSD) Scribbles (synthesized)

Figure 24: (Continued) Comparison of six detection types and the corresponding results. The scribble map is extracted from the HED map
with morphological transforms.
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Same prompt:

“house”

+ default “a detailed high-quality professional image”
Same CFG scale (9.0)

e

Canny Edge

Line (M-LSD) Scribbles (synthesized)

Figure 25: (Continued) Comparison of six detection types and the corresponding results. The scribble map is extracted from the HED map
with morphological transforms.
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Input Canny edge Output without prompt “a watch in black color”

Figure 26: Example of simple object. When the diffusion content is relatively simple, the model can
achieve very accurate control to manipulate the content materials.

{—\« n.

without user prompt

without user prompt

“house”

Figure 27: Coarse-level control. When users do not want their input shape to be preserved in the
images, we can simply replace the last 50% diffusion iterations with standard SD without ControlNet.
The resulting effect is similar to image retrieval but those images are generated.
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Taming Transformer, Esser et.al.

Ours default Ours “a glass of water”
(Seems to be interpreted as a (Seems unable to eliminate the
bird's eye view of an agricultural effects of mistaken recognitions)
field)

Figure 28: Limitation. When the semantic of input image is mistakenly recognized, the negative
effects seem difficult to be eliminated, even if a strong prompt is provided.
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