Starting to write tests

This commit is contained in:
jowr
2014-06-06 15:28:12 +02:00
parent 636df0ec82
commit 2e615f1434
3 changed files with 35 additions and 400 deletions

View File

@@ -13,403 +13,29 @@
namespace CoolProp{
///*
//Owe a debt of gratitude to http://sole.ooz.ie/en - very clear treatment of GJ
//*/
//template<typename T> void swap_rows(std::vector<std::vector<T> > *A, size_t row1, size_t row2)
//{
// for (size_t col = 0; col < (*A)[0].size(); col++){
// std::swap((*A)[row1][col],(*A)[row2][col]);
// }
//}
//template<typename T> void subtract_row_multiple(std::vector<std::vector<T> > *A, size_t row, T multiple, size_t pivot_row)
//{
// for (size_t col = 0; col < (*A)[0].size(); col++){
// (*A)[row][col] -= multiple*(*A)[pivot_row][col];
// }
//}
//template<typename T> void divide_row_by(std::vector<std::vector<T> > *A, size_t row, T value)
//{
// for (size_t col = 0; col < (*A)[0].size(); col++){
// (*A)[row][col] /= value;
// }
//}
//
//template<typename T> size_t get_pivot_row(std::vector<std::vector<T> > *A, size_t col)
//{
// int index = col;
// T max = 0, val;
//
// for (size_t row = col; row < (*A).size(); row++)
// {
// val = (*A)[row][col];
// if (fabs(val) > max)
// {
// max = fabs(val);
// index = row;
// }
// }
// return index;
//}
//
//
//template<typename T> std::vector<std::vector<T> > linsolve_Gauss_Jordan(std::vector<std::vector<T> > const& A, std::vector<std::vector<T> > const& B) {
// std::vector<std::vector<T> > AB;
// std::vector<std::vector<T> > X;
// size_t pivot_row;
// T pivot_element;
//
// size_t NrowA = num_rows(A);
// size_t NrowB = num_rows(B);
// size_t NcolA = num_cols(A);
// size_t NcolB = num_cols(B);
//
// if (NrowA!=NrowB) throw ValueError(format("You have to provide matrices with the same number of rows: %d is not %d. ",NrowA,NrowB));
//
// AB.resize(NrowA, std::vector<T>(NcolA+NcolB, 0));
// X.resize(NrowA, std::vector<T>(NcolB, 0));
//
// // Build the augmented matrix
// for (size_t row = 0; row < NrowA; row++){
// for (size_t col = 0; col < NcolA; col++){
// AB[row][col] = A[row][col];
// }
// for (size_t col = NcolA; col < NcolA+NcolB; col++){
// AB[row][col] = B[row][col-NcolA];
// }
// }
//
// for (size_t col = 0; col < NcolA; col++){
// // Find the pivot value
// pivot_row = get_pivot_row(&AB, col);
//
// if (fabs(AB[pivot_row][col]) < 10*DBL_EPSILON){ throw ValueError(format("Zero occurred in row %d, the matrix is singular. ",pivot_row));}
//
// if (pivot_row>=col){
// // Swap pivot row and current row
// swap_rows(&AB, col, pivot_row);
// }
// // Get the pivot element
// pivot_element = AB[col][col];
// // Divide the pivot row by the pivot element
// divide_row_by(&AB,col,pivot_element);
//
// if (col < NrowA-1)
// {
// // All the rest of the rows, subtract the value of the [r][c] combination
// for (size_t row = col + 1; row < NrowA; row++)
// {
// subtract_row_multiple(&AB,row,AB[row][col],col);
// }
// }
// }
// for (int col = NcolA - 1; col > 0; col--)
// {
// for (int row = col - 1; row >=0; row--)
// {
// subtract_row_multiple(&AB,row,AB[row][col],col);
// }
// }
// // Set the output value
// for (size_t row = 0; row < NrowA; row++){
// for (size_t col = 0; col < NcolB; col++){
// X[row][col] = AB[row][NcolA+col];
// }
// }
// return X;
//}
//
//
////std::vector<std::vector<double> > linsolve_Gauss_Jordan_reimpl(std::vector<std::vector<double> > const& A, std::vector<std::vector<double> > const& B) {
//// std::vector<std::vector<double> > AB;
//// std::vector<std::vector<double> > X;
//// size_t pivot_row;
//// double pivot_element;
//// double tmp_element;
////
//// size_t NrowA = num_rows(A);
//// size_t NrowB = num_rows(B);
//// size_t NcolA = num_cols(A);
//// size_t NcolB = num_cols(B);
////
//// if (NrowA!=NrowB) throw ValueError(format("You have to provide matrices with the same number of rows: %d is not %d. ",NrowA,NrowB));
////
//// AB.resize(NrowA, std::vector<double>(NcolA+NcolB, 0));
//// X.resize(NrowA, std::vector<double>(NcolB, 0));
////
//// // Build the augmented matrix
//// for (size_t row = 0; row < NrowA; row++){
//// for (size_t col = 0; col < NcolA; col++){
//// AB[row][col] = A[row][col];
//// }
//// for (size_t col = NcolA; col < NcolA+NcolB; col++){
//// AB[row][col] = B[row][col-NcolA];
//// }
//// }
////
//// for (size_t col = 0; col < NcolA; col++){
//// // Find the pivot row
//// pivot_row = 0;
//// pivot_element = 0.0;
//// for (size_t row = col; row < NrowA; row++){
//// tmp_element = fabs(AB[row][col]);
//// if (tmp_element>pivot_element) {
//// pivot_element = tmp_element;
//// pivot_row = row;
//// }
//// }
//// // Check for errors
//// if (AB[pivot_row][col]<1./_HUGE) throw ValueError(format("Zero occurred in row %d, the matrix is singular. ",pivot_row));
//// // Swap the rows
//// if (pivot_row>col) {
//// for (size_t colInt = 0; colInt < NcolA; colInt++){
//// std::swap(AB[pivot_row][colInt],AB[pivot_row][colInt]);
//// }
//// }
//// // Process the entries below current element
//// for (size_t row = col; row < NrowA; row++){
//// // Entries to the right of current element (until end of A)
//// for (size_t colInt = col+1; colInt < NcolA; colInt++){
//// // All entries in augmented matrix
//// for (size_t colFull = col; colFull < NcolA+NcolB; colFull++){
//// AB[colInt][colFull] -= AB[col][colFull] * AB[colInt][col] / AB[col][col];
//// }
//// AB[colInt][col] = 0.0;
//// }
//// }
//// }
//// return AB;
////}
//
//
//
//
//
//
//template<class T> std::vector<std::vector<T> > linsolve(std::vector<std::vector<T> > const& A, std::vector<std::vector<T> > const& B){
// return linsolve_Gauss_Jordan(A, B);
//}
//
//template<class T> std::vector<T> linsolve(std::vector<std::vector<T> > const& A, std::vector<T> const& b){
// std::vector<std::vector<T> > B;
// for (size_t i = 0; i < b.size(); i++){
// B.push_back(std::vector<T>(1,b[i]));
// }
// B = linsolve(A, B);
// B[0].resize(B.size(),0.0);
// for (size_t i = 1; i < B.size(); i++){
// B[0][i] = B[i][0];
// }
// return B[0];
//}
//
//
///// Some shortcuts and regularly needed operations
//template<class T> std::size_t num_rows (std::vector<std::vector<T> > const& in){ return in.size(); }
//template<class T> std::size_t num_cols (std::vector<std::vector<T> > const& in){
// if (num_rows(in)>0) {
// if (is_squared(in)) {
// return in[0].size();
// } else {
// return max_cols(in);
// }
// } else {
// return 0;
// }
//}
//template<class T> std::size_t max_cols (std::vector<std::vector<T> > const& in){
// std::size_t cols = 0;
// std::size_t col = 0;
// for (std::size_t i = 0; i < in.size(); i++) {
// col = in[i].size();
// if (cols<col) {cols = col;}
// }
// return cols;
//}
//template<class T> std::vector<T> get_row(std::vector< std::vector<T> > const& in, size_t row) { return in[row]; }
//template<class T> std::vector<T> get_col(std::vector< std::vector<T> > const& in, size_t col) {
// std::size_t sizeX = in.size();
// if (sizeX<1) throw ValueError(format("You have to provide values, a vector length of %d is not valid. ",sizeX));
// size_t sizeY = in[0].size();
// if (sizeY<1) throw ValueError(format("You have to provide values, a vector length of %d is not valid. ",sizeY));
// std::vector<T> out;
// for (std::size_t i = 0; i < sizeX; i++) {
// sizeY = in[i].size();
// if (sizeY-1<col) throw ValueError(format("Your matrix does not have enough entries in row %d, last index %d is less than %d. ",i,sizeY-1,col));
// out.push_back(in[i][col]);
// }
// return out;
//}
//template<class T> bool is_squared(std::vector<std::vector<T> > const& in){
// std::size_t cols = max_cols(in);
// if (cols!=num_rows(in)) { return false;}
// else {
// for (std::size_t i = 0; i < in.size(); i++) {
// if (cols!=in[i].size()) {return false; }
// }
// }
// return true;
//}
//template<class T> std::vector<std::vector<T> > make_squared(std::vector<std::vector<T> > const& in){
// std::size_t cols = max_cols(in);
// std::size_t rows = num_rows(in);
// std::size_t maxVal = 0;
// std::vector<std::vector<T> > out;
// std::vector<T> tmp;
//
// if (cols>rows) {maxVal = cols; }
// else {maxVal = rows; }
// out.clear();
// for (std::size_t i = 0; i < in.size(); i++) {
// tmp.clear();
// for (std::size_t j = 0; j < in[i].size(); j++) {
// tmp.push_back(in[i][j]);
// }
// while (maxVal>tmp.size()) {
// tmp.push_back(0.0);
// }
// out.push_back(tmp);
// }
// // Check rows
// tmp.clear();
// tmp.resize(maxVal,0.0);
// while (maxVal>out.size()) {
// out.push_back(tmp);
// }
// return out;
//}
//
//template<class T> T multiply( std::vector<T> const& a, std::vector<T> const& b){
// return dot_product(a,b);
//
//}
//template<class T> std::vector<T> multiply(std::vector<std::vector<T> > const& A, std::vector<T> const& b){
// std::vector<std::vector<T> > B;
// for (size_t i = 0; i < b.size(); i++){
// B.push_back(std::vector<T>(1,b[i]));
// }
// B = multiply(A, B);
// B[0].resize(B.size(),0.0);
// for (size_t i = 1; i < B.size(); i++){
// B[0][i] = B[i][0];
// }
// return B[0];
//}
//
//template<class T> std::vector<std::vector<T> > multiply(std::vector<std::vector<T> > const& A, std::vector<std::vector<T> > const& B){
// if (num_cols(A) != num_rows(B)){
// throw ValueError(format("You have to provide matrices with the same columns and rows: %d is not equal to %d. ",num_cols(A),num_rows(B)));
// }
// size_t rows = num_rows(A);
// size_t cols = num_cols(B);
// T tmp;
// std::vector<std::vector<T> > outVec;
// std::vector<T> tmpVec;
// outVec.clear();
// for (size_t i = 0; i < rows; i++){
// tmpVec.clear();
// for (size_t j = 0; j < cols; j++){
// tmp = 0.0;
// for (size_t k = 0; k < num_cols(A); k++){
// tmp += A[i][k] * B[k][j];
// }
// tmpVec.push_back(tmp);
// }
// outVec.push_back(tmpVec);
// }
// return outVec;
//}
//
//template<class T> T dot_product(std::vector<T> const& a, std::vector<T> const& b){
// if (a.size()==b.size()){
// return std::inner_product(a.begin(), a.end(), b.begin(), 0.0);
// }
// throw ValueError(format("You have to provide vectors with the same length: %d is not equal to %d. ",a.size(),b.size()));
//}
//
//template<class T> std::vector<T> cross_product(std::vector<T> const& a, std::vector<T> const& b){
// throw NotImplementedError("The cross product function has not been implemented, yet");
//}
//
//template<class T> std::vector< std::vector<T> > transpose(std::vector<std::vector<T> > const& in){
// size_t sizeX = in.size();
// if (sizeX<1) throw ValueError(format("You have to provide values, a vector length of %d is not a valid. ",sizeX));
// size_t sizeY = in[0].size();
// size_t sizeYOld = sizeY;
// if (sizeY<1) throw ValueError(format("You have to provide values, a vector length of %d is not a valid. ",sizeY));
// std::vector< std::vector<T> > out(sizeY,std::vector<T>(sizeX));
// for (size_t i = 0; i < sizeX; ++i){
// sizeY = in[i].size();
// if (sizeY!=sizeYOld) throw ValueError(format("You have to provide a rectangular matrix: %d is not equal to %d. ",sizeY,sizeYOld));
// for (size_t j = 0; j < sizeY; ++j){
// out[j][i] = in[i][j];
// }
// }
// return out;
//}
//
//template<class T> std::vector< std::vector<T> > invert(std::vector<std::vector<T> > const& in){
// if (!is_squared(in)) throw ValueError(format("Only square matrices can be inverted: %d is not equal to %d. ",num_rows(in),num_cols(in)));
// std::vector<std::vector<T> > identity;
// // Build the identity matrix
// size_t dim = num_rows(in);
// identity.resize(dim, std::vector<T>(dim, 0));
// for (size_t row = 0; row < dim; row++){
// identity[row][row] = 1.0;
// }
// return linsolve(in,identity);
//}
//
//template<class T> std::string vec_to_string( T const& a){
// std::stringstream out;
// out << format("[ %7.3f ]",a);
// return out.str();
//}
//
//template<class T> std::string vec_to_string( std::vector<T> const& a) {
// return vec_to_string(a,"%7.3g");
//}
//template<class T> std::string vec_to_string( std::vector<T> const& a, const char *fmt) {
// if (a.size()<1) {
// return std::string("");
// } else {
// std::stringstream out;
// out << format("[ ");
// out << format(fmt,a[0]);
// for (size_t j = 1; j < a.size(); j++) {
// out << ", ";
// out << format(fmt,a[j]);
// }
// out << " ]";
// return out.str();
// }
//}
//
//template<class T> std::string vec_to_string(std::vector<std::vector<T> > const& A) {
// return vec_to_string(A, "%7.3g");
//}
//
//template<class T> std::string vec_to_string(std::vector<std::vector<T> > const& A, const char *fmt) {
// std::stringstream out;
// for (size_t j = 0; j < A.size(); j++) {
// out << vec_to_string(A[j], fmt);
// }
// return out.str();
//}
}; /* namespace CoolProp */
#ifdef ENABLE_CATCH
#include <math.h>
#include "catch.hpp"
TEST_CASE("Internal consistency checks and example use cases for MatrixMath.h","[MatrixMath]")
{
/// Test case for "SylthermXLT" by "Dow Chemicals"
std::vector<double> cHeat;
cHeat.clear();
cHeat.push_back(+1.1562261074E+03);
cHeat.push_back(+2.0994549103E+00);
cHeat.push_back(+7.7175381057E-07);
cHeat.push_back(-3.7008444051E-20);
SECTION("Eigen::Vector from std::vector") {
Eigen::Matrix<double,2,1> matrix;
CoolProp::convert(cHeat, matrix);
}
}
#endif /* CATCH_ENABLED */

View File

@@ -32,7 +32,7 @@ std::cout << "Evaluation of the polynomial at " << input << std::endl;
std::cout << eval << std::endl;
double vec0 = 0.1;
std::vector<double> vec1(2,0.2);
std::vector<double> vec1(2,0.44);
std::vector< std::vector<double> > vec2;
vec2.push_back(std::vector<double>(2,0.2));
vec2.push_back(std::vector<double>(2,0.3));
@@ -56,6 +56,12 @@ CoolProp::convert(vec2, mat2);
CoolProp::convert(mat2, vec);
std::cout << CoolProp::vec_to_string(vec) << std::endl;
Eigen::Matrix<double,2,1> mat1;
CoolProp::convert(vec1, mat1);
std::vector<double> vec3;
CoolProp::convert(mat1, vec);
std::cout << CoolProp::vec_to_string(vec) << std::endl;
//std::vector< std::vector<double> > vec(vec2);
//CoolProp::convert(mat,vec);