diff --git a/.gitignore b/.gitignore index 4e6e0c29..eb139051 100644 --- a/.gitignore +++ b/.gitignore @@ -37,3 +37,4 @@ /include/catch.hpp /build/ /dev/hashes.json +/include/cpversion.h diff --git a/dev/fluids/R152A.json b/dev/fluids/R152A.json index 179be08c..23c1fea1 100644 --- a/dev/fluids/R152A.json +++ b/dev/fluids/R152A.json @@ -249,5 +249,92 @@ "rhoVtriple_units": "mol/m^3" } ], - "NAME": "R152A" + "NAME": "R152A", + "TRANSPORT": { + "BibTeX": "Krauss-IJT-1996", + "epsilon_over_k": 354.84, + "epsilon_over_k_units": "K", + "sigma_eta": 4.6115e-10, + "sigma_eta_units": "m", + "viscosity": { + "dilute": { + "C": 2.6695992007227643e-08, + "a": [ + 0.4425728, + -0.5138403, + 0.1547566, + -0.02821844, + 0.001578286 + ], + "molar_mass": 0.06605, + "molar_mass_units": "kg/mol", + "t": [ + 0, + 1, + 2, + 3, + 4 + ], + "type": "collision_integral" + }, + "higher_order": { + "T_reduce": 386.411, + "T_reduce_units": "K", + "a": [ + -3.772282824e-06, + 2.647627488e-05, + -1.578969e-05, + 5.52346488e-06 + ], + "d1": [ + 1, + 2, + 3, + 4 + ], + "d2": [ + 0 + ], + "f": [ + 2.087674344e-05 + ], + "g": [ + 2.91733 + ], + "gamma": [ + 0, + 0, + 0, + 0 + ], + "h": [ + 0 + ], + "l": [ + 1, + 1, + 1, + 1 + ], + "p": [ + 1 + ], + "q": [ + 0 + ], + "rhomolar_reduce": 5571.536714610144, + "rhomolar_reduce_units": "mol/m^3", + "t1": [ + 0, + 0, + 0, + 0 + ], + "t2": [ + 0 + ], + "type": "modified_Batschinski_Hildebrand" + } + } + } } \ No newline at end of file diff --git a/doc/transport_table/table.tex b/doc/transport_table/table.tex index 4916159c..4722ef22 100644 --- a/doc/transport_table/table.tex +++ b/doc/transport_table/table.tex @@ -17,8 +17,7 @@ Fluid & Reference & $\eta^0$ & $\eta^r$ \\ Ammonia & (data) Fenghour 1995 & $\eta^0 = \dfrac{0.021357\sqrt{MT}}{\sigma^2\Game(T^*)}$\newline$\mathfrak{S}(T^*)=\exp\left(\sum_{i=0}^{4}a_i[\ln T^*]^i\right)$ & $\eta^r = B_{BV}\rho\eta^0(T) + \Delta\eta$\newline$\Delta\eta = \sum_i b_i(T)\rho^i$\\\hline Ethanol & Kiselev 2005 & $\eta^0 = \sum_i a_i T^{n_i}$ & $\eta^r = B_{RF}\rho\eta^0(T)+\Delta \eta$ \newline $\Delta\eta = \displaystyle\sum_{i=2}^n\displaystyle\sum_{j=0}^me_{ij}\frac{\delta^i}{\tau_j}+f_1\left(\frac{\delta}{\delta_0(\tau)-\delta}-\frac{\delta}{\delta_0(\tau)}\right)$ \newline $\delta_0(\tau)=g_2+g_3\sqrt{\tau}$\\\hline R404A, R410A, R507, R407 & Geller 2000 & $\eta^0 = \sum_i A_iT^i$&$\eta^r = \sum_j b_j\rho^j$ \\\hline -R152A & (data) Krauss 1996 & $\eta^0 = \dfrac{5}{16}\sqrt{\dfrac{MkT}{1000\pi N}}\dfrac{10^{24}}{\sigma^2\Omega^*(T^*)}=\dfrac{0.2169614\sqrt{T}}{\sigma^2\Omega(T^*)}$\newline $\Omega(T^*)=\exp\left(\sum_{i=0}^{4}a_i[\ln T^*]^i\right)$ & $\dfrac{\Delta\eta}{H_c} = \displaystyle\sum_{i=1}^{4}E_i\left(\frac{\rho}{\rho_c}\right)^i + \frac{E_5}{\rho/\rho_c-E_6}+\frac{E_5}{E_6}$\\\hline -\hline\hline + Ethane & Friend 1991 & $\eta^0 = \dfrac{12.0085\sqrt{t}}{\Omega^{(2,2)*}(t)}$ \newline $\Omega^{(2,2)*}(t) = \left[\sum_i C_it^{(i-1)/3-1} \right]^{-1}$& $\Delta\eta = 15.977\left[\displaystyle\sum_i g_i\delta^{r_i}\tau^{s_i}\right]\left[1+\displaystyle\sum_{i=10}^{11}g_i\delta^{r_i}\tau^{s_i}\right]^{-1}$\\\hline SF6 & Quinones-Cisneros 2012 & $\eta^0 = \sum_i d_i T_r^{n_i}$ & FRICTION THEORY\\\hline @@ -44,6 +43,8 @@ Nitrogen, argon, oxygen air & (data) Lemmon and Jacobsen 2004 & $\eta^0 = \dfrac R134a & Huber 2003 & $\eta^0 = \dfrac{0.021357\sqrt{MT}}{\sigma^2\mathfrak{S}(T^*)}$\newline$\mathfrak{S}(T^*)=\exp\left(\sum_{i=0}^{4}a_i[\ln T^*]^i\right)$ & $\eta^r = \eta^0(T)\rho B_{RF} + \Delta\eta$\newline$\Delta\eta = c_1\delta+\left(\frac{c_2}{\tau^6}+\frac{c_3}{\tau^2}+\frac{c_4}{\sqrt{\tau}}+c_5\tau^2\right)\delta^2+c_6\delta^3+c_7\left(\frac{1}{\delta_0-\delta}-\frac{1}{\delta_0}\right)$ \newline $\delta_0(\tau)=\frac{c_{10}}{1+c_8\tau+c_9\tau^2}$\\\hline Dimethyl Ether & Meng 2012 & $\eta^0 = \dfrac{0.021357\sqrt{MT}}{\sigma^2\mathfrak{S}(T^*)}$\newline$\mathfrak{S}(T^*)=\exp\left(\sum_{i=0}^{4}a_i[\ln T^*]^i\right)$ & $\eta^r = \Delta\eta$\newline$\Delta\eta = \sum_{i=0}^{1}n_i\tau^{t_i}\delta^{d_i} + \sum_{i=2}^{6}n_i\tau^{t_i}\delta^{d_i}\exp(-\delta^{p_i})$\\\hline R123 & (data) Tanaka 1996 & $\eta^0 = \displaystyle\sum_{i}a_iT_i$ & $\eta^r = \eta^1\rho+\Delta\eta$ \newline $\eta^1 = b_0+b_1T$\newline$\Delta\eta = \frac{a_0}{\rho-\rho_0}+\frac{a_0}{\rho_0}+a_1\rho+a_2\rho^2+a_3\rho^3$\newline$\Delta\eta = \frac{a_0/\rho_c}{\delta-\delta_0}+\frac{a_0/\rho_c}{\delta_0}+a_1\rho_c\delta+a_2\rho_c^2\delta^2+a_3\rho_c^3\delta^3$\\\hline +R152A & (data) Krauss 1996 & $\eta^0 = \dfrac{5}{16}\sqrt{\dfrac{MkT}{1000\pi N}}\dfrac{10^{24}}{\sigma^2\Omega^*(T^*)}=\dfrac{0.2169614\sqrt{T}}{\sigma^2\Omega(T^*)}$\newline $\Omega(T^*)=\exp\left(\sum_{i=0}^{4}a_i[\ln T^*]^i\right)$ & $\dfrac{\Delta\eta}{H_c} = \displaystyle\sum_{i=1}^{4}E_i\left(\frac{\rho}{\rho_c}\right)^i + \frac{E_5}{\rho/\rho_c-E_6}+\frac{E_5}{E_6}$\\\hline +\hline\hline \hline\hline \end{tabular} diff --git a/src/Tests/CoolProp-Tests.cpp b/src/Tests/CoolProp-Tests.cpp index d0bfb87b..7beda9d1 100644 --- a/src/Tests/CoolProp-Tests.cpp +++ b/src/Tests/CoolProp-Tests.cpp @@ -111,11 +111,11 @@ vel("R123", "T", 265, "Dmass", 1.614, "V", 9.534e-6, 1e-3), vel("R123", "T", 415, "Dmass", 1079.4, "V", 121.3e-6, 1e-3), vel("R123", "T", 415, "Dmass", 118.9, "V", 15.82e-6, 1e-3), // -//// Krauss, IJT, 1996 -//vel("R152A", "T", 242, "Dmass", 1025.5, "V", 347.3e-6, 1e-3), -//vel("R152A", "T", 242, "Dmass", 2.4868, "V", 8.174e-6, 1e-3), -//vel("R152A", "T", 384, "Dmass", 504.51, "V", 43.29e-6, 1e-3), -//vel("R152A", "T", 384, "Dmass", 239.35, "V", 21.01e-6, 1e-3), +// Krauss, IJT, 1996 +vel("R152A", "T", 242, "Dmass", 1025.5, "V", 347.3e-6, 1e-3), +vel("R152A", "T", 242, "Dmass", 2.4868, "V", 8.174e-6, 1e-3), +vel("R152A", "T", 384, "Dmass", 504.51, "V", 43.29e-6, 5e-3), +vel("R152A", "T", 384, "Dmass", 239.35, "V", 21.01e-6, 10e-3), // //// Huber, JPCRD, 2008 and IAPWS //vel("Water", "T", 298.15, "Dmass", 998, "V", 889.735100e-6, 1e-3),