mirror of
https://github.com/lllyasviel/ControlNet.git
synced 2026-01-11 15:08:00 -05:00
161 lines
5.6 KiB
Python
161 lines
5.6 KiB
Python
import gradio as gr
|
|
|
|
from annotator.util import resize_image, HWC3
|
|
|
|
|
|
model_canny = None
|
|
|
|
|
|
def canny(img, res, l, h):
|
|
img = resize_image(HWC3(img), res)
|
|
global model_canny
|
|
if model_canny is None:
|
|
from annotator.canny import CannyDetector
|
|
model_canny = CannyDetector()
|
|
result = model_canny(img, l, h)
|
|
return [result]
|
|
|
|
|
|
model_hed = None
|
|
|
|
|
|
def hed(img, res):
|
|
img = resize_image(HWC3(img), res)
|
|
global model_hed
|
|
if model_hed is None:
|
|
from annotator.hed import HEDdetector
|
|
model_hed = HEDdetector()
|
|
result = model_hed(img)
|
|
return [result]
|
|
|
|
|
|
model_mlsd = None
|
|
|
|
|
|
def mlsd(img, res, thr_v, thr_d):
|
|
img = resize_image(HWC3(img), res)
|
|
global model_mlsd
|
|
if model_mlsd is None:
|
|
from annotator.mlsd import MLSDdetector
|
|
model_mlsd = MLSDdetector()
|
|
result = model_mlsd(img, thr_v, thr_d)
|
|
return [result]
|
|
|
|
|
|
model_midas = None
|
|
|
|
|
|
def midas(img, res, a):
|
|
img = resize_image(HWC3(img), res)
|
|
global model_midas
|
|
if model_midas is None:
|
|
from annotator.midas import MidasDetector
|
|
model_midas = MidasDetector()
|
|
results = model_midas(img, a)
|
|
return results
|
|
|
|
|
|
model_openpose = None
|
|
|
|
|
|
def openpose(img, res, has_hand):
|
|
img = resize_image(HWC3(img), res)
|
|
global model_openpose
|
|
if model_openpose is None:
|
|
from annotator.openpose import OpenposeDetector
|
|
model_openpose = OpenposeDetector()
|
|
result, _ = model_openpose(img, has_hand)
|
|
return [result]
|
|
|
|
|
|
model_uniformer = None
|
|
|
|
|
|
def uniformer(img, res):
|
|
img = resize_image(HWC3(img), res)
|
|
global model_uniformer
|
|
if model_uniformer is None:
|
|
from annotator.uniformer import UniformerDetector
|
|
model_uniformer = UniformerDetector()
|
|
result = model_uniformer(img)
|
|
return [result]
|
|
|
|
|
|
block = gr.Blocks().queue()
|
|
with block:
|
|
with gr.Row():
|
|
gr.Markdown("## Canny Edge")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_image = gr.Image(source='upload', type="numpy")
|
|
low_threshold = gr.Slider(label="low_threshold", minimum=1, maximum=255, value=100, step=1)
|
|
high_threshold = gr.Slider(label="high_threshold", minimum=1, maximum=255, value=200, step=1)
|
|
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
|
run_button = gr.Button(label="Run")
|
|
with gr.Column():
|
|
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
|
run_button.click(fn=canny, inputs=[input_image, resolution, low_threshold, high_threshold], outputs=[gallery])
|
|
|
|
with gr.Row():
|
|
gr.Markdown("## HED Edge")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_image = gr.Image(source='upload', type="numpy")
|
|
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
|
run_button = gr.Button(label="Run")
|
|
with gr.Column():
|
|
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
|
run_button.click(fn=hed, inputs=[input_image, resolution], outputs=[gallery])
|
|
|
|
with gr.Row():
|
|
gr.Markdown("## MLSD Edge")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_image = gr.Image(source='upload', type="numpy")
|
|
value_threshold = gr.Slider(label="value_threshold", minimum=0.01, maximum=2.0, value=0.1, step=0.01)
|
|
distance_threshold = gr.Slider(label="distance_threshold", minimum=0.01, maximum=20.0, value=0.1, step=0.01)
|
|
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
|
|
run_button = gr.Button(label="Run")
|
|
with gr.Column():
|
|
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
|
run_button.click(fn=mlsd, inputs=[input_image, resolution, value_threshold, distance_threshold], outputs=[gallery])
|
|
|
|
with gr.Row():
|
|
gr.Markdown("## MIDAS Depth and Normal")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_image = gr.Image(source='upload', type="numpy")
|
|
alpha = gr.Slider(label="alpha", minimum=0.1, maximum=20.0, value=6.2, step=0.01)
|
|
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=384, step=64)
|
|
run_button = gr.Button(label="Run")
|
|
with gr.Column():
|
|
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
|
run_button.click(fn=midas, inputs=[input_image, resolution, alpha], outputs=[gallery])
|
|
|
|
with gr.Row():
|
|
gr.Markdown("## Openpose")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_image = gr.Image(source='upload', type="numpy")
|
|
hand = gr.Checkbox(label='detect hand', value=False)
|
|
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
|
run_button = gr.Button(label="Run")
|
|
with gr.Column():
|
|
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
|
run_button.click(fn=openpose, inputs=[input_image, resolution, hand], outputs=[gallery])
|
|
|
|
|
|
with gr.Row():
|
|
gr.Markdown("## Uniformer Segmentation")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_image = gr.Image(source='upload', type="numpy")
|
|
resolution = gr.Slider(label="resolution", minimum=256, maximum=1024, value=512, step=64)
|
|
run_button = gr.Button(label="Run")
|
|
with gr.Column():
|
|
gallery = gr.Gallery(label="Generated images", show_label=False).style(height="auto")
|
|
run_button.click(fn=uniformer, inputs=[input_image, resolution], outputs=[gallery])
|
|
|
|
|
|
block.launch(server_name='0.0.0.0')
|