diff --git a/doc/notebooks/Maxwell_Loop.ipynb b/doc/notebooks/Maxwell_Loop.ipynb index 2486c7bb..bbea2558 100644 --- a/doc/notebooks/Maxwell_Loop.ipynb +++ b/doc/notebooks/Maxwell_Loop.ipynb @@ -1,495 +1,461 @@ { - "metadata": { - "name": "", - "signature": "sha256:e672c8ecb0344bd917ab9642f65e7c6065b268fbf6312bd25d5fa6e7e7914af8" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ + "cells": [ { - "cells": [ + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "collapsed": false, - "input": [ - "############################################################\n", - "# Plots of meta-stable Maxwell loops\n", - "# Inspired by https://doi.org/10.1134/S0036024406040030\n", - "# Math tricks taken from: http://math.stackexchange.com/q/416823/92706\n", - "# Plot also shown on page 79 of https://doi.org/10.15480/882.1207\n", - "############################################################\n", - "\n", - "# load some bits and pieces\n", - "import numpy as np\n", - "from numpy.linalg import solve\n", - "from numpy.linalg import lstsq\n", - "from numpy import log\n", - "\n", - "import matplotlib\n", - "import matplotlib.pyplot as plt\n", - "\n", - "import CoolProp as CP\n", - "from CoolProp.CoolProp import PropsSI\n", - "\n", - "# Check: CoolProp version\n", - "print(CP.__version__)\n", - "print(CP.__gitrevision__)\n", - "\n", - "# Constants\n", - "eps = 1e-3\n", - "kilo = 1e3\n", - "Mega = 1e6\n", - "golden = (1 + 5 ** 0.5) / 2\n", - "width = 12.5" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "5.1.1\n", - "12f006445f234e572e64cc820146ab5d2c2a9d10\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Calculation of the coefficients for the metastable region interpolation happens in this cell\n", - "\n", - "# Set FluidName\n", - "FluidName = 'R125'\n", - "nPoints = 1000\n", - "# pick any int smaller than nPoints\n", - "myIdx = 860 \n", - "\n", - "# Constants, triple and critical data\n", - "R = PropsSI('GAS_CONSTANT',FluidName)\n", - "MM = PropsSI('MOLAR_MASS',FluidName)\n", - "Rs = R/MM\n", - "T_crt = PropsSI('T_CRITICAL',FluidName)\n", - "T_trp = PropsSI('T_TRIPLE',FluidName)\n", - "p_crt = PropsSI('P_CRITICAL',FluidName)\n", - "p_trp = PropsSI('P_TRIPLE',FluidName)\n", - "p_max = PropsSI('P_MAX',FluidName)\n", - "d_crt = PropsSI('RHOMASS_CRITICAL',FluidName)\n", - "v_crt = 1/d_crt\n", - "d_trp_liq = PropsSI('D','T',T_trp,'Q',0,FluidName)\n", - "d_trp_vap = PropsSI('D','T',T_trp,'Q',1,FluidName)\n", - "print(\"R = \" + str(R))\n", - "print(\"MM = \" + str(MM))\n", - "print(\"Rs = \" + str(Rs))\n", - "print(\"T_crt = \" + str(T_crt))\n", - "print(\"T_trp = \" + str(T_trp))\n", - "\n", - "T_sat = np.linspace(T_trp, T_crt-eps, num=nPoints)\n", - "# empty arrays\n", - "# vap side\n", - "delta_vap = np.empty(nPoints)\n", - "tau_vap = np.empty(nPoints)\n", - "p_vap = np.empty(nPoints)\n", - "d_vap = np.empty(nPoints)\n", - "v_vap = np.empty(nPoints)\n", - "f_vap = np.empty(nPoints)\n", - "dP_dD_T_vap = np.empty(nPoints)\n", - "d2P_dD2_T_vap = np.empty(nPoints)\n", - "d2P_dDdT_vap = np.empty(nPoints)\n", - "# liq side\n", - "delta_liq = np.empty(nPoints)\n", - "tau_liq = np.empty(nPoints)\n", - "p_liq = np.empty(nPoints)\n", - "d_liq = np.empty(nPoints)\n", - "v_liq = np.empty(nPoints)\n", - "f_liq = np.empty(nPoints)\n", - "dP_dD_T_liq = np.empty(nPoints)\n", - "d2P_dD2_T_liq = np.empty(nPoints)\n", - "d2P_dDdT_liq = np.empty(nPoints)\n", - "# metastable coeffs: \n", - "AShape = (8,8)\n", - "A = np.empty(AShape)\n", - "b = np.empty(8)\n", - "xShape = (nPoints,8)\n", - "x = np.empty(xShape)\n", - "\n", - "HEOS = CP.AbstractState(\"HEOS\", FluidName)\n", - "# get values from CoolProp\n", - "for idx in range(0,nPoints):\n", - " # AT the vap line\n", - " HEOS.update(CP.QT_INPUTS, 1, T_sat[idx]) \n", - " delta_vap[idx] = HEOS.delta() \n", - " tau_vap[idx] = HEOS.tau()\n", - " p_vap[idx] = HEOS.p()\n", - " d_vap[idx] = HEOS.rhomass()\n", - " f_vap[idx] = Rs*T_sat[idx]*( HEOS.alpha0() + HEOS.alphar() ) \n", - " #f_vap[idx] = HEOS.umass() - T_sat[idx]*HEOS.smass()\n", - " dP_dD_T_vap[idx] = HEOS.first_partial_deriv(CP.iP, CP.iDmass, CP.iT)\n", - " d2P_dD2_T_vap[idx] = HEOS.second_partial_deriv(CP.iP, CP.iDmass, CP.iT, CP.iDmass, CP.iT)\n", - " d2P_dDdT_vap[idx] = HEOS.second_partial_deriv(CP.iP, CP.iDmass, CP.iT, CP.iT, CP.iDmass) \n", - " \n", - " # AT the liq line\n", - " HEOS.update(CP.QT_INPUTS, 0, T_sat[idx]) \n", - " delta_liq[idx] = HEOS.delta() \n", - " tau_liq[idx] = HEOS.tau()\n", - " p_liq[idx] = HEOS.p() \n", - " d_liq[idx] = HEOS.rhomass() \n", - " f_liq[idx] = Rs*T_sat[idx]*( HEOS.alpha0() + HEOS.alphar() )\n", - " # f_liq[idx] = HEOS.umass() - T_sat[idx]*HEOS.smass()\n", - " dP_dD_T_liq[idx] = HEOS.first_partial_deriv(CP.iP, CP.iDmass, CP.iT)\n", - " d2P_dD2_T_liq[idx] = HEOS.second_partial_deriv(CP.iP, CP.iDmass, CP.iT, CP.iDmass, CP.iT) \n", - " d2P_dDdT_liq[idx] = HEOS.second_partial_deriv(CP.iP, CP.iDmass, CP.iT, CP.iT, CP.iDmass) \n", - "\n", - " # calculate metastable coeffs by solving Ax=b\n", - " A = np.array([ [1/tau_vap[idx], -1/delta_vap[idx]/tau_vap[idx], log(delta_vap[idx]), delta_vap[idx], delta_vap[idx]**2/2, delta_vap[idx]**3/3, delta_vap[idx]**4/4, delta_vap[idx]**5/5 ], \n", - " [1/tau_liq[idx], -1/delta_liq[idx]/tau_liq[idx], log(delta_liq[idx]), delta_liq[idx], delta_liq[idx]**2/2, delta_liq[idx]**3/3, delta_liq[idx]**4/4, delta_liq[idx]**5/5 ], \n", - " [ 0, d_crt/tau_vap[idx], d_crt*delta_vap[idx], d_crt*delta_vap[idx]**2, d_crt*delta_vap[idx]**3, d_crt*delta_vap[idx]**4, d_crt*delta_vap[idx]**5, d_crt*delta_vap[idx]**6 ], \n", - " [ 0, d_crt/tau_liq[idx], d_crt*delta_liq[idx], d_crt*delta_liq[idx]**2, d_crt*delta_liq[idx]**3, d_crt*delta_liq[idx]**4, d_crt*delta_liq[idx]**5, d_crt*delta_liq[idx]**6 ], \n", - " [ 0, 0, 1, 2*delta_vap[idx], 3*delta_vap[idx]**2, 4*delta_vap[idx]**3, 5*delta_vap[idx]**4, 6*delta_vap[idx]**5 ], \n", - " [ 0, 0, 1, 2*delta_liq[idx], 3*delta_liq[idx]**2, 4*delta_liq[idx]**3, 5*delta_liq[idx]**4, 6*delta_liq[idx]**5 ], \n", - " [ 0, 0, 0, 2/d_crt, 6*delta_vap[idx]/d_crt, 12*delta_vap[idx]**2/d_crt, 20*delta_vap[idx]**3/d_crt, 30*delta_vap[idx]**4/d_crt ], \n", - " [ 0, 0, 0, 2/d_crt, 6*delta_liq[idx]/d_crt, 12*delta_liq[idx]**2/d_crt, 20*delta_liq[idx]**3/d_crt, 30*delta_liq[idx]**4/d_crt ]])\n", - " A = Rs*T_crt*A\n", - " b = np.array([f_vap[idx], f_liq[idx], p_vap[idx], p_liq[idx], dP_dD_T_vap[idx], dP_dD_T_liq[idx], d2P_dD2_T_vap[idx], d2P_dD2_T_liq[idx]])\n", - " x[idx] = solve(A,b)\n", - " \n", - " # for validation\n", - " if (abs(idx-myIdx)<0.9):\n", - " print(np.allclose(np.dot(A, x[idx]), b))\n", - " print(A)\n", - " print(b)\n", - " print(x[idx])\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "R = 8.314472\n", - "MM = 0.1200214\n", - "Rs = 69.2749126405791\n", - "T_crt = 339.173\n", - "T_trp = 172.52\n", - "True" - ] - }, - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "[[ 2.18897768e+04 -8.06034729e+04 -3.06277880e+04 6.38094260e+03\n", - " 8.66447833e+02 1.56869582e+02 3.19512299e+01 6.94168888e+00]\n", - " [ 2.18897768e+04 -1.17791438e+04 1.45603294e+04 4.36641357e+04\n", - " 4.05716324e+04 5.02642066e+04 7.00563818e+04 1.04151445e+05]\n", - " [ 0.00000000e+00 1.25555879e+07 3.65999554e+06 9.93958231e+05\n", - " 2.69932833e+05 7.33066360e+04 1.99081484e+04 5.40652788e+03]\n", - " [ 0.00000000e+00 1.25555879e+07 2.50449741e+07 4.65423380e+07\n", - " 8.64919732e+07 1.60732394e+08 2.98697111e+08 5.55083901e+08]\n", - " [ 0.00000000e+00 0.00000000e+00 2.34961799e+04 1.27618852e+04\n", - " 5.19868700e+03 1.88243498e+03 6.39024598e+02 2.08250667e+02]\n", - " [ 0.00000000e+00 0.00000000e+00 2.34961799e+04 8.73282715e+04\n", - " 2.43429794e+05 6.03170479e+05 1.40112764e+06 3.12454335e+06]\n", - " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.19278459e+01\n", - " 6.67483246e+01 3.62541680e+01 1.64094593e+01 6.68456434e+00]\n", - " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.19278459e+01\n", - " 4.56751939e+02 1.69761031e+03 5.25792471e+03 1.46565998e+04]]\n", - "[ -1.32692504e+05 -1.20914446e+05 2.14866531e+06 2.14866531e+06\n", - " 6.72001620e+03 2.89708277e+04 -7.75530746e+01 3.22692966e+02]\n", - "[-4.18587381 -0.00876351 1.02344077 -1.76846622 0.95090984 0.33340544\n", - " -0.56970975 0.16802998]\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# Just some validation plots\n", - "plt.figure(figsize=(width,width*4/2/golden))\n", - "\n", - "plt.subplot(4,2,1)\n", - "plt.plot(T_sat, f_vap, color='red')\n", - "plt.plot(T_sat, f_liq, color='blue')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.ylabel('Helmholtz energy')\n", - "\n", - "plt.subplot(4,2,2)\n", - "plt.plot(d_vap, T_sat, color='red')\n", - "plt.plot(d_liq, T_sat, color='blue')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.xlabel('Density in kg/m\u00b3')\n", - "plt.ylabel('Temperature in K')\n", - "\n", - "plt.subplot(4,2,3)\n", - "plt.plot(T_sat, p_vap, color='red')\n", - "plt.plot(T_sat, p_liq, color='blue')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.ylabel('Pressure in Pa')\n", - "\n", - "plt.subplot(4,2,4)\n", - "plt.plot(d_vap, p_vap, color='red')\n", - "plt.plot(d_liq, p_liq, color='blue')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.xlabel('Density in kg/m\u00b3')\n", - "plt.ylabel('Pressure in Pa')\n", - "\n", - "plt.subplot(4,2,5)\n", - "plt.plot(T_sat, dP_dD_T_vap, color='red')\n", - "plt.plot(T_sat, dP_dD_T_liq, color='blue')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.yscale('log')\n", - "plt.ylabel('dP_dD_T')\n", - "\n", - "plt.subplot(4,2,6)\n", - "plt.plot(d_vap, dP_dD_T_vap, color='red')\n", - "plt.plot(d_liq, dP_dD_T_liq, color='blue')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.yscale('log')\n", - "plt.xlabel('Density in kg/m\u00b3')\n", - "plt.ylabel('dP_dD_T')\n", - "\n", - "plt.subplot(4,2,7)\n", - "plt.plot(T_sat, d2P_dD2_T_vap, color='red')\n", - "plt.plot(T_sat, d2P_dD2_T_liq, color='blue')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.ylabel('d2P_dD2_T')\n", - "plt.xlabel('Temperature in K')\n", - "\n", - "plt.subplot(4,2,8)\n", - "plt.plot(d_vap, d2P_dD2_T_vap, color='red')\n", - "plt.plot(d_liq, d2P_dD2_T_liq, color='blue')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.xlabel('Density in kg/m\u00b3')\n", - "plt.ylabel('d2P_dD2_T')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 3, - "text": [ - "" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAxMAAAOOCAYAAAB7ok/NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXmcVuP7x99XWiwhRUSlqFSkqb6Kr/AkLdbssjbJGpIt\nytKkLAmlEL6h7PsSQqGnn7VIQ9rDSNH3i0Qhlbl+f9znqafpmaWZ5znnnpnr/Xqd15xzn+X+zDNn\nrvPc574WUVUMwzAMwzAMwzC2lCpRCzAMwzAMwzAMo3xigwnDMAzDMAzDMEqFDSYMwzAMwzAMwygV\nNpgwDMMwDMMwDKNU2GDCMAzDMAzDMIxSYYMJwzAMwzAMwzBKhZeDCRFpICJTRWSOiHwlIv2C9toi\nMkVEForIZBGplXTOQBFZJCLzRaRrUns7EZkd7Lsnqb2GiDwbtH8iInuG+1sahmEYpUFEthaR6SKS\nKyJzReS2AvuvEpF8Eamd1JbyGWEYhmGUDS8HE8A64ApV3Rc4ELhERFoA1wFTVLUZ8G6wjYi0BE4D\nWgLdgftFRIJrjQX6qGpToKmIdA/a+wC/BO0jgeHh/GqGYRhGWVDVNUAnVc0C9gc6iUhHcC+jgC7A\nd4njC3lG+Pr8MwzDKFd4aUxVdbmq5gbrq4F5wB7AccCE4LAJwPHBeg/gaVVdp6p5wGKgg4jUA7ZX\n1RnBcY8lnZN8rReBzpn7jQzDMIx0oqp/BqvVga2AFcH23cCAAoeneka0D0OnYRhGRcfLwUQyItII\naANMB3ZV1f8Gu/4L7Bqs7w4sTTptKW7wUbB9WdBO8PN7AFVdD/yWPCVuGIZh+IuIVBGRXNyzYKqq\nzhWRHsBSVf2ywOGFPSMMwzCMMlI1agFFISI1cbMGl6vqqo2eS6CqKiIamTjDMAwjMlQ1H8gSkR2B\nt0XkKGAgkBwPISlPDi6RSX2GYRiVBW8HEyJSDTeQeFxVXwma/ysiu6nq8sCF6X9B+zKgQdLp9XFv\nnpYF6wXbE+c0BH4QkarAjqq6IulYbLBiGEZlQ1WL+gLuHar6m4i8AbQFGgNfBC+e6gMzRaQDqZ8R\ny5KvY/beMIzKRrrsvZduTkHw9MPAXFUdlbRrItArWO8FvJLU3lNEqotIY6ApMENVlwO/i0iH4Jpn\nA6+muNbJuIDuzVDVIpfBgweX+Zh0XCPMY3zSYnrLxzE+aTG9hS/lBRHZOZHNT0S2wQVcf6yqu6pq\nY1VtjHtx1Fada2zKZ0TB6/ry94z8Hl27Fp09G33qKXTwYAbvvz/asSO6++5o1apo3bpoq1Zoly7o\nWWehV17J4FgMHTkSHTcOfeYZ9I030GnT0Jkz0a++YvAll6CLF6N5eejSpejy5ejPP6MrV6KrV6Nr\n1jD4xhvR/PyUOvPzlXXrlOuvH8yqVcrKlcrPPyvLlytLlyp5ecrXXysLFih9+w4mN1f5+GPlnXeU\niROVp59WHnhAue02ZcAApW3bwZx8snLYYUrTpsp22ynbbqvsvbdr69NH6dx5MM8/r8yapaxa5ff9\nEPk9Y3q90lKSY9KJrzMTBwNnAV+KyKygbSBwO/CciPQB8oBTAdT5yj4HzAXWA3114yfVFxgPbANM\nUtW3gvaHgcdFZBHwC9CzNEJjsViZjynJNfLy8kLRUpJjfNJSEj0+aSnJdXzSkq5jfNJSEj0+aSnJ\nddKlpRxRD5gQZGSqgpvBLvhCaMPTsphnRInx6b5Im5ZDDoFZs+D99+HTT+HLL2HhQmjYEPbfH5o3\nJ69mTRg2DPbaC+rVg6qbf3WIxeNQRH+xk0+GvfcuWsvhh4OkflEq4rpdujSPmjWL/p1OOSVG69ZF\nHxOPxzaTu2oV/PADfP89fP01rFoV48kn3frixbD77tC6tftYWreGOXPyiu6ECnrPlDO7Ftbzxyct\nJT0mbRQ3sqnMi/t4/KBXr15RS9iAT1pU/dJjWlLjkxZVv/T4pCWweZHb3igWn+y9agbvi/x81Vmz\nVIcNU+3aVXWHHVRbtlS94ALVhx9W/fRT1T/+CEdLKYhKy7p1qnPnqj7zjOrAgapHHaVao0YvrV9f\n9dRTVUeOVJ0+3R0XFfZ3So1pSU067b2vMxNGAbKzs6OWsAGftIBfekxLanzSAn7p8UmL4Q9pvS/W\nroXJk+G11+CNN2CbbeDoo+HSS+Gpp6BOnfC0lJGotFStCi1auOW001zb1KnZNGgAH38MH30EDz8M\nS5dCp07QpQt07VrsZExasb9TakxL5hE3ODFSISI6ePBgYrFYRXMRMAzD2EA8HicejzNkyBC0nAVg\np4sKZ+9V4ZNP4PHH4bnnoHlzOPFEOOYYaNYsanUVluXL4Z13YMoUN36rWdN97CecAO3bQxUvI1WN\nykRG7H26pjgq4oJH095Tp06NWsIGfNKi6pce05Ian7So+qXHJy2Ym5M3lPq+WLlSddQo1aZNVZs1\nUx06VPWbb6LRkgHKk5b8fNWZM1Wvv955ku2+u2rfvqrxuOo//4SvJ0xMS2p80pJOe29jZMMwDMMo\n7yxZApddBo0bO5+bRx6B+fPhhhtcmxE6ItC2rYtdnzMH3nsP6td33mV77w033eQCuw2jvGNuTkUg\nImqfj2EYlQURQSuxm1O5tPd5eXDrrfDCC3D++W5AUb9+sacZ0aEKubkwYQI8/TQ0bQoXXACnngpb\nbx21OqOykE57b4OJIii3DxfDMIxSYIOJcmTvV6yAIUPgiSfgoovgiitg552jVmVsIevWwaRJMHYs\nfP459Onj/px77hm1MqOik057b25OxZCTk0M8Ho9ahhcaEvikBfzSY1pS45MW8EuPD1ri8Tg5OTlR\ny4gcX+w9FHFfrF8PY8a4gOq1a2HePLjllowOJHz5TKDiaalWDXr0gLfegg8+gDVrnGvUCSfA9Onh\n60kXpiU1PmjJhL23wUQx5OTkVIzMHoZhGIUQi8VsMEE5sPe5udChA7zyinPAHzsW6taNWpWRJpo1\ng5EjXfhL584uBW2nTi4rVHmaNDP8JhP23tyciqDcTXsbhmGUAXNz8tTe//033Hwz/Oc/cMcd0KtX\noZWijYrDunXwzDNw++0uluL6692Mhf3pjXRgMRMh4fXDxTAMI83YYMJDe794MfTsCbvvDg8+CPXq\nRa3ICJn8fHj9dRg82BXPu/VWOOIIG1QYZcNiJiohPvjZJfBJC/ilx7Skxict4Jcen7QY/hCPx111\n6oMOguxsePXVyAYSPt2jlVFLlSpw3HEwcyZcfTVccgkcfrirvB2FnpJgWlLjk5Z0UjVqAb6T8KH1\n2o/WMAyjDCQqolZ2vLH3//wD998Ps2a5UspZWdHqMbygShUXR3HSSS6t7KmnurHmiBGW/ckoOZmw\n95XazUlEugOjgK2Acao6vMB+P6e9DcMwMkB5cXMSka2BaUANoDrwqqoOFJERwDHAWuBroLeq/hac\nMxA4F/gH6Keqkwtc0w97/9tvzq1p3Tp47jmoXTtqRYan/PmnG0iMHu1mK669FrbbLmpVRnnB3JzS\ngIhsBdwLdAdaAqeLSItM9/v0066m0OTJLqbOMAzD2DJUdQ3QSVWzgP2BTiLSEZgM7KuqrYGFwEAA\nEWkJnIaz9d2B+0XEv+ffDz9Ax46w117w5ps2kDCKZNttXRzFrFmwaBG0aOG+Y/gwJjYqF/4Z0/Bo\nDyxW1TxVXQc8A/TIdKcHHODcXgcPhl13hZNPdtOVP/1U9Hk+uSD4pAX80mNaUuOTFvBLj09ayhOq\n+mewWh03u7xCVaeoan7QPh1IlILuATytqutUNQ9YjHsG+MM337iBxBlnwL33Ev/ww6gVbcCne9S0\nbE7Dhm4Qcc01ce64A7p1c7dTlPjy2YBpCYPKPJjYA/g+aXtp0JZRmjSBQYNc4NSCBXD00S6urkkT\nOPhglwJuzhx7s2AYhlEUIlJFRHKB/wJTVXVugUPOBSYF67vjbHyCUOx9iZkzBw49FK65BgYOtDQ9\nRqlo1QpmzIAuXaB9e5dFeN26qFUZlYHKHIBdoq/r2dnZNGrUCIBatWqRlZW1ITgvMcIs7fa8eXEa\nN4aXXoqxZg2MHh3no4/g/vtjVK0KbdrEOfhg6NfPBQSWtT/bDmc7QdR6Em1Rfx6JgNaoPw+f9US1\nnZuby8qVKwHIy8ujPBHMQGSJyI7A2yISU9U4gIhcD6xV1aeKukTBhkza+0K399gDunYl3qsXtGhB\nLEmP/f/6v53AFz3Vqrkx6R57xLn7bnjqqRgPPwyrVoWrJ9EW9edh9+/G7Uza+0obgC0iBwI5qto9\n2B4I5CcHYUcVkKcKs2fDxImu0Ol337m0cCed5Kpi1qgRuiTDMCoB5SUAuyAiciPwl6reKSLZwPlA\n5yC2AhG5DkBVbw+23wIGq+r0pGuEb++XLHEzEjfcAOedF27fRoVHFZ54wqWT7dvXeUVUqxa1KsMX\nLAA7PXwGNBWRRiJSHRecNzFiTYCb4d5/f/d8+ewz+PRT2HrrOLfeCrvtBmeeCS++CH/8EY2+gm9k\nosYnPaYlNT5pAb/0+KSlvCAiO4tIrWB9G6ALMCvI0HcN0CMxkAiYCPQUkeoi0hhoCswIW/cm/O9/\nrvJY//4pBxI+3RemJTU+aYHN9YjA2WfD55871+qDD4b586PREiWmJfNU2sGEqq4HLgXeBuYCz6rq\nvGhVpaZRIzjlFPjgA5g7Fw45BB54wBVEPfFE9+YhmLkyDMOoDNQD3gtiJqYDr6nqu8AYoCYwRURm\nicj9AEE8xXM4W/8m0DfSPLBr1sAJJzjD3r9/ZDKMysEee7jkYL17uxj/MWNcVW3DSBeV1s2pJHiT\nd7wQVqyA115zsxTxOBx2mCto06MHbL991OoMwyhvlFc3p3QQmr1Xda+L166FZ55xlcgMIyQWLXK3\n3047wWOPwS67RK3IiApzczIAl4K8Vy8XW7Fsmatz9OyzUL++Szn7wguuqI1hGIbhCbfdBgsXwvjx\nNpAwQqdpU3j/fWjdGtq2deuGUVbMkhVDTk6OFz5uxWnYfnsXS/Haa/Dtt3DkkfDQQ84VKtGeriJ5\nPnweyfikx7Skxict4JceH7TE43FycnKilhE5Gbf3U6fCvfe6zBrbblvkoT7cFwlMS2p80gIl11Ot\nmktD/+CDztPullvS7/bk02djWjbXkG57b4OJYsjJydkk1Vl5oHZt6NPHVdlesMAFXY0Y4QYWifb1\n66NWaRiGL8RiMRtMkGF7v3w5nHWW8y3ZfffM9GEYW8BRR7kkL2+95V5AFlc816gYZMLeW8xEEfge\nM7GlLF0Kzz/vKmUuWQKnn+58J9u0sRpJhmFYzETG7H1+vqsk1rEjDBmSmT4Mo5SsX++yRz7zDLz8\nsvtOYFR80mnvbTBRBBl5uCxa5P5zW7RI73W3kIULXRaoJ56AbbaBc85x7lD160cqyzCMCLHBRIae\nh6NGbcyUsdVWmenDMMrIc8/BJZfA6NHuZaNRsbEA7PLMzJkut/j++ztHxcWLS3Rauv3smjWDm2+G\nr792fpPffOMCsjp3dnGBq1aFp6Ws+KTHtKTGJy3glx6ftBgZYOFCZ+sffXSLBhI+3RemJTU+aYGy\n6zn1VHjnHbj+erj2Wvjnn+i0pBPTknlsMFEMaQ/I69kTvv/eBeH98IMLaGjXDu64A9Jc3rwkiLiZ\n9wcfdBmhLr7YTXM2aABnnOFyU1t8hWFUbCwA25F2e//PP5CdDYMHQ5Mm6buuYWSI1q1dodzPPoOj\nj7YaVhWRTNh7c3MqglBiJtavh2nTXE7Xl1+Gvfd2A45TTnGVZiLi55+dpMcfh+++c25QvXtD8+aR\nSTIMI8OYm1Oa7f3o0fDSS/Dee5YG1ihXrF8PV14J774Lb7zhiucaFQuLmQiJ0AOw161zD51nn4VX\nX4WWLZ3j4qmnws47h6ejAAsWwCOPuCQke+8N557rJNWsGZkkwzAygA0m0mjvly+HVq1cIn97C2OU\nU+65xzlOvPoq/OtfUasx0onFTFRUqlWDbt3cN/cff3ROix98AE2aEP/3v1101F9/hS5rn31g+HCX\nAWrAAHjkkTgNGrg0sx9+6Aq6RolPPoimJTU+aQG/9PikxUgjAwa4Ny+lHEj4dF+YltT4pAUyo+fy\ny+H++13q2IkTo9VSWkxL5rHBhK9Urw7HHANPPeViLA47DMaNc65Pffq44kfprjJTDNWqwXHHwbBh\nMG+ee0b26eMSU91xh3sRZxiGUen54ANno2+8MWolhlFmevSASZPgootgzJio1Rg+Ym5ORSAiOnjw\nYGKxmD+F6374wRWKeOIJF9hw5pmuENJ++0UiRxU+/thNprz4IhxyCFxwgXuLYRkQDaN8EI/Hicfj\nDBkypFK7OaXF3qtChw7Qv7/LYmEYFYRvv3XP9pNOci8VrT5V+SQT9t67wYSIjACOAdYCXwO9VfW3\nYN9A4FzgH6Cfqk4O2tsB44GtgUmqennQXgN4DGgL/AKcpqrfBft6AdcH3Q5T1cdSaPG7aN1XX7lB\nxZNPQp06rgLdWWfBrrtGImf1aueJ9dBDbsxz/vlu5sKKvRpG+aC8xEyIyNbANKAGUB14VVUHikht\n4FlgTyAPOFVVVwbnpHx+JF0zPfb+pZdg6FCXBtyCro0Kxk8/ucrZ7drBfffZS8PyTEWPmZgM7Kuq\nrYGFwEAAEWkJnAa0BLoD94tsGBePBfqoalOgqYh0D9r7AL8E7SOB4cG1agM3Ae2DZbCI1Arjlyst\nKf3s9tsPbr/dpVsaNcoNLpo3d3OSr77qArrD0oILyD73XPjkE+db+cMPTuKJJ8LkyZnzyvLJB9G0\npMYnLeCXHp+0lBdUdQ3QSVWzgP2BTiLSEbgOmKKqzYB3g+3Cnh/pf/6tX++S9N92W5kHEj7dF6Yl\nNT5pgXD07LKLyxOzcKFzjFi7NjotJcW0ZB7vBhOqOkVVE187pwOJmsw9gKdVdZ2q5gGLgQ4iUg/Y\nXlVnBMc9BhwfrB8HTAjWXwQ6B+vdgMmqujJ4azUF94Apn1SpArGYK4q0ZIkbTNx5pysWcfXVMGdO\n6JKysmDsWDfO6dbNxZI3bepiK376KXQ5hmFUMFT1z2C1OrAV8Cub2vwJbHwWpHp+tE+7qMceczPD\n3bql/dKG4Qvbb+9iKNascXGUf/wRtSIjarxzc0pGRF7DPQCeEpExwCeq+mSwbxzwJm4q+3ZV7RK0\nHwIMUNVjRWQ20E1Vfwj2LQY6ANnA1qp6S9B+A/CXqt5VoH+/3ZyKY+FCV856wgSoX98ViujZE2qF\nPwmj6grhPPCAK6fRvbsL5jr0UPO7NAxfKC9uTgDBzMLnwN7AWFUdICK/qupOwX4BVqjqToU9P1T1\nxaTrlc3er18PzZq5AUXHjqW/jmGUE9avd+7MCxa4Arc77hi1ImNLSKe9r5qOi2wpIjIF2C3FrkGq\n+lpwzPXAWlV9KlRxBcjOzqZRUK2lVq1aZGVlbQjOS0xXebv9ww/QtSuxoUNh8mTiw4fD1VcT69ED\nzj2XuAhUqRKKHhH4888455wDd98d4/HHoVevOPn5MGBAjF69YOZMzz4/27btCr6dm5vLyqDEbV5e\nHuWJYAY7S0R2BN4WkU4F9quIFDU62Gxfmex9Tg7UrEksGEj48Pe1bdvO9PbDD8fo1w8OPDDOiBFw\nzDF+6bPtjdsZtfeq6t2Cmzn4EDd7kGi7Drguafst3CzDbsC8pPbTcW+pEsccGKxXBX4K1nsCDySd\n8yAuOLugDvWFqVOnpudCP/+sOnq0auvWqo0bq956q+qPP0aiJT9fddo01VNOUa1dW/Wyy1Tnz9/y\n66Tts0kDpiU1PmlR9UuPT1oCmxf5M2BLF+BG4GpgPrBb0FYPmK9FPD8KXKP0H1x+vmqrVqqTJpX+\nGgXw6b4wLanxSYtqdHry81X79VP9179UV6yIVksqTEtq0mnvq6R3aFJ2guDpa4Ae6oLsEkwEeopI\ndRFpDDQFZqjqcuB3EekQTGufDbyadE6vYP1kXEAeuCDvriJSS0R2AroAb2f0F/OFOnXgsstg1ixX\nafubb1yhiFNOgSlTQq1dIeLcnJ57Dr74AnbYwW136wavvx56GQ3DMMoJIrJzImmGiGyDs+Gz2NTm\n9wJeCdZTPj/SJujNN13sWvfyG3pnGKVFxOWA6dgRunSBFSuiVmSEjXcxEyKyCBdQl7gdP1bVvsG+\nQbjUfuuBy1X17aA9kRp2G1xq2H5Bew3gcaANLjVsT3XBd4hIb2BQ0McwVU0E7SVrUd8+n4zw++8u\nveyDD8KqVc4JsnfvSFLMrlnjBhdjxjiDdMklLkNUBGEehlHpKC8xEyLSChdgXSVYHlfVEUGmvueA\nhmyeGjbl8yPpmqW39506ObtpdSWMSoyqy/kydSq88w7Urh21IqMo0mnvvRtM+ESlGUwk0CBK+qGH\nXAW6I46ACy+Eww8PPV+6Kkyf7gYVkybBaafBpZdGVpvPMCoF5WUwkQlKbe/nzoXOnV3quurV0y/M\nMMoRqi5745Qp8O67NqDwmYpeZ8IrcnJyNgSyREkoGkSgfXsYNw7y8tzbtquuchlKhg/fkNM1DC0i\ncOCBbsJk3jxX+K5rVzeuKegC5cPfJ4FpSY1PWsAvPT5oicfj5OTkRC0jckpl78eOdbMSaR5I+HBf\nJDAtqfFJC/ihR8R9XWjaNM6RRzpnh6jx4XNJ4IOWTNh7G0wUQ05OzoZo+ErFjjtC376Qm+u+0c+f\n7wYVvXq5b/chsttucNNNbnxz3nmQk+PCPB54AP78s7izDcMojlgsZoMJSmHvV61y9vGCCzKmyTDK\nGyJw8cWu3tRxx8Fff0WtyEgmE/be3JyKoNK5ORXHL7/AI4/A/fe7MpiXXgqnngpbbx2qDFX44AO4\n+2748EP3HL/kEqhXL1QZhlHhMDenLbT3DzwAkyfDSy9lRpRhlGP++QfOOQdWrnT1pcwL0C/MzcmI\nhjp14JprYPFiN1Xw1FPQsCEMHOj8hUNCBA45xBmnjz5yhmrffSE722WFMgzDCIWHH3ZxZYZhbMZW\nW7m6udWqwVlnuSJ3RsWk2MGEiGwVhhCjaHzws0sQf/99OOYYeOstNzWwZg20bQvHH+9SOIQ4m9Ok\nCZx8cpzFi6F5czjqKBc3PmlSNKllvfo7mZZC8UmPT1qMLWDePFi2zBmcDODTfWFaUuOTFvBLT0JL\ntWouC/3KlS60yJ7L8aglZISSzEwsEpERItIy42qM8kfTpjByJCxZ4r7JX3mlC2gYMybUyKvateG6\n6+Dbb90MxQ03uNmKhx5yYx3DMIy08vjjLhXsVva+zTCKokYN50mwcKF7ThsVj2JjJkRkB1zF6Gxg\nK+AR4GlV/T3j6iJGRHTw4MHEYrHKGYRdGhIBDWPGuLxwvXq5InmNG4cuY9o0uPNOmDkT+vVzAWFW\nr8IwNicejxOPxxkyZEjkMRMSUbDaFtn7/Hxn0yZOhNatQ9FnGOWdFStcYbsLL4TLL49aTeUlE/Z+\niwKwRSQGPAnsBDwPDFXVxekQ4iMWgF1GliyBe+91QduHHQZXXAEHH+yCHkJk9my44w7n+tSnD/Tv\n71LNGoaxKWEFYItIr0IKhVYDHlPV0zOtIUXfJbf38bh7Q/HllxnVZBgVjSVL3NeAu+5y+VuM6Ag1\nAFtEqopIDxF5BRgF3AXsBbwGTEqHCKN4fPKzK7GWhg3dt/i8PFcg4txzXR2LJ5+EtWtD09OqlfNI\n+Pxz+PtvV/juvPNgwYK0SSixljAxLYXjkx6ftIRIfxHZJHJZRGoCbwD+J5J8/nk4PbPjHZ/uC9OS\nGp+0gF96CtPSsCG88YZLBjl1arRaosAnLemkJDETC4EewB2qmqWqd6vqclV9AXg7s/KMCkHNmi53\n6/z5MHiwm6lo3BhuvdWlmw2JPfeEe+5xfpv167uMUCee6CptG4YRKp2B80TkcgAR2QWYCnyuqudG\nqqw48vPhlVec8TAMY4vZf38XlH3aaTa5V1EoScxETVVdHZIerzA3pwzy5ZcwapSLyjr1VOd71KJF\nqBL++MNldrzrLthrL7j2WujWLXQvLMPwhjDrTIjIjrjZ7feB44EHVHVUGH0Xoqdk9v6TT9ws69y5\nmRdlGBWYZ5+Fq692SSEbNoxaTeUj7DoTt4nIaBEZEyyjRWSYiPRIhwDfycnJqbDTUpGy//5uhmL+\nfBfA0KkTHHkkvPdeaKllt9vOuT0vXuy+G1xzDbRp4zwY/vknFAmG4QXxeDzUCtgichJuduIh4Hxg\nNvC9iJwkIpG98i+RvX/5ZTjhhFD0GEZF5rTT3HvEY48NNfljpScj9l5Vi1yA/wD/B1wG9AOmAeOB\nicCo4s4v7QJcBeQDtZPaBgKLgPlA16T2driH0SLgnqT2GsCzQfsnwJ5J+3rhXLgWAucUokF9YerU\nqVFL2EBGtKxZozpunGrz5qrt2qk+84zqunWh6snPV504UbV9eyfj8cdLLCHtWtKBaSkcn/T4pCWw\neRmx6bqpbR0PPBosyeuPAo+W4PwGOLeoOcBXQL+gvT0wA5gFfAockHROyudH0v7iP6D8fNUmTVQ/\n/bS0H3GJ8em+MC2p8UmLql96SqolP1/1/PNVjz5adf36aLWEgU9a0mnvSzIzsT9wuKqOUdXRuLdJ\nzYETgW4lOH+LEZEGQBfgu6S2lsBpQEugO3C/yAaHlLFAH1VtCjQVke5Bex/gl6B9JDA8uFZt4Cbc\ng6c9MFhELGlolNSo4VItzZnj4iruvReaNXM///gjFAki7g3JJ5/A6NGuRsU++8C4cWmNFzeMSo+q\nZqtq72BJXu+tqr1LcIl1wBWqui9wIHCJiLQA7gBuVNU2OBt/BxT6/CjJ829TFixwhWvatdviUw3D\n2BwRuO8++Osv5x1glE9KEjOxAOigqiuD7VrADFVtJiKzAqOdXlEizwNDgVeBdqq6QkQGAvmqmhgQ\nvAXk4AYc76lqi6C9JxBT1YuCYwar6nQRqQr8qKq7iMjpwKGqenFwzgNAXFWfKaBDi/t8jAzy8ccw\nYoSrW3HxxS79wy67hCrh//4Phg1z3ljXXuvGO1tvHaoEwwiNMGMm0kmQbfBe3Aukl1X1ucDOH62q\nZxX2/FDaghJWAAAgAElEQVTVT5KuUby9Hz3axXuNG5epX8UwKiW//goHHeQyyF94YfHHG2Un7JiJ\nO4BZIvKoiIzHTR+PEJHtgHfSISKZIBZjqaoWjPHfHViatL0U2CNF+7KgneDn9wCquh74TUTqFHEt\nwycOOgheeskNJpYvd9MEF1/sghxC4tBDYfJkF0fx9tsuUPvuu0ObLDEMoxhEpBHQBufKeh1wl4gs\nAUbgXJsgXTZ/8mSXpcEwjLSy007w+uvOMeGdtH+zNDJN1aJ2BtPA84GDce5AClyvqsuCQ0o1KSUi\nU4DdUuy6Hmf8uyYfXpo+0kV2djaNGjUCoFatWmRlZW2ojpoI1AtjOzkoMIr+k7cLagql/wcfJN6t\nG7z8MrGDDoLDDiN++OHQsmUoejp0gCuvjLN4Mbz9dozhw+HYY+Mcfzwcc8zG43Nzc+nfv3/mP48S\nbI8aNSqy+7Xgtk/3r296CmoKs//c3FxWrlwJQF5eHuWNoDbFC8Dlqro6mKHop6ovi8gpwCM4l9lU\nbDYNUaS9nzwZ3nuP2GOPuW37/41ku6CmKPX4ZO9901Pa+/fZZ2OccgqMGBFnzz3t/k33/ZExe19c\nUAWQm64AjRL0tR/wX+DbYFkH5AG74t44XZd07FtAB9ygZF5S++nA2KRjDgzWqwI/Bes9cWkIE+c8\nCJyWQk/qqJUI8CloJ3Itq1ap3nOP6p57qh52mE694w4XxRUic+aonnmmap06qjk5qitXuvbIP5sk\nTEvh+KTHJy2EFICtm9rZg4EzcUkxelFIQowU51XD1Trqn9T2e9K6AL8F6ymfHwWuV/SHM3Wqy84Q\nEj7dF6YlNT5pUfVLT1m0PPKIatOmqr/+Gr2WdOOTlnTa+5LETNyJmz5+UYs7OM2IyLdsjJloCTyF\nmyHZA+di1URVVUSm4zJNzcBVUB2tqm+JSF+glapeHMRSHK+qPYMA7M+AtrgHzkygrQZxIUn9h/0r\nG1vC+vXwzDNw222wzTYwaBAcfzxUqRKahEWLXEzFpElw+eUu1ewOO4TWvWGklbBjJkTkCWAvIBfY\nkJBZVS8r5jwBJuASbFyR1P45LjB7moh0Bm5X1QOKen4knVu0vR80CLbaCoYO3fJf1DCMLeKyy+Db\nb2HixFAf6ZWKdNr7kgwmVgPb4gz9mqBZVTXjX5lE5BvgX6q6ItgeBJwLrMdNa78dtLfDpRfcBpik\nqv2C9hrA4zh/2l+AnqqaF+zrDQwKuhqmqhNS9G+DifJAfr6zOLfc4oIZBg6Enj2hWrXQJCxY4L5j\nvP02XHmlixXffvvQujeMtBDBYGIe0HJLDa2IdMSlLP+Sje5Kg4CfgPtwacH/Avqq6qzgnJTPj6Rr\nFi3jwAPh9tshcBswDCNzrFsHRxzh4hZt/J4Z0mrv0zXFUREXzM0pJT5pUU3Sk5+vOmWKaiym2qiR\n6v33q/71V6haxo+fqj17qtatq3r77c4jKyp8+jv5pEXVLz0+aSFkNyfgeWD3MPssQkvhH8wff6hu\nu637GRI+3RemJTU+aVH1S086tPz3v6oNGqi++GL0WtKFT1rSae+LnTwSkSoicraI3BRsNxSR9mkZ\nyZQDrAJ2OULEvcqYOhWefNL5Hu21l0svG1J5zT33hKefdoW8Z86EJk3gzjvhzz9D6d4wSkU8Hm4F\n7CR2AeaKyGQReS1YJkYhBIqw9zNmwP77w7bbhq7JMCordeu6hI4XXghz50atpuKQCXtfEjenB3CV\nqA9X1eZBvMFkVf1XWpV4iLk5VQC++MLFVLz7LlxyiXPErFMntO5nz4YhQ+DDD2HAALjoIhfeYRg+\nEoGbUyxVu6rGw9KQoEh7P2wY/PabezFhGEaoTJjgvJhnzIBaVl44bYRdZ6KDqvbF+Z+iLn4hPGd0\nwygLrVu7IO0PP4SlS6FpU7j6ale3IgRatYIXXoA333QF8Jo0gTFj4O+/Q+neMLxGVeOplqh1bcb7\n70PHjlGrMIxKSa9e0L07nHmmC5E0/KMkg4m1IrJVYkNEdsHNVBgh4pOrlU9aoIR6mjVzVWu/+ALW\nrnX1Ka64An78MRQtWVnw8svw2mvw1luu/t748fDPPykPz6iWKPBJC/ilxyctYSEiHwY/V4vIqgLL\n71Hr24T16+Hjj+Hf/w61W5/uC9OSGp+0gF960q3lrrvg99+do0HUWsqCT1rSSUkGE2OAl4G6InIr\n8CFQij+nYXhAgwYwejR89RWowr77unyuy5YVf24aaNsW3ngDnngCHnnEzVy8+KKTYhiVBVU9OPhZ\nU1W3L7D4lVx57lzYbTfYZZeolRhGpaVaNedkcN99LizS8ItiYyYARKQF0DnYfFdV52VUlSdYzEQl\n4McfXYT0o4/CGWfAdddB/fqhdK3qUskOGuTyaN96K3Tp4uLIDSMKwo6Z8IlC7f2jj8KUKfDUU+GL\nMgxjE955B845xyU4qVcvajXlm7BjJgAW4mYnXgP+EJGG6ei8PGDZnCo49eq5+dN581xk9P77Q9++\nsGRJxrsWcX6gn30G117rJkg6dXIeFYYRJhFmc/KKlPZ+5kxo1y4SPYZhbMoRR7jsTqef7jwQjS0n\nI/a+uNyxwGXAz8BcYHZiSVduWp8XrM5ESnzSoppmPf/9r+qAAao77aR6wQWq334bmpZ161Qffli1\nYUPVY49V/eKLUl+qzFrSjU9aVP3S45MWQq4z4dNSqL0/6CDVCP5GPt0XpiU1PmlR9UtPJrWsX6/a\npYvqoEHRa9lSfNKSTntfkpmJ/sA+qtpSVVsllvQOaQzDE+rWheHDYeFCqF3bBTmcfz58803Gu65a\nFc4911XT7twZunZ1nleLF2e8a8OIDBFpJCJHBOvbiog/MRPr18OXX0KbNlErMQwjYKutXCmpxx5z\n5aSM6ClJnYmpQFdVXReOJH+wmAmDX36BkSNh7Fg44QS48UZXmS4EVq+GUaPccuqpMHgw7LprKF0b\nlZQI6kxcAJwP1FbVvUWkGTBWVTsXc2omtGxu77/6Ck480b1cMAzDKz74AE4+2dWfaFhpnO/TR9gx\nE98CU0VkoIhcFSxXpqNzw/CeOnVcwapFi9w3+bZtXfG7ELI/1awJN9zgZiq23tolnhoyxA0yDKOC\ncAnQEfgdQFUXAnUjVZSMxUsYhrd07AhXXWXxEz5QksHEEuAdoDpQM1i2z6Qon/AlANsHDQl80gIh\n6ald25XgnD/fBWq3agVXXgn/+1/GtdSpA3ffDZ9+6l6QNmsGDzwA64qZK/Tp7+STFvBLjw9aIgzA\n/ltVN5RwFJGqQGTTwZvZ+6++ckkZIsCH+yKBaUmNT1rALz1habnqKvfi7eabo9dSEnzQkgl7X+xg\nQlVzVDUHuFNVhySWtKoogIhcJiLzROQrERme1D5QRBaJyHwR6ZrU3k5EZgf77klqryEizwbtn4jI\nnkn7eonIwmA5pzAtOTk5xGKxDPyWRrlkl11cKtk5c9y3+ebNYeBA5w6VYRo3dn6ir70Gzz/vxjOv\nvGI1KoyyE4vFohpMTBOR64FtRaQL8Dwua2CRiEgDEZkqInOC50S/pH1b9PxIZjN7P2eOmxI0DMNL\nqlSBCRNcTdpp06JWUz7IhL0vSczEv4FxwPaq2kBEWgMXqmrftCrZ2F8nYBBwlKquE5FdVPUnEWkJ\nPAUcAOyBmy1pqqoqIjOAS1V1hohMAkar6lsi0hfYT1X7ishpwAmq2lNEagOfAon565lAO1VdWUCL\nxUwYRbNkiXODevFFuPRSN1ux444Z71aDGhUDBsD228OIEaEX6DUqIBHETFQBzgMSX+7fBsYVZ3hF\nZDdgN1XNFZGaOBt+PLAbJX9+NFPV/KRrbt5to0YusX2TJmX/ZQ3DyBhvvulSxubmOkcCo3jCjpkY\nBXTHpYdFVb8ADktH54VwMXBbIuBbVX8K2nsAT6vqOlXNAxYDHUSkHm6gMyM47jHcQwXgOGBCsP4i\nGwvvdQMmq+rKYAAxBfc7GsaW0bAhPPSQ80H67jv3pePWWzMe2JCoUTFrFlxwAfTs6eJEFyzIaLeG\nkTYCl6a5qvqQqp4cLP8pyRscVV2uqrnB+mpgHm6QcBElf360L7KT1audG2PjxqX8DQ3DCIsjj3TB\n2OedZ7P1UVCionWqWrCCVyZDXZoChwZuSXER+VfQvjuwNOm4pbiHR8H2ZUE7wc/vAVR1PfCbiNQp\n4lre4oOfXQKftIAnevbaC8aPJ37XXTB7thtU3HUX/PVXRrvdaivo1csNIjp0cAFpF18My5d78rkE\n+KQF/NLjk5YwCWzygmT309IgIo2ANsB0oBlb9vwonHnzYJ993D9ZBPh0X5iW1PikBfzSE4WW226D\nvDx48MHotRSGT1rSSdUSHLNERA4GEJHqQD/cW6BSIyJTcNPRBbk+0LSTqh4oIgcAzwF7laW/spCd\nnU2jRo0AqFWrFllZWRt8ahM3RWXbTmB6Nt/OXbGC2NNPw+zZxPv2hdtuIzZkCJx/PvGPPspY/9ts\nAx06xAO/0Rj77gsdOuTy99/QrVt0n4dt+33/5ubmsnKl8+7My8sjAmoDcwJX1T+CNlXV40pycuDi\n9AJwuaquCmY7Svr82Oz95Sb2fuFCsnbemViwL+y/T25ubqj9lZftBD7oyc3Njfzz8FVPVPfv00/H\n6NgRatSI07hx9PerT/dvJu19SWImdgHuAY4ABJgM9FPVjEScisibwO2qOi3YXgwciPOrRVVvD9rf\nAgYD3wFTVbVF0H46cKiqXhwck6OqnwQPmR9VdRcR6QnEVPWi4JwHgfdU9dkCWixmwigbM2duzO86\ndKjLYVelSsa7/fpruPZa5311222uWwnNE94or0QQMxFL1a6q8RKcWw14HXhTVUcFbVv0/FDV6UnX\n29TeDxgAtWrBoEGl+dUMw4iIRx5x5aFmzHDJF43UhBozoao/qeoZqlpXVXdR1TMzNZAIeAU4HCAo\nYFRdVX8GJgI9RaS6iDTGuUPNUNXlwO8i0kFEBDgbeDW41kSgV7B+MvBusD4Z6CoitURkJ6ALLvDP\nMNJLu3YuMuyRR+DeeyErC15/PeNOnXvvDS+8AI8/7tLKHnQQBBMjhuENqhpPtRR3XmDrH8bFXIxK\n2rVFz48iO1m40Lk5GYZRrujdG1q2dIkWjXDI/CvSLecRYC8RmQ08DZwDoKpzcVPWc4E3gb5Jr5H6\n4jJOLQIWq+pbQfvDQB0RWQT0B64LrrUCGIrL6DQDGFIwk5NvFJwiixKftIBfegrVEou5b/NDh8J1\n18Ehh8D772dcy6GHurczffu6Kto9ezqf0rDx6W8EfunxSUvYiMhqEVkVLH+LSL6I/F6CUw8GzgI6\nicisYOlO6Z4fqfnmGxcLFRE+3RemJTU+aQG/9ESpRQTGjnUv1N57zz6XMChJzESoBFk4zi5k363A\nrSnaZwKtUrT/DZxayLUeBR4tk1jD2BJEoEcPOOYYVzDi7LNdDvtbb4XWrTPWbZUqcM45cNJJrkRG\nu3YuA9TAgbDDDhnr1jCKRVVrJtaDNLHH4dySijvvAwp/GbZFz49COoh8MGEYRumpXdvVnujdG+67\nL2o1FZ9iYyYqMyKigwcPJhaLbQhiMYy08fffLq3sLbdA586uhOfee2e822XL4PrrXZ2KIUOgT5/I\nEtYYnhCPx4nH4wwZMiTUmIlUiEiuqmZF0O9Ge9+8Oey3H/z8c9gyDMNII337uizPjz0WtRJ/yIS9\nL0kAdj4wArguMS0sIp+ratt0CPAZC8A2QmHVKhg1Cu65x/ki3Xgj1KuX8W5nznQ19n791WWx7dIl\n410anhNBAPZJSZtVcIVED1PVg8LSkKRlo73/6CO44gqYPr3okwzD8Jo//oA2bVwikpNOKv74ykTY\nRevm4LI4TQlqNBBsGyHik5+dT1rALz2l0rL99m4AMX8+bLuteyM6aBCsLFsYT3Fa2rWDeBxycuCi\ni+DYY2Hx4jJ1WWotYeOTHp+0RMCxwDHB0hVYhSswFy1ffx3KLGFR+HRfmJbU+KQF/NLji5bttoP+\n/eNccgn8+GPUavz5XNJNSQYT61V1APAf4H0RaZdhTYZROdl5ZxfUkJsLP/0ETZu67TVrMtaliKuc\nPXeuiwk/8EAXS5HhAt6GkWCcqvYOlvNV9RZcpqVo+fpri5cwjApCy5Zw/vluMWeTzFASN6dZqtom\nWN8PlyGjoaruGIK+SDE3JyNS5s933+xnzYJhw+CMMzJeo+KHH1yyqffeg+HDXZdWn6LyEIGb02Yu\ns8nPnDDZxN6fc47LwHbuuWHLMAwjA6xd616WXXyxG1QY4bs5XZZYUdWvgEOS2yo6OTk5FXZayvCc\n5s3h5ZfhiSdcOop//QveeSejXe6+uwtUe/55V/SnY0cXW2FUbOLxODk5OaH1JyIHichVQF0RuVJE\nrgqWHCJMWb7B3n//Pey5Z1QyDMNIM9Wru0fpoEEuUVtlJhP2viRGe3TyRlCP4Yq0qvCYnJwcLzI5\n+TSg8UkL+KUnI1o6dnQBoYMGudcq3bvDF19kVMtBB7n6FOeeC0cf7VLJ/vRTqS/n1d8I/NLjg5ZY\nLBbqYAKoDmwPbBX8rBksv+MKjEbCBnu/dCnssUdUMgA/7osEpiU1PmkBv/T4qKVlSzfz3qcP5OdH\nqyVKMmHvCx1MiEi9ID5iWxFpKyLtgp8xwAqUG0aYiMDJJ8OcOa5ORbdukJ3t3qBmiCpVnNGdP98F\nsbVs6RJOrVuXsS6NSoKqTlPVHOAgVR2StNytqosiFufyJ0c8mDAMI/307+/CEB98MGolFYtCYyZE\nJBvIxqXq+yxp1ypgvKq+lGlxUWMxE4a3/P473HGHK/N5/vkutmLHzIYxzZ0Ll1/u4iruuQeOOCKj\n3RkREEHMRF1gANCSjS+pVFUPD0tDkhZn71escMHXZcymZhiGn8yb5xKOfPYZNGoUtZroCCVmQlXH\nq2oMyFbVTknLcZVhIGEYXrPDDi4o+8svXWGtZs3cN/y1azPWZcuWMHmyq7F3wQUuC1ReXsa6MyoH\nTwLzgb2AHCCPTV9ehY8HLk6GYWSOFi3g6qstu1M6KcrN6SoRuRJoFATIXZkUKHdliBoN/PCzS+CT\nFvBLT+ha9tgDxo1zgdmTJzsr+eyzoJoRLSJw/PHO26ptW1erYtgwV8y7KHz6G4FfenzSEgF1VHUc\nsDZwfeoNhD4rsQnLlkH9+pFKAL/uC9OSGp+0gF96fNdy9dVu8nHcuOi1VASKCsDeno2BcdunWDKC\niLQXkRkiMktEPhWRA5L2DRSRRSIyX0S6JrW3E5HZwb57ktpriMizQfsnIrJn0r5eIrIwWM4pTI9l\nczLKBa1awRtvwH/+AyNGQIcOJQrSLi3bbAM33OAyPX36qet+8uSMdWdkmLCzOSWRmEpbLiLHiEhb\nYKfiThKRBiIyVUTmiMhXItKvwP6rRCRfRGontaV8fiSTk5ND/N13vRhMGIaROapWhUcfdXlNMhh6\n6CWZsPfF1pkIGxGJA7ep6tsiciQwQFU7iUhL4CngAGAP4B2gqaqqiMwALlXVGSIyCRitqm+JSF9g\nP1XtKyKnASeoas/gAfMpLh4EYCbQLshUlazFYiaM8kd+PjzzjLOSbdu62IomTTLa5euvQ79+bqZi\n5Ej7LlZeiSBm4hjgA6ABMAbYAchR1YnFnLcbsJuq5opITZwNP15V54lIA1yR1X1wdn1FIc+PZqqa\nn3RNZ+9zctz/0M03p/33NQzDL4YOdckSJ02qfDWVQq0zEbwBellEfgqWF0Ukk18VfgQSkaS1gGXB\neg/gaVVdp6p5wGKgg4jUA7ZX1RnBcY8BxwfrxwETgvUXgc7BejdgsqquDAYQU4DuGfp9DCNcqlRx\n1ebmzYP27V2lnquugl9/zViXxxzjXJ9atoSsLDc5YlmfjKIQka1wX+hXqupsVY2patviBhIAqrpc\nVXOD9dXAPGD3YPfduKDuZFI9P9qnvPgPP7iCK4ZhVHiuuw6WL4cJE4o/1iicktSZeBSYiDPUuwOv\nBW2Z4jrgLhFZAowABgbtuwNLk45binvDVLB9WdBO8PN7AFVdD/wmInWKuJa3+ORq5ZMW8EuPV1qm\nT3eWcs4cWL0a9tkHxozJ2Lf8bbaBIUPgk09cBe2sLEh8HD59LuCXHp+0hImq/gOcXtbriEgjoA0w\nXUR6AEtV9csCh5Xc5v/0E+yyS1lllRmf7gvTkhqftIBfesqLlmrVnLvTgAHuPUKUWsozJRlM7KKq\njwZvdNap6nigblk6FZEpQYxDweU44GGgn6o2xBXHe6QsfRlGpWfXXV1S7Xffhddeg/32cz8z5MLX\npImbMh46FHr1grPOgl9+yUhXRvnnAxG5V0QOSa5nVNKTAxenF4DLgXxgEDA4+ZAiTk/9D+DJYMIw\njHDIyoKLLnI1Yc2zvXRULcExv4jI2Th/UwF6Aj+XpVNV7VLYPhF5QlUTGexfABKx9stwfrUJ6uPe\nLi0L1gu2J85pCPwgIlWBHVX1FxFZBsSSzmkAvJdKT3Z2No2CRMS1atUiKytrQ0XsxAgzjO1YLBZq\nf7Zd+u0EUetJtG3Y/8svMHAgsTVr4KqriOfkwMUXEzvvvLT3LwK1a8d54AGYNi3GhRfGmDo1zgkn\nQOfO0Xwe9v+0+XZubi4rg3oKedHk+W2D+1JfMEChU3Enikg1nPvqE6r6ioi0AhoBX4hzfq4PzBSR\nDqR+fiyjANnZ2TSaNw+efZZan38emb1PsMn/r/2/eLmdwPRsup1oi/rzKOn927FjnPHj4eWXY5x4\nYvSfXya2M2nviw3ADqaQxwAHBk0fAZep6pK0KtnY3+fAFao6TUQ6A7er6gFJAXTt2RhA1yQIwJ4O\n9ANmAG+waQB2K1W9WER64gL0EgHYnwFtcQOkmUBbC8A2Kg3r17vMT0OGuICHoUOhXr2MdTdvHlx6\nqZuhGDsWDjooY10ZZSDsAOzSIm60MAH4RVWvKOSYb9k8AHuz50fS8W6zdm1YtAjq1Mn8L2IYhje8\n/z6cfrrzDM5wDVgvCDUAW1XzVPVYVd0lWHpkaiARcAFwh4jkAsOCbVR1LvAcMBd4E+ib9CDoi5vB\nWAQsVtW3gvaHgToisgjoj4vHQFVXAENxGZ1mAEMKDiR8o+BbhyjxSQv4pafcaKla1c3pLljgvjS1\nauUKRvz5Z0a0/Pe/cd55x4VwnHSS6zrKAsPl5u9UwRGR3UTkYRF5K9huKSJ9SnDqwcBZQKcgjfis\nIPtfMhsGCsU8Pzaybh2sWgU7FZudNuP4dF+YltT4pAX80lMetRxyCBx9NAwcWPyxmdZS3ih2MCEi\ndUXkehH5j4g8GiwZi2NQ1c9UtYOqZqnqQao6K2nfraraRFWbq+rbSe0zVbVVsK9fUvvfqnqqqjZV\n1QODLB6JfY8G7U1V1eL4jcrJjjvC8OEwY4arpt28OTzxhEuNmWZEoGdPmDvXbbdsuaG+nlF5GQ9M\nZmMmpkW4WLkiUdUPVLVK8JxoEyxvFjhmr+DFUWI75fNjE375xc1MVCn20WgYRgVk+HB49VX48MOo\nlZQvSuLm9DHwfzhXoMQ3DFXVFzOsLXLMzcmodHz4IVxxhfuGP2oUHHxwxrr66CO48EJXxPv++2Gv\nvTLWlVFCIqgz8Zmq/ktEZqlqm6AtV1WzwtKQpEX1yy+dn8NXX4XdvWEYnvD88zB4MMyaBTVqRK0m\nc4Tq5gRso6rXqupzqvpCsFT4gUQCq4BtVCoOPtjldu3f300jnHFGxsqD/vvf8Pnn0KkTHHAA3H67\n1aaIing8sgrYq4N03QCIyIHAb1EIAci5807iVUuSl8QwjIrKySfD3nu7eq8VkUzY+5IMJl4XkaPT\n2ms5IicnZ5PsBFHh04DGJy3gl54KoaVKFTjzTJg/3+V5zcpy1YD/+ivtWqpVg2uvhU8/hXjcFez+\n+ONSd1NmPVHgg5ZYLBbVYOIqXO2ivUTkI+BxXDKNSMg56ihizZpF1f0m+HBfJDAtqfFJC/ilpzxr\nEYH77oN77nFhhVFqyQSZsPeFDiZEZLWIrMLl735NRNaIyKpg+T2tKgzD8I/ttnODiJkzndtHixZu\n/jcDrn977QVvvgk33OACtC+6KKMFuw1PUNWZwKHAv3HJNlqq6heRCfr1Vy+Crw3DiJaGDeGmm+CC\nCzISQljhKDZmojJjMROGkcS0aXD55bDDDu6VTZs2Gelm5UqXTePVV+Huu+G009ybIiPzRBAzsQ0u\nG19HXPal94GxqromLA1JWlRvv90FYVdU/wbDMErMP/+4NOYXXgh9SpJjrpyRTntfosGEiOyPKwa0\nwZlUVV9KhwCfscGEYRTgn3/g4YfdK5vjjnPpZOvWzUhXyQHaY8dC48YZ6cZIIoLBxPPA78ATuJo/\nZ+CKi54SloYkLaoDB7oZueuvD7t7wzA85IsvoEsXmD0bdt01ajXpJdQAbBF5FHgEOAk4NmmpFPgS\ngO2DhgQ+aQG/9FR4LVtt5eZ958+HmjVh333d9MHatWnXkgjQjsVcgPbIkW4skw4q/N+pFBoiipnY\nV1X7qOpUVX1PVc8D9o1CCEDOlCnE//e/qLrfBB/uiwSmJTU+aQG/9FQULa1bQ3Y2XHNN9FrSRVQB\n2B2AA1S1l6r2TixpVeExvgRgG4ZX1KrlBhHvvw9Tpriid5Mmpb2batVcobuPPoJXXnEDDMvamX4i\nDMD+XEQ21EMPsjnNjEIIQE6zZsQOOCCq7g3D8JCbbnIJQqZNi1pJesiEvS9JnYkJwB2qOietPZcD\nzM3JMErIpEmuPkWTJm6Qsc8+ae8iPx/+8x8XpN23LwwaVLFzgEdBBG5O84FmwPe4mImGwAJgPa6e\n0f4halE9+mjnW3dspZl8NwyjBLz0Etx4o6s9Ub161GrSQ9h1Jh4FPhaRhSIyO1i+TEfnhmFUEI46\nyjmVdu4MHTvClVe6SOo0UqWK+56Xm+uWNm3CSSNrZJTuwF7AYUAsWD8S50p7XOhqfvvNVYU3DMNI\n4r5PaH8AACAASURBVIQTXIanUaOiVuInJRlMPAychTP6iXiJ8I18JccHP7sEPmkBv/RUai3Vq7tB\nxJw5sHo1NG8O48ZBfn5ateyxh3N5ysmBE090CaZWr96ya1Tqv5NHqGoerkjdDkDtxKKqecG+cPFo\nMOHTfWFaUuOTFvBLT0XTIgJjxrhEb2Wp4+rT55JOSjKY+J+qTlTVbxIGPhIjHxG+BGAbRrmhbl14\n6CFXOOLRR+HAA2HevLR2IQKnnuriJ1auhP32g7ffTmsXlYqoArBFZCjwJTAGuCtpiYSc774jnuZ7\n1TCMikGTJnDZZdC/f9RKykYm7H1JYibuB2rhqpQmUrZoWVLDisgpQA7QHBfc/XnSvoHAucA/QD9V\nnRy0twPGA1sDk1T18qC9BvAY0Bb4BThNVb8L9vUCEjn+hqnqY0F7Y+AZ3FuwmcDZqrouhU6LmTCM\nsqAKTzzhoqi7d4fbbstIKtm333YuUIce6rI+1amT9i4qBRHETCwE9lPVotOBbX5eA5zdr4uLtXhI\nVUeLyAjgGNyz6mugt6r+FpyT8tmSdE3VHXaAvDwrXGcYRkrWrHEvr0aPdt695ZmwYya2xRnmrjgj\nfQxlTw07GzgB+L/kRhFpCZwGtMS5Vd0vsqFc1Vigj6o2BZqKSPegvQ/wS9A+EhgeXKs2cBPQPlgG\ni0hi/no4cFdwzq/BNQzDSDcicPbZbmZip51cKtnRo2H9+rR2062bm6WoXdsZ+meeyUihbiP9zAFK\n8819HXCFqu4LHAhcIiItgMm4dLOtgYXAQCj02bL582/1aleU0TAMIwVbbw333utmKP76K2o1/lDs\nYEJVs4Olt6YpNayqzlfVhSl29QCeVtV1gSvVYqCDiNQDtlfVGcFxjwHHB+vHAROC9ReBzsF6N2Cy\nqq5U1ZXAFODIYHDSCXghOG5C0rW8xSdXK5+0gF96TEtq4p9/Dnfe6XLrTZwIbdumPc9ezZouOO6l\nl2DoUBdPsXx5IXp8+mw80hIBtwKzRGSyiLwWLBOLO0lVl6tqbrC+GpgH7K6qU1Q1PzhsOlA/WE/1\nbGm/2YWrV3e1VDzAp/vCtKTGJy3gl56KrKV7d5cAZPjw6LX4QtXCdojImCLOU1XtlwE9uwOfJG0v\nBfbAvYVamtS+LGgn+Pl9IGq9iPwmInWCay1Nca3awMqkB07ytQzDyCQtW7q6FC+9BOec4wpHjBgB\n9esXf24JOeggV+zu5ptdwaGRI+H0090kieEdjwG3A18BCZu8RXNKItIIaIMbPCRzLvB0sF7Ys2VT\ntt12S7o2DKOSMnKkG1CceSY0bRq1mugpNGZCRLJxRj35EZzYVlWdkOq8pPOnALul2DVIVV8LjpkK\nXJWImQgGMJ+o6pPB9jjgTSAPuF1VuwTthwADVPVYEZkNdFPVH4J9i3GF9rKBrVX1lqD9BuBP3EzE\nJ4GLU8L3dpKqtkrxO1jMhGFkij//dDEUY8e68qL9+6e9cMRnn7nqpU2bum52S2WRjA1EEDPxqaqW\nukqciNQE4riYuFeS2q8H2qrqScF2qmfLpOTYPxFRrV+/bKlaDMOoNNx5J7zzjss1Uh5fVqXT3hc6\nM6Gq4wt0up2q/lHSCye++G8hy4AGSdv1cW+QlrFxujq5PXFOQ+AHEakK7Kiqv4jIMlze8gQNgPeA\nFUAtEakSzE7UD66RkuzsbBo1agRArVq1yMrK2lAROzFdZdu2bdul2J4xAzp3JpadDVdcQTxwRI0N\nGJDW/mbOjHHzzdCiRZy+fWHYsBgiHvz+Hmzn5uayMqgHkpeXRwS8LyK3AROBvxONyUk5CkNEquFc\nW58oMJDIBo5io8srpH62bGb3s3/7jUZBlhOz97Zt27Zd1HZWFowfH+Oll6BOnej1FLedUXuvqkUu\nwL+BucD3wXYWcH9x55Vk+X/2zjw+iiJ93M/LraBE0FVUFFQ88EJQQF01Hij4U9RVF7wARV1F1gsP\n8EpQvHC9cL1PvGXR9ViRYzGD7lc5BIJRRPBAwQMRDB4Icry/P6oCQ5gkk2RmuibzPp9Pf9Jd3V39\nZNKpnuqqtwooAjrFbbcHioFGQFvcaBxlrSdTcC0OAowBuvv0AcCDfr038KJfbwF8gRuJaouydb9v\nFG7UJ4CHgAsq8NNQKCoqilphHSG5qIblYy6JScrlzTdVd9lF9YQTVL/4IuUO06ap7rmny/7ll5Pw\nyRAh/Z18mVfrsj3ZBYj558AGSxLnCa6L1N3l0rvjgrq3LJde4bMl7hjVDh3S8bHWiJDuC3NJTEgu\nqmH55IrL22+r7rij6m+/Re9SXVJZ3tdLor5xjy+gf/Tfrotxs5XWGBE5SUQW4EbheFNE3vJ5z8Z9\n0Z+N6940wP/C4CoNjwHzgM9UdaxPfxxoKSLzgEuBwT6vpcBNwDRgKjBUXSA2wNXA5f6cLXwehmFE\nybHHuiGZunSBAw6AggLXFSpF7L8/TJ/uBpTq3x+ee85GfIoaVc1X1cPLL0mcejBuMtXDRWSmX3rg\n5qtoBkzwaQ/461T2bFmPxUwYhlENDj8cOnd2oX+5TDLzTExV1c4iMlNV9/Nps9QNvVensZgJw4iI\nBQvgiitgyhQX6XbiiSntlFoWS7HLLi6WolWrlGWd1UQQM7ENcDOwnap290O4HqiqGX/BIyKqRx3l\nBggwDMNIkq++cgMUzpgBO+4YtU3yZHqeia9F5GB/4UYicgVuGD7DMIz00Lo1vPSSm0H7+uvdRBKf\nfpqy7MtaKfbaCzp0sFaKCHkKNzfEtn57HnBZZDbWMmEYRjXZcUe45BIYNChqk+hIpjJxIXARbhi9\nb3BD8F2UTqmQKCwsXBfIEiUhOJQRkguE5WMuiamxy+GHw8yZ0KMHHHwwXHttSro+xWIxGjeGYcPg\nzTfhttvgpJNg0aJaZ10jl6iJxWIU+sDjTOAHywAX2/ASblZqVHUVkNoZDatB4eefB/H3gDDuizLM\nJTEhuUBYPrnmcuWV7gXVxInRu1RFOsr7KisTqrpYVU9X1T+p6laqeoaqLkmpRcAUFhaui4Y3DCMC\nGjaEyy6DDz+EL790c1W89lrKmhL23991e2rf3s1L8corVZ9T18jPz89oZQIXxwbwq4hsWZYoIl2B\nZZkUiaewSxcr7w3DqDabbAJ33eVaKFatitqmctJR3lc2z0T8pHUbzTeh6Zm0LigsZsIwAuTtt+Gi\ni2DnnWHECNhpp5Rl/d570Levm/huxAjIy0tZ1llBpmImymLwRKQTMALYCzcK01bAKao6K90OCZxU\nBw6E+yqbr9UwDCMxqnD00XD88XBxFnxDzlTMxHTgA//zhLj1ssUwDCPzHHEEzJoFhxzihtG48UZY\nsSIlWR90EBQXw2abwT77uAmJjLSwlYhcDuQD/waG44b8foQN54fILBYzYRhGDRGBe++Fm26CxYuj\ntsksFVYmVPUpVR2pbvK6pWXrZemZUzQgjH52ZYTkAmH5mEtiUu7SqBFcfbUbPmPWLBdJ/dZbKfFp\n2hTuvx8efRTOPtu9YUrhCLXVcqnD1Ac2ww3j2hQ3gWp9YFOfHg1NmkR26fKEdF+YS2JCcoGwfHLV\npX17OPNMuOaa6F0ySYUzYBuOspgJ60drGAGyww7w8sswdiwMHOiaE+65x6XXkmOOcWEaAwfCfvvB\nM8+4hpC6SCwWy/RD7ntVHZrJCyZD4bvvkh+LWXlvGEaNKSyE3Xd3sXj77x+1zcako7yvcp4JWN+/\nNaVXzgIsZsIwsogVK2D4cBfscMUVcPnlrgUjBfzrX/D3v8P557uRahs2TEm2wZHpmIl0X6c6iIjq\n8OFuWBbDMIxa8MQT8Nhj8L//Qb1kxk2NgIzETIjIryLyi4j8Auxdtu6Xn1NxccMwjJTRpAnccANM\nnepK8H33dcHaKeDUU90ItdOnQ9eu8PHHKck2lzkqaoGEpKjyaRhGbtOvnxvV6bnnojbJDJXFTDRT\n1c380iBufTNV3TyTkkZY/exCcoGwfMwlMRl12WkneOMNN3nEOefAaafBt9/W2qdVK/jPf+CCCyA/\n3w0DuHZt7XVD+jtlimCHFw+oySmk+8JcEhOSC4Tlk+su9eq5geEGD4ZffonWJRME2vhiGIZRC0Tg\nhBNg9mxXudhnH/ftv5YDgIvAeefBlCnw6qtw5JGwYEGKnI3osZYJwzBSRNeubvDB22+P2iT9JBUz\nkauIiBYUFFgAtmFkO3Pnukjq7793QzUdckits1yzBu64w9VR7rsPevVKgWdElAXkDR06NCMxEyEi\nIlpwwgnkX3qplfeGYaSEhQtdj9sZM2DHHaO2caSjvI+kMiEipwKFwO5AZ1Wd7tO7AbcCjYA/gCtV\ntcjv6wQ8BTQBxqjqJT69MfA00BFYAvRS1a/8vr7Atf6yw1T1aZ/eFngRaIGbM+MsVd3olaUFYBtG\nHUIVRo92gdlHHOGCtbfeutbZfvABnH66m+juvvtg8yzuBJqpAOzaIiKtceX+n3CTqj6iqiNEpAXw\nErAjMB/4q6qW+nOGAOcAa4CLVXV8uTxVn3/edYszDMNIEYWF8Omn8MILUZtsSKYmrUsnJcBJwDu4\nB0EZi4HjVHUfoC/wTNy+B4H+qtoOaCci3X16f2CJT78buB3AP1RuADr7pUBEmvtzbgfu9Of85PMI\nmpD62YXkAmH5mEtignARcZHUs2cTW7HCzU1x//2uiaEW7L+/C85u3Bg6dHCzaFeHID6b7GMVcJmq\n7gl0BS4SkT2AwcAEVd0VmOi3EZH2QC+gPdAdeEBENn7+BdTNKaT7wlwSE5ILhOVjLuu58kp49114\n//3oXdJFJJUJVZ2jqnMTpBer6vd+czawiYg0FJFWwGaqOtXvexo40a/3BMom0XuZ9bOnHgOMV9VS\n/2ZqAtBDRAQ4HBjtjxsZl5dhGHWdzTaDCy+EWAxGjYIuXdwIULWgaVN45BHX5ekvf3FvolavTomt\nkQBV/V5Vi/36r8AnwHZs+DyIL9tPAF5Q1VWqOh/4DPeSaUMCCsA2DKNu0LQp3HILXHZZagbtCJFI\nYyZEpAgYpKozEuw7BThfVY8Wkf2BW1W1m993CHCVqh4vIiXAMar6rd/3GdAF6Ac0UdWbffp1wO+4\nrlKTfatEWXP5GFXdO4GDdXMyjLqMKjz7LFx1lQvYvuUWaNGiVll++62bOfvnn13WO++cItcMkC3d\nnOIRkTbAJGAv4GtV3cKnC7BUVbcQkftw5f5zft9jwFuq+nJcPqpvvQXdu5e/hGEYRq1Yu9a9t7r0\nUjjjjKhtHKks79M2A7aITAC2SbDrGlV9o4pz9wRuA7qlWKvaNYN+/frRpk0bAPLy8ujQocO64Lyy\n5irbtm3bzuLts86C444jdvbZsMsu5N95J/TtS+ydd2qc/1tvwcUXx+jYEe69N5++fWHSpEB+37jt\n4uJiSktLAZg/fz7Zhog0w7VIX6Kqv7j6g0NVVUQqK/M32tfv7rtpM3kyYOW9bdu2badu+513YvTp\nA0OG5HPSSTB1auZ90lreq2pkC1AEdCyXtj3wKXBgXFor4JO47dOAB/36WKCrX28ALPbrvYGH4s55\nGNdnVnCxGfV8+oHA2Ar8NBSKioqiVlhHSC6qYfmYS2JCclGtxGfaNNUDDlA9+GDVWbNqfZ1Zs1T3\n2kv11FNVlyyppksE+DIv0udCsgvQEBgHXBqXNgfYRtc/N+b49cHA4LjjxgJdyuWn+s47qf1Aa0FI\n94W5JCYkF9WwfMwlMYcdVqQ33hi1hSOV5X29lNZMasa6V0kikge8CVytqu+Xpavqd8DPItLFN12f\nBbzmd7+OC9YGOAUXdAcwHjhaRPJEZAtcK8c4/wEWAaf64/oCr6blNzMMI7vYf38XJXfWWXDUUW7k\np/gZh6rJPvvAtGmw7bYuOLuoKIWuOYx/DjwOzFbVe+J2xT8P4sv214HeItLIj+bXDtg4UKZRo7Q5\nG4Zh/O1vcM89G82jmvVENTTsScAIYEtgGTBTVXv4uIbBwLy4w7up6o9xQ8NugotxuNjn1Rg36tN+\nuKFhe6sLsENEzgau8fkMU9WRPj1+aNgZwJlqQ8MahhHP4sVw9dUwfryLrD71VDciVA0ZO9ZNyH3u\nuXDDDdAgbZ1Ma062xEyIyJ9xowF+yPruSkNwFYRRwA5sPDTsNbihYVfjukWNK5en6vTp0LFjRn4H\nwzBykyFD4Lvv4KmnovVIZXlvk9ZVglUmDMPgf/+DAQPcnBT33w+77lrjrL7/3jV6rFgBzz0HO+yQ\nQs8UkC2ViXQgIqolJW7IYMMwjDTx88+w227wn/9Ap07RedSFeSaMalIWTBMCIblAWD7mkpiQXKCa\nPn/+M0yfDsceCwcdBNdfD8uX1+i622wD48bBccfBAQfAq6+G99nkNPXrR22wjpDuC3NJTEguEJaP\nuSQmFoux+eZw441uqNi68r7aKhNVUFhYGNSNaBhGBDRs6Er+WbNg7lzYc094o9JB6SqkXj3Xe+rV\nV12W997rWiqiJBaLUVhYGK1EABQ+8ICV94ZhpJ1zzoFly+CVVzJ/7XSU99bNqRKsm5NhGAmZMAEu\nugj22MPVBvzw0dWltBTOP9/VT158EXbfPbWa1SXnuzl99ll2TQxiGEbW8vbbLoZu9mxo0iTz17du\nToZhGFHSrRuUlEDnzm4EqFtugZUrq51NXh689JILyTjkEHjyybrT7J2V1LNHomEYmeGII2DvvWHE\niKhNao+VnFlCSE3vIblAWD7mkpiQXCBFPo0bw7XXurFf338f9t0XJk6s+rxyTJoU4/zz3bCxd94J\nZ57pAvSMCAioMhHS/4y5JCYkFwjLx1wSU97ljjvc8uOP0fikinBKTsMwjGykbVsXPzF8OPTvD6ed\nVqNBxPfaC6ZOhWbN3OikH3yQBlejcgKqTBiGUffZdVfo1Qtuuilqk9phMROVICJaUFBAfn7+uinJ\nDcMwKmT5crj5Znj4YTfq00UX1WhCiX/9y5163XXw97/XanqLpIjFYsRiMYYOHZrTMRMFl11Gfs+e\nVt4bhpExFi924XeTJ8Muu6T/euko760yUQkWgG0YRo2YM8fVBpYsgQcecEPKVpPPP3fz5O2yCzz2\nGGy+eRo8y5HzAdjffgutWkWtYhhGjnHLLTBzpnuRlCksADsHCbnPX9SE5GMuiQnJBTLgs/vu8N//\nwuDBrkbQv3+FnWIrctl5Z3jvPWjRwsV4z5qVRl/DEVA3p5D+Z8wlMSG5QFg+5pKYilwuvdS1TLz/\nfmZ9UkU4JadhGEZdQgR694ZPPnHNCu3bwyOPwNq1SWfRpAk89BAUFMBRR8Hjj9toT2kloMqEYRi5\nw6abwrBhcMUV2VnGWzenSrBuToZhpIziYjcG7Nq1rutTx47VOv2TT+CUU9zM2fffD02bpl4x57s5\n/fgjtGwZtYphGDnImjXQqZMLtzv55PRfz7o5ZRCbAdswjJTQoQP8739ulroePVxkdWlp0qfvsYcb\n7WntWujSxYVlpAqbAdtROHy4lfeGYURC/fpumNjBg+GPP9J3nXSU95FUJkTkVBH5WETWiMhGr+dE\nZAcR+VVEBsWldRKREhGZJyL3xqU3FpGXfPpkEdkxbl9fEZnrlz5x6W1FZIo/50URaViRa2FhYRAj\ne4T0gAvJBcLyMZfEhOQCEfrUqwfnnOOmPF25Etq3J3bttUm3azdtCiNHuv61hxwCL7yQGq38/Pys\nqkyIyBMiskhESuLSOovIVBGZKSLTROSAuH1DfHk/R0SOrijfwmuuCaK8h7D+Z8wlMSG5QFg+5pKY\nqly6dXPxcg8/nD6HdJT3UbVMlAAnAe9UsP8u4M1yaQ8C/VW1HdBORLr79P7AEp9+N3A7gIi0AG4A\nOvulQESa+3NuB+705/zk8zAMw8gMLVu6+IlXXoFRo9xUqLNnJ3WqCJx7LkyYADfc4HpO1WDy7Wzn\nSaB7ubThwPWquh+u7B8OICLtgV5Ae3/OAyKS+NlnMROGYUTM8OEufmLZsqhNkifSmAkRKQIGqeqM\nuLQTgYOA34BfVfVOEWkFvK2qe/hjegP5qnqBiIwFClR1iog0AL5T1a1E5DTgUFW90J/zEBADXgJ+\nALZW1bUi0hUoVNXyDyaLmTAMI/2sWQMPPghDh7pRn66/PumAiGXL4Oyz4bvvYPRo2G672qlkU8yE\niLQB3lDVvf32C8C/VXWUL///n6qeKSJDgLWqWvaiaSyuzJ9cLj/V335zkZCGYRgRcs45sPXWcOut\n6btGnY2ZEJFmwFVAYbld2wEL47a/8Wll+xYAqOpqYJmItAS2LXfOQn9sC6BUVdcmyMswDCOz1K8P\nAwdCSQl8840b9emVV5Lq+tS8Obz8MvTsCZ07w7vvZsA3XAYDd4rI18AdwBCfXtGzYGOsZcIwjAC4\n6SbXeL1gQdQmyVH9qVmTREQmANsk2HWNqr5RwWmFwN2qulwkLXO+VruZoV+/frRp0waAvLw8OnTo\nsK5PbVnft0xsx/ezi+L68dvlncxn/XZxcTGXXnppZNeP377nnnsiu1/Lb4d0/4bms85pzhzo35/8\n/v1hwABit98OF19M/hlnVJnfkCFQv36Mnj3hxhvzGTgQJk2q+vrFxcWU+iDw+fPnk+U8Dlysqv8W\nkVOBJ4BuFRyb8FnQ77zzaLPzzkC05T3Y/2+V/y9W3gftY/dv4u3yThUdP29ejGOPheuuy2fkyNTd\nH2kr71U1sgUoAjrGbb8DfOmXn4AlwABcpeSTuONOAx7062OBrn69AbDYr/cGHoo752Fcv1kBFgP1\nfPqBwNgK/DQUioqKolZYR0guqmH5mEtiQnJRDcsnocvKlaq3367asqVqYaHq778nldfnn6vus4/q\nWWepLl9efRdf5kX6XEh2AdoAJXHbP8etC7DMrw8GBsftGwt0SZCf6qpV1f/Q0kTw92hEmEvFhORj\nLompjsuyZapbb606Y0Z6XFJZ3ocQM3GFqk5PsK8A+EVV7/LbU4CLgam44OwRqjpWRAYAe6vqhT6W\n4kRV7e0DsD8AOuIeLNNxFZdSERkFvKyqL/lYimJVfSiBg0b5+RiGkeN8/bUbuqmkBO67D7pvFNq1\nEb/9Bued54aOfeUV8A2rSZHlMRMzgMtUdZKIHAncpqoH+ADs53EDcWwH/BfYpXzhLiKqa9ZYVyfD\nMILhwQddV9YJE9zgG6kk62MmROQkEVkAdAXeFJG3kjhtAPAYMA/4TFXH+vTHgZYiMg+4FPcWClVd\nCtwETMNVQIaqatmg7lcDl/tztvB5GIZhhMUOO7gawb33wkUXuVnrquhE27QpPPcc9OkDXbvCf/+b\nIdcM4oOt3wN2E5EFInI2cD4wXESKgWF+G1WdDYwCZgNvAQMqfEuUlt61hmEYNePcc2HhQhg7tupj\nIyVVTRx1ccG6OSUkJBfVsHzMJTEhuaiG5ZO0y/LlqgUFruvTHXeo/vFHEnmrbrON6n33JXcJsqib\nU6qXkMp71Sy9RzOAuVRMSD7mkpiauLz6qupee6muXp1al1SW99aeWwU2A7ZhGEGwySZQWAiTJ7vm\nhv32g3feqfSU/Hz4v/9zTeUDB8Lq1YmPi8VsBmyw8t4wjPDo2RO22AKeeio1+aWjvI80ZiJ0LGbC\nMIwgUXXdny691NUYbrkFWreu8PBly6BXL3faqFFuSNlEZFPMRKqx8t4wjFCZOhVOOgnmzk16GqIq\nyfqYCcMwDKMWiMDJJ8Mnn8COO0KHDm6yu19+SXh48+bwn//AbrvBgQfCF19k2NcwDMOoMZ07wyGH\nwF13RW2SGKtMZAkhNb2H5AJh+ZhLYkJygbB8auXSrBkMGwbFxfDVV6628OijblbtcjRoACNGuO5O\nBx8M0zcaQ88IiTpzj6YYc6mYkHzMJTG1cbn1Vthyy9S5pBKrTBiGYWQ7rVvD00/D66/Ds8+6lorx\n4xMeOmCAi6Ho0aPKkAvDMAwjENq2hQsvjNoiMRYzUQnWh9YwjKxDFV57Da68EnbaCW66ybWRl2Pi\nROjd29VBevRwaRYzYeW9YRi5gcVMZBAb3cMwjKxCBE48ET7+2P08+WQ4/niYMWODw4480tU5+vSB\nhx+20ZzAynvDMOo+6RjNySoTVVBYWEh+fn7UGkE94EJygbB8zCUxIblAWD5pc2nUyLWJz5sHxxzj\nKhQnnujGivVv4A86CO65B554It8qE4RT3kOO3KM1wFwqJiQfc0lMCC75+akv760yYRiGUZdp0sRF\nXX/2mWuOOPts6NQJHnkEFi2i1ylrWPXp5yz7qjRqU8MwDCMLsZiJSrA+tIZh1DnWrnXB2U884X6K\nuJiKceMsZsLKe8MwcoRUlvdWmagEe7gYhlGnWb0ali6FrbYCEatMWHlvGEaOYAHYGSSUgLwQHMoI\nyQXC8jGXxITkAmH5ROrSoAH86U/EJk2ymAnCKe/B7tGKMJeKCcnHXBITgkudCcAWkVNF5GMRWSMi\nHcvt20dE3heRj0TkQxFp5NM7iUiJiMwTkXvjjm8sIi/59MkismPcvr4iMtcvfeLS24rIFH/OiyLS\nsCLXUALyiouLo1ZYR0guEJaPuSQmJBcIyycEl3QE5KUTEXlCRBaJSEm59L+LyCf++XF7XPoQX97P\nEZGjK8o3lPIewrgvyjCXxITkAmH5mEtiQnCpSwHYJcBJwAZTJolIA+AZ4HxV3Qs4DFjtdz8I9FfV\ndkA7Eenu0/sDS3z63cDtPq8WwA1AZ78UiEhzf87twJ3+nJ98HkFTWhpOcGRILhCWj7kkJiQXCMsn\nJJcs4kmge3yCiBwO9AT28c+Pf/j09kAvoL0/5wERCb5VPqT7wlwSE5ILhOVjLokJySWVRFKgquoc\nVZ2bYNfRwIeqWuKP+0lV14pIK2AzVZ3qj3saONGv9wRG+vWXgSP9+jHAeFUtVdVSYALQQ0QEOBwY\n7Y8bGZdXtUmmyaqqY1LV7JUKl2SPMZeak4r7we6Z3HFJJp9MuoSAqr6LexEUz4XAraq6yh+z4PJK\nZAAAIABJREFU2KefALygqqtUdT7wGe4FU7UJ6b4IySWZfEJySeUx5lJz6to9E5JLssekitDezrQD\nVETGish0EbnSp28HLIw77hufVrZvAYCqrgaWiUhLYNty5yz0x7YASlV1bYK8qk2mbsD58+dnxCWZ\nY0JyScYnJJdk8gnJJVXHhOSSjE9ILsnkE9qDJSLaAYf67q4xEdnfp1f0LKg2Id0XIbkkk09ILqk6\nJiSXZHxCckkmn5BckjkmJJdkj0kZqpqWBdcSUJJgOT7umCKgY9z2FcAXuC/8mwDvAUcAnYAJcccd\nArzh10uAbeP2fQa0BAYB18alXwdc7vfNi0tvDZRU8DuoLbbYYksuLel6JqThGdOGuLIb9yy4168f\nAHzh1+8Dzog77jHgL1be22KLLbm+pKo8bkCaUNVuNThtAfCOqi4FEJExQEfgWWD7uOO2Z/2bpm+A\nHYBvfcxFc1VdIiLfAPlx57QG3gaWAnkiUs+3Tmzv80j0O+TkEImGYRhZyELgFQBVnSYia0VkS1z5\n3jruuIRlvpX3hmEYNSOEbk7xBfg4YG8R2cRXDA4DPlbV74GfRaSLj3k4C3jNn/M60NevnwJM9Ovj\ngaNFJE9EtgC6AePUvYIqAk71x/UFXk3T72YYhmFkhldxLdmIyK5AI1X9EfeM6C0ijUSkLa471NSK\nszEMwzCqQ9paJipDRE4CRgBbAm+KyExV7aGqpSJyFzAN1wTzpqq+5U8bADyF6/40RlXH+vTHgWdE\nZB6wBOgNoKpLReQmnxfAUHWB2ABXAy+KyDBghs/DMAzDyAJE5AXcy6aWIrIAN3LfE8ATfrjYP4A+\nAKo6W0RGAbNxowMO8C+VDMMwjBRgM2AbhmEYhmEYhlEjQujmFAnpmvQolT4i0llEporITBGZJiIH\nZMJHRFqLSJGfWPAjEbnYp7cQkQl+EsDxIpKXbp9KXO7wf6dZIvJK3BwiGXeJ2z/I99NuEaVLFPdw\nJX+njN/DItJE3KSUxSIyW0Ru9elR3L8VuURx/yZ0idufsfs3NESku/8d54nI1Rm4XjBlbFz+9f3/\n6RtRuojrmjza/3/MFte9OSqXIf5vVCIiz4ubJDdjLpL4e0G1ry8VTPqbApdql2Ppconbl3Q5lk4X\nqeZzOBUuFflIDZ7D1faJekSOCEcCOQTYjw1HAzkcNwpVQ7+9lf/ZHigGGuJGEPkMqJcBnxhwjF/v\nARRlwgfYBujg15sBnwJ7AMOBq3z61cBt6fapxKVb2TWA26J08dutgbHAl0CLCD+XSO7hSnyiuoc3\n9T8bAJOBP0dx/1bikvH7tyKXKO7fkBagvv/d2vjftbjs/zqN1wymjI1zuhx4Dnjdb0f1/zISOCfu\nPm0ehYvP7wugsd9+CRdjmTEXEn8vqM71y3qfTAU6+/UxQPcUuVSnHEuri09PthxL9+dSnedwylwq\n8YmR/HO4Rj452zKhEU16VE2f73AFKUAe60cgSauPqn6vqsV+/VfgE9y47PETBMZP9pc2nwpctlXV\nCbp+rpAprB/tK+MufvddwFXlTsm0y3bABURwD1fiE9U9vNyvNsJ9WfyJCO7fClyWRnH/VuTitzN6\n/wZGZ+AzVZ3v/29exP3uaSOkMhZARLYHjsUNm1s2KErGXfyb7UNU9QkAVV2tqsuicAF+BlYBm4ob\nEGZT4NtMulTwvaA61+8ilU/6WyuXapZjaXXxJFuOpdulOt8lU+ZSiU91nsM18snZykQFpH3So2oy\nGLhTRL4G7gCGZNpHRNrgarlTgK1VdZHftQjYOpM+5VziOQdXc47ERUROABaq6oflDovic9mViO/h\nOJ/JRHQPi0g9ESnG3adFqvoxEd2/CVxmlzskY/dvIpeo798AWDfxqSejv2cgZezdwJXA2ri0KFza\nAotF5EkRmSEij4pI0yhc1A1RfyfwNa4SUaqqE6JwKUd1r18+vVYT9VZCMuVY2lxqUI6l83Op7nfJ\ndP+NqvscrraPVSY2pAGwhap2xRWsoyo5NhOR648DF6vqDsBluNFKMuYjIs2Al4FLVPWXDS7m2r4q\nu2ZKfbzLaO/ya1z6tcAfqvp8FC64h+81QEH8IVG4+L9RpPdwgr9TJPewqq5V1Q64N2WHisjh5fZn\n7P5N4JJfti/T928Cl2NxD5ZI7t9AiOx3CqGMFZHjgB9UdSYV/O0z+P/SADe31AOq2hH4DfdFKOMu\nIrIzcCmu+8e2QDMROTMKlwozr/r6GSHJciyd19+U6j2H0011nsOZoDrP4RphlYkN2WDSI6Bakx6l\ngc6q+m+/Ppr1TaZp9xGRhriH3DOqWjYPxyIR2cbvbwX8kAmfOJdn41wQkX64pvkz4g7PtMvOuIfN\nLBH50l9vuohsHYELRHgPV+AT2T0M4LtIvAl0IqL7N4HL/t6hHxm+fxO4dMS9Dc74/RsQ5X/P1mz4\nVi4tBFTGHgT09H//F4AjROSZiFwW4t4ulw3pPhp3j34fgcv+wHuqukRVV+PK1QMjcomnOn+XhT69\n/KS/qXwO9SO5ciydLtV9Dqf7c6nOczjtfyOq9xyumY+mIFApWxfczRcfpPI33HwU4LqLfK0bBqk0\nwj14P8cHqaTZZwZwmF8/EpiWCR9cjf5p4O5y6cOBq/36YDYOtkq5TyUu3YGPgS3LpWfcpdwxiQK/\nMvm5RHIPV+KT8XsYN39Nnl/fBHjHXzuK+7cilyju34QuUdy/IS24t4if48rfRmQmADuYMrbc9Q8D\n3ojSxd+Xu/r1Qu8Rxf/uvsBH/n9FcPEJF2XahY2/F1T7+rgudF3871Gb4N7yLtUux9LlUm5fUuVY\nGj+Xaj+HU+VSgU+1n8PV9UnJP382Lrg3MN8CK3H9Zc/GRbQ/A5QA04H8uOOvwQWnzMFHxafJ5484\nn/39H7QYeB/YLxM+uNFm1vrrzvRLd6AF8F9gLm6G8bx0+1Tg0gOYB3wVl/ZAVC7ljvkCX4hF4NI9\nqnu4kr9Txu9hYG9c4VkMfAhc6dOjuH8rconi/k3oEsX9G9ri79VP/e86JAPXC6aMLed1GOtHc4rE\nBfclfhowC/d2t3mELlfhviyX4CoTDTPpQuLvBdW+Pq5ltsTvG5Eil3NqUo6l2GXd97dy+5Mqx9Ll\nQg2ew6lwqeSeqfZzuLo+NmmdYRiGYRiGYRg1wmImDMMwDMMwDMOoEVaZMAzDMAzDMAyjRlhlwjAM\nwzAMwzCMGmGVCcMwDMMwDMMwaoRVJgzDMAzDMAzDqBFWmTAMwzAMwzAMo0ZYZcIwDMMwjDqLiKwR\nkZki8pGIFIvI5SIiKb7G30TkLL/ez89OXZ3zHxWRPapxfKGIDKqB5wd+9vVkjr1WRGaJyFgRse+L\nRoXYzWEYhmEYRl1muarup6p7Ad1wkxQWpPICqvqwqj7jN/sC21bz/PNU9ZPqnFKd/AFEpC3wjaqu\nStLpZqAzsBpoVt3rGbmDVSYMwzAMw8gJVHUxcD4wEEBE6ovIHSIy1b+FP9+n54tITET+JSKfiMiz\nZXmIyG0i8rE/frhPKxSRQSJyMm7G4ed8a8ixIvLvuHO7icgr5b38tTr69V9FZJhvRXlfRP5U0a/j\njz9PRMaISBMROUBEPvTXvkNESuKO7w68FXeN4b61ZoKIdBWRSSLyuYgcH3fOFFxl4tfqfdJGLmGV\nCcMwDMMwcgZV/RKo77+k9wdKVbUz7i38eSLSxh/aAbgEaA/sJCIHi0hL4ERV3VNV9wWGlWXrstaX\ngQ+A031ryBhgd38ewNnA44m04tY3Bd5X1Q7AO8B5FfwqIiIDgWOBE1R1BfAkcJ6q7oerBMRzDDA2\n7hoTfWvNL8CNwBHASX4dEWnkHZYA+1XgYBhWmTAMwzAMI2c5GugjIjOByUALYBfcl/upqvqtqipQ\nDOwIlAIrRORxETkJ+L2CfONjMp4BzhKRPKArvnWgEv5Q1Tf9+nSgTQX598G1Npyiqqt8/s1UdYo/\n5vl1B4s0ArZX1flx1xjn10uAIlVdA3wUd73bRGQ60ASYVYWzkcM0iFrAMAzDMAwjU4jITsAaVf3B\nx2EPVNUJ5Y7JB1bGJa0BGqrqGhHpDBwJnILrLnVkgsvEtzQ8CbwBrABGqeraKhTjYxrWkvi7muIq\nAfsCrYH5CY6Jr9AcAvyvkmv8AaCqa0WkgV+/vApPwwCsZcIwDMMwjBxBRLYCHgLu80njgAFlX6BF\nZFcR2bSS85sCear6FnA57ss8uC/uZV/efwE2LztHVb8DvgWuw1UsUsVM4ALgdRFppaqlwC++sgPQ\nm/WVmu7AmBRe2zDWYS0ThmEYhmHUZTbx3Zga4uIIngbu9vsew3XrmeGHi/0BFzegbDxikgKbAa+J\nSBNc5eGyuH1lxz8FPCQiy4EDVXUlrsvRlqr6aRK+Wm69opGbVFX/T0SuAN4UkaNwMSCPishaYBKw\nzB97GK4yk+gaia5pGEkjriugYRiGYRiGkQ5E5J/AdFVNZctEous0VdXf/PpgYGvgH8Ajqvr/0nlt\nI3exyoRhGIZhGEaa8EHMvwDdkp3joRbX+iswBNfzZD7QT1WXpPOahmGVCcMwDMMwDMMwaoQFYBuG\nYRiGYRiGUSOsMmEYhmEYhmEYRo3IWGXCT1k/U0Te8Nst/BTuc0VkvJ9spezYISIyT0TmiMjRcemd\nRKTE77s3Lr2xiLzk0yeLyI5x+/r6a8wVkT5x6W1FZIo/50URaZj+T8EwDKPuY+W9YRhG7pDJlolL\ngNmsH3JsMDBBVXcFJvptRKQ90As3fX134AE/XBvAg0B/VW0HtBOR7j69P7DEp98N3O7zagHcAHT2\nS4GINPfn3A7c6c/5yedhGIZh1B4r7w3DMHKEjFQmRGR74FjceM5lD4qewEi/PhI40a+fALygqqv8\ntO+fAV1EpBWwmapO9cc9HXdOfF4vs342ymOA8apa6idzmQD08A+rw4HRCa5vGIZh1BAr7w3DMHKL\nTLVM3A1ciZuyvYytVXWRX1+EGwsZYFtgYdxxC4HtEqR/49PxPxcAqOpqYJmItKwkrxZAadyU9vF5\nGYZhGDXHynvDMIwcIu2VCRE5DvhBVWey/i3VBqgbnzZTY9TaWLiGYRhpwMp7wzCM3KNBBq5xENBT\nRI4FmgCbi8gzwCIR2UZVv/dN2j/4478BWsedvz3uDdM3fr18etk5OwDfikgDoLmqLhGRb4D8uHNa\nA28DS4E8Eann31Zt7/PYABGxB5FhGDmFqiasBCSJlfeGYRhZQi3L+3WkvWVCVa9R1daq2hboDbyt\nqmcBrwN9/WF9gVf9+utAbxFpJCJtgXbAVFX9HvhZRLr4PrBnAa/FnVOW1ym4AD+A8cDRIpInIlsA\n3YBx/s1YEXBqguuX9690KSgoqPUxqcgjk8eE5GK+2XFMSC7mW/FSW9TK+6z7m5tv7vxOIbmYb/TH\npJJMtEyUp+w3uA0YJSL9cVO+/xVAVWeLyCjcSCCrgQG6/rceADwFbAKMUdWxPv1x4BkRmQcswT3E\nUNWlInITMM0fN1RdYB7A1cCLIjIMmOHzqDb5+fm1PiaZPObPn58Rl2SOCcklGZ+QXJLJJySXVB0T\nkksyPiG5JJNPqlzSgJX3NTzG7tH0uaTqmJBckvEJySWZfEJySeaYkFySPSZlVFWzyeXFfTxh0Ldv\n36gV1hGSi2pYPuaSmJBcVMPyCcnFl3mRl71RLCGV96ph3RfmkpiQXFTD8jGXxITkksryvn5hYWHm\nai5ZxtChQwvL1tu0aROdCJCXlxe5QxkhuUBYPuaSmJBcICyfEFxisRhPPfUUkyZNorCwcGikMhER\nUnkPYdwXZZhLYkJygbB8zCUxIbiko7wXVzkxEiEiap+PYRi5goigKQrIyzasvDcMI5dIZXmfyRmw\njVoQi8WiVlhHSC4Qlo+5JCYkFwjLJyQXIxxCui/MJTEhuUBYPuaSmJBcUolVJgzDMAzDMAzDqBHW\nzakSrNnbMIxcwro5WXlvGEZuYN2cMkhhYWGdbZYyDMMA1/Rug3FYeW8YRt0nHeW9VSaqoLCwMKrx\n2TcgpAdcSC4Qlo+5JCYkFwjLJwSX/Px8q0wQTnkPYdwXZZhLYkJygbB8zCUxIbiko7y3yoRhGIZh\nGIZhGDXCYiYqwfrQGoaRS1jMhJX3hmHkBhYzYRiGYRiGYRhG5FhlogpCCcgLwaGMkFwgLB9zSUxI\nLhCWTwguFoDtCKW8hzDuizLMJTEhuUBYPuaSmBBc0lHeN0hpbnUQe8AahlHXyc/PJz8/n6FDh0at\nEilW3huGUddJR3lvMROVYH1oDcPIBZZ9vYzmOzS3mAkr76Nl7VpYuRI22WSjXcuXQ5MmUM/6UxhG\nSkhleW8tE4ZhGDnMknlL2WO3Ncz9clnUKkZdQRV+/BE+/RTmzYMlS+Dnn6tefvsNjjoKxo3bKMt9\n94UvvoCmTWHzzd2y2WYb/oxfz8uDnXaCdu2gdWuoXz+Cz8EwcgSr41dBKH1oQ3AoIyQXCMvHXBIT\nkguE5RO1yz/P/5ADtnuBe568O1KPEAilvIfo74t4qnT5+mt44QW45BI48EBo0QJ22w2uvBKKiuD7\n76FBA2jTBv78Z+jdG664Au65B0aPhsmTYeFCWLUqYUUCXJ3kjz/g+edjvP8+/OtfcO+97hJnnAGH\nHQa77OIaNZYuhQ8+gFtvdZdr1gz23NMdd++98P777lJp/1wyTEg+5pKYEFyyMmZCRJoAk4DGQCPg\nNVUdIiKFwLnAYn/oNar6lj9nCHAOsAa4WFXH+/ROwFNAE2CMql7i0xsDTwMdgSVAL1X9yu/rC1zr\nrzFMVZ/26W2BF4EWwHTgLFXdqHixPrSGYdRVfvn2F/45aS/+760d2fWYtrXuQ2vlfY6wZg1MmQJv\nvAH/+Q8sWgSHHAJdu8Jf/uK+ubdsCZLaHnP167uKQevW1Tvvt99cZWTGDJg2DUaOhC+/hCOOgB49\n3LLddilVNYxgydqYCRHZVFWXi0gD4H/AFcCRwC+qele5Y9sDzwMHANsB/wXaqaqKyFRgoKpOFZEx\nwAhVHSsiA4C9VHWAiPQCTlLV3iLSApgGdPLZTwc6quoyERkFjFbVUSLyIDBLVR8q52J9aA3DqLPc\neXyMqbMa8dLXBwGp6UNr5X0dZu5ceOwxePpp2HprOO44OP54OOCArOtHtGiRawQZMwbGj4ddd4V+\n/aBXL9hii6jtDCP9ZN08E6q63K82AuoDP/ntRL/ECcALqrpKVecDnwFdRKQVsJmqTvXHPQ2c6Nd7\nAiP9+su4BxfAMcB4VS1V1VJgAtBDRAQ4HBjtjxsZl5dhGEad5/elv3PnmN0ZckfLlOZr5X0dQxXG\njnWv8Q85xKW98w7MmgU33+xaI7KsIgGuLtSnD7z4IvzwA9xwA7z9tuuJdcYZMH161IaGkT1kpDIh\nIvVEpBhYBBSp6sd+199FZJaIPC4ieT5tW2Bh3OkLcW+syqd/49PxPxcAqOpqYJmItKwkrxZAqaqu\nTZBXkITQz66MkFwgLB9zSUxILhCWT1Quj5w7lc5/+ooOvXZLab5W3qeGyO9RVXjzTTjgAGIXXADn\nnAMLFsDw4e41fkSk43Np0ACOPRZGjXLdn/bbD048EQ4/HCZOzKxLbQjJx1wSE5JLKsnIaE6+EO8g\nIs2BcSKSDzwI3OgPuQm4E+ifCZ3qHNyvXz/atGkDQF5eHh06dCA/Px9Yf1Pk2nYZ5rPxdnFxceSf\nR9l2cXFxpNe37eS2y8jk9X9f+js3vfoj/c74gMLCtwCYP38+qcDK+9RsR/r/++GHxPr1gx9/JP+e\neyAvj1i9evDeeznx/3LFFdChQ4y334YLLsinbVs4+eQYu+0Wbnkfmo89fxJvlxHV/VFaWgqkrrwv\nI+PzTIjI9cDvqvqPuLQ2wBuqureIDAZQ1dv8vrFAAfAV7i3XHj79NOBQVb3QH1OoqpN9P93vVHUr\nEekN5KvqBf6ch4G3gVHAD8DWqrpWRA4EClS1ezlX60NrGEadY8TJk5j4XhNe+67LBumpnmfCyvss\nY8UKuOkmePRRKCiA88+Hhg2jtoqUVavg8cfhxhvdiFF33gnbbhu1lWHUnqyKmRCRLcuatEVkE6Ab\nMFNEtok77CSgxK+/DvQWkUZ+BI52wFRV/R74WUS6+D6wZwGvxZ3T16+fApQ1TI4HjhaRPBHZwl97\nnH9iFAGn+uP6Aq+m9Bc3DMMIkBWlK7j91V254Y7NU563lfdZzNSp0KGDmxti1iy46KKcr0iA+wgu\nuMCNBrXzzm6+i3/+0w1oZRiGI+2VCaAV8LbvQzsF90ZqIjBcRD4UkVnAYcBlAKo6G/cmaTbwFjAg\n7nXRAOAxYB7wmaqO9emPAy1FZB5wKVD2tmsprkl9GjAVGOoD8wCuBi7352zh8wiW8k1kURKSC4Tl\nYy6JCckFwvLJtMtj502h01Zf0+nMPdKRvZX3KSJj94Wqe91+3HGuVWL0aGjVKhqXJIjKpWlTGDbM\nxZ6PHu3mr3juuWhcKsL+Tokxl/ST9pgJVS3BjQdePr1PJefcAtySIH06sHeC9JXAXyvI60ngyQTp\nXwJdNj7DMAyjbrKidAW3vbIrr40srfrgGmDlfZbxyy9w1lluUrmpU91QRkal7LGHG/Xpn/+EAQNg\n5Uo4++yUT6lhGFlFxmMmsgkR0YKCAvLz89cFsRiGYWQr9/91Em9N2oT/LOq8QXosFiMWizF06NCU\nxkxkEzlX3i9Y4FojOneG+++HRo2iNso6PvrIDSPbrp2Lq2jePGojw6iadJT3VpmoBAvIMwyjrvD7\n0t9pt1Up/37iJw7o2z7hMakOwM4mcqq8nz4devaEyy93i71WrzErVriPcOJEePVV13JhGNlAVgVg\nG6khpH52IblAWD7mkpiQXCAsn0y5PNB3Cgds/VWFFQkjLNJ2X7z3HvTo4frpDBqUVEUiF/9fkiEW\ni9GkCTzwAAweDIceCv/+d7Q+oWAuiQnJJZVkZJ4JwzAMIzp+Xvgzw9/ck7f/vSxqFSNKJk2CU06B\nZ56B7t2rPt5ImrPPhr32gr/8xU18d9ll1uBj5A7WzakScq4PrWEYdZKCw2LMX9iAkZ//OeF+i5nI\ngfK+qAh69YIXX4Qjjojaps7y9dduNu0jj4S77oL69aM2MowNsZiJDJNTfWgNw6iTLP7kR3bfsx4f\nxH6j7aGtKz3WYibqaHk/fbrr2jRqFNTFilJglJa6Foq8PHj+eWjSJGojw9gYi5nIQULqZxeSC4Tl\nYy6JCckFwvJJt8utZ37EaXuVVFmRMMIiZffF3Llu1KZHHqlxRSKX/l+qQ0UueXnw1lvQoAGccAIs\nXx6tTxSYS2JCckklVpkwDMOooyyY8i0jZ+7Ddc/aEDM5yeLFLjZi2DA48cSobXKKxo1dq8Sf/gT/\n7//Br79GbWQY6cO6OVVCnW72NgyjznPe7u+w5RZrufX9/KSOt25Odai8/+MPOOooN8TQsGFR2+Qs\na9bA3/4Gn3wCY8bYXBRGOFg3pwxSWFhYZ5ulDMOou8wd9yWvzm3PVc93qPLYWCxGYWFh+qUCp86U\n96owcCC0aAE33hi1TU5Tv77rYbbvvq6F4rffojYycp10lPdWmaiCwsLCIEb2COkBF5ILhOVjLokJ\nyQXC8kmXy7X9v+fybh+xRdu8Ko/Nz8+3ygThlPdQy/viwQfdfBLPPAP1av+Yz4X/l5qQrEu9em5a\nj112cYHZK1dG65MJzCUxIbiko7y3yoRhGEYd472HS5jy/Q5c8lznqFWMTDNjBhQUuOmYN9ssahvD\nU68ePPYYNGsGp58Oq1dHbWQYqcNiJiqhzvWhNQyjzqNrlYOaf8SFpy2jzyOJ55WoCIuZyPLy/pdf\noFMn17Wpd++obYwErFwJPXtCq1bw5JM2sZ0RHRYzYRiGYSRk9BWTWbmmAWc+cFDUKkYmUYULL4TD\nDrOKRMA0bgyvvAKffgo33BC1jWGkhrRXJkSkiYhMEZFiEZktIrf69BYiMkFE5orIeBHJiztniIjM\nE5E5InJ0XHonESnx++6NS28sIi/59MkismPcvr7+GnNFpE9celvvNU9EXhSRhon8QwnIC8GhjJBc\nICwfc0lMSC4Qlk8qXVb+vJLB923LP25aQb0GyRfvqQrIs/I+dVTb49lnYeZMuPfeqo9Nt0saqQsu\nTZvCa6+5oWOfeCJ6n3RgLokJwSUrA7BVdQVwuKp2APYBDheRPwODgQmquisw0W8jIu2BXkB7oDvw\ngMi6hsAHgf6q2g5oJyLdfXp/YIlPvxu43efVArgB6OyXAhEpG5jtduBOf85PPo+NCCkgzzAMozIe\n6PM+7Vss4ohB+1XrvFQF5Fl5HxHffAODBsFzz8Gmm0ZtYyTBn/7khoodMgQmTIjaxsgl0hGAndGY\nCRHZFJgE9ANeBg5T1UUisg0QU9XdRWQIsFZVyx4QY4FC4CvgbVXdw6f3BvJV9QJ/TIGqThGRBsB3\nqrqViJwGHKqqF/pzHgJiwEvAD8DWqrpWRLoChapa9rAq883+PrSGYeQESz//id3brWbS6z+zx3E7\n1yiPVPahtfI+Q6jC8ce7WImhQ6O2MarJO+/AKafAxImw995R2xi5RNbFTIhIPREpBhYBRar6Ma5g\nX+QPWQRs7de3BRbGnb4Q2C5B+jc+Hf9zAYCqrgaWiUjLSvJqAZSq6toEeRmGYWQdN/eaxcl7fFLj\nikSqsPI+wzz7LCxYANdeG7WJUQMOPRTuuccFZf/4Y9Q2hlEzGmTiIr4Q7+CbnMeJyOHl9quIZOqV\nULWu069fP9q0aQNAXl4eHTp0WNcMXtb3LRPb8f3sorh+/HZ5J/NZv11cXMyll14a2fXjt++5557I\n7tfy2yHdv6H5lHeqSX6fv/0Vj01fxpNPrC/ekr1fS0tLAZg/fz6pwMr71Gwn9f+7dCn5gwbBuHHE\n3nsvbT517f8lVdupKu9PPx3eeCPG0UfD1Kn5NGhgzx+7f1O/nY7yfh2qmtEFuB64ApgWZEpRAAAg\nAElEQVQDbOPTWgFz/PpgYHDc8WOBLsA2wCdx6acBD8Yd09WvNwAW+/XewENx5zyM658rwGKgnk8/\nEBibwFVDoaioKGqFdYTkohqWj7kkJiQX1bB8UuFywjaT9Zaja5+PL/OsvA+ApO6LM85QvfrqMFwy\nRF11Wb1a9eijVS+/PAyf2mIuiQnJJZXlfdpjJkRkS2C1qpaKyCbAOGAocAwuiO52ERkM5KnqYB+Q\n9zwugG474L/ALqqqIjIFuBiYCrwJjFDVsSIyANhbVS/0fWtPVNXePiDvA6Cjf6BMBzp6l1HAy6r6\nku9bW6yqD5Vz13R/PoZhGLVh/K3TGXDDlny0eGua5DWpVV617UNr5X0GmTQJ+vSB2bPd8EBG1rN0\nKXTuDIWFcOaZUdsYdZ2UxshloDKxNzASF59RD3hGVe/wBf8oYAdgPvBXVS3151wDnAOsBi5R1XE+\nvRPwFLAJMEZVL/bpjYFngP2AJUBvVZ3v950NXON1hqnqSJ/eFngR1592BnCmqq4q555dDxfDMHKK\nVctXsc8WXzP8qiUcf1PtZ7tOQWXCyvtMsGoV7Lefm5zuL3+J2sZIISUlcMQRMG4cdOwYtY1Rl0ll\nZSLj3ZyyaSGgZu+QmsZCclENy8dcEhOSi2pYPrVxueuEIj2m5TRdu2ZtSlxIcTenbFpCKu9Vq7gv\n/vEP1WOOUV2bmr97rVwyTC64/Otfqm3aqC5dGoZPTTCXxITkksryPiMB2NlM2bjjZUEshmEYIfDD\nx4u55fW9ePc/PyP1avdyKRaLbRAgmKtkRXm/aBHceiu8/z5Ial4qGmFxyinw7rtwzjlutmz7Mxup\nJB3lfUbnmcg2sqrZ2zCMnOLc3d6l+WZruPOD/JTlmdJm7ywja8r7Cy+ETTaBu+6K2sRIIytXwsEH\nu7CYiy+O2saoi6SyvLeWCcMwjCzjg6dn8+ZnuzLny9oFXBtZxpw5MHo0fPpp1CZGmmncGEaNgq5d\n4aCDYP/9ozYyjIqpF7WAkRwhdUEIyQXC8jGXxITkAmH5VNdF1yoXX7SGm/vMpfkOzdMjZUROwvvi\n6qvd0qJF9C4RkUsuO+0EDzwAf/0r+OkBIvWpDuaSmJBcUolVJgzDMLKIp//2f6zWevR79OCoVYxM\nMmkSfPghDBwYtYmRQU45BXr0gHPPhWzohWfkJhYzUQkiogUFBeEH5BmGkRMsmbeUPXdfzZsjl9Dp\nzD1Slm9ZQN7QoUNzOmYi2PJe1fV1+fvf4fTTo7YxMsyKFXDggS5c5vzzo7Yxsp10lPdWmaiErAnI\nMwwjJzhv93fYpLEyYtZhacnfArADLe/HjoVBg1zLRP36UdsYETB7Nhx6qBvEq127qG2MukAqy3vr\n5pQlhNTPLiQXCMvHXBITkguE5ZOsy3sPlzBmXjtueqNDeoWMIFh3X6jCDTdAQUFkFYls/H/JBJl0\nad/e3QZnnQWrV0fvUxXmkpiQXFKJVSYMwzACZ9XyVVxwaWPuGvilBV3nGmPGwO+/u87zRk4zcCBs\nvjncfHPUJoaxIUl3cxKRA4ERQHugEVAf+FVVN0+fXrQE3YfWMIyc4R/HxZgwuRljf+hU6wnqElG+\nD62V9/lR6zhUoXNnGDwYTj45ahsjAL75Bjp2hNdfhy5dorYxspFIYyZEZDrQGxgF7A/0AXZT1cGp\nEAmRoPvQGoaRE3z9/jd0PLgJkyf8yi5H7pjWa5X1obXyPhDeeAOuuw5mzoR61pHAcIweDddc426L\npk2jtjGylchiJlR1HlBfVdeo6pNA91RIGFUTUj+7kFwgLB9zSUxILhCWT1Uul5y8gIvzS9JekSiP\nlffREisqcv1Zrr8+8opENv2/ZJKoXE45xY3uNGhQGD6JMJfEhOSSSqozA/ZvItIYmCUiw4HvgZwc\n9cMwDCMTvHbNFD7+cWtefHXbTF/ayvuo+fBDWLoUTjopahMjQEaMgH32gQkToFu3qG2MXKc63Zx2\nBBYBjYHLgM2BB1T1s/TpRUuQzd6GYeQEpV8tY8+dlvP8XYs47JLMjOAU183JyvuoOe446NnTJhYw\nKmTcOPjb36CkBDbbLGobI9vIaDcnEdlVRF4DxgBPAs1UtVBVL0/mwSIirUWkSEQ+FpGPRORin14o\nIgtFZKZfesSdM0RE5onIHBE5Oi69k4iU+H33xqU3FpGXfPpk/yAs29dXROb6pU9celsRmeLPeVFE\nGibyLywsrLPNUoZhhMuVx8yi5+7zMlKRiMViFBYWAmDlfSz5Dy5dfPQRTJ8OffpUfayRsxxzDBx5\nJFx1VdQmRjYRX96nDFWtdAH+B5wH7A5cCbxS1Tnlzt8G6ODXmwGfAnsABcDlCY5vDxQDDYE2wGes\nb0GZCnT262OA7n59AO6tGUAv4EW/3gL4HMjzy+dAc79vFPBXv/4gcEECFw2FoqKiqBXWEZKLalg+\n5pKYkFxUw/JJ5DLxHzO0df2FumzBsoy6AGrlfQD06aNF554btcU6Qv9/iYoQXH76SXX77VUnTgzD\npwxzSUxILr7MS7p8r2xJJqqrmao+qqpzVPUOoG0S56xDVb9X1WK//ivwCbCd352oeeUE4AVVXaWq\n83EPly4i0grYTFWn+uOeBk706z2BkX79ZeBIv34MMF5VS1W1FJgA9BARAQ4HRvvjRsblZRiGERnL\nf1zOeYNb8OB137L59pkfidXK+4hZsMCN4tSzZ9QmRhaQlwcPPQTnnuumIzGMKKgyZkJE5gCnl20C\nz/ltwdVqZiR9MZE2wCRgT2AQcDawDPgAGKSqpSJyHzBZVZ/z5zwGvAXMB25T1W4+/RDgKlU9XkRK\ngGNU9Vu/7zOgC9APaKKqN/v064Dfgaf8Ndr59NbAGFXdu5yvVvX5GIZhpJIr9o/x3Y8NeW7+wRm/\ntvveTaeyTay8zzxXXglr1sBdd0VtYmQRfftC8+YuMNswkiGVMRPJjOb0PXBnJduHJ3MhEWmGezN0\niar+KiIPAjf63Tf5PPsnk1ctCeBpYRiGsTFTn/yYZ2e2p+SjSIcCtfI+Kn77DZ58EqZNi9rEyDLu\nvhv23tsNG3vooVHbGLlGlZUJVc2v7UV8sNvLwLOq+qrP94e4/Y8Bb/jNb4DWcadvDyz06dsnSC87\nZwfgWxFpgOsnu0REvgHi/VsDb8P/Z+++46Oo8z+Ovz6hKAgaivRqBwEDKFhAFlFU7F3PxtlOsZ56\nKufvLuHOrmc/y50dVM5eEBHULEUpCkQ6AhKRXkMvCfn8/pgJrGETdpPdnW+Sz/Px2EdmZ2dn3tlM\nPrvfne93hrVAuoikqWqhv64l0bL379+fNm3aAJCenk5GRsauq6MWDdRLxf3IQYFBbD/yfvFMlmf3\n/ZycHO64447Ath95/+mnnw5sfy1+36X917U8RfNGfTmKG/60gqcGHMSB7Y5P2f6al5cHQG5uLgCq\nGlODoSRW78tx//PPCZ1wArRta/+/Vu/juj9tWpjTTsvh2mvv4KefYNKkYPPY/hv9fvFMqd5fi9f7\nhEnU4IuSbniHx98Cnio2v2nE9J+Bd/T3A/Jq4vXXXcDu7lgT8Q5nC3sOyHvRn76U3w/I+wVvMF69\nomndPSDvEn/6JRwfkOfSoB2Xsqi6lceyROdSFlW38hRl+b8e2Xpmo4lauLMwsCyUc0Ce1ftyKCxU\n7dhRddQoVXVzH3WBZSlZdna2Xnqp6l/+EnQSt14byxJdeet95C3m60yUlYj0AMYA09h9yPmvwGVA\nhj9vIfAnVV3hP+evwDVAAd5h8q/8+V3x+r/WwuvzWnTawX2AwUBnYA1wqXqD+RCRP/rbA3hAVd/0\n57cFhuK9AU0BrlDV/GLZNdmvjzHGTHp9Jmdd24icKYU0zWgcWI7y9qG1el8Oo0fDjTfCrFkgdn1A\nUzYrVnjdnUaOhIzUXJ7GVFCJHDOR9MZERRb4m4sxptLbunYrnZsu4x8DlnPxU8cHmiWRby4VTeD1\n/sILoXdvuPnm4DKYSuGVV+A//4Hx46FataDTGFclst6nxbnh5iJygoicKCK9RMSG+aRIZH+7oLmU\nBdzKY1micykLuJXnyu4vk9E4+IZEcVbvU+i33yA7+3cXqXNpH7Us0bmUBXbnueYa2HdfeOGF4LO4\nwLIkXyxncwJARB7Fu0DQLGBnxENjEh3KJVlZWYRCoV2DWIwxJlHCT+cQXtCSuXOPCDZHOPy7Nzmr\n96HUbvg//4HLL4e6dVO7XVMppaXByy9Dz55w3nnQosXen2OqjuL1PhFi7uYkIj8DHVV1e0ITOCzw\nw97GmEpr49KNdGqdx/P3L+eMrGOCjgPsPuxt9T6FCgqgdWv46ivo0CH12zeVVmYmTJsGH38cdBLj\noqC6OS3AO+OGMcaYcrrzpKn0OSjXmYZEMVbvU2XECGjVyhoSJuEGDvTG83/ySdBJTGUXT2NiK5Aj\nIv8Rkef8m11rMUVc6mfnUhZwK49lic6lLBB8nmF/n8So+Qfx5DdHBZ6lBFbvU+WVV+D66/eY7dJ+\nYVmicykL7Jln33297k633gobNgSbJUiWJfliHjMBfObfIlX6PkA2ZsIYk0jLclZw3YNteP+ZZezf\nogXMDzpR1D60Vu9TYdkyGDMGhgxJzfZMlRMKwSmnwP/9HzxrXwcYAh4zURXZmAljTCIVFhRyWuOp\nHNdhI4NGh4KOswc7NWyK6/3DD8PChd4AbGOSZM0aOPJI+Owz6NYt6DTGFSm9zoSIvK+qF4nI9CgP\nq6p2SkQQF1ljwhiTSP86K8xHo+szemV7qu8bz4Hh1IgYgG31PtkKC+Gww+Cdd+wTnkm6wYPhmWdg\n4kS79oTxpHoA9u3+z7Oi3M5ORAizdy71s3MpC7iVx7JE51IWCCbPlLdn8+gXR/L28Pq/a0i49tr4\nrN4n2+jRULs2HBN9AL5L+4Vlic6lLFB6niuu8Ha3//43+CypZlmSb69fjanqUv9nbtLTGGNMJbR5\n5WYu++O+PHvLPNr0cOvidNFYvU+B116Da68FqZK9ykyKicC//w19+sAFF8CBBwadyFQmNmaiFCKi\nmZmZNgDbGFMu1x8xhvyCNN6Y3yPoKFEVDcgbNGhQlR4zkbJ6v2mTdyWxefPsU51JqTvv9M7s9Mor\nQScxQUlGvbfGRClszIQxprw+uGs89z3bjKm/1qduM7evcGwDsFNU74cMgaFDYdiw1GzPGN+GDdCu\nHXzwARx3XNBpTJCCumgdIlJbRA5PxIZNfFzqZ+dSFnArj2WJzqUskLo887/5lQFPHcLQVzeX2JBw\n7bUpYvU+iQYP9jqxl8Kl/cKyROdSFogtz/77w+OPw4ABsHNnsFlSxbIkX8yNCRE5G5gKfOXf7ywi\nxc9DbowxBti6disXnbWVzAtncfRV7YOOExer90m0bBlMmgRn23h2E4zLLoMDDoCXXgo6iaksYu7m\nJCJTgJOAbFXt7M+boaodkpgvUNbNyRhTVn9qN4a8zdUZmnscklYxeg5FnBrW6n2yPPkkTJ8Or7+e\n/G0ZU4KZM70L2s2cCY0aBZ3GBCGobk75qppXbF7h3p4kIi1FJFtEZorIDBG5zZ9fX0RGicjPIjJS\nRNIjnjNQROaJyBwR6Rsxv6uITPcfeyZi/j4i8j9//gQRaR3x2NX+Nn4Wkasi5rcVkYn+c4aKSI1o\n+bOysirtYSljTHIMuek7wgta8sqEjhWiIREOh8nKyoqcZfU+WYYMgSuvTO42jNmLI4+Eq6+Ge+8N\nOolJtSj1vvxUNaYb8BpwOTAdOBR4Dngphuc1ATL86TrAXKAd8Bhwjz//XuARf7o9kAPUANoA89l9\nBGUS0M2fHg6c5k8PAF7wpy8BhvrT9YEFQLp/WwAc4D/2HnCxP/0icGOU7OqK7OzsoCPs4lIWVbfy\nWJboXMqimtw8Mz+dpw1llf70/tzAs8TLr3lW75NlxgzV5s1VCwr2uqhL+4Vlic6lLKrx59mwwdsd\nx40LPksyWZboiup9Im7xHJm4BTgS2A68C2wA7tjbk1R1uarm+NObgNlAc7wLIL3pL/YmcK4/fQ7w\nrqrmq3eu8/lAdxFpCtRV1Un+cm9FPCdyXR8CffzpU4GRqpqn3rdso4DTRUSA3sAHUbZvjDFlsnnl\nZi68SHj06tl0uvCwoOOUh9X7ZBgyBP7wB7sEsXFC3brwxBNw881QUBB0GlORxTRmQkSqA6NUtXe5\nNibSBhgNdAAWqWo9f74Aa1W1nog8B0xQ1bf9x14BvgRy8b7NOsWf3xPvm66zRGQ6cKr6F9gTkflA\nd6A/sK+qPujP/z9gK/CGv41D/fktgeGq2rFYXo3l9THGGC1UrjrkO6qlwes/n1AhujcV55ViamD1\nPvFUoW1b+OQTyMhI3naMiYOqdyG7886DW28NOo1JpUSOmdjrFbABVLVARApFJF337EcbExGpg/ct\n0u2qulEirvqpqioiqfrUHtd2+vfvT5s2bQBIT08nIyNj1wWNivrW2n27b/ft/q29nmH84vpMW3oh\nkiaB54nlfk5ODnl5XknPzc0FrN4nrd6//DLs3EnoqKMSsz67b/cTdP/55+G448I0bw7nnx98Hruf\nunqfMLH2hwI+A37D60v7nH97Nsbn1sA7xeAdEfPmAE386abAHH/6PuC+iOVG4H3r1ASYHTH/MuDF\niGWO9aerA6v86UuJ6OcLvIzXx1aAVUCaP/84YESU3NE7mgXApX52LmVRdSuPZYnOpSyqic/z7b+m\naOO0FfrL6EWBZykPdo+ZsHqfaHffrXr//TEv7tJ+YVmicymLavny3HOP6lVXuZEl0SxLdAQ0ZuIj\n4G/AGGByxK1U/iHtV4FZqvp0xEOfAVf701cDn0TMv1REaopIW7zBf5NUdTmwQUS6++u8Evg0yrou\nBL7xp0cCfUUkXUTqAacAX/kvYjZwUZTtG2NMzH79bjGX/aU5Qx5eTNsTWwYdJ1Gs3ieSKrz/Plx8\ncUo3a0ys/vY3+PZbGDs26CSmIor5OhNl3oBID7w3pGnsPuQ8EO9MHe8BrfD6x16s/iF1EfkrcA1Q\ngHeYvOjCSV3x+r/WwuvzWnTawX2AwUBnYA1wqXqD+RCRPwJ/9bf7gKq+6c9vCwzFOwPIFOAKVc0v\nll2T/foYYyquLau30KPVr1zeZwV3fR4KOk65lbcPrdX7Ekya5J0Ods4ckIo3lsZUDe+/D//8J0yZ\nAtVj6gRvKrJEjpmI56J1C6PMVlU9KBFBXGSNCWNMSbRQufLg71GFIb8cXyEHXBcnuy9aZ/U+ke6+\nG2rV8j6pGeMoVejbF848E26/Peg0JtkS2ZiIp5vTMRG3nsAzwNuJCOEyVy5a50KGIi5lAbfyWJbo\nXMoCicnz9PmjmbmiAf/9sXO5GhIuvDbh8B4XMbJ6nyhl7OLkwn5RxLJE51IWKH8eEXjuOXjgAVi2\nLNgsiWRZ9syQ6IvWxdyYUNXVEbfFfn/YMxKaxkFZWVm7RsMbYwzAVw/+yKOft+fjkXWo3bB20HHK\nLRQK/e7Nxep9Ak2a5B2V6NAhses1JgmOOAKuuw7uuSfoJCZZitf7RIinm1NXdveBTQOOBm5S1aMS\nmsgh1s3JGFPczE/n0/u8A/jw2aX0vKVylb+Ibk5W7xPlrrtgv/3gH/9I/LqNSYLNm6FdOxg8GHr1\nCjqNSZagxkyE2f3mUoA3iO4JVZ2biCAussaEMSbSypmrODZjK1l/XMRV/+kRdJyEi2hMhLF6X36q\n0KYNDBsGHTvudXFjXPHhh5CZCVOnQo0aQacxyRDImAlVDalqb/92iqpeX5nfWFzjQj+7Ii5lAbfy\nWJboXMoCZcuzLW8b5x67nD90/yWhDQnXXhuwep8wOTneJ7EydHFyab+wLNG5lAUSm+f886F5c28M\nRdBZysuyJF/MjQkRuV1E9hfPqyIyRUROTWY4F7gyANsYExwtVK7JmEyL9E38I3xi0HESrviAPKv3\nCfLJJ3DuuXY6WFPhFA3GfughWLo06DQmkZIxADuebk7TVLWT/4ZyI94FjQaraueEJnKIdXMyxgD8\n46QwX0xqSHjRwdSqXyvoOEkT0c3J6n0iZGR4n8h69kzseo1Jkfvvh19+gXffDTqJSbSgTg1btMEz\n8N5UZiQigDHGuOztAd/x2phD+PT7RpW6IVGM1fvyWrjQ+0r3+OODTmJMmd1/P4wfD9nZQScxLoun\nMTFZREYC/YCvRGR/oDA5sUxxLnW1cikLuJXHskTnUhaIPc+oRyZz50uH8cWH22jSqVGgWVLM6n15\nffaZd/WvatXK9HSX9gvLEp1LWSA5eWrXhqefhptvhh07gs1SVpYl+eJpTFwDDASOVtXNQA3gj0lJ\n5RAbM2FM1TTl7dlc/tdWfPDsUo4855Cg4yRVlD60Vu/Lq2i8hDEV3DnneCcle+aZoJOYRAh6zMQJ\nwE+quklErgS6AE+r6q8JTeQQGzNhTNX0S3gRPfrU5Pm7cjn/sWODjpMyEWMmrN6Xx9q13qev5cu9\nr3aNqeDmz4djj/VOUNaiRdBpTCIENWbiJWCziBwF3AnMB95KRAhjjHHFypmrOLVvIX+7+Ocq1ZAo\nxup9eXzxBfTpYw0JU2kccojX1enOO4NOYlwUT2OiwP/a5lzg36r6b6BucmKZ4lzqauVSFnArj2WJ\nzqUsUHKeTcs3cWb3lVzaPZeb3k3NKWBde218Vu/L45NPvL4h5eDSfmFZonMpCyQ/z333wY8/wqhR\nwWeJh2VJvngaExtF5K/AFcAwEamG14/WGGMqvO0btnNhhzl0bLaWf4zuFXScoFm9L6tt2+Drr73B\n18ZUIrVqeeMmbrkFtm8POo1xiqrGdAOa4h3u7unfbwVcFcPzXgNWANMj5mUBi4Gp/u30iMcGAvOA\nOUDfiPldgen+Y89EzN8H+J8/fwLQOuKxq4Gf/dtVEfPbAhP95wwFapSQXTMzMzU7O1uNMZVX/tZ8\nPa/peD2/2XjN35ofdJyUy87O1szMTPXeEspe77UC1/yE1fsRI1RPOKF86zDGYWedpfrQQ0GnMGVV\nvN4n4hbzAGwAEWkDHKKqX4tIbaC6qm7Yy3N6ApuAt1S1oz8vE9ioqk8WW7Y98A5wDNAc+Bo4VFVV\nRCYBt6jqJBEZDjyrqiNEZADQQVUHiMglwHmqeqmI1Ad+8N+QACYDXVR1vYi8B3ygqu+JyIt4Aw1f\nipJd43l9jDEVT2FBIf0P/55VG/bhkwWd2Gf/fYKOFJjIAXllqff+8ypkzU9Yvb/9dmjSBAYOLP+6\njHHQwoVwzDEwZQq0ahV0GlNWgQzAFpEbgPeBl/1ZLYCP9/Y8VR0LrIu2yijzzgHeVdV8Vc3FG/TX\nXUSaAnVVdZK/3Ft4fXkBzgbe9Kc/BPr406cCI1U1T1XzgFHA6SIiQG/gA3+5NyPW5SyX+tm5lAXc\nymNZonMpC+zOo4XKzUeN49c1dfhw9pGBNCRce22g7PUerOYzfDj061fu1bi0X1iW6FzKAqnL07Yt\n3HYb/PnPwWeJhWVJvnjGTNwM9AA2AKjqz0B5ruJ0q4j8JCKviki6P68Z3qHwIovxvq0qPn+JPx//\n529+pgJgvYg0KGVd9YE8VS2Msi5jTBWhhcq9x45m8q8N+HzGQdRuaGfeiZDoeg9VoebPmwdbtkCn\nTklZvTGuuOce+OknGDEi6CTGBfE0Jrar6q4hNyJSHSjrMeEX8fqwZgDLgH+VcT3xqrB9lkKhUNAR\ndnEpC7iVx7JE51IW8PI82Hc0X05rzpdTm7J/i/0DzeKgRNZ7qCo1v+iohJS/54BL+4Vlic6lLJDa\nPPvuC889B7fe6p1zIMgse2NZkq96HMuOFpH7gdoicgowAPi8LBtV1ZVF0yLySsR6lgAtIxZtgfft\n0hJ/uvj8oue0Apb6b3gHqOoaEVkChCKe0xL4FlgLpItImv9NVQt/HVH179+fNm3aAJCenk5GRsau\nnaHocJXdt/t2v2Ldf6hvmJfDy3jm5XU0OPS8wPMEdT8nJ4e8vDwAcnNziZCweg8Vp+aXu94PGULI\nHyvhwt/X7tv9ZN6vVQs6dAjxxBPQo0fweex+met9+cU6UhvvKMYNeP1OPwCux7+CdgzPbcPvz+zR\nNGL6z8A7/nR7IAeoifct1gJ2X6V7ItAdr9/tcOA0f/4A4EV/+lJgqD9dH/gFSAfqFU37j70HXOJP\nvwTcWELuPUbBB8WlM0q5lEXVrTyWJTqXsjxwcra2rP62Lpm8LOgoqurWa8PuszmVud5rBa355a73\nmzap1qmjun59+dbjc2m/sCzRuZRFNZg8ubmqDRqo/vJL8FlKYlmiI4Fnc4rpyIT/7c8MVT0C+E8s\nz4l47rtAL6ChiPwGZAIhEcnAOwS9EPiTX8ln+WfdmAUUAAP8X7joDeQNoBYwXFWLeuq9CgwWkXnA\nGv/NBVVdKyL/xDu7B8Ag9QblAdwLDBWRB4Ap/jqMMZXcP/uEeWdcS556cS3NujQJOo6TylPv/edX\nzZr/7bfeKW72D67LnDGp1ro13HWXd+2JYcMS0sPPVEAxnxpWRD4FblPVX5MbyR12alhjKo9/nBTm\n3e9akv1DXZp0Ku9Y4sqp6FSBVu/L4Kab4OCD4e67ExfKmApgxw7o0gUyM+Gii4JOY2KVyFPDxjNm\noj4w0z/392Z/nqrq2YkI4qqsrCxCodCufmfGmIonKxTmvfEtCU/en8YdDgw6jnPC4fCuPrY+q/fx\nUPUGX3/5ZVJyGeOymjXh5Zfh4ouhb1844ICgE5nSRKn35Rdrfyi8w9a98Aa4Fd16Jaq/lYs3bMxE\nVC5lUXUrj2WJLqgshTsL9b5js7X9PvN0+fSVgeeJxqUs7B4zYfU+HjNmqLZurVpYWPZ1FOPSfmFZ\nonMpi2rwea6/XvXmm93IEsmyREcqx0yISC3gRuAQYBrwmqrmJ6YpY4wxyVFYUMjNR43jx9xGjP6p\nHg0PbxB0pApBRP6M1fv4fPklnH66dRg3Vdojj8CRR8JVVwWdxKTaXsdM+IPjdj6hx8QAACAASURB\nVABjgX5ArqrenoJsgbMxE8ZUTPlb8unffhJL8vbjsxkHBXodiYrEu1g0b2P1Pj6nngo33gjnnZfY\nUMZUMG+/DU88AT/8ANXj6UhvUi6RYyZiaUxMV9WO/nR14AdV7ZyIjbvOGhPGVDxb127l4nbTAXhv\ndkdq1a8VcKKKI/LNxep9jLZtgwMPhN9+g/T0vS9vTCWm6o2bOP10uPPOoNOY0iSyMZEWwzIFRROq\nWlDagpVRVlZW4geqlIELGYq4lAXcymNZoktVlo1LN9Lv4DnUrZXPRws7l9iQqIqvzd4yZGVl/W6e\n1fsYffcddOiQ8IaEC/tFEcsSnUtZwI08IvDiizBoUJhFi4JO43HhdSniQpZo9b68YmlMdBKRjUU3\noGPE/Q0JTeOgorN7GGPctnzaSkKHLOaIZhsZ/POx1KhdI+hIFUYoFNr15mL1PhTfk0aNglNOSUoe\nYyqiQw6BCy+EW28NOomJJrLeJ0rM15moiqybkzEVw+xhC+h3Xk2u7bWA+0f2QtJsIGxZJPKwd0VT\n5nrftSs8/TT07Jn4UMZUUNu3Q+fO8MADcP75Qacx0aR0zERVZo0JY9w37oVpXHBLUx69Zi79X+kR\ndJwKzRoTcdb71au9C9WtXg017EiYMZHGjYNLLoEZM6BevaDTmOJSPWbCOMCFfnZFXMoCbuWxLNEl\nK8sHd43n/FuaMvjBRXE1JKrCa2NS4Ntv4cQTk9KQcGm/sCzRuZQF3MoTDofp0cM7KnHXXcFncYVL\nWRLJGhN74coAbGPMblqoPHVumDuebsPId9fSd2DXoCNVaMkYkFcRxV3vR42Ck09OWh5jKrqHH/ba\n3CNHBp3EFElGvbduTqWwbk7GuGfHph3ccswExi9syrBvatH6hBZBR6o0rJtTHPVeFdq2heHDoX37\n5AUzpoIbORJuuMHr7lSnTtBpTBHr5mSMqZJWz13DKS1msXzdPnz/SxNrSJjgzJ8P+fnQrl3QSYxx\nWt++0Ls3DBwYdBKTLNaYqCBc6mrlUhZwK49liS4RWWZ8PI9uHTZzfLs8Pl50NHWb1Q00T6K4lMXE\noeiUsJKcAzku7ReWJTqXsoBbeYpnefJJ+Ogjb1B20FmC5FKWRLLGxF7YmAljgjfs75PofUE9Bl27\niIfHh6hWs1rQkSoVGzPhiave2/UljIlZvXrw3HNw7bWwdWvQaaq2CjlmQkReA84AVqpqR39efeB/\nQGsgF7hYVfP8xwYC1wA7gdtUdaQ/vyvwBrAvMFxVb/fn7wO8BXQB1gCXqOqv/mNXA/f7UR5Q1bf8\n+W2BoUB9YDJwparmR8luYyaMCVBhQSEPnjqGF8NH8OGLqzjuho5BR6rUEtGHtqLW/Ljq/c6dcOCB\nMGsWNGkSz8tjTJV20UXeUKPHHgs6ialoYyZeB04rNu8+YJSqHgZ8499HRNoDlwDt/ee8ILLrGPKL\nwLWqeihwqIgUrfNaYI0//yngUX9d9YG/A938W6aIHOA/51HgX/5z1vnrMMY4ZN3CPM5u/iNf/VCf\nH3/AGhIVR+Wv+T/95DUirCFhTFz+/W8YPDiY7k4meZLemFDVsXjFO9LZwJv+9JvAuf70OcC7qpqv\nqrnAfKC7iDQF6qrqJH+5tyKeE7muD4E+/vSpwEhVzfO/ARsFnO6/UfUGPoiyfWe51NXKpSzgVh7L\nEl28Waa+O4euh23gkGZbyV7ejmZdEvuhrSK/Nq6rEjU/HIZQqFyr2PsmwkldfzwsS3QuZQG38pSU\npVEjePFFuPpq2LQp2CxBcClLIgU1ZqKxqq7wp1cAjf3pZsDiiOUWA82jzF/iz8f/+RuAqhYA60Wk\nQSnrqg/kqWphlHUZYwL2+jVj6Xt5Qx66aTFPT+1Fjdp2ZeFKoHLV/Oxs7/Q0xpi4nXsu9OwJf/lL\n0ElMolQPOoCqqoikamBC3Nvp378/bdq0ASA9PZ2MjAxC/jdSRS3MVNwPhUIp3Z7dL/v9IkHnKZoX\n9OsR6/474tMRPHfrXBasOIvwx3msOmBH0vLb/5N3Pycnh7y8PAByc3NJBZdrfkz1vmdPGDuW8DXX\nQBL/v4rmubC/2P+L+/XetTxF80p6/MILw1x7LZx9dojTT7f9NxX3k1nvU3LROhFpA3weMRhvDhBS\n1eX+4exsVT1CRO4DUNVH/OVGAJnAr/4y7fz5lwEnqupN/jJZqjpBRKoDy1T1QBG51N/Gjf5zXga+\nBd4DVuJ9U1YoIscBmapavI+vDcA2JkWmffAzl15ejc5Nl/PiuI7s32L/oCNVSYkakFcRa37M9X7y\nZLjqKpg5s1yvkTFV3bffev9K06ZB/fpBp6l6KtoA7Gg+A672p68GPomYf6mI1PTPvnEoMElVlwMb\nRKS73//1SuDTKOu6EG9wH8BIoK+IpItIPeAU4Cv/3SIbuCjK9p1V/FuHILmUBdzKY1miKymLFir/\nvng0fS6uz31XL2PIL8enpCFREV6bSqby1PwUdXFyab+wLNG5lAXcyhNLlpNOggsvhJtvDj5LqriU\nJZGS3s1JRN4FegENReQ3vLNtPAK8JyLX4p8mEEBVZ4nIe8AsoAAYEPFV0QC80wTWwjtN4Ah//qvA\nYBGZh3eawEv9da0VkX8CP/jLDSo6FSFwLzBURB4ApvjrMMak0Jp5a7n2xHn8tr4R3325kcNO7RF0\nJJMAlb7mh8PQv3+Zn26M2e3hh6FLF3j7bbj88qDTmLJKSTenisq6ORmTHN88PoX+A5twScbPPBQ+\nnpp1agYdyZDYw94VTUz1vqAAGjaEefO860wYY8otJ8e7/uP48XDIIUGnqToqQzenCsOugG1M4mxe\nuZmbO46m/8AmvDJoKU/8GLKGhAPCYbsCNsRQ76dOhZYtrSFhTAJlZMDf/w6XXQY7dgSdpvJLRr23\nxsReZGVl/e7sBEFxqUHjUhZwK49liS4cDjPuhWkc1Xw1m7ZUY/qC/Tj1/qMDzeMKF7KEQiFrTBBD\nvc/OhhS9H7iwXxSxLNG5lAXcyhNvlltugaZN4f77975ssrMkkwtZklHvrTFhjEmqbXnbePFPOVx8\nayP+9ZflvLmgB+mtD9j7E41xTThs15cwJglE4LXXYOhQ+OqroNOYeNmYiVLYmAljymfs8z9xw111\n6NhoJS98fRgND28QdCRTChszUUq9LyiABg1gwQJv3IQxJuGys72B2FOmQJMmQaep3GzMRArZmAlj\n4rduYR43tBvDZbc34oHbVvLeb8dZQ8JhNmbCU2q9nzwZWre2hoQxSdS7N1x3nTd+oqAg6DSVk42Z\nCICNmdiTS1nArTxVPYsWKv+7/XuOPGQbNaorMxfW5oLHj3PqdQH7OxVnYyY8pdb7cDhl4yW8zYVT\ntq29sSzRuZQF3MpTniyZmVCzZuLGT1SW1yVRklHvk36dCWNM1ZA7bjE3n7+MXzccyIcvruK4G3oF\nHcmYxBk71q4vYUwKVKvmXXeia1fo3h3OPz/oRGZvbMxEKWzMhDF7t2X1Fh69YBLPj+3EXSdP4+6P\n7LoRFZWNmSih3hcWet2bZs2yjtzGpMgPP0C/fjBuHBx+eNBpKh8bM2GMCZwWKu/fOZ52TdYyd2FN\ncsZv468j7boRphKaNcsbfG0NCWNS5phj4MEH4YILYNOmoNOY0lhjYi9cGYDtQoYiLmUBt/JUlSzT\nP/yZkxrk8MCL9XnrX6sZuuh4WnZvFkiWsnApjwtZbAC2p8R6P24c9OiR0iwu7BdFLEt0LmUBt/Ik\nKsv113tdna6+2jtAGGSWRHAhiw3ADoArA7CNccGynBX8qd0Y+lxUj4tO3cDkdQfT6/aMoGOZcrIB\n2J4S6/3YsSlvTBhjvOtPvPACrFgBf/tb0Gkqh2TUexszUQobM2GMZ8PiDTx26RRe/L4T13SdxsCh\nR1H/4HpBxzIJZmMmSqj3rVvDqFFw2GGpDWWMAWDVKu8IxT/+AVdcEXSaysHGTBhjUmL7hu08c/5o\nDm21ncXLqzP1u608/kPIGhKm6li0CLZuhUMPDTqJMVXWgQfCZ5/BnXfC+PFBpzHFWWOignChn10R\nl7KAW3kqS5aCbQW8cd042jVYwchxtRn13jremN+DVsc1T3mWZHApj0tZTBTffed1cZLUHrBxab+w\nLNG5lAXcypOMLB06wBtveAOyf/kl2Cxl5VKWRAq0MSEiuSIyTUSmisgkf159ERklIj+LyEgRSY9Y\nfqCIzBOROSLSN2J+VxGZ7j/2TMT8fUTkf/78CSLSOuKxq/1t/CwiV5WU0ZUB2MakQlEj4oi6S3jz\nw/14/Ym1fLHyGDpdaN07KrNUDcB2veZHrfc2XsIYZ/TrB//3f3DqqbByZdBpKqZk1PtAx0yIyEKg\nq6qujZj3GLBaVR8TkXuBeqp6n4i0B94BjgGaA18Dh6qq+m9Kt6jqJBEZDjyrqiNEZADQQVUHiMgl\nwHmqeqmI1Ad+ALr6m53s58grls/GTJgqIX9LPkNumcADg1vRus5aMrPEBlZXQckeM+FyzS+x3nfq\nBK++6p2n0hjjhL//HYYPh+xsqFs36DQVU2UbM1H8FzkbeNOffhM4158+B3hXVfNVNReYD3QXkaZA\nXVWd5C/3VsRzItf1IdDHnz4VGKmqef6bySjgtMT9SsZUDFtWb+GFS0dz+AHLGPLJfrz+ZB7fruts\nDQmTTBWn5q9bBwsXQob9PxjjkkGDoEsXr8vTjh1BpzFBNyYU+FpEfhSR6/15jVV1hT+9AmjsTzcD\nFkc8dzHet1XF5y/x5+P//A1AVQuA9SLSoJR1OculrlYuZQG38lSULKvnrmFQ7zBtG23mq9H78tYz\neXyztgsn3npUyrMEwaU8LmVJgYpV88ePh27doEaN2H67BHJpv7As0bmUBdzKk+wsRaeMrV0brrwS\nCgqCyxIPl7IkUtCNiRNUtTNwOnCziPSMfNA/5mz9jIxJkF/Ci7il02gOa5fG4mVpjB62kU+XdafH\ngE5BRzNVQ8Wq+WPHQs+ee1/OGJNy1avD0KHeAcT+/WHnzqATVV3Vg9y4qi7zf64SkY+BbsAKEWmi\nqsv9w9lFQ2yWAC0jnt4C79ulJf508flFz2kFLBWR6sABqrpGRJYAoYjntAS+jZaxf//+tGnTBoD0\n9HQyMjJ2XdSoqIWZivuhUCil27P7Zb9fJOg8RfN6ndiLrx+bwqDHJjJ9XXNuOf4AZuXkM2dtIctZ\nxBEclPQ8ru2/ruUJ6n5OTg55ed6wgdzcXJLN9Zq/R70fNozQU08Bwf3/urC/2P+L+/XetTxF81Kx\nvU8+gR49wvTrB8OHh6hWzfbfaPeTWe8DG4AtIrWBaqq6UUT2A0YCg4CTgTWq+qiI3AekFxuM143d\ng/EO8QfjTQRuAyYBX/D7wXgdVfUmEbkUODdiMN6PQBe8/ruTgS42ANtUJusXreeNO3J4YVgr9q22\ng5svWMHlT3Zlv0b7BR3NOCqZA7Bdr/l71Ptt26BhQ1i2zEZ4GuO4zZvhjDPg4IPhv/+FtLSgE7mv\nsgzAbgyMFZEcYCIwTFVHAo8Ap4jIz8BJ/n1UdRbwHjAL+BIYEFH5BwCvAPOA+ao6wp//KtBAROYB\ndwD3+etaC/wT7+wek4BBxRsSrin+rUOQXMoCbuVxIcvUd+dwY/sxtGg9hgmTa/Dq0xvJ2XwYNww5\nMbCGhAuvSySX8riUJckqVs2fPBmOOCKwhoRL+4Vlic6lLOBWnlRn2W8/GDYMFizwrpCdnx9cltK4\nlCWRAuvmpKoLgT1OkeEX/ZNLeM5DwENR5k8GOkaZvx24uIR1vQ68Hl9qY9y0eu4a3h44g9e/bEJe\nfh2u7bWcN+8q4Pxrjw86mjFABaz5Nl7CmAqlTh348ku4+GI491x4/31vgLZJvkCvM+E6EdHMzMxd\nfe6McUnBtgK+emQqr/13J98sbcdZbafzx5v3I3T7UaRVt2O8JnbhcJhwOMygQYOSep0Jl+1R7888\nE/74R+/ck8aYCiM/H665BnJz4fPPIT19r0+pUpJR760xUQobM2FcU1hQyIRXZzL0hbW8P+MI2tRe\nyTXnrePiB47igFYHBB3PVHDJvmidy35X7wsLvfESs2ZBkybBBjPGxK2wEO66C0aM8Lo/HXxw0Inc\nU1nGTJg4uNTPzqUs4FaeZGTRQmXykNnc0y1M232Xct1ttTmwoTJ6+BbGb+zI9W+dGLUhUdlfl/Jw\nKY9LWYxv1ixo0CDQhoRL+4Vlic6lLOBWnqCzpKXBU0/BrbfCMceEGTMm0Di7BP26JEugp4Y1xkRX\nWFDIxNdm8ulra/hwShtUa3Npdxj2vy10OO9QJM2+ZjEmaWy8hDGVwoAB3pmeLrwQHnoIrrsu6ESV\nk3VzKoV1czKptHXtVr5+ajqfvredYfMPp2GN9ZzTdQnn/akRXa9oh6RVyd4nJoWsm5Nf7y+/HE46\nCa69NthQxpiEmD3bG/7UrRv8+9/e2Z+qOuvmlEJZWVmV9rCUCV7uuMX854oxnNdsAk0a7OBfz9Wk\n/RE7+W7UVmZsO5QHvwtx9FXtrSFhkiocDpOVlRV0jMDtqvfffQc9egQdxxiTIO3awaRJ3liK7t29\nxkVVlZR6r6p2K+HmvTxuyM7ODjrCLi5lUXUrz96yrP9tvX761wl6c8ewHlrjF20kK/WKtmP1rT+N\n1dU/r0lpllRyKYuqW3lcyuLXvMBrbxC3XfV+0SLVhg1VCwvL+WqWj0v7hWWJzqUsqm7lcTVLYaHq\nK6+oNmig+uyzqjt3BpclaIms9zZmwpgk2rxyM+PfmMuYYRsI/1SPqRsO4tj61el7rPL+/+2g4/kN\nSKtu34Aa44yioxJiRwONqWxEvN6LPXp4Z37+8EN47TU46KCgk1VsNmaiFDZmwsRr3cI8xr32M2NG\nbGHM7IbM3NyGzvsvoOeR6zixXx1OvLE9tRvaVXSMm2zMhHqnf2ndGu6+O+hIxpgk2rnTO+PTI4/A\nX/4Cd9wB++wTdKrUSWS9t8ZEKawxYUqzY9MOpn+ygElfrGLSj8Kk35qyaHtjjq3/MydmbOTEs9Pp\nduXh1KpfK+ioxsTEGhMKnTvDiy/CsccGHckYkwLz58Of/wxz58Izz8DppwedKDVsAHYKuTIA24UM\nRVzKAqnJk78ln+kf/szgG8dx21GjObbODOrVzaf/ddX5cbJwbDdlyOsFfPzlREat6crfvgnR6/aM\nQBsSLv2dXMoCbuVxIYsNwPZkDRxIeM4c6NIl6ChO7BdFLEt0LmUBt/JUpCyHHOJdKfvpp+G226Bv\nX5g4MZgsqZCMem9jJvbC3mCrnhUzVjFt2CJ+GreRabOrM23pgczd1orWNatzVOM0julUwIXX7aTL\nRUqdJocCh+56bji8PLjgxpRRKBQiFAoxaNCgoKMEKqt3b/j+e6hZM+goxpgU69cPTj4Z3ngDLroI\nOnWCzEw45pigkyVWMuq9dXMqhXVzqrwKthWwcOxi5o5dydypW5g7P425y/Zn9obm7KQaRx3wK53a\nbKBTRhqdejegfb82NtbBVHpVvpvT3/7mdaR+8MGg4xhjArR9O/z3v/D449CyJdx+O5x3HlSvRF/B\n25iJFLHGRMW2eeVmfp2wjIVT1pE7awu5C5V5i2sxd21DFu5oTtPqqzj8gBUc0XIzhx8hHH50XQ7v\n1YRmXZrYdR1MlVTlGxO9e3sDr/v1CzqOMcYBBQXw6adeF6jcXLjySu/Wrl3QycrPxkykkI2Z2JML\nWfK35LP4h2VMen0mD/zhBV64dDT3dg9zSavv6V5nBo3SVtGwcRrnX5TGc88L02cIDRrAFX8o5L13\ndrJujbIwvyUjVh/N01N7cdO7J3LSXZ1pfnTTcjUkXHhtiliWkrmUx4UsNmbCkzVuHOGdO4OOAbix\nXxSxLNG5lAXcylNZslSv7l05e+xY+OIL2LED+vSBo4+Gxx6DWbMgnu+cXXhdklHvq3RjQkROE5E5\nIjJPRO6NtkxWVhahUCjFyfaUk5MTdIRdkpUlf0s+y6etZMbH8wg/ncP7d47nxcvGkBUKc0O7MZzZ\neBJdas+mSbWV7Lef0v1YuPkWYejnPzNtmpCeDueeA08/qfw0pZDN+fswZ/tBjFh9NC/NOpH7RoS4\n8F/H0fGCw5I2MLoq/J3KwqUs4FYeF7KEQqFK35iIqd4ffjihs85KdbSoXNgviliW6FzKAm7lqYxZ\nOnWCJ56A336Dhx+GX3+F006Dgw+GW26BDz6AZctSk6U8klHvK1Hvr/iISDXgeeBkYAnwg4h8pqpO\nXmQ9Ly8v6Ai7lJZlW9421i/eyPolm1i/fCvrV2xj/artrF9dwPp1O1mfB+s3COs3pbF6Q01Wb67N\nqu11WV2Qzibdj/oiNKwpNNwXDqwDDfeHAxtAl85wZlul2eFKsw6FNO5QjWo1mwJNycpKJyvrxNS9\nAKWoKH+nVHMpC7iVx6UslVXM9f5EN+oIuLVfWJboXMoCbuWpzFmqVYNTTvFuzz8PM2bA8OHewO0b\nboD69eG447zGR8eO0KEDNG/uXTDPpdclkarykYluwHxVzVXVfGAocE68K4nlkNXelknUYa/I9Wih\nsmPTDjYu3ciaeWtZlrOC3HGLGfzYu8z4eB6Th8xm/H+mM/qZHEY+PJlhf5/ER/dM4N1bv+ee057l\nuQtH8+jpYTJ7hbn76DADOoyh/yHjuKjFeN5+fAmh9By61ZlJh33n0bbGbzRKW8W+so3966XRoZPQ\nu99EbrxJeOhhYcjbwthx8Ouvgiq0bKmccDx06zOZxx9TvvhcWTBP2Z5fjRWFBzJz2yGMzsvgg8XH\ncekLhfxzbIgb3zmRsx/sztFXtadZlyZUq1mtTK9LspeJRSL2h1RlSeQylqXsXNpnKqjY6n2fPqWu\nxKX9wqUssazHpSyJXMaylF1l2GdEvAbDvffC3XeHWb3aG2MRCsHSpd6RjK5doV49yMiAoUO9wdxP\nPgnvvQfffAM5ObB4MWzdWr4sZVkmUapyY6I58FvE/cX+vLjE+wf96J4JXNRiPOc3m8A5TSdyZuNJ\nXNfvbfo2mEyf+lPolZ5Dj/2ncVzd6XSrM5OutWeTUWsuT/9zGu33WcDhNRdySI1faVvjN1pVX0Lz\nastonLaKhmlrOK33COrKRmrKDtKqCXXqQtPmwqGHC126Qq8Q3D5wIpdeBtffAH++U/h7Jjz+BLz4\nkjBkiPdPMOqHqcz9GdasgbQ0aNwYjmyvhEJw0UVKq0OWkvl35blnlHffVr4ZpUzLUdatUbbvrMGq\nwoZc/7c5TN7Sjm/Xdebjpcfy+ryePD21F4NGh7jz0xDXvtGTgkNXcsJNnTjs1LbUP7geadX33B1j\neX1zc3MT+jcqzzJ7yxLLelzKkqhlXMoSSx6XssSyHtfeWBwUW73v1avUlbi0X7iUJZb1uJQlUcu4\nlCWWPC5liWU9LmWJZZlwOExaGhx5JFx7rXd17a+/hhUrYMECePVVaNo0l9atvS5S770HDzwAV10F\n3btDejrUrg1nnBGmTRto395riPTs6V374txzve5VicqbSFX2bE4icgFwmqpe79+/AuiuqrdGLFM1\nXxxjTJVVGc/mZPXeGGP2lKh6X2XHTOD1m20Zcb8l3rdVu1TGN1VjjKmCrN4bY0ySVOVuTj8Ch4pI\nGxGpCVwCfBZwJmOMMYln9d4YY5Kkyh6ZUNUCEbkF+AqoBrzq6pmcjDHGlJ3Ve2OMSZ4qO2bCGGOM\nMcYYUz5VtpuTiLwmIitEZHqx+beKyGwRmSEij0bMH+hf7GiOiPRNRR4R6SYik0Rkqoj8ICLHpCKP\niLQUkWwRmem/Drf58+uLyCgR+VlERopIerLzlJLlcf/v9JOIfCQiBwSVJeLxu0SkUETqB5kliH24\nlL9TyvdhEdlXRCaKSI6IzBKRh/35Qey/JWUJYv+NmiXi8ZTtv66RGC5ol+DtOVNjI9Zfzf8//TzI\nLCKSLiIf+P8fs0Ske4BZBvp/o+ki8o6I7JPKLBL9c0Hc2xeRrv7vME9EnklglrjrWLKyRDwWcx1L\nZhaJ8304EVlKyiNleB+OO4+qVskb0BPoDEyPmNcbGAXU8O8f6P9sD+QANYA2wHwgLQV5wsCp/vTp\nQHYq8gBNgAx/ug4wF2gHPAbc48+/F3gk2XlKyXJK0TaAR4LM4t9vCYwAFgL1A3xdAtmHS8kT1D5c\n2/9ZHZgA9Ahi/y0lS8r335KyBLH/unTD6/Y03/8da/i/c7skb9OZGhuR6U7gbeAz/35Q/y9vAtdE\n7KcHBJHFX98vwD7+/f8BV6cyC9E/F8Sz/aLeJ5OAbv70cLwzmyUiSzx1LKlZ/Pmx1rFkvy7xvA8n\nLEspecLE/j5cpjxV9siEqo4F1hWbfRPwsHoXNUJVV/nzzwHeVdV8Vc3Fe8G7pSDPMrxCCpCOd0aS\npOdR1eWqmuNPbwJm452T/Wy8Qo//89xk5ykhSzNVHaWqhf5iE4EWQWXxH34SuKfYU1KdpTlwIwHs\nw6XkCWof3uJP1sT7sLiOAPbfErKsDWL/LSmLfz+l+69jEnIB03i4VGMBRKQF0A94BSg6q1XKs/jf\nbPdU1dfAG+uiquuDyAJsAPKB2iJSHagNLE1llhI+F8Sz/e4i0hSoq6qT/OXeinhOubLEWceSmsUX\nax1LdpZ4PksmLEspeeJ5Hy5TnirbmCjBocCJIjJBRMIicrQ/vxm/P41gmS5wVwb3Af8SkUXA48DA\nVOcRkTZ4rdyJQGNVXeE/tAJonMo8xbJEugav5RxIFhE5B1isqtOKLRbE63IYAe/DEXkmENA+LCJp\nIpKDt59mq+pMAtp/o2SZVWyRlO2/0bIEvf86ICEXMC0rR2rsU8BfgMKIeUFkaQusEpHXRWSKiPxX\nRPYLIouqrgX+BSzCa0TkqeqoILIUE+/2i89fkqRcsdSxpGUpQx1L5usS72fJZP+N4n0fjjuPNSZ+\nrzpQT1WPxSus75WybCpGrr8K3KaqrYA/A6+lMo+I1AE+BG5X1Y2/25h3fIrrXgAAIABJREFU7Ku0\nbSY0j5/lAz/Lpoj59wM7VPWdILLgvfn+FciMXCSILP7fKNB9OMrfKZB9WFULVTUD75uyE0Wkd7HH\nU7b/RskSKnos1ftvlCz98N5YAtl/HRHY7+RCjRWRM4GVqjqVEv72Kfx/qQ50AV5Q1S7AZrwPQinP\nIiIHA3fgdf9oBtQR72KHKc9S4sr3vv2UiLGOJXP7tYnvfTjZ4nkfToV43ofLxBoTv7cY+AhAVX8A\nCkWkIXte8KgFuw8TJVM3Vf3Yn/6A3YdMk55HRGrgvckNVtVP/NkrRKSJ/3hTYGUq8kRkGRKRBRHp\nj3do/vKIxVOd5WC8N5ufRGShv73JItI4gCwQ4D5cQp7A9mEAv4vEF0BXAtp/o2Q52s/QnxTvv1Gy\ndMH7Njjl+69D9npBu2RwqMYeD5zt//3fBU4SkcEBZVmM9+3yD/79D/D20eUBZDka+F5V16hqAV5d\nPS6gLJHi+bss9ue3KDY/ke9D/YmtjiUzS7zvw8l+XeJ5H07634j43ofLlkcTMFCpot7wdr7IQSp/\nAgb504cBi/T3g1Rq4r3xLsAfpJLkPFOAXv50H+CHVOTBa9G/BTxVbP5jwL3+9H3sOdgq4XlKyXIa\nMBNoWGx+yrMUWybawK9Uvi6B7MOl5En5Pgw0BNL96VrAGH/bQey/JWUJYv+NmiWI/delG963iAvw\n6m9NUjMA25kaW2z7vYDPg8zi75eH+dNZfo4g/nePAmb4/yuCNz7h5lRnYc/PBXFvH68LXXf/9yjP\n4N7iWeKuY8nKUuyxmOpYEl+XuN+HE5WlhDxxvw/Hmych//wV8Yb3DcxSYDtef9k/4o1oHwxMByYD\noYjl/4o3OGUO/qj4JOXZEZHnaP8PmgOMBzqnIg/e2WYK/e1O9W+nAfWBr4GfgZH4H0ySmaeELKcD\n84BfI+a9EFSWYsv8gl/EAshyWlD7cCl/p5Tvw0BHvOKZA0wD/uLPD2L/LSlLEPtv1CxB7L+u3fx9\nda7/uw5MwfacqbHFcvVi99mcAsmC9yH+B+AnvG93Dwgwyz14H5an4zUmaqQyC9E/F8S9fbwjs9P9\nx55NUJZrylLHEpxl1+e3Yo/HVMeSlYUyvA8nIksp+0zc78Px5rGL1hljjDHGGGPKxMZMGGOMMcYY\nY8rEGhPGGGOMMcaYMrHGhDHGGGOMMaZMrDFhjDHGGGOMKRNrTBhjjDHGGGPKxBoTxhhjjDHGmDKx\nxoQxxhhjKi0R2SkiU0VkhojkiMidIiIJ3safRORKf7q/f3XqeJ7/XxFpF8fyWSJyVxly/uhffT2W\nZe8XkZ9EZISI2OdFUyLbOYwxxhhTmW1R1c6q2gE4Be8ihZmJ3ICqvqyqg/27VwPN4nz+9ao6O56n\nxLN+ABFpCyxR1fwYMz0IdAMKgDrxbs9UHdaYMMYYY0yVoKqrgBuAWwBEpJqIPC4ik/xv4W/w54dE\nJCwi74vIbBEZUrQOEXlERGb6yz/mz8sSkbtE5AK8Kw6/7R8N6SciH0c89xQR+ah4Ln9bXfzpTSLy\ngH8UZbyINCrp1/GXv15EhovIviJyjIhM87f9uIhMj1j+NODLiG085h+tGSUix4rIaBFZICJnRTxn\nIl5jYlN8r7SpSqwxYYwxxpgqQ1UXAtX8D+nXAnmq2g3vW/jrRaSNv2gGcDvQHjhIRE4QkQbAuap6\npKoeBTxQtFpv1foh8CPwB/9oyHDgCP95AH8EXo0WK2K6NjBeVTOAMcD1JfwqIiK3AP2Ac1R1G/A6\ncL2qdsZrBEQ6FRgRsY1v/KM1G4F/ACcB5/nTiEhNP8MaoHMJGYyxxoQxxhhjqqy+wFUiMhWYANQH\nDsH7cD9JVZeqqgI5QGsgD9gmIq+KyHnA1hLWGzkmYzBwpYikA8fiHx0oxQ5V/cKfngy0KWH9V+Ed\nbbhQVfP99ddR1Yn+Mu/sWlikJtBCVXMjtvGVPz0dyFbVncCMiO09IiKTgX2Bn/aS2VRh1YMOYIwx\nxhiTKiJyELBTVVf647BvUdVRxZYJAdsjZu0EaqjqThHpBvQBLsTrLtUnymYijzS8DnwObAPeU9XC\nvUSMHNNQSPTPaorXCDgKaAnkRlkmskHTExhXyjZ2AKhqoYhU96fv3EtOYwA7MmGMMcaYKkJEDgRe\nAp7zZ30FDCj6AC0ih4lI7VKevx+QrqpfAnfifZgH74N70Yf3jcD+Rc9R1WXAUuD/8BoWiTIVuBH4\nTESaqmoesNFv7ABcyu5GzWnA8ARu25hd7MiEMcYYYyqzWn43php44wjeAp7yH3sFr1vPFP90sSvx\nxg0oe54xSYG6wKcisi9e4+HPEY8VLf8G8JKIbAGOU9XteF2OGqrq3BjyarHpks7cpKr6nYjcDXwh\nIifjjQH5r4gUAqOB9f6yvfAaM9G2EW2bxsRMvK6AxhhjjDEmGUTkeWCyqibyyES07eynqpv96fuA\nxsATwH9U9YxkbttUXdaYMMYYY4xJEn8Q80bglFiv8VCObV0MDMTreZIL9FfVNcncpjHWmDDGGGOM\nMcaUiQ3ANsYYY4wxxpRJlRyA7Q+yegBvINWPqvpWwJGMMcYkidV8Y4xJnqp6ZOJcoDneeZUXB5zF\nGGNMclnNN8aYJKk0jQkReU1EVojI9GLzTxOROSIyT0Tu9WcfBnynqncDN6U8rDHGmHKxmm+MMW6o\nNI0JvAvBnBY5Q0SqAc/789sDl4lIO7xvpvL8xfZ2JUpjjDHusZpvjDEOqDSNCVUdC6wrNrsbMF9V\nc/3TsQ0FzgE+Ak4VkWeBcEqDGmOMKTer+cYY44bKPgC7OfBbxP3FQHdV3Qpct7cni4idN9cYU6Wo\nqgSdoRzKXPOt3htjqppE1ftKc2SiBOV+c1DVUm+ZmZnlXiYR60jlMi5lsbwVYxmXsljekm+VQLl+\nCVf+nraPVoxlXMpieYNfxqUssSyTSJW9MbEEaBlxvyVxnskjKyuLcDhc4uOhUGiv69jbMrGsIxaJ\nyBLrMpal7BKxP9g+U3WyxLKe8mYJh8NkZWXFlclR5ar5qaj3sS6Tqu1UlH00kVkSuYxlKbvKts+4\nlKW0ZZJS7/fWsqlIN6ANMD3ifnVggT+/JpADtItjfZqZmanZ2dkatKuvvjroCLu4lEXVrTyWJTqX\nsqi6lceFLNnZ2ZqZmaneW0LwtTzWWyJrvkv1XtWN/aKIZYnOpSyqbuWxLNG5kCUZ9b7SHJkQkXeB\n74HDROQ3EfmjqhYAtwBfAbOA/6nq7HjWm5WVlbDWZnlkZGQEHWEXl7KAW3ksS3QuZQG38riQJRQK\nVbgjE8mo+a7Ue3BjvyhiWaJzKQu4lceyROdClmTUe1GtFP1kk0JENDMzk1Ao5MwbjDHGJFo4HCYc\nDjNo0CC0Yg/ALjOr98aYqiAZ9d4aE6UQEbXXxxhTVYhIlW5MWL03xlQViaz3laabU7LsbUBevCZP\nhrfegq++gpwcWLoU8vP3/rxEZigvl7KAW3ksS3QuZQG38riQpRINwC6XRNf78nAlB1iWkriUBdzK\nY1miK2uW/Hz47jv48svEZEh0va/s15kot0S/4CtWwMiRsHKlN71iBaxZA/vvD40bQ6NG3s/I6UaN\nYMkSaNXKu7/ffgmNZIyp4oq69gwaNCjoKIGyBpUxxgWqsGCB93lx5EgIh6FtW7j6ajj99PKtOxn1\n3ro5lSJVh70LC70GRWQDo2i6+M8VK6Batd83NEprhNSrB2l2/MkYEwPr5mTvh8aYYKxbB99+u7sB\nsWMHnHIK9O0LJ5/sfaZLpETWezsysRdFZ/dI5oC8tDQ48EDvduSRpS+rCps2RW9ozJkDY8b8ft7m\nzdCwYekNjqKfjRpBjRpJ+zWNMY4qGpBX1aWi3htjDHhdlyZM8BoOo0bBrFnQo4fXeLjtNmjfHiQJ\nX+0ko97bkYlSuPRNVTgcLtMb3I4dXsMilqMeq1fDAQdA06bQpEnJP+fPD3PGGaGk7ORlUdbXJhks\nS3QuZQG38riUxY5MuFHvwa39wrJE51IWcCuPZdmTKgwZEmb9+hAjR8Lo0XDoobuPPhx/POyzT+ry\n2JEJE7OaNaFFC++2Nzt3et2tli2D5ct3/8zN9VrPRfMW+9eTLa3BUfSzUSOobnuZMcYYY6qYrVsh\nOxuGD/duGzfC2WfDH/4Ar77q9UipDOzIRCnsvOMlK+pqVbzhUfzn6tVQv37pjY5mzbxbrVpB/1bG\nVE12nQmr98aYxFi4cHfjYexY6NIF+vXzbkcemZyuS/Gw60ykmGuHvSuinTth1arSGx1Ll3q32rWh\nefPdt2bN9rzfqJENKDcmWaybk9V7Y0x8duyAceO8xsMXX3gDqU8/3Ws8nHIKpKcHnTC6RNZ7a0yU\nwqU3F1f6/EFysqh6XayWLPEaFkuW7L5F3s/L845oRDY0tm0L07Nn6HcNjzp1EhovZpX971RWLmUB\nt/K4lMUaE27Ue3Brv7As0bmUBdzKU9mzrFgBw4Z5jYdvv4Ujjth99KFLl5K/9HTpdbExE6bSEfHO\nOtWwIRx1VMnLbd/uHdGIbGxMmAAjRvy+4VGt2u+ParRs6V2no2XL3dP775+6388YY4wxFdfcufDJ\nJ/DppzB7tjdo+rzz4OWXK8/Yh7KyIxOlsD60FZMqrF+/u3GxeDH89hssWuT9LJquVi16I6NoukUL\n2HffoH8bY5LPxkxYvTfG/F5hIUycuLsBsWmTN3j63HMhFPJOcFMR2ZiJFHPtsLdJHFWvy1S0RkbR\n9JIlXl/HaA2NVq2gdWuvy5WN4TCVhXVzsnpvTFW2bRt8843XgPj8c++IwznneLeuXSvX+30i630l\nelkqN5cuKOVSFihbHhHv6uCdOsGZZ8JNN8FDD8GQId65n3/5xTulW04OvPACXH45tGnjHel4/324\n4w7o3Bn22w8OPxxOPRVuvBFuuCHM0KFe16sVK7xGS1Bc+ju5lAXcyuNSFuMOl/YLyxKdS1nArTwV\nKcvmzd77+sUXexfxffRRaNcOvvsOpk+HBx6AY45JTEPCpdclkWzMhDElSEvzTl3btCl06xZ9mS1b\n4NdfvWtxLFzoXYH8o49239+82TuC0bat1xgpuhXdb9gw+NPEGWOMMVXJ5s3e4On33/euQN39/9m7\n8zg7x/v/46/PTBIRQUStscQSS2yJkhTFkGqjWvv6o8RWS+1qrcoEVbWX1lINRa1VLb61NJaD2qkh\nltiDxFqECLLN5/fHdU5yTM5Mzszc576vc877+Xicx5z7nnvO/Z4z93zOuc59Xfc1HHbZBf74R41/\n6Ap1c+qATntLd3355bcbGxMnzr299VYYUD5wIKy8MqyyCqy66tyvK64IPXtmGl/qjLo5qd6L1Kov\nv5zbgBg3Dr73vdCA2H778MFevdHVnFLU3NysAXnSZX37hklq1lqr9Pe/+CI0LN58E15/HV54IfTV\nfOONMGZjueXmbWSsumpofGiSP0lKYUBevVO9F6kt06aFS7jefDPcey9svHFoQFx+OSy+eNbpslGJ\neq8zEx2I6ZOqmK5NHFMWiCtPkllmzAhnNV5/PTQuXn997v233gqfpLRtaKyxBgwaFBoatfq8JCGm\nPDFl0ZmJOOo9xHVcKEtpMWWBuPJkmWXWrHDm4frrwyDq1VbLccghTWy3HfTvn0mkOWL6G+nMhEgd\n6NUrNAwGDZr3e7NnhzMXxQ2NG28M18F+880wiGyJJcKnMKuvPvc2YIDGaIiISG1xD5dxve66cBZi\npZXChVPOPTfMCRHJ+/eapTMTHYjtkyqRcsyaFbpOvfLK3NuECeHrtGmw2mrfbmCssUZY16dP1skl\nazozoXovUk0mTAgNiOuvD2MM99wT9tgjnKmXjiVZ79WY6IBeXKTWTJkCr746t3FRaGi88UaYM2Ot\ntWDtteeO81hzTY3NqCdqTKjei8Tuf/8LDYhrroH334fddw+NiPXX15n3ztA8E91kZk1m9rCZXWpm\nm2edpxwxDY6MKQvElSf2LP36hcvc7r03/OY3cMstYdD3l1+Gy+Ptv38YNH7nnbDPPqF/6aBB4WoX\np5wCN9wAzz8frkLV3SxZiilPTFlqlWp+9yhLaTFlgbjyJJ1l1qwwkHqnncJZh6eegrPOChPMnn9+\nmFCuvYZELT8vsajXMROtwFRgAWBSxllEMtfYOHd8xg47zF0/c+bcq0y9+GKYQ+O000I3qoEDw1mM\n9daDIUPCTWMyJFKq+SJV6OWX4aqr4Nprw2vOvvvClVfCootmnUyK1Uw3JzO7EtgG+Mjd1ylaPxK4\nEGgE/uzuv7P8+WwzWxI43933aucxddpbpITp00N3qfHjw5mKlhZ49tkwMLzQsCjcVl9d82VUi2rq\n5pR0zVe9F4nD55+HC4pcdRW88w787GcwalTodivJ0ZiJEsxsU+BL4JrCC4uZNQKvAD8AJgNPAXu4\n+8v57/cCrnP3Xdp5TL24iHTCBx+EhkXx7Z13wotAoXGx/vowdKgGfMeoyhoTidZ81XuR7LjDk0/C\nZZfBP/4BW20VGhA/+hH0qNc+NBWmMRMluPvDwGdtVg8DXnf3ie4+E7gR2M7MdjCzy4BrgItTjtol\nMfWziykLxJWn3rMsvTSMHAknnhg+WZowAT7+GPbfP8eGG4auUkcdFebIGDIEDjwQ/vSncFZj5sz0\nctb736kWqOanR1lKiykLxJWn3CxTp4YGxNChYRD14MHw2mthlupttkmmIVGNz0u1qfX23gDg3aLl\nScBwdz8L+Ec5DzBq1CgGDhwIQL9+/RgyZMicCUcKB0W9LRcoz7zLLS0tmT8fheWWlpZM91+8PHgw\nQI411oDLLmti+nS48socEybAo4828fvfwxtv5Fh5ZfjBD5rYcENwz7HccrDlltnnr+RyQVbH65Qp\nUwCYOHEiNaBbNT+meh/T/29MywUx5Imp3seWZ37H7xVX5Lj9dvjPf5oYMQL22ivH+uur3lf6+KhU\nva+Zbk4AZjYQuKPolPdOwEh3PzC/vBfhheXwMh/PR48eTVNT05w/iIhUxtSp8N//hqt0FG6ffQYb\nbQSbbBJuw4ape1Ql5HI5crkcY8aMqZpuTpBszVe9F6msr78OZ6wvuyx0if35z2G//WCZZbJOVl8q\nUe9rvTHxPaDZ3Ufml08CWt39d2U+nvrQimTogw/g0UfhkUfCbfz4MP/FJpuE2b032QSWXTbrlLWj\nmsZMQLI1X/VepDLefRcuuQTGjg0fCB1ySOgO29iYdbL6pjET5XsaGGRmA/MD73YDbu/MAzQ3N89z\neioLMWQoiCkLxJVHWUrrapall4Ydd4TzzoPHHw+TFZ13Hiy1VJiwaJ11YKWVwrwZf/kLvP12ZfNU\nQgxZcrkczc3NWcdIQrdqfiz1HuI4LgqUpbSYskBceR54IMcjj8Buu4XxcV9/HT4Y+r//C2Mh0mxI\nxPS8xJClEvW+ZsZMmNkNwObA4mb2LnCqu19lZocB9xAuEzi2cFWPctXIC6xITVhwQdh003ADaG0N\ns3g/9BDcdReccAIstBBssQVsuWX4qjMX81fo2jNmzJiso5StEjVf9V6ke6ZPh5tuCpOitrbC4YfD\nFVfAIotknUwKKlHva6qbU9LUh1akurjDSy/BAw+EWy4Xrhy1xRbhUoM/+IEmOyqlWsdMJEn1XqTr\n/vc/+OMfw3iIddeFI46ArbeGhlrv/1KFNGYiZepDK1LdWlvDpHr33w///ncYdzF0aHiRGzkyzN6t\nF7u5qm3MRJJU70U676234Pzz4brrYKed4OijyV+9T2KnMRMpiqUPbQwZCmLKAnHlUZbSssrS0BD6\n6x5zDNx9N3z4IZx8Mjz9dI7dd4cBA8LESDfeGK4clYUY/k41NGaiW2Kp9xDHcVGgLKXFlAXSzfPf\n/8Iee8CGG8LCC4c5hK64Ym5DIqbnRlnmzZB0vVdjYj6am5t1ylukRvTpE85IHH54GGvxyCPh6iLX\nXQcrrhi6Ql1yCUyenHXSdDU1Nakxgeq9SEfcYdy4UCe33RY22CCcmTjzTF3etZpUot6rm1MH1IdW\npH5Mmwb33AP//Cf861+w6qqw/fbhtuaaWaerLI2ZUL0XaU9rK9x2G5xxBnzzDRx/fDgr0atX1smk\nKzRmImXqQytSn2bODFeI+sc/QuNikUXCi+cee4RGRq3SmAnVe5GC1lb4+9/h9NNDw+HXv4af/lTj\nzGqFxkzUoRj62RXElAXiyqMspcWUBeafp2dPGDEC/vCHMOHS2LHw0UdzZ+G+8EJ4//10skh9ium4\nUJbSYsoCyeWZPTuMI1tnHTj3XDjrLHjqKdhuu/IbEjE9N8pSeWpMzEdMA/JEJH1msNFGcPHFYSzF\nGWfAc8+FgYYjRsBf/xomZKpmGoAdqN5LPZs1K9SztdaCiy4KV2l6/HH48Y9DHZTaUIl6r25OHdBp\nbxFpzzffhNlcx46FJ58MXaAOOCBcPapaqZuT6r3Un0J3pl//GpZcEkaPDpN+qgFR25Ks92pMdEAv\nLiJSjnfegauugiuvDC/GBxwAe+0VZuOuJmpMqN5L/XAP8++cfHJoOJx5ZrhSkxoR9UFjJupQTKfe\nY8oCceVRltJiygLJ51lhhfBp3ptvhm5Q99wTLjV7/PGhoZFmFqkNMR0XylJaTFmgc3kefzycfTji\nCDjppDAm4oc/TK4hEdNzoyyVp8bEfKgPrYiUq7ERfvQjuPXW8OI8e3aYcXuXXcKcFrHSmIlA9V5q\n3YsvhoHUu+wSzp6++CLsvLPORtQTjZlImU57i0h3TZ0KV18NF1wAyy0X+iWPGBHni7e6OaneS236\n+GM49dQwNuKEE+AXv4DevbNOJVlSNycRkSqx8MJw2GFhxu0DDgj3N94Y7rwz9FkWEamU6dPhnHPC\nxJu9esGECXDssWpISLLUmKgSMZ16jykLxJVHWUqLKQtkk6dHD/jZz0K3gqOOCp8ODh8OF16YfhaJ\nX0z/M8pSWkxZ4Nt53MNZiMGDwwScjzwCv/899O+ffpasKUvlqTEhIpKixkbYbbcwV8VRR4UJobbd\nFl5+OetkIlILXnwxDK5ubobLLoM77oDVV886ldQyjZnogPrQikilffMN/PGPoVGxyy7wm9/AYotl\nk0VjJlTvpXp9+SWcfnq4RPXo0XDwweGMqEgpGjORIl3dQ0QqqXfv0If5lVfCoOzBg+Haa9MdT6Gr\nOQWq91KN3MMV5AYPhvfeg/Hjw9gsNSSklIrUe3fXrZ1beHri8MADD2QdYY6YsrjHlUdZSospi3tc\nedpmefJJ96FD3Zua3F99Nd0s+ZqXee3N4hZTvXeP+xjNkrJ82xtvuG+9tfuaa7pfcEH2eQpieG4K\nlKW0JOu9zkyIiERkww3hySfDteA33hguv1xXfRKRb5s9Gy68EIYNg802g5YWGDIk61RSrzRmogPq\nQ5ui2bNhxgyYObP924wZMGtW2Hb2bGht/fbX7t6vlMbGeW8NDaXXz2+bXr3m3hZY4NvLhVtjY+V+\nF0nVyy+HK0AttRSMHQtLL13Z/dX9mIlbboGJE2GZZWD99cOo1RgnBJG6NmEC7L9/KPVjx8KgQVkn\nkmqUZL2v28aEmS0E5IBmd/9XO9vUVmNi1qxw0enp08Ooz+KvpdZ19L321k2f3nFjoL3vQXgj3LNn\n6Vvhez16lH7DXfzGu6v3K/GmwX1uY6VUA6a9W3vbzJjR8W369PB7lGpkFG69e8OCC0KfPuFWzv3i\n5YUXDrdFFglfe/ZM/nmTOWbOhNNOC4Mqb7oJvv/9yu2rlhsT86v5Zua+wQbhCZ48GZ54IvzPbb11\nuPzWFluooS6ZmjULzjsvzBvR3AyHHhpevkS6Qo2JBJjZGGAq8HJmjQn38E7h66/hq6/CrXC/zddc\nSwtNyy/f4TbzfC3c//rr8Ia/tTW8kezdO3yqvcACc+93tK7N93KTJ9M0ePC82xduHTUG2rt140U6\nl8vR1NSU3N+lG6LIkm905O67j6bhw+c2MgoNjm++af9YKXW/eHnatHDJkKlT4YsvwteePec2LIq/\nFt3PffIJTeuvHy5yvvji4Wvhtsgiqb8iRvF3yis3y113wahRcMopYXBlJdq+Nd6Y6LDmm5n766/D\nKquEFe7w2mvhupo33ACTJsGuu8KBB8I661Q8bzUeo2mo1ywTJsDee4dyecUVsNJK2eaZH2UpLaYs\nSdb7mhnrb2ZXAtsAH7n7OkXrRwIXAo3An939d2a2FfASkP4ckBddFK79WHiD1tDw7U992/v62Weh\n4VFYXmqp8n5uwQXDrXfv8Kl+Eu9AcjmI5J9BSmhsDH/zvn1hiSUquy/3cBwXNy6Kvxbuv/deuPj5\np5/Oe/vyS+jX79sNjMUXD7ellpr3tuSSodFaZ7beGh57DHbaKfSPvuyy+j4pVJGaP3Bg8Q5gtdXC\npbaOPTY0LP761/CHWGEF+PnPQ+OiT5/EfzeRAvcwbuqUU8JlXw8+WD3vJD41c2bCzDYFvgSuKbyw\nmFkj8ArwA2Ay8BSwB7AnsBAwGPga2KHUKYiKnJn44ovw5qvwRl/XbpN6N2tWaCy3bWR8/DF8+OG8\nt48/hoUWmtu4WHrpcFtuOVh++bm3ZZapyXfb06aF97DucPPNoc2YlGo6M5F0zS+73s+aBXfeGd7h\nPf447LMPHHHEtxsiIgn4+OMwNmLyZLjuOlhjjawTSS1RN6d2mNlA4I6iF5aNgNHuPjK/fCKAu5+V\nX94H+Njd72zn8WprzIRILWhtDY2PDz6Y28B4//3QDeXdd+d+/eijcGam0LhYbjlYcUVYeWVYddXQ\nT2DBBbP+bbpk1iw46CB4/nm4++5wEicJ1dSYgGRrfpfq/dtvhxkHx46FESPg6KNho4268RuJBPfc\nA/vtFy7AcNppoaewSJLUzal8A4B3i5YnAcMLC+5+9fweYNSoUQzMf+LUr18/hgwZMqe/W2FyozSW\niydSymL/xcttMynP3OWWlhaOOuqozPZfvHzhhRdmdry2XU78+F0Y9VpXAAAgAElEQVR8cXLjx0ND\nA0177FF6+3vvhU8+CWON3n03fP/BB2kaN47c88+HRsiii9K01lqwyirkzGDAAJp22AFWX53cE0+k\n8vy0fY7K+fkePWCvvXJcdhlstVUT990Hzz3X+f23tLQwZcoUACZOnEgN6FbN71K9P/ts+PWvyZ18\nMuy0E00rrgjHHEOuf39obNT/bwT/L5VarkS9//73mxg9Gv70pxwnnwxHH51tHh2/yS63zZT28Vqx\nep/UhBUx3ICBwPii5Z2AK4qW9wIu7sTj+ejRo6OYZCSGDAUxZXGPK4+ylBZTFvd8nlmz3N96y/3e\ne90vv9z9uOPcd9zRfa213Hv3dl9lFfdtt3U/8UT3a691f+YZ92nTKpOli1pb3Y86yn3DDd2nTOle\nhtGjR1fdpHVJ1vxE6v2sWe633uq+8cbugwa5X3ml+4wZXXqomP5nlKW0pLN88IH7Flu4jxjh/uGH\n2efpDmUpLYYslaj3td7N6XuEywAWTnmfBLS6++/KfDyvpedHRMo0cya88UYYNP7SS3O/vvZa6Cr1\n3e/OvQ0dGi6xkhF3+MUvwtVe7r67e90haqCbU5drfqL13h0efBDOOANefx1OPDFciqt3+tf8kOrw\n8MOwxx6ha9Po0boKsVSexky0o8QLSw/CYLwRwHvAk8Ae7v5ymY/no0ePpqmpac6pIhGpYzNnhpnk\nnnlm7u3558N4jA02CFNWf//7sPbaqb4bmD0bdtwxjJ0YO7bzV3vJ5XLkcjnGjBlT7Y2JLtf8itX7\nxx4LV/B79lk47rgw2KVKx+pI8tzDRR5/+1u46qpwsTCRSqpIvU/qFEfWN+AGwovHdEKf2X3z67cm\nvLi8DpzUycfs8FRRmmI4NVYQUxb3uPIoS2kxZXFPOM/Mme7jx4cuLfvv77766u79+rlvvbX7b37j\n/vDDHXZ1SSrL1KnuQ4e6n3121x+DKurmlHTNr3i9/+9/3bff3n255dz/9Kdw3HQgpv8ZZSmtu1mm\nT3c/4AD3ddYJPS6zzpMkZSktpixJ1vuaGYDt7nu0s/4u4K6uPm5zc7POTIhI+3r0CGci1l4b9t03\nrPvoI3jkEfjPf+DII0OXqS22gJEj4Uc/qshlRPv2hdtuCydINtqoczNlFz6pqiaVqPkVrfdDh8I/\n/hFm1j7ppDCN8RlnwM47axrjOvTxx+FPv9hi8OijyV7iWaQjlaj3NdXNKWkaMyEiifjoIxg3Lgxq\n+Pe/wyR9228f3k1ssEGis1D93//BoYeGXjWdvWRstY2ZSFKq9d4d7r0XTj459FE76yz44Q/T2bdk\n7oUXYNttwxiJ009XW1KykWS91yE8H83NzVX3iZ2IRGbJJWHPPeHaa8OcGNdfT/76ruEsxbHHwlNP\nhTeZ3fSTn4TxE0ceWf7P5HI5mpubu73vapdavTeDrbaCJ5+EX/0qjKD/6U/h1Vcrv2/J1IMPhilJ\nTj89DKVRQ0LSVpF6n1R/qVq8oTETJcWUxT2uPMpSWkxZ3CPK09rqD1x5pfupp4ZL0a69tvv557t/\n9FG3HvbLL91XWsn9zjs793NU0ZiJpG+Z1vtvvgmDXRZf3P3YY92nTInnGPWI/l+8urP87W/uSyzh\nft99ceSpJGUpLaYsSdZ7tYnnQ2cmRKRizMJM3GPGhE+lL7449E8aNAh22y18ct0FCy0Ef/oTHHww\nTJs2/+11ZiLIrN4vsEC40tOLL8KUKbDGGvCvf4XZ3qUm/OEP4Wzhv/8NW26ZdRqpZ5Wo9xoz0QGN\nmRCRTHz+ebhO5AUXhHktjjsOttmm030i9tgD1lwTTj21vO01ZiKSev/f/4auT42NcPnlsNZaWSeS\nLnIP/3833xyGTK20UtaJRALNM5GSqF5cRKT+zJoFt9wCZ58dls88M1wNqswB22+9FcZ3v/giLL30\n/LdXYyKiet/aCpddFmYwO/jgMLZCk95VFXf45S/h/vvDGYkllsg6kchcNTUA28wOyzpDR2Lp5hRD\nhoKYskBceZSltJiyQFx5OszSowfsvnuYHO9Xv4KjjoKmptAVqgwrrRQmXv7Nb+afIa1uTjHX/Fjq\nPUDuoYfCZblaWsLs6+uuCw88kE2WSJ4TqJ4sra1wxBHw0ENw333pNCSq5blJm7LMmyHpep95YwLY\nP+sAHSlcd1xEJDNmsNNO4ZqSe+4Zzk4cfTRMnTrfHz3uOLjuunBd+/Y0NTWlOWYi2pofZb0fMAD+\n/nc491zYe+/wDvWrr7JOJR1obYVDDgmfAdx7L/Tvn3UikbkqUe8z7+ZkZs+6+9BMQ7QjutPeIiIQ\nWgYnnBDeqVxzTThb0YGDDoKlloLTTuv4YdPo5hRrza+Kev/ZZ3DYYeFd6jXXwLBhWSeSNtzDCaUX\nXoA774SFF846kUhpNTVmwsxmA+19zOLuvkiaeYpVxYuLiNSvu+6C/fYLM2+PGQM9e5bc7LXXYOON\n4e23oU+f9h8upcZElDW/qur9zTfD4YeHsRSnnNLu313S5R7OBD70UGjnL5LZuxeR+aupMRPA8+6+\ncDu3zP8VY+lDG0OGgpiyQFx5lKW0mLJAXHm6lWXrrUOf+meegR//OHxyXcKgQWEg9q23tp8hxW5O\n0db8WOo9zOe42HXXMG7mqadg001DKzGrLCmLOctpp4WB1nffnU1DIubnJkvKMm+GWhwzEbUo+9CK\niBQstVSYk2DtteF73wuXcCph//3hz38u/RApj5mIVlXV+2WXDX/3XXYJ3Z3uuCPrRHXtwgvDxPbj\nxmmMhMStVsdMnOzuZ5ax3Unu/ts0MhXts3pOe4uIXHxxGKh7//2wyirf+taMGbDccvDYY/N8a46U\nujlFWfOrut4/9li46teuu4bLB6vbU6puuilcAvaRR2CFFbJOI1KemhozUa4sBu1V9YuLiNSnyy+H\nM86AXG6eVsPBB4dVxx1X+kdjmmci7Zpf9fX+k0/C1Z6mTAlXfypnYhHptocegp13Dmck1lsv6zQi\n5au1MRNShhj62RXElAXiyqMspcWUBeLKk3iWgw6CE08MM2a3GUOx447tj5uQuHT6uFh88dDVaaut\nYPjwMIt2VlkqKKYsV1+dY5ddwqWXY2hIxPTcKEtpMWVJkhoTIiK15he/CIOzd9oJZs6cs7qpCV55\nBSZPzi6aVFBDAzQ3w3nnhblIbr4560Q165NP4KST4He/C+03kXqmbk4d79NHjx5NU1NT9QzKExEB\nmD07XOFp+PBvTTCx116w2Wbw85/P3TSXy5HL5RgzZkxdd3OqqXrf0gLbbx+mQB89Okx8KImYNSu0\n1ddbLwxREqkmlaj31dSYKGvQXsL7rO4+tCJS3z74AIYODZ9Qb7opAH/5S7h05Y03zrt5ZGMmUq35\nNVnvP/wQfvKT8K73ssugR4+sE9WEY4+F8ePDpHR6SqVa1dyYCTPb0sxuNbOX8rdbzGyL4m3SbkjE\nJqZ+djFlgbjyKEtpMWWBuPJUNMvSS8Oll8KBB4bLOQFbbBEu9pTl+2bV/PlL5LhYail44AGYNCmc\npZg2LbssCck6y1//Cv/8Z2iM/+c/2WZpK+vnppiylBZTliRl3pgws22AscAdwP8D9gTuBMbmvyci\nIl213Xaw8srw+98DsOKKYUKtF1/MJo5qfsr69g0DsxdfHEaMCJ39pUuefRaOPhpuu01zSYgUy7yb\nk5k9CBzh7s+1Wb8u8Ad336wC+1wDOBJYHLjH3ce2s13tnfYWkfrz+uth7MSECbDEEuy9N2y+eZjI\nrlhK80xEWfNrvt67w/HHh2uYjhsHSyyRdaKqMnUqfPe7MGYM7LFH1mlEuq/Wujkt1fZFBcDdnweW\nrMQO3X2Cux8C7A78qBL7EBGJxqqrhgnNLrgAgA02gKeeyiyNan4WzODss8MYii22COMppGy/+EW4\ncIEaEiLziqEx8VUXv/ctZnalmX1oZuPbrB9pZhPM7DUzO6Fo/U+BfwElhiHGJ6Z+djFlgbjyKEtp\nMWWBuPKkluXEE8OEdp99xgYbwNNPp7PbElTzy1CR48IsTGi4667hOsHvv59dli7KIsvVV4f/l4su\nyj5LR2LKoyylxZQlSTFch2AVM7ujne+t3InHuQq4GLimsMLMGoE/AD8AJgNPmdnt7v6yu98B3GFm\ntwGaxklEatuKK8LIkXDttQw54AheegmmT4cFFkg9iWp+1k49NVyGqKkpTOG81FJZJ4rWK6/AL38Z\nxrH36ZN1GpE4xTBmoqmj77t7rhOPNRC4w93XyS9vBIx295H55RPzmz4G7Aj0Bl529wvbebza7kMr\nIvUll4PDDoPx4xm8lnHjjbDuunO/ndKYiaaOvp9Vza/Lej9mDPzjH+G46Ncv6zTRmTULNt44TNVx\n6KFZpxFJVpL1PvMzE5154eiCAcC7RcuTgOHu/iDwYDkPMGrUKAYOHAhAv379GDJkyJwJjQqnq7Ss\nZS1ruSqW3WmaMQMee4z+/Wdw/vktDBw4BYCJEyeShphrft3V+802o2nKFNhmG3KnnAILLhhXvoyX\nr70W+vVr4pBD4sijZS13Z7mlpYUpUypU79090xswvoPb8518rIHA+KLlnYAripb3Ai7uxON5LB54\n4IGsI8wRUxb3uPIoS2kxZXGPK0/qWcaMcT/ySD/hBPfTT//2t/I1ry5rfkz13j3F42L2bPdRo9x/\n9CP3GTOyzVKGtLK0tLh/5zvu77yTfZZyxZRHWUqLKUuS9b4h2aZJl/w0f7srfyu+7vhd3XzsycDy\nRcvLEz6pKltzc/OcFp6ISNXbYQf45z9ZfTXnlVfCqlwuR3Nzc1oJoq35dVnvGxrgiivCGIpDD812\nNsNIzJwJ++wD55wDyy8//+1Fqkkl6n3mjQl3n+juE4Efuvvx7j7e3Z939xOAH3bz4Z8GBpnZQDPr\nBewG3N7Nx8xE4VRVDGLKAnHlUZbSYsoCceVJPcvaa0OPHqze8NqcxkSaVPPLk+px0aNHmNL5mWfg\nrLOyzTIfaWS58EJYcsnQoMg6S2fElEdZSospS5IyH4BdYGbPAb9w9//klzcB/ujuQ8r8+RuAzQmT\nEn0EnOruV5nZ1sCFQCMw1t1/24lMHsvzIyKSmEMO4ZNl12Hlcw9lypRwxVBIZwB2QWw1X/UeeO89\n+N734Nxzw+Vj69DEiWEelieegFVWyTqNSOXU2qR1BfsBl5jZ22b2NnBJfl1Z3H0Pd1/W3Rdw9+Xd\n/ar8+rvcfXV3X7UzDYmCWE57x5ChIKYsEFceZSktpiwQV55Msmy+OYs/fQ/u8PnnqXdzKoiu5sdS\n7yGj42LZZeG228IMbePnTt8Ry3MClc3iHi52dvTR5TUkYnpeIK48ylJaDFkqUe8zv5pTgbs/A6xr\nZv3yy1OKv29m+7j71WnnyuAFVkSksjbfHA49lAEDnMmTjaamJpqamhgzZkxqEWKs+ar3wNChYab0\nHXYI06QvtljWiVJz663w5pvhq0itqkS9j6ab0/yY2bPuPjTlffro0aPnPPEiIjVj1VXZaokWftnc\nlwUWyJHL5RgzZkxq3ZzmJ+2ar3rfxlFHwWuvwR13hEHaNW7aNFhjDbjuOthss6zTiFROLpd8vVdj\nouN9qg+tiNSm3XZj1Htnstm+q7BfvnNRmmMm5ieLxoTqfZGZM2GrrWCLLWD06KzTVNypp8Lrr8P1\n12edRCQdtTpmQjoQQz+7gpiyQFx5lKW0mLJAXHkyyzJ0KMvNfJNJnbpYtqQl82O0Z0+44Qa47DJy\nF12UbZYilXhe3n4bLrkEfve77LN0R0x5lKW0mLIkSY2J+YhpQJ6ISGKGDGHZKS/z3nuZDcCOjup9\nG8ssA3/+M/zmN/DZZ1mnqZiTTgoDrzWnhNSDStT7aurm9Ad3Pyzlfeq0t4jUprfe4qYNz+XvW/6R\nm28OqyLr5pRqzVe978CRR8LkyfC3v829jnCNeOYZ+OlP4dVXoW/frNOIpKemujmZ2ffM7Dkzm2Zm\nj5nZ4FLbpd2QEBGpaSusQP8vJvLp/2anulvV/Cr0u9/BK6+Ebk81xB1OOCGMl1BDQqTrMm9MAH8E\nfkmYeOh84IJs43xbLKe9Y8hQEFMWiCuPspQWUxaIK09mWRob6T9gQT59f0ba3Zyirfmx1HuI7Bh9\n/HG46qowAcOHH2abJcHnZdw4ePdd2H//7LMkIaY8ylJaDFkqUe9jaEw0uPs4d//G3f8GLJl1oGLN\nzc26TKCI1KTFV16UTz5xmpqa0mxMRFvzVe87sMEGsO++YXBBDXCHX/8aTj89jDUXqReVqPeZj5kw\nszcJn1IV+m2dU7Ts7p7Z9DHqQysiteyL/Y5iwPVnM/WbXkA6YyZirfmq92X45hsYMgTOOAN23jnr\nNN1y111w3HHw/PN1MY2GyDySrPcxzID9EPDTouUH2yxrLkoRkQpYeODifDOzkRkzoFev1Harml+t\neveGK6+EnXaCLbeE/v2zTtQl7tDcHKbPUENCpPti+DcaD7zQwS1TsfShjSFDQUxZIK48ylJaTFkg\nrjxZZrEBy7JYr2n83/+lOmYi2pofS72HiI/RjTeGHXeEU07JPksX3X13mPF6p52yz5KkmPIoS2kx\nZKnVMRMLA32B7wIHA8vmbwcBqc54XYr60IpIzRowgP4Nn7PGGqmOmYi25qvel+mMM+DWW8N1VauM\nO4wZE67gpLMSUo9qcsxEgZk9DPzY3afmlxcG7nT3TTPMpD60IlK7xo9nw2HGHx9cm2HD0p1nIraa\nr3rfSWPHwhVXwKOPVtW78ocfhv32gwkToLEx6zQi2ampeSaKLAnMLFqeSURX+RARqTlLLslCsz9n\n2rRs9o5qfvXad1+YPRtuuinrJJ1y3nlwzDFqSIgkKabGxDXAk2bWbGZjgCeAqzPOFI0Y+tkVxJQF\n4sqjLKXFlAXiypNplv796TtrCl9OzeQTedX8DkR/jDY0wDnnwMknh6s8ZZmlTK+8Ek6k7LNP9lkq\nIaY8ylJaTFmSFE1jwt1/A+wLTAE+BUa5+5nZpoprQJ6ISKJ69mShxm946uG70xwzAcRZ81XvO6mp\nCdZZB/7wh6yTlOWCC+Dgg6FPn6yTiGSnEgOwoxkzESP1oRWRWrf/wjex0clbcsBJS6Q6ZiI2qvdd\n9PLLsNlmYRDC4otnnaZdH30Eq68eYi61VNZpRLJXq2MmREQkZQv1bmXaJ+l1U5Eas+aasMMOcP75\nWSfp0CWXwC67qCEhUglqTFSJmE69x5QF4sqjLKXFlAXiypN1lj69W/nqi5nz31BSlfVxUWy+WU4+\nGS67DD79NPssJcyaBZdfDkcemX2WSoopj7KUFlOWJNVtY8LMtjOzP5nZjWa2VdZ5RESysEBvY/qX\ns7KOUVGq9xU2cGA4O3HhhVknKenOO2GllWCttbJOIlKb6n7MhJn1A8519wNKfE99aEWkpp257o1M\nXWldfnvb4JofM6F6X0FvvgnDhsFrr8Fii2Wd5lu23Ra23z7MLyEigcZMtMPMrjSzD81sfJv1I81s\ngpm9ZmYntPmxU4DquBSFiEjCFliwgenTqu/MhOp9ZFZeObxr//3vs07yLe+/Hyaq23XXrJOI1K6a\nakwAVwEji1eYWSPhxWMkMBjYw8zWtOB3wF3u3pJ+1M6JqZ9dTFkgrjzKUlpMWSCuPFln6dWnBzO+\nnp1phi6q2XoP2R8XxcrO8qtfhcvEfvFF9lnyrr4adtoJ+vbNPkulxZRHWUqLKUuSaqox4e4PA5+1\nWT0MeN3dJ7r7TOBGYDvgMGAEsLOZHZRuUhGROCywYAPTp2edovNU7yO0yiqw5ZZwzTVZJwHAHcaO\nhQPm6dQmIknqkXWAFAwA3i1angQMd/fDgYvn98OjRo1i4MCBAPTr148hQ4bQ1NQEzG1hprHc1NSU\n6v603PXlgqzzFNZl/XzEePzGlier5ZaWFnJvPc5bny7KqFFV2KKYV03U+4Kq/P897DA46CBya60F\nZhkf39CrVxPDh9d+vY8tT2Fd1s9Hp4/fGl5uaWlhypQpAEycOJEk1dwAbDMbCNzh7uvkl3cCRrr7\ngfnlvZj74jK/x9KAPBGpaTfueQf/eGZ5bpowpOoGYKveR8gd1l03XNlpxIhMo+y9NwwZAscck2kM\nkShpAHbnTAaWL1penvBpVVmam5vnafFnIYYMBTFlgbjyKEtpMWWBuPJknWWB3sbkL56mubk50xwJ\nqYl6D9kfF8U6lcUMDjssjJ3IMMvnn8Ptt8PPflaRGJ3KkpaY8ihLaTFkyeVyidf7emhMPA0MMrOB\nZtYL2A24PeNMIiJR6NWnkZmzaualQPU+BnvuCQ89BO+8k1mEG26ArbaCJZbILIJI3aipbk5mdgOw\nObA48BFwqrtfZWZbAxcCjcBYd/9tmY+n094iUtPuPf7f/PbaAdz3/lpV1c1J9T5yRx0FffrAmWdm\nsvsNNoAzzoCRI+e/rUg9SrLe19QAbHffo531dwF3deUxm5ub5wzgERGpNb369OCjr56muflvWUfp\nFNX7yB16KGy6KZx6KvTunequ330X3n47nJkQkW/L5XKJd7eqmXPblVJ4cclaDP3sCmLKAnHlUZbS\nYsoCceXJOov16smiPTaslTET3RJLvYfsj4tiXcqy2mqw3nrwt2QbqeVkeewx2HhjaGxMdNddypKm\nmPIoS2kxZGlqatKYibTFNCBPRCRp1qsnU6Y/ocYEqveJq+BA7I48+ihstFHquxWpCpUYgF1TYyaS\npj60IlLrHr34GX55ygI8+vnaVTVmImmq9xUwe3aYyO6228JZipQMHw7nnAObbZbaLkWqji4NKyIi\nibDGBlrrs/0gldbYCFtvDfffn9ouv/kGXnghDMAWkXSoMTEfsZz2jiFDQUxZIK48ylJaTFkgrjxZ\nZ2loND6f+ZS6ORFPvYfsj4ti3cqyySbwyCOpZXnmGVhzzXAhqUqL6W8EceVRltJiyKJ5JjIQ04A8\nEZGkWYPRt3G4GhOo3ldEoTGRUhcyjZcQ6VglBmBrzEQH1IdWRGrd01c+z8FH9OTpL9fUmAnV++S5\nw4ABoUGx0koV392OO8Iuu8AeJS8cLCIFGjORophOe4uIJM0ajM9nqZsTqN5XhFniXZ3a4x4uC6sz\nEyLtUzenDMRy2jumF7iYskBceZSltJiyQFx5ss6ibk5zxVLvIfvjoli3syTYmOgoy9tvh68rrpjI\nrrqVJQsx5VGW0mLIonkmREQkUQ2NqXVnl3qV0pmJwngJq8uOeiLZ0ZiJDqgPrYjUuudueImf7deT\n578epDETqveVMXMmLLYYTJoE/fpVbDeHHx7OSvzylxXbhUjN0JiJFKkPrYjUsoYGmDpbM2CD6n3F\n9OwZJn54/PGK7kbjJUTmT2MmMhBLH9qYXuBiygJx5VGW0mLKAnHlyTqLNTbQp2EjNSaIp95D9sdF\nsUSyJNTVqb0s06bByy/Dd7/b7V10O0tWYsqjLKXFkEVjJkREJFFmoM49UnEVHjfx9NOw9trQu3fF\ndiEi7dCYiQ6oD62I1LqXb3uVHXbtwYTpK2vMhOp95Xz2GaywQvjao0fiD3/WWfDhh3DBBYk/tEhN\n0pgJERFJRDgzUZftB0nTYouF0dHPPVeRh9d4CZHsqDExH7EMyIshQ0FMWSCuPMpSWkxZIK48WWdp\n6NHANA3ABuKp95D9cVEssSwJdHUqlSWryepi+htBXHmUpbQYsmgAdgZiGpAnIpI0M+itAdiA6n3F\nVWjcxBtvwAILwPLLJ/7QIjWnEgOwNWaiA+pDKyK17o1xb/LDbXrwxowVNGZC9b6y3ngDNt8c3n03\n0Znlrr0W7rgDbr45sYcUqXkaMyEiIomwBqO1PtsPkraVVw4T2L3zTqIPq/ESItlSY6JKxNDPriCm\nLBBXHmUpLaYsEFeerLNYg2kAdoSyPi6KJZbFrNtdnUplyaoxEdPfCOLKoyylxZQlSXXZmDCzlczs\nz2b2t6yziIhkqaFHA7Xes0k1PyIJj5uYOhVefRWGDk3sIUWkk+p6zISZ/c3dd+ng++pDKyI17Z3/\nvMMmTT14d9ayNT9moqOar3qfkscfh0MOgWefTeTh7r8ffv3ris6HJ1KTNGaiBDO70sw+NLPxbdaP\nNLMJZvaamZ2QVT4RkRg19Gioym5OqvlVav314bXXwimFBGi8hEj2aqYxAVwFjCxeYWaNwB/y6wcD\ne5jZmhlk67aY+tnFlAXiyqMspcWUBeLKk3WWMAC7Kl8KVPNTkmiWXr1Cg+LxxxPJkmVjIqa/EcSV\nR1lKiylLkqryFaQUd38Y+KzN6mHA6+4+0d1nAjcC25lZfzO7DBiiT65EpJ41NBrV2LlHNb+KJTRu\nIqvJ6kTk23pkHaDCBgDvFi1PAoa7+6fAweU8wKhRoxg4cCAA/fr1Y8iQIXMmNSq0MNNYbmpqSnV/\nWu76ckHWeQrrsn4+Yjx+Y8uT1XJLSwuTXn6XL1obGDXqY2pAt2p+LPW+oGb/fzfZhNzo0ZB/7K4+\n3jvvwMILN7Hssqr3seUprMv6+ajI8Vulyy0tLUyZMgWAiRMnkqSaGoBtZgOBO9x9nfzyTsBIdz8w\nv7wX4YXl8DIfz0ePHj3nYBQRqTUfPv8hqw95nKNOfZYxY8ZU1QDsJGu+6n2KPvkEVloJPv0UenT9\nM82//AXuuQduuCG5aCK1LpfLkcvlEq33DUk8SMQmA8sXLS9P+KSqbM3NzVG8sLT91CFLMWWBuPIo\nS2kxZYG48mSdpaEBerIJzc3NmeZISLdqfiz1HrI/LoolnmXxxWHAABg/fv7bdpAl6y5OMf2NIK48\nylJaDFmampoSr/e13ph4GhhkZgPNrBewG3B7Zx6gubk5ij++iEglWGMD0/3RWmlMdKvmq96nKIFx\nE48+ChtvnFAekTqRy+XUmGiPmd0APAqsZmbvmtm+7j4LOAy4B3gJuMndX84yZ1fF8mkZxJUF4sqj\nLKXFlAXiypN1ljAAu2p6Ns2hmp+eimTpYmOikOXzz+Gtt6oHaUoAACAASURBVGC99RLO1YUssYgp\nj7KUFlOWJNXUmImkaRIjEal1n73xKSsNamRK66I1P2ldR1TvU/bqq7DVVvD221368XHj4PTT4aGH\nEs4lUic0aV0diunUe0xZIK48ylJaTFkgrjxZZ7EGo07bD1HL+rgoVpEsgwbB11/DpE4NY5yTJevx\nEsVZYhFTHmUpLaYsSVJjYj7Uh1ZEallDozGTh2tlzES3qN6nyCwMeOjiuAmNlxDpmkqMmVA3pw7o\ntLeI1Lqpkz5nmeUb+dL7qpuT6n26zjkH3n0XLrqoUz/W2houCPXKK7DkkhXKJlLj1M0pRfqkSkRq\nWUOPBmbpzASgep+6Lg7CnjAB+vdXQ0KkK3Q1pwzEct3xmF7gYsoCceVRltJiygJx5ck6izUYRvLX\nHa9GsdR7yP64KFaxLOuvH1oGX37ZqSwxjJcoZIlJTHmUpbQYsmieCRERSVRDj4aqvDSs1IDevWHI\nEHjiiU79mMZLiMRFYyY6YGY+evRompqaovm0SkQkSdOnfM1Ci/2HU0Y/wpgxY+p6zITqfQaOPx76\n9oVTTy37RwYPhuuug6FDK5hLpEblcjlyuVyi9V6NiQ5oQJ6I1LoZU6ez0CINzPSeGoCtep++226D\nSy+Fu+8ua/PPPoMVVghfe/SocDaRGqYB2HUohn52BTFlgbjyKEtpMWWBuPJknaVaZ8CudVkfF8Uq\nmmXjjeHxx2H27LI2v+KKHBtsEEdDIqa/EcSVR1lKiylLktSYEBGpY9bYQKteCiQrSywBSy0FL75Y\n1uYvvKDxEiKxUTenDqgPrYjUOp81m4aeDzN6dLJ9aKuN6n2G9tsPNtwQDjlkvptutRUceST85Ccp\n5BKpQRozkTL1oRWRmueONRitrdDQoDETkoGxY+GBB+Cvf+1ws9mzw/wSb7wB3/lOStlEapTGTNSh\nmPrZxZQF4sqjLKXFlAXiypN5FjOMVrxVb6RjkvlxUaTiWcqcvO6ll2DhhXPRNCRi+htBXHmUpbSY\nsiRJjQkRkTpnOK2z1ZiQjKy2GnzxBbz3XoebPfoorL12SplEpGzq5tQBnfYWkXrQw2bx9VfQq09P\ndXOSbPz0p7D33rDLLu1uMmpUmPn6oIPSiyVSq9TNKUXNzc01e1pKRCR4gNNOH5N1iMyp3meojK5O\njz0WGhMi0nW5XI7m5uZEH1ONiflobm6O4soeMb3AxZQF4sqjLKXFlAXiyhNDlkY241cnnJJ1jMzF\nUu8hjuOiIJUsm2wS+jG143//gw8+gI8/TiFLmWL6G0FceZSltBiyNDU1qTEhIiLJatAAbMnaBhuE\nuSa++qrktx9/HIYNg8bGlHOJyHxpzEQH1IdWROpBH/uKjz+CvksupDETkp2NNoLf/hZKnB361a9C\nQ+K009KPJVKLNGZCREQSY7jOTEj2Ohg3ofESIvGqy8aEmS1kZleb2Z/M7P9lnaccMfSzK4gpC8SV\nR1lKiykLxJUnhiwjGnM00Jp1jIpRze+e1LJ00Jjo3x+GD6/T56VMMeVRltJiypKkumxMADsCN7v7\nz4Ftsw5TjpaWlqwjzBFTFogrj7KUFlMWiCtPDFluv39h+iy+YNYxKkk1vxtSyzJiBJxxRslv3XJL\naFDU5fNSppjyKEtpMWVJUs00JszsSjP70MzGt1k/0swmmNlrZnZCfvUA4N38/dmpBu2iKVOmZB1h\njpiyQFx5lKW0mLJAXHmiyLLZZtCjR9YpOkU1Pz2pZVlkEVh//TiylCGmLBBXHmUpLaYsSaqZxgRw\nFTCyeIWZNQJ/yK8fDOxhZmsCk4Dl85t16zko55TV/LZJ6rRXElnK3UZZui6J40HHTP1kKedx0swS\nkdRrfkzHRUxZynmcmLIkuY2ydF2tHTMxZSl3m6TUTGPC3R8GPmuzehjwurtPdPeZwI3AdsCtwE5m\ndglwe3f2m9YBOHHixFSylLNNTFnKyRNTlnIeJ6YsSW0TU5Zy8sSUpZzHie2FJQ1Z1PyYjouYspTz\nODFlSWqbmLKUkyemLOU8TkxZytkmpizlbpOUmro0rJkNBO5w93XyyzsDP3L3A/PLewHD3f3wMh+v\ndp4cEZEyVNOlYZOs+ar3IlJvkqr31dVJtvO69eJQTS+qIiLS9Zqvei8i0jU1082pHZOZ20+W/P1J\nGWUREZHKUs0XEUlZrTcmngYGmdlAM+sF7EY3x0iIiEi0VPNFRFJWM40JM7sBeBRYzczeNbN93X0W\ncBhwD/AScJO7v5zfvr3LCh5uZi+b2Qtm9rui9SflLzU4wcx+WIH88+Qxs2Fm9qSZPWtmT5nZhmnk\nMbPlzewBM3sx/zwckV/f38zGmdmrZvZvM+tX6TwdZDkn/3d6zsxuNbNFs8pS9P1jzazVzPpnmSWL\nY7iDv1Pqx7CZ9TazJ8ysxcxeMrPf5tdncfy2lyWL47dklqLvp3b8JsE6WfPn81ilLidbMTHV2KLH\nb8z/n96RZRYz62dmt+T/P14ys+EZZjkp/zcab2bXm9kCaWax0u8LOr1/M/tu/nd4zcx+n2CWTtex\nSmUp+l7ZdaySWayTr8NJZGkvj3XhdbjTedy9Lm/ApsBQYHzRui2AcUDP/PIS+a+DgRagJzAQeB1o\nSCFPjjCYEGBr4IE08gBLA0Py9/sCrwBrAmcDx+fXnwCcVek8HWTZqrAP4Kwss+SXlwfuBt4C+mf4\nvGRyDHeQJ6tjuE/+aw/gceD7WRy/HWRJ/fhtL0sWx29MN6Ax/7sNzP+uLYX/6wruM5oaW5TpGOA6\n4Pb8clb/L1cD+xUdp4tmkSX/eG8CC+SXbwL2STMLpd8XdGb/hYvsPAkMy9+/ExiZUJbO1LGKZsmv\nL7eOVfp56czrcGJZOsiTo/zX4S7lqZkzE53lpS8reAjwWw+XFMTdP86v3w64wd1nuvtEwhM+LIU8\n7xMKKUA/Qn/giudx9w/cvSV//0vgZcKkT9sSCj35r9tXOk87WZZ193Hu3prf7Alguayy5L99PnB8\nmx9JO8sA4GAyOIY7yJPVMfxV/m4vwpvFz8jg+G0ny6dZHL/tZckvp3r8Rqa9y8lWTEw1FsDMlgN+\nDPwZKAxETz1L/pPtTd39SgB3n+Xun2eRBfgCmAn0MbMeQB/gvTSztPO+oDP7H25mywALu/uT+e2u\nKfqZbmXpZB2raJa8cutYpbN05r1kYlk6yNOZ1+Eu5anbxkQ7BgGbmdnjZpYzsw3y65fl24P4JhEK\nf6WdCJxnZu8A5wAnpZ3HwqUXhxIKxVLu/mH+Wx8CS6WZp02WYvsRWs6ZZDGz7YBJ7v58m82yeF5W\nI+NjuCjP42R0DJtZg5m1EI7TB9z9RTI6fktkeanNJqkdv6WyZH38RqB4dmxI+feMpMZeABwHtBat\nyyLLSsDHZnaVmf3XzK4ws4WyyOLunwLnAe8QGhFT3H1cFlna6Oz+266fXKFc5dSximXpQh2r5PPS\n2feSlf4bdfZ1uNN51Jj4th7AYu7+PUJhvbmDbdO4JvlY4Ah3XwE4GrgyzTxm1hf4O3Cku0/91s7C\nua+O9plonnyWW/JZvixa/ytghrtfn0UWwovvycDo4k2yyJL/G2V6DJf4O2VyDLt7q7sPIXxStpmZ\nbdHm+6kdvyWyNBW+l/bxWyLLjwkvLJkcv5HI7HeKocaa2U+Aj9z9Wdr526f4/9IDWB+4xN3XB6YR\n3gilnsXMVgGOInT/WBboa2HektSztPvg899/KsqsY5Xcfx869zpcaZ15HU5DZ16Hu0SNiW+bRJgp\nFXd/Cmg1s+8w7+UGl2PuaaJKGubu/8jfv4W5p0wrnsfMehJe5K5193/mV39oZkvnv78M8FEaeYqy\n/LUoC2Y2inBqfs+izdPOsgrhxeY5M3srv79nzGypDLJAhsdwO3kyO4YB8l0k/gV8l4yO3xJZNshn\nGEXKx2+JLOsTPg1O/fiNSCaXk42oxm4MbJv/+98AbGlm12aUZRLh0+Wn8su3EI7RDzLIsgHwqLt/\n4mFg/63ARhllKdaZv8uk/Prl2qxP8nVoFOXVsUpm6ezrcKWfl868Dlf8b0TnXoe7lscTGKhUrTfC\nwVc8SOUgYEz+/mrAO/7tQSq9CC+8b5AfpFLhPP8FNs/fHwE8lUYeQov+GuCCNuvPBk7I3z+ReQdb\nJZ6ngywjgReB77RZn3qWNtuUGviV5vOSyTHcQZ7Uj2HgO0C//P0FgYfy+87i+G0vSxbHb8ksWRy/\nMd0InyK+Qai/vUhnAHY0NbbN/jcnzCieWZb8cbla/n5zPkcW/7vrAS/k/1eMMD7hF2lnYd73BZ3e\nP6EL3fD879Gdwb1ts3S6jlUqS5vvlVXHKvi8dPp1OKks7eTp9OtwZ/Mk8s9fjTfCJzDvAdMJ/WX3\nJYxovxYYDzwDNBVtfzJhcMoE8qPiK5RnRlGeDfJ/0BbgMWBoGnkIV5tpze/32fxtJNAfuBd4Ffg3\n+TcmlczTTpatgdeAt4vWXZJVljbbvEm+iGWQZWRWx3AHf6fUj2FgHULxbAGeB47Lr8/i+G0vSxbH\nb8ksWRy/sd3yx+or+d/1pBT2F02NbZNrc+ZezSmTLIQ38U8BzxE+3V00wyzHE94sjyc0JnqmmYXS\n7ws6vX/Cmdnx+e9dlFCW/bpSxxLOMuf9W5vvl1XHKpWFLrwOJ5Glg2Om06/Dnc1TaIGIiIiIiIh0\nisZMiIiIiIhIl6gxISIiIiIiXaLGhIiIiIiIdIkaEyIiIiIi0iVqTIiIiIiISJeoMSEiIiIiIl2i\nxoSIiIjULDObbWbPmtkLZtZiZseYmSW8j4PM7Gf5+6Pys1N35uevMLM1O7F9s5kd24WcT+dnXy9n\n21+Z2XNmdreZ6f2itEsHh4iIiNSyr9x9qLuvDWxFmKRwdJI7cPfL3f3a/OI+wLKd/PkD3f3lzvxI\nZx4fwMxWAia7+8wyM/0GGAbMAvp2dn9SP9SYEBERkbrg7h8DPwcOAzCzRjM7x8yezH8K//P8+iYz\ny5nZ38zsZTP7a+ExzOwsM3sxv/3Z+XXNZnasme1EmHH4uvzZkB+b2T+KfnYrM7u1ba78vtbP3//S\nzM7In0V5zMyWbO/XyW9/oJndaWa9zWxDM3s+v+9zzGx80fYjgbuK9nF2/mzNODP7npk9aGZvmNlP\ni37mCUJj4svOPdNST9SYEBERkbrh7m8Bjfk36fsDU9x9GOFT+APNbGB+0yHAkcBgYGUz28TMFge2\nd/e13H094IzCw4aH9r8DTwP/L3825E5gjfzPAewLjC0Vq+h+H+Axdx8CPAQc2M6vYmZ2GPBjYDt3\n/wa4CjjQ3YcSGgHFfgTcXbSP+/Jna6YCpwFbAjvk72NmvfIZPgGGtpNBRI0JERERqVs/BPY2s2eB\nx4H+wKqEN/dPuvt77u5AC7AiMAX4xszGmtkOwNftPG7xmIxrgZ+ZWT/ge+TPDnRghrv/K3//GWBg\nO4+/N+Fsw87uPjP/+H3d/Yn8NtfP2disF7Ccu08s2sc9+fvjgQfcfTbwQtH+zjKzZ4DewHPzySx1\nrEfWAURERETSYmYrA7Pd/aP8OOzD3H1cm22agOlFq2YDPd19tpkNA0YAOxO6S40osZviMw1XAXcA\n3wA3u3vrfCIWj2lopfR7NSc0AtYDlgcmltimuEGzKfCfDvYxA8DdW82sR/7+MfPJKQLozISIiIjU\nCTNbArgMuDi/6h7g0MIbaDNbzcz6dPDzCwH93P0u4BjCm3kIb9wLb96nAosUfsbd3wfeA04hNCyS\n8ixwMHC7mS3j7lOAqfnGDsDuzG3UjATuTHDfInPozISIiIjUsgXz3Zh6EsYRXANckP/enwndev6b\nv1zsR4RxA868V0xyYGHgNjPrTWg8HF30vcL2fwEuM7OvgI3cfTqhy9F33P2VMvJ6m/vtXbnJ3f0R\nM/sl8C8z+wFhDMgVZtYKPAh8nt92c0JjptQ+Su1TpGwWugKKiIiISCWY2R+AZ9w9yTMTpfazkLtP\ny98/EVgKOBf4k7tvU8l9S/1SY0JERESkQvKDmKcCW5U7x0M39rUrcBKh58lEYJS7f1LJfYqoMSEi\nIiIiIl2iAdgiIiIiItIlakyIiIiIiEiXqDEhIiIiIiJdUpWNCTNrNLNnzeyO/HJ/MxtnZq+a2b/z\ns0AWtj3JzF4zswlm9sOi9d81s/H57/0+i99DREQ6pnovIhK3qmxMAEcCLzH3WsgnAuPcfTXgvvwy\nZjYY2A0YTJiw5ZL8daQBLgX2d/dBwCAzG5lifhERKY/qvYhIxKquMWFmywE/Jkw0U3ih2Ba4On//\namD7/P3tgBvcfaa7TwReB4ab2TLAwu7+ZH67a4p+RkREIqB6LyISv6prTBBmrTwOaC1at5S7f5i/\n/yFhkhaAZYFJRdtNAgaUWD85v15EROKhei8iErkeWQfoDDP7CfCRuz9rZk2ltnF3N7NEJs9I6nFE\nRKqFu9v8t6o81XsRkcpKqt5X25mJjYFtzewt4AZgSzO7FvjQzJYGyJ/S/ii//WRg+aKfX47wCdXk\n/P3i9ZNL7dDdO7yNHj2629sk8RhpbhNTFuWtjm1iyqK87d8iU5P1Pra/ufLWz+8UUxblzX6bJFVV\nY8LdT3b35d19JWB34H53/xlwO7BPfrN9gH/m798O7G5mvcxsJWAQ8KS7fwB8YWbD8wP0flb0M53S\n1NTU7W3KeYy0spS7jbJ0XRLHg46Z+slSzuOkmSUttVrvy92mmrKU8zgxZUlyG2Xpulo7ZmLKUu42\niZlfyybWG7A5cHv+fn/gXuBV4N9Av6LtTiYMxJsA/Kho/XeB8fnvXdTOPjwW++yzT9YR5ogpi3tc\neZSltJiyuMeVJ6Ys+ZqXeX1ve6u3eu8e13GhLKXFlMU9rjzKUlpMWZKs91U1ZqKYuz8IPJi//ynw\ng3a2OxM4s8T6Z4B1KpkxSUOGDMk6whwxZYG48ihLaTFlgbjyxJQlVvVW7yGu40JZSospC8SVR1lK\niylLkswT7jdVS8zMR48eTVNTU9V1ERARKVculyOXyzFmzBg8kgHYaVO9F5F6UIl6r8ZEB8zM9fyI\nSL0ws7puTKjei0i9SLLeV9UA7HqWy+WyjjBHTFkgrjzKUlpMWSCuPDFlkXjEdFwoS2kxZYG48ihL\naTFlSZIaEyIiIiIi0iXq5tQB9aEVkXqgMROq9yJSHzRmImXqQysi9URjJlTvRaQ+aMxEHYqpn11M\nWSCuPMpSWkxZIK48MWWReMR0XChLaTFlgbjyKEtpMWVJkhoTIiIiIiLSJerm1AH1oRWReqAxE6r3\nIlIfNGYiZepDKyL1RGMmVO9FpD5ozEQdiqmfXUxZIK48ylJaTFkgrjwxZZF4xHRcKEtpMWWBuPIo\nS2kxZUmSGhMiIiIiItIlVdXNycx6Aw8CCwC9gNvc/SQzawYOAD7Ob3qyu9+V/5mTgP2A2cAR7v7v\n/PrvAn8BegN3uvuRJfaXeB/ahx6C6dNhq60SeTgRkW6LccxELdR7EZGkvPUWPPggjBrVvcfRmAnA\nzPq4+1dm1gP4D/BLYAQw1d3Pb7PtYOB6YENgAHAvMMjd3cyeBA5z9yfN7E7gIne/u83PJ96H9uGH\nYbfd4Mgj4fjjwaJ42RYRiW/MRLXXexGRpBx/PLS2wrnnJvN4dT1mwt2/yt/tBTQCn+WXSz0h2wE3\nuPtMd58IvA4MN7NlgIXd/cn8dtcA21cu9VybbgpPPAF//zvsuit8+WV5PxdTP7uYskBceZSltJiy\nQFx5YsoSm2qv990R03GhLKXFlAXiyqMspXU1yzffwF/+AgcdlGicxFRdY8LMGsysBfgQeMDdX8x/\n63Aze87MxppZv/y6ZYFJRT8+ifCJVdv1k/PrU7H88qG706KLwvDh8Nprae1ZRKR61EK9FxHprltu\ngSFDYNCgrJOU1iPrAJ3l7q3AEDNbFLjHzJqAS4HT8pucDpwH7J/E/kaNGsXAgQMB6NevH0OGDJnT\nn7bQwuzKcu/esOeeORZZBDbZpIkrr4S+fdvfvqmpqVv703J6ywVZ5ymsy/r5iPH4jS1PVsstLS1M\nmTIFgIkTJxKbWqn3XVkurIvheNH/S/z1PrY8hXVZPx+1cvyedVaO3XcH6PrjVbLeV92YiWJm9mvg\na3c/t2jdQOAOd1/HzE4EcPez8t+7GxgNvE34lGvN/Po9gM3d/eA2j59KH9rHHoNddoEDD4Rf/xoa\nGiq+SxGRecQ2ZqJYrdR7EZHOeP552GabMAC7R4KnAOp2zISZfadwStvMFgS2Ap41s6WLNtsBGJ+/\nfzuwu5n1MrOVgEHAk+7+AfCFmQ03MwN+BvwztV+kjY02gqeegnHjYPvt4fPP592m7acOWYopC8SV\nR1lKiykLxJUnpiwxqdV6X66YjgtlKS2mLBBXHmUprStZLr00fNicZEMiaRFHK2kZ4GozayA0hK51\n9/vM7BozGwI48BZwEIC7v2RmNwMvAbOAQ4s+ejqUcKnABQmXCrybDC2zDNx/PxxzDGywAfztb6F/\nnIhInarZei8iUo6pU+Gmm+CFF7JO0rGq7uZUaVldd/zGG+Hww+HMM+GAA3T5WBGprFwuRy4X1zwT\nadM8EyISm0svhfvuCwOwk1KJeq/GRAey7EP7yiuw887h7MSll0LfvpnEEJE6EvOYiUrTmAkRiYk7\nrLsuXHghjBiR/OPX7ZiJerL66mE+ih49YNgw+MtfcllHmiOm/ocQVx5lKS2mLBBXnpiySDxiOi6U\npbSYskBceZSltM5kuf//t3fmYVJU18N+DzsoiqhBFM2oQQU3EBVNwkerP9Ro4hI1SuKCW1zjGhUw\nkcFExV3cEzQuUVxxIyJKlHaJARQZBAFRdFBQiRIGwcg2c74/bjU0Q80wM1RX3eo+7/PUM7V11Ts9\nNafq1r3n3tdcgeLAAwvnExVpy5koKdq1gwcecNOFF7qCxYknJm1lGIZhGIZhFJJbb4WLLkpHU3dr\n5lQPPlV7v/++6z42k4Hhw6FNm6SNDMMoNqyZkx/x3jCM0mb2bPjpT2HuXGjbtjDnsGZOMVJeXu5F\nFdkee7juY6uqYL/9YNaspI0MwygWstks5eXlSWskji/x3jCM0mb4cDjrrMIUJAoR760wsR7Ky8u9\n6Nkjm3WjZT/+OJx3HvTpA/ff79rTJeHiEz75mEs4PrmAXz4+uGQyGStM4E+8Bz+uixzmEo5PLuCX\nj7mE0xCXRYvgscfg3HML41CIeG+FiZQh4gYvef11V3Lt39/VVhiGYRiGYRjp5r774Oc/d+OPpQXL\nmagH39vQfv89XHYZvPgijBzpRtI2DMNoKpYz4W+8Nwyj+Fm1CnbYAZ59Fnr1Kuy5LGciRnxuQ9u2\nLdx5p+uD+Kij4JproLo6aSvDMNKG5Uw4fI73hmEUP888A2VlhS1IWM5EAvjShra+G9yRR8LkyTBu\nHPTrB/PnJ+eSBD75mEs4PrmAXz4+uFjOhMOXeA9+XBc5zCUcn1zALx9zCac+F1W48Ua45JLCOljO\nhFEnXbq4IdcPPNCVaJ9/PmkjwzAMwzAMoyG89hp89x0ccUTSJo3HcibqIa1taN9+2w1ud+CBbtCT\n9u2TNjIMIw1YzkT64r1hGMVBv37u2e2UU+I5X8nmTIhIGxGZKCIVIjJDRK4L1ncUkXEiMltEXhGR\nDnmfGSQiH4nILBE5OG99LxGZFmwbXtc509iG9sc/hqlTXZVZjx6ucGEYhlEXPuZMWLw3DKNUePdd\n+PBD10NnoSlIvFfVVE1Au+BnC2AC8FPgBuDyYP0VwLBgvjtQAbQEyoCPWVMbMwnYN5gfAxwaci71\nhfHjxzfpc88+q9qpk+rgwarLlyfrUih88jGXcHxyUfXLxyeXIOYlHudzU6nGe1W/rgtzCccnF1W/\nfMwlnLpcjj1W9bbb4nWJMt6nqmYCQFX/F8y2ApoDi4AjgIeC9Q8BRwXzRwKPqepKVa3E3Vx6i0hn\noL2qTgr2ezjvM0XFUUe5WoqpU13XsTNnJm1kGIbRMCzeG4ZR7Mye7cYOO+OMpE2aTupyJkSkGfAe\nsCNwj6peLiKLVHWzYLsA/1XVzUTkDmCCqj4abLsPeAmoxL3N6hes74N70/WLWufStH0/daEKI0bA\nlVfCVVe5UbSbpa4oaRhGIfEtZ8LivWEYxc6ZZ7pOdIYMife8Ucb7FlEcJE5UtQboISKbAi+LyAG1\ntquIRHZHGDBgAGVlZQB06NCBHj16rO46MNe2Ng3LIrDTTlluuw3uuCPD6NFw5plZttzSDz9btmVb\njn+5oqKCqqoqACorK/ENi/e2bMu2XMzLXbtmGDUKHnggSzab4ngfVXupJCbgj8DvgVnAVsG6zsCs\nYH4gMDBv/7FAb2ArYGbe+v7AvSHHD21nlgRRtvlbuVL16qtVt9xS9cEHVWtqknOJAp98zCUcn1xU\n/fLxyQXPcibyp1KK96p+XRfmEo5PLqp++ZhLOLVdLr5Y9aKLknGJMt43i7ZoUlhEZItczx0i0hbo\nB0wBXgBynWmdAjwXzL8AnCAirURke6ArMElVvwK+FZHeQTX5SXmfKXpatIA//hFeeQVuucX1afzF\nF0lbGYZhrMHivWEYxcxXX8GDD8LllydtsuGkKmdCRHbHJdw1C6a/q+qNItIReBLYDtc+9leqWhV8\nZjBwGrAKuFBVXw7W9wIeBNoCY1T1gpDzaZq+n6awYgVccw3ccw/cfLPr41i8aTFtGEac+JQzYfHe\nMIxi5pJLoKYGbrstmfNHGe9TVZiIGxHRIUOGkMlkVrc7K1beew8GDIDtt4d774XOnZM2MgwjLrLZ\nLNlslqFDh3pTmIibUor3hmEky1dfQffu8MEH8T9vFSLep6qZUxKUl5d7cWPJJdMUir32coOm7LGH\nG+ju0UddD1BJuDQWn3zMJRyfXMAvHx9cMpmMd4PWJYEv8R78uC5ymEs4PrmAXz7mEk7O5YYb4OST\nk3lxW4h4b4UJYzWtWsGf/gRjxsB118HRR7vSs2EYdcvWyAAAIABJREFUhmEYhrHh5HIlrrgiaZPo\nsGZO9VDKbWiXL4err4b77oObbrJcCsMoBXzKmYibUo73hmHER9K5EjmijPdWM7EeysvLvaoii4vW\nrV1i9osvusLEz34Gc+cmbWUYRiHIZrPWzInSjfeGYcSDD7UShYj3VphYD760oU3qBrf33i6Xom9f\n6NULhg+HV19NxqUufLr5m0s4PrmAXz4+uFjOhMOXeA9+XBc5zCUcn1zALx9zCefcc7OJ5UrksJwJ\nIxFatoRBg+Bf/4JnnoHf/Q6mT0/ayjAMwzAMIx18+in8858weHDSJtFjORP1YG1o16WmBkaMgD/8\nAc491/1TtG6dtJVhGFFgORMW7w3DKAwnnww77AC+VALbOBMxYTeXupk/H847D2bPdknaP/5x0kaG\nYWwoVpiweG8YRvRMmwb9+sFHH0H79knbOCwBO0Z8ScjzwSFHNptlm23g2Wddj0/HHgvnnw/ffpuc\njy+YSzg+uYBfPj64WAK2w5d4D35cFznMJRyfXMAvH3NZm8GDXXPxyZOTd7EE7ATwKSHPN0RcQWL6\ndPj+e9h1V5dTYS/3DCNdWAK2w+K9YRhR89Zbrmbi7LOTNnEUIt5bM6d6sGrvxvH663DOOa5N4J13\nQllZ0kaGYTQGa+Zk8d4wjOhQhT594Mwz4ZRTkrZZm5Jt5iQi24rIeBH5QESmi8gFwfpyEZknIlOC\n6Wd5nxkkIh+JyCwROThvfS8RmRZsG57E71Ns9O0LFRXwk5+4LmWvvx5WrkzayjCMNGLx3jCMtDNm\nDCxa5Ab+LWZSVZgAVgIXq+quwH7AeSLSDVDgFlXtGUwvAYhId+B4oDtwKHC3yOpxnO8BTlfVrkBX\nETk07IS+tKH1wSFHfS6tWrl2gZMmQTYLPXu6Kr6kfOLGXMLxyQX88vHBxdOciZKN9+DHdZHDXMLx\nyQX88jEXWLUKLr8crrsOmjdP1iWfks+ZUNWvVLUimF8KzAS2CTaHVdUcCTymqitVtRL4GOgtIp2B\n9qo6KdjvYeCosHNaG9qmscMOrkReXg4nnABnnAELFyZtZRhGGD7mTFi8NwwjzYwYAVttBb/4RdIm\na2M5E3mISBnwOrArcClwKrAYeBe4VFWrROQOYIKqPhp85j7gJaASGKaq/YL1fYDLVfUXtc5hbWgj\n4Ntv4Y9/hCeegGHDXLtBKclW2YbhN77mTFi8NwwjTVRVwS67wNix0KNH0jbhlGzORA4R2Rh4Grgw\neGN1D7A90AP4Erg5QT2jFptsAsOHw4svwl13QSYDM2YkbWUYRhqweG8YRtq45hr4+c/9LUhETYuk\nBRqLiLQERgGPqOpzAKr6n7zt9wGjg8X5wLZ5H+8CzAvWd6m1fn7Y+QYMGEBZ0C1Rhw4d6NGjx+pq\n8FzbtziW89vZJXH+/OXaTg39/JIlWYYNg5kzM/TtCwcckOWUU+Dww5PxKcRyRUUFF110UWLnz1++\n7bbbErteay/7dP365lPbKe7rtaqqCoDKykp8o1TjPdj/r4//L7WXfYr3vvmU8vU7Zw789a9ZHngA\nYO3ttZ3ivj4KFu9VNTUTrp3sw8CttdZ3zpu/GBgZzHcHKoBWuDdZc1jTtGsi0Ds45hjg0JDzqS+M\nHz8+aYXVROHy1VeqAwaobr216iOPqNbUJOsTFeYSjk8uqn75+OQSxLzEY72WeLxX9eu6MJdwfHJR\n9cunlF2OOUb1z3/2w6U+ooz3qcqZEJGfAm8A7+N69AAYDPTHVXkr8ClwlqouCD4zGDgNWIWrJn85\nWN8LeBBoC4xR1QtCzqdp+n7SyL//7UbP3mgjNzbFHnskbWQYpYtPORMW7w3DSBtvvum6gZ01C9q2\nTdqmfqKM96kqTMSN3Vziobra9Xpw1VXQvz8MHQodOiRtZRilh0+FibixeG8YxoZQXQ29e8Oll7pn\nGd8p+QTsOPGl33EfHHJE7dK8uRtmfsYMWLYMunWDBx6AmppkfDYEcwnHJxfwy8cHl2zWy3EmYseX\neA9+XBc5zCUcn1zAL59SdLn/fmjTBo4/PnmX+ihEvI+lMCEi+8VxnkJg/Y7HxxZbwF/+Ai+8APfe\n60bSfu+9pK0Mo/jJZKLtdzytMd/ivWEYTWHhQtcF/l13QTPPX9NHHe8hpmZOIjJFVXsW/EQRY9Xe\nyVFT42onrrwSjj4a/vxn2HzzpK0Mo7iJqto7jTHf4r1hGE3lrLOgdWu4/fakTRqONXMyip5mzeD0\n02HmTNcMqls390+6cmXSZoZhGIZhGI533nEtKq6+OmmT5IirMLG9iIyuY3ohJocm4UsbWh8ccsTp\nstlmrpen116D0aNhzz3diJJJ+awPcwnHJxfwy8cHlwK0oU1lzPcl3oMf10UOcwnHJxfwy6dUXKqr\n4dxzYdiwhnUc48P3UoicibgGrfsauAnXx3dtvK5XtqREP9htN3jlFVeg+N3vYOed4eab3U/DMDaM\nTCZDJpNh6NChUR0ylTHf4r1hGI3h/vtd86aTTkrapOEUIN5bzkR9WBtaP1m+HO64w70JOPlk16Ws\ndSVrGBuO5UxYvDcMo2EsXAjdu7sXnXvumbRN40ljzsSnDdlJRPoVWsRIP61bw+9/Dx98AEuWwC67\nuF6gqquTNjMMI8BivmEYRc1ll8EJJ6SzIBE1sRQmVPWXDdz1hoKKNAFf2tD64JDDF5dOndxgd3/6\nU5aRI2GvvWD8+GSdfPluwFzqwycfH1yibkOb1pjvS7wHP66LHOYSjk8u4JdPsbu89hq8+qrraTJp\nl8aS2nEm0oz1O+4/XbtCNuv6eD71VPjlL+GTT5K2Moz0UIh+x9OIxXvDMNbH99+7rmDvugvat0/a\npvGkdpyJhuJbO1trQ5s+vv8ebrnFTaedBoMHux6hDMNYP1G2oW3g+byJ+RbvDcNoCIMHw5w58MQT\nSZtsGGnMmTCMWGjb1g10N306LF7sensaPhxWrEjazDAMwzCMNPP++3Dffe65wliDb4WJepP2RGRb\nERkvIh+IyHQRuSBY31FExonIbBF5RUQ65H1mkIh8JCKzROTgvPW9RGRasM37y8KHdnY5fHKBcJ/O\nneGvf3XtGl9+GXbdFZ55Bgr94tGn78Zc6sYnH59cEqDOmF/K8R78ui7MJRyfXMAvn2J0qa6GM86A\na6+FrbZK1sU3YitMiMgmIrJjyPo9cvMNSNpbCVysqrsC+wHniUg3YCAwTlV3Al4NlhGR7sDxQHfg\nUOBuEclV6dwDnK6qXYGuInJo2Al9SsgzGs9uu8GYMXD33TB0KPy//wcTJyZtZRh+UYiEvAhivsV7\nwzC84c47oV07OP30pE02jILE+5jGmfgVcBvwH6AlcKqqTgq2NbnNrIg8B9wZTH1VdYGIbAVkVXUX\nERkE1Kjq9cH+Y4FyYC7wmqp2C9afAGRU9exax7c2tEVEdTU8/LBL1O7Tx71d2H77pK0Mwx8iHGci\n8phv8d4wjKT49FPYZx94+23YaaekbaIhjTkTVwK9VLUHcCrwsIg0tOvAUESkDOgJTAQ6qeqCYNMC\noFMwvzUwL+9j84BtQtbPD9YbRUzz5q63pw8/hG7dYO+94fLLoaoqaTPDKDoijfkW7w3DSIqaGteh\ny8CBxVOQiJq4ChPNVfVLgODt1AHAlSJyYVMOJiIbA6OAC1V1Sf624NVS0b1e8qnq3ScXaLzPRhu5\nUbOnT4dFi1yS9u23R5Ok7dN3Yy5145OPTy4RElnML8V4D35dF+YSjk8u4JdPMbncdZd7Prj44uRd\nfKVFTOf5VkR2VNU5AKr6pYgcADwL7NqYA4lIS9yN5e+q+lyweoGIbKWqX4lIZ1zVOrg3UNvmfbwL\n7g3V/GA+f/38sPMNGDCAsrIyADp06ECPHj1W90OeuyhKbTlH2n0+/DDLb34DF1yQ4fLL4YYbspx5\nJlx1VQaRpvlUVFQk/n3klisqKhI9vy03bDlHEuevqKigKqiaq6ysJEIiifmlHO/t/zd8OYcPPj7F\ne998iuX67dIlw9ChcOutWd58M93XbwHjfWw5Ez2A71T1o1rrWwG/UtVHGngcAR4CFqrqxXnrbwjW\nXS8iA4EOqjowSMgbCeyLq9b+J/AjVVURmQhcAEwCXgRuV9Wxtc5nbWhLiHHj4IoroGVLuP56CP4H\nDaNkiDBnYoNjvsV7wzCSpLoa+vaF446DC5vUjsZvosyZiHXQuqALv67B4mxVXdzIz/8UeAN4nzVV\n24NwN4gnge2AStzNqir4zGDgNGAVrpr85WB9L+BBoC0wRlUvCDmf3VxKjJoaNxDNlVfCLrvAddfB\nnnsmbWUY8RD1oHUbEvMt3huGkSS33ALPPw/jx0OzZknbRE+k8V5VCz4BrXGBvAqYAlQE8w8AreJw\naKK3+sL48eOTVliNTy6qhfFZvlz19ttVO3VSPekk1U8/Tc6lqZhL3fjk45NLEPNKMub7FO9V/bou\nzCUcn1xU/fJJu8vMmapbbKE6Z07yLoUiqnivqsRV1voDrnvAbVW1p7oePrbF5Wz8MSaHJmH9jpcm\nrVrB734HH30EO+wAvXq55KtvvknazDCiJ5uNvN/xVMZ8i/eGYaxcCSef7Mam2mGHpG2ipwDxPrac\niQ+AfVX1u1rrNwYmqhuUyDus2tvIsWAB/OlP8PjjrlBx0UWuVyjDKCYizJlIXcy3eG8YBsAf/gBT\npsA//gESWaNP/0jjOBPVtW8qAKq6FKiJycEwmkynTm70ywkTXJeyXbvCvfe6NxiGYayDxXzDMFLH\nG2/A/ffD3/5W3AWJqIktpUREOoZMm1OkfYRHjU9V7z65QLw+P/oRPPYYjB4No0bBrrvCU09B7oWm\nT9+NudSNTz4+uUSJxfwNw6frwlzC8ckF/PJJo0tVFZx0Etx3n3uBmKRL2ohrnIlNgMkxnStSysvL\nyWQyq/vqNQxwORTjxq3pTvbGG+Haa90o24aRNrLZbNQ3uVTGfIv3hlGaqMLZZ8MRR8DhhydtU1gK\nEO/j7Ro2bVgbWqMh1NTAk0+6UbW7dIFrroH990/ayjAaT9Rdw6YJi/eGUbo8/DDccAO88w60bZu0\nTTykbpwJEdmrvu2q+l7BJZqA3VyMxrBqFTz0kOsBYs894c9/tjEqjHQRYQJ26mK+xXvDKE3mzIH9\n9oNXX4U99kjaJj7SmIB9C3AzcDcwERgRTBOBu2JySDU+tbPzyQX88WnRAnbcMcvs2dCvHxxyCPTv\nD7NnJ+Pjy/cCfrmAXz4+uUSIxfwNxKfrwlzC8ckF/PJJi8vy5XDCCa4HpzgKEj59L1ESS2FCVTOq\negDwBbCXqvZS1V5Az2Cdt1i/40ZjadMGLrgAPv4Ydt8dfvITOOMM+OyzpM0MI5yo+x1Pa8y3eG8Y\npcVll7nmyRdckLRJfKR2nInVJxOZoard17fOF6za24iCRYvgpptcV7InngiDBxeupwjD2BCizplI\nU8y3eG8YpcXTT8Pll8PkybDZZknbxE8amznleF9E7hORjIgcICIjgKkxOxhGrGy2mUvKnjHD9Vvd\nvTtceaUrZBhGkWMx3zAM75gzB84913WeUooFiaiJuzBxKjADuBC4IJg/NWaHVOJT1btPLuCXT30u\nnTrBbbe5kTUXLICddnLdyS5dGr9L3PjkAn75+ORSACzmNxGfrgtzCccnF/DLx2eXZcvguONcD4x7\n752sS7EQa2FCVb9X1VtU9ehgulVVl+W2i8io+j4vIn8TkQUiMi1vXbmIzBORKcH0s7xtg0TkIxGZ\nJSIH563vJSLTgm3D6zuntaE1oma77dygOP/6F0yb5gbCGz7cBTjDSIJCtKGF9MV8i/eGUfxccom7\n7553XtImyZD6nIn1ISJTVLVnPdv7AEuBh1V192DdEGCJqt5Sa9/uwEhgH2Ab4J9AV1VVEZkEnK+q\nk0RkDHC7qo4NOZ+1oTUKztSp8Mc/wnvvuXyK00+H1q2TtjJKkbjHmfAp5lu8N4zi57HH3P128mTY\ndNOkbZIlzTkTG4SqvgmEtTQP+zKOBB5T1ZWqWgl8DPQWkc5Ae1WdFOz3MHBUIXwNoyHsuSe88AI8\n+yy8+CJ07Qp/+QusWJG0mWEki8V8wzCiYupU12vTqFFWkIiaVBUm6uF3IjJVRO4XkQ7Buq2BeXn7\nzMO9raq9fn6w3mt8qnr3yQX88tkQl332cYWJJ5+EZ56BnXeG+++HlSvjd4kan1zALx+fXFKExfwY\nMZdwfHIBv3x8c1m4EI4+Gm6/PdnBZH36XqKkRdICEXAPcHUw/yfcQEmnR3XwAQMGUFZWBkCHDh3o\n0aMHmUwGWHNRlNpyDvNZd7mioiKS4738MtxxR5a77oJrr81w1VXQpUuW5s0bfryKiorEvw9b9vv6\nraiooKqqCoDKykpSQsFivk/x3v5/w5dz+OATVbwvRh+frt/qajjkkCz77AP9+yfrkyOp66NQ8T62\nnAkR6QnsCHygqjPr2OcQVX15PccpA0bn2s/WtU1EBgKo6rBg21hgCDAXGK+q3YL1/YG+qnp2yPGs\nDa2ROK+/7nqd+PJLGDLEjdbZvHnSVkYxEmUb2rTFfIv3hlGcDBwI774LY8dCi2J4hR4RqcuZEJGr\ngCeAY4AxIvLbsP3Wd1Op49id8xaPBnK9frwAnCAirURke6ArMElVvwK+FZHeIiLAScBzjT2vYcRF\n376QzcI998Ddd8Nuu8ETT0BNTdJmhhGOxXzDMHzgySfd/fLxx60gUUhiKUwAJwA9VLU/sDcQemNZ\nHyLyGPA2sLOIfC4ipwHXi8j7IjIV6AtcDKCqM4Ancf2avwScm/fa6VzgPuAj4OOwnpx8o3YVWZL4\n5AJ++RTKRQQOOgjeest1I3vrrbDHHi6RrK5CRSl8L03FJx+fXCLEYv4G4tN1YS7h+OQCfvn44PL+\n+6771yuvzLLFFknbOHz4XgpBXOW05ar6PwBVXSgiTSrEBDem2vytnv2vBa4NWT8ZWKfK3DB8RwQO\nPhj69YOXXnLNn/70JygvhyOPdNsNwwMs5huGkRhffQW/+AXccQdstVXSNsVPLDkTIrIYeCNvVR/g\nzWBeVfWIgks0ARHRIUOGkMlkViexGIZPqMLo0S6XQsQVLo44AprFVedoFAXZbJZsNsvQoUMjaUOb\nxphv8d4wioPvv4dMBg4/3N0TjbWJOt5DfIWJTD2bVVVfL7hEE7CEPCMt1NS4QsXVV8OqVW5Qnl/+\n0goVRuOIKiEvjTHf4r1hpJ+aGtdJScuW8MgjVltfH6lLwFbVbD2TdzcVH/GpnZ1PLuCXT1IuzZq5\nZk7vvgvXXgs33gg77JDl8cehujoRpbXw6W8Efvn45BIVFvM3HJ+uC3MJxycX8MsnKZerroL5890Y\nTbmChH0vhSeu3pw2FZFhIvKIiPy61ra743AwjFJAxFXtTpgA557rBujZdVf3hmbVqqTtjFLBYr5h\nGHHz8MMwciQ8+yy0aZO0TWkRVzOnZ4DZwETgNGAF8BtVXSYiU1S1Z8ElmoC1oTXSjiq89ppr/jR/\nPlx5JZx4oqsCNowcBciZSF3Mt3hvGOklm4Vf/cr97N49aRu/SXPOxFRV3TNv+UrgMOBIYJyPNxaw\nNrRGcfH6665Q8emnMHgwnHwytGqVtJXhExHmTKQu5lu8N4x0MnWq6+Hw8cfhwAOTtkkPqcuZAFrl\ndw2oqtcAI4DXgY4xOaQan9rZ+eQCfvn47NK3L7z6qqsKfuop6NrVDYS3fHn8Lknjk49PLhFiMX8D\n8em6MJdwfHIBv3zicvn0UzjsMLjzzroLEqX4vcRNXIWJ0cBaf2ZVfRC4FFf9bRhGTPz0p/Dyy25U\n0H/8A3bc0fXF/f33SZsZRYTFfMMwCsrXX8Mhh8CgQa6Jk5EccTVzujRvUYG1qlVU9eaCSzQBa0Nr\nlALvvusGvps0CS6+GM4+GzbZJGkrI04KkDORuphv8d4w0sPSpa4mol8/uOaapG3SRZpzJspxN5Sd\ngX2AF3A3l58Dk1T1xIJLNAFrQ2uUEtOmwbBhrtbinHPgggtgyy2TtjLiJMKciXJSFvMt3htGOlix\nwg3Ous02cN99NpZEU0ldzoSqlqvqUGBbYC9VvVRVLwF6AT+MwyHt+NTOzicX8MsnzS677w6PPgoT\nJ7rq4513hosugs8/j9+l0Pjk45NLVFjM33B8ui7MJRyfXMAvn0K5rFzpBqVr0wb+8peGFSRK4XtJ\nmrjHx/0BsDJveWWwzjAMT9hxR7j3Xpg+HVq0gD33hNNPh9mzkzYzUojFfMMwIqG62vVCuGyZy/lr\n0SJpIyNHLM2cVp/MdQ94PPAMrsr7KOAJVb22gZ//G3A48B9V3T1Y1xF4Ave2qxL4lapWBdsG4fo4\nrwYuUNVXgvW9gAeBNsAYVb2wjvNZG1qj5Fm40PWUceedcMABLtmtp3cdexobQiHa0EK6Yr7Fe8Pw\nl5oa91Lrs89cxyFt2yZtlF5SmzOx1gldUO+Da0/7hqpOacRn+wBLgYfzbiw3AN+o6g0icgWwmaoO\nFJHuwEhce91tgH8CXVVVRWQScL6qThKRMcDtqjo25HzWhtYwApYuhb/+FW6+2dVWDBoEffokbWVE\nSZRtaPOOmYqYb/HeMPxEFc47z+X1jR0LG22UtFFxkLqciXxUdbKq3qaqwxtzUwk++yawqNbqI4CH\ngvmHcG++wA2O9JiqrlTVSuBjoLeIdAbaq+qkYL+H8z7jLT61s/PJBfzyKWaXjTeGSy6BTz6Bo4+G\nU091hYkxY1ywj9NlQ/HJxyeXQmAxv2n4dF2YSzg+uYBfPlG5qMKFF8LkyfDii00rSBTj9+IbsRcm\nCkAnVV0QzC8AOgXzWwPz8vabh3tbVXv9/GC9YRgNoHVrOPNMmDXLvS0aNAj22AMeesj1smEYBcZi\nvmGUADU1rqvyd95xvQxal+X+UlTpK0F1dqT11AMGDKCsrAyADh060KNHj9XtaXMlzDiWM5lMrOez\n5aYv50jaJ7euUMd/660sW20FFRUZxo2DQYOy/P73cNllGc46C6ZMWbO/b9evbz5JLVdUVFBVVQVA\nZWUlaSPqmO9LvM9RyP9f+3+JZjmH+ay9nFvX1M+/+mqW66+H5cszvPIKTJ7cdB+7fgsf72PPmdhQ\nRKQMGJ3XfnYWkFHVr4Lq7PGquouIDARQ1WHBfmOBIcDcYJ9uwfr+QF9VPTvkXNaG1jAawZQpcNNN\nrl3rqae6rmW7dEnaymgohciZ2FDiivkW7w3DD1auhN/8Bqqq4LnnoF27pI2Kk1TnTBSAF4BTgvlT\ngOfy1p8gIq1EZHugK26wpK+Ab0Wkt4gIcFLeZ7yl9luHJPHJBfzyKXWXnj3dWBXvvee68dtjD9eV\n3/33x+9SH6X+d0o5FvNjxlzC8ckF/PJpqsuyZXDssfD99/DCC9EUJIrhe/GdVBUmROQx4G1gZxH5\nXEROBYYB/URkNnBgsIyqzgCeBGYALwHn5r12Ohe4D/gI+DisJyfDMJrOD38It94Kc+ZAt25w+eVw\n6KHw6qvrT9Y2jBwW8w2jdFi0CA4+2HX7OmqUG5jOSAepa+YUJ9bvuGFEw/Ll8MgjrglU27Zw2WXu\n7VPLlkmbGeDelmWz0Y8zkSYs3htGcnz+OfzsZ64wcdNN0CxVr7rTRSHivRUm6sHa0BpGtNTUuO79\nbrrJdTF7/vmuZ6iOHZM2M8DPnIm4sHhvGMkwfTocdpjrAvbSS5O2KR0sZ6IE8amdnU8u4JePuYST\nc2nWDH7xC3j9dXj+eZgxA3bcEc45B2bOjN/HB3xyMfzBp+vCXMLxyQX88mmoSzYLBx0Ew4YVriCR\nxu8lbVhhwjCMRNhrLzc2xcyZ0KkTHHCAy6sYO9bVYBiGYRjFy1//CscfDyNHwq9/nbSNsSFYM6d6\nsGpvw4iPZcvg8cfhtttcjsWFF8JJJzVtxFOjaVgzJ4v3hlFoVq2CSy6BV16B0aOha9ekjUoTa+YU\nI+Xl5UVbLWUYPtGmDQwY4MaquPdeN+JpWRkMHOiS84zCkc1mKS8vT1ojcSzeG0ZhWbTIJVrPng0T\nJlhBIgkKEe+tMLEeysvLvejZw6cbnE8u4JePuYTTGBcR6NsXnn0WJk50tRQ9esBxx7n2tVG8PE7r\nd1MoMpmMFSbwJ96DH9dFDnMJxycX8MsnzGXqVNh3X9h1V/jHP6BDh+RcksIHl0LEeytMGIbhLTvs\n4Mar+PRTyGTg3HNht93grrvg22+TtjMMwzDWhyrcfz/83//B0KGuKWuLFklbGVFiORP1YG1oDcMv\nVF1PUHfd5QbA69/fFTB23TVps+LAciYs3htGlPzvfy5GT5rkBqLr1i1pIyOH5UzEiLWhNQx/EHE1\nFE89BdOmwZZbQr9+bt2TT8LKlUkbphPLmXBYvDeM6PjgA9hvP5dwPWmSFSR8oSDxXlVtqmNyX48f\njB8/PmmF1fjkouqXj7mEU0iXFStUn3xStW9f1c6dVYcMUZ03LzmfxuKTSxDzEo+9SUw+xXtVv64L\ncwnHJxdVf3yqq1XPO2+8brGF6ogRqjU1yfr48r2o+uUSZby3mgnDMFJNy5ZrkrNfeQW+/hp23x2O\nPhpeegmqq5M2NAzDKA3mz4dDDoHXXoN//xvOOMPVKBvFjeVM1IO1oTWMdLJkiRuzYsQIWLAATjvN\nTdtum7SZ31jOhMV7w2gKqvDYY3DxxXD++TBokCVZ+47lTIQgIpUi8r6ITBGRScG6jiIyTkRmi8gr\nItIhb/9BIvKRiMwSkYPrOq61oTWM9NG+PZx5pmun+/zz8J//uO5lDz8cnnvOcitqk8aciULEfIv3\nhtF45s51sfW661yXr3/8oxUkfMZyJupv7/op0LHWuhuAy4P5K4BhwXx3oAJoCZQBHwPNQo7ZqPZn\nhcSndnY+uaj65WMu4fjg8t13qg8+qPqTn6h27DheBw1SnTMnaSs/vpscpChnIuqY71O8V/XrujCX\ncHxyUY3fZ9Uq1VtvVd18c9VrrnH5a0m51IenpEvtAAAf6ElEQVS5hBNlvC+amomA2tU1RwAPBfMP\nAUcF80cCj6nqSlWtxN1Y9o3F0DCMRGjXDk45Bd56C26+Gb7/Hnr3dn2fP/64WzZSh8V8w0iAd96B\n/fd3Nb9vvw2DB7v8NaM0KZqcCRH5BFgMVAN/UdURIrJIVTcLtgvwX1XdTETuACao6qPBtvuAl1R1\nVK1jarF8P4ZhrMuyZW6k7QcfdDfHY4+FAQPcTbIUkwbTlDMRdcy3eG8Y6+fLL13B4eWX4ZprXLws\nxVhZDEQZ74upVdtPVPVLEdkSGCcis/I3qqqKSH13itBtAwYMoKysDIAOHTrQo0cPMpkMsGZYdFu2\nZVtO73L//hn694ennsoybhycdlqGmhro0yfLwQfD8cf75RvlckVFBVVVVQBUVlaSMiKP+RbvbdmW\nw5dfeSXL00/DM89kOP10GDEiy0YbgYgffra8/uWCxvuo2kv5NAFDgEuBWcBWwbrOwKxgfiAwMG//\nsUDvkOPU0dIsfnxqZ+eTi6pfPuYSjk8uqvX71NSoTpigevbZqh07qh50kOrDD6suXRq/S9yQopyJ\n/CmKmO9TvFf167owl3B8clEtjM/KlaoPPKD6wx+qHnGE6uzZybk0FXMJJ8p43yzaokkyiEg7EWkf\nzG8EHAxMA14ATgl2OwV4Lph/AThBRFqJyPZAV2BSvNaGYfiIiMuluOce12f6b3/rciq6dHHdy44f\nb2NXJI3FfMMoLKrw9NNuzJ6//Q0eecTlR3TtmrSZ4SNFkTMR3ByeDRZbAI+q6nUi0hF4EtgOqAR+\npapVwWcGA6cBq4ALVfXlkONqMXw/hmFsOF9+CY8+CiNHurErjj8efv1r6NWreNoMpyVnohAx3+K9\nYUBNjes++5pr3PK118LBBxdPjDPWEGW8L4rCRKEQER0yZAiZTGZ1uzPDMIyZM90ATSNHQrNmrlDR\nvz/svHPSZk0jm82SzWYZOnRoKgoThcDivVHKrFjhXpZcfz1ssokbdO6oo6wQUYwUJN5H1V6qGCc8\nakPrUzs7n1xU/fIxl3B8clGNzqemRnXiRNWLLlLdaivVXr1Ub7pJdd68+F2igJTmTEQx+RTvVf26\nLswlHJ9cVJvms2iR6s03q3bpotqvn+qrr7q4loRLoTCXcKKM90WRM2EYhpEEIrDvvnDrrTBvnnur\nN2OGa2d8wAEu7+Krr5K2NAzDWJtp0+Dss2H77V232M8+C6+8AgceaLURRuOxZk71YG1oDcNoCsuW\nwdix8NRTMGYM7LmnG8Pil7+ErbdO2q5u0pIzUQgs3hvFzrJlLon67rvh449dYeLMM2GrrZI2M5LA\nxpmIkfLycmtDaxhGo2jTxrU3PuoodwMfN84VLK66Cnbd1RUsjjnG9RDlA7k2tKWOxXuj2FCFiRPh\noYfgySehZ084/3wXm2zE6tKkIPE+qvZSxTjhURtan9rZ+eSi6pePuYTjk4tqcj7Llqm++KLqgAFu\nDIv991c955zxOnduIjrrgOVMeINP/zPmEo5PLqpr+3z8seq116ruvLNq166q11yjscYZn74bcwkn\nynhvNROGYRgx0bo1HHaYm1ascGNW3H477LUX7LCDq6045hj40Y+SNjUMI218/rnryvWpp1xX1r/8\nJTzwAOy3n+VBGIXFcibqwdrQGoYRBytXwuuvw6hRLhGyU6c1BYvu3eN7ELCcCYv3RnqornbJ02PG\nuLEhvvnGxYxjj4Wf/hSaN0/a0PAZG2ciJuzmYhhG3FRXw9tvu4LFM89Au3buDeMxx7gajEIWLKww\nYfHe8JuFC12vSy++CC+/DJ07u5rOn/8cfvxjN+6NYTSEKOO9XXbroby83IvERB8ccvjkAn75mEs4\nPrmAXz61XZo3hz594LbbYO5c+Pvf3ai0J5zgmkJdeqkrbNTUROtQXl4e3QFTii/xHvy+RpOk1FwW\nL4Z//AN+/3vo1ct15fr44y5GTJ4M778Pw4a5mog33ii8T0Mptb9TQ/HBpRDx3nIm1oPdYA3DSAoR\n2GcfN113nesbftQo+O1vYdEiOPpoV2PRpw+02IBonuvBaOjQodHJpxCL90bSLFgAEybAv/7lcqpm\nzXJj2RxwAAwf7uZbtUra0kgzhYj31sypHqza2zAMX/nwQ9cMatQoV4Nx5JGuYHHQQU1/2LBmThbv\njfhYtgwqKlzXrRMmuGnxYujdG/bfHzIZN9+6ddKmRjFiORMxYTcXwzDSQGXlmoLFzJlw+OGuYHHI\nIdC2bcOPY4UJi/dGYViwAKZOXTNVVMAnn8Auu7jelnJT167W85IRD5YzEREicqiIzBKRj0TkirB9\nfGlD64NDDp9cwC8fcwnHJxfwyycKl7IyuOQS1zRi+nT3UHL77W5k2+OOc22slyyp36HYm/ikKd5D\n8V2jUeGzS3U1fPopjB3rcp7OOQcOPND9H+6yi2uqOH8+/N//uVyoRYvgvffciNQnnww77bRhBQmf\nv5skMZd1HSxnIiJEpDlwJ/B/wHzgHRF5QVVn5u9X7DdYwzCKi623hvPOc9M338Dzz8PDD7s8i0zG\n1VgccQRsttmazxR7zoTFeyMKVF0Nw2efuaaFr73magTnznW1DHPmwBZbwM47u6l7d5fXtMsusO22\nVuNg+IHlTESIiOwPDFHVQ4PlgQCqOixvH6v2NgyjKKiqcr3CjBrlHoL2288VLI47bk3BolibOVm8\nN2qj6nIWFi92/xuLF7vpm29cgeE//1kz5ZYXLID27eGHP4TttnM/c/Pbb++aKG20UdK/mWE0jCjj\nfcnWTADbAJ/nLc8DeifkYhiGUVA6dIATT3TT0qUw9iXlqb8v44pLW3DcTu9z0z97JK1YSCzebwg1\nNe7Je9ky+P77tX/m5lescKMv5n7mphUr3Odralw7oNx8/pS/frvt4Mwz11H4859ds6Dq6vApd5jc\ntGrVGrWw6dtv3ZgMm2669rTllm7QyB/8AHbccc38D37g5tu1S+D7NwzPKeXCRINeQQ0YMICysjIA\nOnToQI8ePchkMsCatm9xLOe3s0vi/PnLtZ3MZ81yRUUFF110UWLnz1++7bbbErteay/7dP365lPb\nKZLjq5J98UVYvJjMdtvBvHlkX38dvv6aDLDxvHlsMXMm+1dXs23H7Zi2qCe/O6/oKiTySVW8hw38\n/1250v39ly4ls9NOsHgx2QkT4PvvyXTpAkuXkp02zS136OCWKyvdcvPmbvmbb2D5cjKrVpFdsQJa\ntoTWrcm0bw9t25KtroZWrcj84AfQpg3ZJUugRQsyW28NLVuSXbjQLf/wh9C8OdkvvgARMmVl0KwZ\n2Xnz3PL227vlzz6DZs3IdO0a+vt9802W5ctdAWDnnTPMmZOlTRvo1i1D8+Ywe3aWZs1gt93c8qxZ\nWVq1gt69M7RtCx984JYzGbc8Zcqa5YZ+v3Pn+hvvffOx+0/4cm2nuK+PqqoqACorK4mSUm7mtB9Q\nnlftPQioUdXr8/bxpto7m82uviiSxicX8MvHXMLxyQX88qnTpabGVSF8+61rf/Htt2tP//2vGw73\nm2/W/rlwodvWrh1svrkbIrdLl3Wn7bd3r1rzGnIXcTOnVMV7gOxrr5Hp2RO+/tr9bb/5xr2aX7TI\ntcup7+eyZa4qarPN3M9NN3XtczbeeM3P/PmwbRtv7NrstGlD9t//JnPAAUl/JUBK/ncTwicfcwnH\nJxfrGjYCRKQF8CFwEPAFMAnon5+Q59vNxTAMD1F1TTn+9z/47rs1P/Pnw7Z9953rYql2ISE3ffed\ne5jbZJM106abup/t20PHjq6wsMUW7mf+fMeOTRpsoogLE8nHe1X3sP/ll/DFF64R/jffrF1YyM1/\n/bUrEG60kWt3s8UWburYce1CQl0/N97Ysn0Nw6gXy5mIAFVdJSLnAy8DzYH7a/fsYRhGSlB17bOX\nL3fTsmXrzoeta+i+9RUK/vc/1/aiXTv38Jf7mT8f9nPLLdcuKOQXFjbZxD0QNmuW9DdbFBQ83q9Y\nAZ9/7gb8+OwzV1j48su1p6++cgW8zp3d1KnTmoLC7ru7n7nlLbd0hcKWLSNTNAzDKBQlW5gAUNWX\ngJfq26e8vJxMJpN4tZRPVWM+uYBfPiXnsmpVgx7Ys++849puN/XhviGfa97cDRXbpo37Wdd8mzZk\nFy8ms+224ds33njt9a1b1104yM1vwEOfD9dMNptdq01vMbLB8f6779yw4zNnwqxZrh/QuXNdAeKb\nb1yfvGVlLoF4663doAF9+64pPHTu3KjsXR+uixzmEo5PLuCXj7mE44NLIeJ9SRcmGoL1O254R65Z\nTe2H6/yfy5bBO++49vN17RPFW3yRhj3AL1ni2umHPNjTurVrnrG+Y9Q337q1K0w0lGwWPLm5+EDu\nAbpYx5loKGvF+6+/htGj4a234O23XcGha1fo1s1Nhx3m+gUtK3OFh8Zcf4ZhGAlRiHhfsjkTDcFy\nJox1yHWRmOtfMPfgHvYwX99D/Pr2qW9brmeV2g/kbdrUvy7sIb6et/cNeoBvYe8jiolizZloCKvj\n/eTJMHQovPEGHHywG8L4xz92I5DZ9W4YRpFgOROGAWvaydfVkfj6pvo6Ia9rWrHCPUS3beum3MN6\nYx7sN97YtYtuTEEg/2erVtaW3jAKwZ13ugENrroKHn/cBhUwDMNoAFaYWA+WM7EujXKprq67J5va\nU1O2i5Bt2XJ13+frTG3ahK9v29Ylu9a1ra6pdet6H+RT+3cqMD65gF8+PriUQs5EQygfNIjMiBFk\nTjghaRUvrosc5hKOTy7gl4+5hOODi+VMJEDJ5Uyort1l5ZIl604VFfDqq+Hbcp9butRNK1a4h/Bc\nsmrtRNaw9R07Nnz/li2t/bthbCCWM+Eov/pq8KAgYRiGUSgsZyJmUpczoere3ldVrZkWL157OWzb\n4sVrCgLffece/tu3X3fK9W/f0PUbbeSOZf2dG0YqKPmcialTYY89klYxDMMoOJYzUeysXLlmdNuw\n6b//XTPaae0CQ6tWbtCi3KinufnctMUW8KMfrdm26aZrRkfNjX5qvZIYhlGKbLNN0gaGYRipwwoT\n6yHynImKCnjzzboLCgsXutqF3Oi2wZRdvpzMbru55R13dNtrFxY23bRJo942Fh/a/OXjk4+5hOOT\nC/jl44OL5Uw4yocPJ3PggYn/PcCP6yKHuYTjkwv45WMu4fjgYjkTCRB5zsTnn7sBjzbf3NUQ9O69\nVqGBzTd3zYZqJ/laXoBhGAXCciYc5VdfnbSCYRhGQbGciZhJXc6EYRjGBlDyORMW7w3DKBGijPfW\nWb1hGIZhGIZhGE0i9YUJESkXkXkiMiWYfpa3bZCIfCQis0Tk4Lz1vURkWrBteDLmjcOn9sw+uYBf\nPuYSjk8u4JePTy5pwGJ+/JhLOD65gF8+5hKOTy5RkvrCBKDALaraM5heAhCR7sDxQHfgUOBukdV9\nlN4DnK6qXYGuInJoXQcvLy/34o9fUVGRtMJqfHIBv3zMJRyfXMAvHx9cstlsmsbUKVjM9yXegx/X\nRQ5zCccnF/DLx1zC8cGlEPG+GAoTAGFtvo4EHlPVlapaCXwM9BaRzkB7VZ0U7PcwcFRdB8715pQ0\nVVVVSSusxicX8MvHXMLxyQX88vHBJZPJpKkwAQWK+b7Ee/DjushhLuH45AJ++ZhLOD64FCLeF0th\n4nciMlVE7heRDsG6rYF5efvMA7YJWT8/WN8kGvIWa337RPUmLAqXhu5jLk0niuvBrpnScWnIceJ0\n8YREYr5P14VPLg05jk8uUe5jLk2n2K4Zn1wauk9UpKIwISLjgvautacjcNXX2wM9gC+Bm+N0i+sC\nrKysjMWlIfv45NIQH59cGnIcn1yi2scnl4b4+OTSkOP4dmPZUHyN+T5dFz65NOQ4PrlEtY9PLg3x\n8cmlIcfxyaUh+/jk0tB9oqKouoYVkTJgtKruLiIDAVR1WLBtLDAEmAuMV9Vuwfr+QF9VPTvkeMXz\n5RiGYTSANHUNG2XMt3hvGEapEVW8T/2gdSLSWVW/DBaPBqYF8y8AI0XkFlyVdldgkqqqiHwrIr2B\nScBJwO1hx07TTdUwDKMUKFTMt3hvGIbRNFJfmACuF5EeuB4+PgXOAlDVGSLyJDADWAWcmzci0bnA\ng0BbYIyqjo3d2jAMw2gKFvMNwzA8oqiaORmGYRiGYRiGER+pSMAuBCLyNxFZICLTaq3/nYjMFJHp\nInJ93vrQwZAK6SMi+4rIpGBgpndEZJ84fERkWxEZLyIfBN/DBcH6jkFi5GwReSWvF5WC+dTjcmPw\nd5oqIs+IyKZJueRtv1REakSkY5IuSVzD9fydYr+GRaSNiEwUkQoRmSEi1wXrk7h+63JJ4voNdcnb\nHtv16xsicmjwO34kIlfEcD5vYmze8ZsH/6ejk3QRkQ4i8nTw/zFDRHon6DIo+BtNE5GRItI6ThcJ\nfy5o9PklgkEb63BpdBwrlEvetgbHsUK6SCPvw1G41OUjTbgPN9pHVUtyAvoAPYFpeesOAMYBLYPl\nLYOf3YEKoCVQhuu/vFkMPlngkGD+Z7gkwoL7AFsBPYL5jYEPgW7ADcDlwforgGGF9qnHpV/uHMCw\nJF2C5W2BsbhmFx0T/F4SuYbr8UnqGm4X/GwBTAB+msT1W49L7NdvXS5JXL8+TUDz4HcrC37Xitz/\ndQHP6U2MzXO6BHgUeCFYTur/5SHgtLzrdNMkXILjfQK0DpafAE6J04Xw54LGnD/X+mQSsG8wPwY4\nNCKXxsSxgroE6xsaxwr9vTTmPhyZSz0+WRp+H26ST8nWTKjqm8CiWqvPAa5T1ZXBPl8H68MGQ9o3\nBp8vcYEUoAOuf/SC+6jqV6paEcwvBWbiEhqPwAV6gp+5gZ8K5lOHy9aqOk5Va4LdJgJdknIJNt8C\nXF7rI3G7bAOcTQLXcD0+SV3D/wtmW+EeFheRwPVbh8t/k7h+63IJlmO9fj1jX+BjVa0M/m8ex/3u\nBcOnGAsgIl2Aw4D7WDMgYOwuwZvtPqr6NwBVXaWqi5NwAb4FVgLtRKQF0A74Ik6XOp4LGnP+Rg/U\n2xiXRsaxgroENDSOFdqlMc+SkbnU49OY+3CTfEq2MFEHXYH/JyITRCQrInsH6+saDKnQDARuFpHP\ngBuBQXH7iOt6sScuUHRS1QXBpgVApzh9arnkcxqu5JyIi4gcCcxT1fdr7ZbE97ITCV/DeT4TSOga\nFpFmIlKBu07Hq+oHJHT9hrjMqLVLbNdvmEvS168HbAN8nrcc6+/pSYy9FbgMqMlbl4TL9sDXIvKA\niLwnIiNEZKMkXFT1v7gxTD7DFSKqVHVcEi61aOz5Ix2otx4aEscK5tKEOFbI76Wxz5KF/hs19j7c\naB8rTKxNC2AzVd0PF1ifrGffODLX7wcuUNXtgIuBv8XpIyIbA6OAC1V1yVonc3Vf9Z0zUp/A5enA\nZWne+iuBFao6MgkX3M13MK4/+9W7JOES/I0SvYZD/k6JXMOqWqOqPXBvyv6fiBxQa3ts12+ISya3\nLe7rN8TlMNyNJZHr1xMS+518iLEi8nPgP6o6hTr+9jH+v7QA9gLuVtW9gO9wD0Kxu4jIjsBFuOYf\nWwMbi8iJSbjUefD1nz8WGhjHCnn+djTuPlxoGnMfjoPG3IebhBUm1mYe8AyAqr4D1IjIFrhS2bZ5\n+3VhTTVRIdlXVZ8N5p9mTZVpwX1EpCXuJvd3VX0uWL1ARLYKtncG/hOHT57LI3kuiMgAXNX8b/J2\nj9tlR9zNZqqIfBqcb7KIdErABRK8huvwSewaBgiaSLwI9CKh6zfEZe/AYQAxX78hLnvh3gbHfv16\nRO3fc1vWfitXEDyKsT8Gjgj+/o8BB4rI3xNymYd7u/xOsPw07hr9KgGXvYG3VXWhqq7CxdX9E3LJ\npzF/l3nB+i611kd5HxpAw+JYIV0aex8u9PfSmPtwwf9GNO4+3DQfjSBRKa0T7uLLT1I5CxgazO8E\nfKZrJ6m0wt145xAkqRTY5z3cSK0ABwHvxOGDK9E/DNxaa/0NwBXB/EDWTbaK3Kcel0OBD4Ataq2P\n3aXWPmGJX3F+L4lcw/X4xH4NA1sAHYL5tsAbwbmTuH7rckni+g11SeL69WnCvUWcg4u/rYgnAdub\nGFvr/H1xI4on5hJclzsF8+WBRxL/u3sC04P/FcHlJ5wXtwvrPhc0+vy4JnS9g99jQ5J7a7s0Oo4V\nyqXWtgbFsQJ+L42+D0flUodPo+/DjfWJ5J8/jRPuDcwXwHJce9lTcRntf8eNqDoZyOTtPxiXnDKL\nICu+QD4r8nz2Dv6gFcC/gZ5x+OB6m6kJzjslmA4FOgL/BGYDrxA8mBTSpw6XnwEfAXPz1t2dlEut\nfT4hCGIJuBya1DVcz98p9msY2B0XPCuA94HLgvVJXL91uSRx/Ya6JHH9+jYF1+qHwe86KIbzeRNj\na3n1ZU1vTom44B7i3wGm4t7ubpqgy+W4h+VpuMJEyzhdCH8uaPT5cTWz04Jtt0fkclpT4ljELquf\n32ptb1AcK5QLTbgPR+FSzzXT6PtwY31s0DrDMAzDMAzDMJqE5UwYhmEYhmEYhtEkrDBhGIZhGIZh\nGEaTsMKEYRiGYRiGYRhNwgoThmEYhmEYhmE0CStMGIZhGIZhGIbRJKwwYRiGYRiGYRhGk7DChFEy\niMjmIjIlmL4UkXnB/Hsi0iJpv3xEpK+I7F/A4/+rkfs/KCLHBPMdg+/tlMLYGYZhRIeIVAcxa7qI\nVIjIJSIiEZ/jLBE5KZgfEIxO3ZjPjxCRbo3Yv1xELm2C57vB6OsN2fdKEZkqImNFxJ4XjTrx6gHK\nMAqJqi4EegKIyBBgiarekpSPiDRX1eo6Nh8ALMENMNPQ47VQ1VUN2VdVf9LQ4+Y+AqiIbAq8DNyr\nqg818hiGYRhJ8D9VzcX+LYGRwCa4EbYjQVX/krd4Cm7Ary8b8fkzG3vKRu6PiGwPzFfVlQ10ukZE\nbgJGARsD3zb2nEZpYCVNo5QREeklItngbc1YEdkq2JAVkVtE5B0RmSki+4jIsyIyW0T+FOxTJiKz\nROQREZkhIk+JSNtgW33HvVVE3gEuFJGfi8iEoHZknIj8QETKgLOAi4P1P82vGQiOszT4mRGRN0Xk\neWC6iDQTkRtFZFLwRum3dfzi+Z/PBu4zReSRer6v9sAY4JFaN07DMIxUoKpfA78Fzgf3UicsZtYX\nG0VkmIh8EOx/Q7CuXEQuDeL03sCjQW3IYSLybN5n+4nIM7W9gnPtFcwvFZE/B7Uo/xaRH9T16wT7\nnykiY0SkTXCvej84940iMi1v/0OBl/LOcUNQWzNORPYTkddFZI6I/CLvMxOBVcDSxn3TRilhhQmj\nlBHgduBYVd0beAC4JtimwHJV3Qe4B3geOBvYDRggIpsF++0E3KWq3XFvbc4V12TqDuCYOo7bUlX3\nCWpF3lLV/VR1L+AJ4HJVrQTuBW5R1b1U9S3WfQuVv9wTuEBVdwHOAKpUdV9gX+DMoHBSm/zP9wAu\nBLoDO4hIWK2FALcAb6rq8JDthmEYqUBVPwWaBw/pp1N3zFwnNorI5sBRqrqrqu4J/Dl3WHdoHQW8\nC/xaVXuq6hhgl+BzAKcC94dp5c23A/6tqj2AN4C6ai1ERM4HDgOOVNVluPvNmUFNTO2a6kOAsXnn\neFVVd8PVgl8NHAgcHcwjIq0Ch9W1+oYRhjVzMkqZ1rjCwThxzWebA1/kbX8h+DkdmK6qCwBE5BNg\nW1zh4XNVzTVFegS4ABesdwX+Wcdxn8ib31ZEngS2AloBn+Rta2ib3kmqOjeYPxjYXUSODZY3AX4E\nVK7n818Ev1sFUAbUzqlQ4DXgKBG5OXi7ZxiGkXbqipkrWTc2/hCYACwTkfuBfwRTGPnx++/ASSLy\nILAfcOJ6nFao6ovB/GSgXx3HPxn4HFeQqBaRDsDGqjox2Gck8PPAvxXQJXhZlTvHy8H8NGBZcIzp\nuHsAwDAR6QvMAqaux9koYawwYZQyAnygqj+uY/vy4GdN3nxuOfe/k/82SYLl9R33u7z5O4CbVPUf\nQdAur+MzqwhqEsUlwrWq43gA56vquDqOE0b+71ZN3XHhcVwhY4yIHKCqVu1tGEbqEJEdgGpV/U/w\nwmedmCkiGdaNjS2DB+59gYOAY3HNpQ4KOU3+veEBYDSwDHhSVWvWo5if05B/v6l9/GnAnriXW5Uh\n++QXaPoAb9VzjhUAqloT1K6jqpesx9MwAGvmZJQ2y4EtRWQ/ABFpKSLdG3mM7XKfB34NvAl8uJ7j\n5gf4TVhTazEgb/0SXI5CjkqgVzB/BFBXbxwvs6apFSKyk4i0a8wvVB+qehvwKvCMNLBHEMMwDF8Q\nl4B9L+5FDjQyZorIRkAHVX0JuAT3MA8urudi+xJcbAdAVb/Exfk/4AoWUTEF1/z2BRHprKpVwJKg\nsANwAmsKNYfict4MI3KsMGGUMtW4N0vXB1XYU4Cw7liVunvO+BA4T0RmAJsC9wQ9ZdR33PxjlQNP\nici7wNd520YDRwdJdD8BRgB9g+Ptx9rJcPnHuw+YAbwXJN7dQ91vtcLmw5bXWq+qA4F5wMMi0Xav\naBiGUQDaBrF0OjAO1xT16mBbXTEzLO4r7iXPaBGZint5dHHettz+DwL3iutAo3WwbiTwmap+2ADf\n2vG5zpisqv8Cfg+8KCIdcTkgI0RkCi4vYnGwb1/g9TrOEXZOw2gwomrXjGE0hSBJb7Sq7p6wimEY\nhuExInInMFlVo6yZCDvPRqr6XTA/EOgE3AT8VVUPL+S5jdLFciYMY8Ow0rhhGIZRJyIyGdf06eL1\n7RsBh4vIINzzXSUwIBhjyQoSRsGwmgnDMAzDMAzDMJqE5UwYhmEYhmEYhtEkrDBhGIZhGIZhGEaT\nsMKEYRiGYRiGYRhNwgoThmEYhmEYhmE0CStMGIZhGIZhGIbRJKwwYRiGYRiGYRhGk/j/RjitON5D\nORwAAAAASUVORK5CYII=\n", - "text": [ - "" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# This cell is for plotting the Maxwell loops along one specified isotherm (chosen with myIdx)\n", - "T_iso = T_sat[myIdx]\n", - "tau_iso = T_crt/T_iso\n", - "p_iso = p_vap[myIdx]\n", - "print(\"tau_iso = \" + str(tau_iso))\n", - "print(\"T_iso = \" + str(T_iso))\n", - "print(\"p_sat(T_iso) = \" + str(p_iso))\n", - "print(\"d_vap(T_iso) = \" + str(d_vap[myIdx]))\n", - "print(\"d_liq(T_iso) = \" + str(d_liq[myIdx]))\n", - "\n", - "# copy coeffs of that single point\n", - "c = x[myIdx,:]\n", - "print(\"coeffs = \" + str(c))\n", - " \n", - "# get a density range\n", - "d_min = 0.8*d_vap[myIdx] \n", - "#d_min = d_trp_vap\n", - "# d_max = 1.9*d_liq[myIdx]\n", - "d_max = PropsSI('D','T',T_iso,'P',p_max,FluidName)\n", - "d_max = d_trp_liq\n", - "rhos = np.linspace(d_min, d_max, num=nPoints)\n", - "deltas = rhos/d_crt\n", - "# for plotting, we will use volume (d_min is high v, d_max is low v)\n", - "vs = 1/rhos\n", - "\n", - "# calculate Helmholtz energy and pressure for that density range, at T_iso\n", - "fs = np.ones(nPoints)\n", - "ps = np.ones(nPoints)\n", - "fms = np.ones(nPoints)\n", - "pms = np.ones(nPoints)\n", - "for idx in range(0,nPoints):\n", - " # stable\n", - " HEOS.update(CP.DmassT_INPUTS, rhos[idx], T_iso) \n", - " #fs[idx] = Rs*T_iso*(HEOS.alpha0() + HEOS.alphar())\n", - " fs[idx] = HEOS.umass() - T_iso*HEOS.smass()\n", - " ps[idx] = HEOS.p()\n", - " # meta stable interpolation\n", - " # p = -(df/dv)_T\n", - " # s = -(df/dT)_v\n", - " # cv = T*(ds/dT)_v = -T*(dsf/dT2)_v\n", - " fms[idx] = Rs*T_crt*( +c[0]/tau_iso -c[1]/tau_iso/deltas[idx] +c[2]*log(deltas[idx]) +c[3]*deltas[idx] +c[4]*deltas[idx]**2/2 +c[5]*deltas[idx]**3/3 +c[6]*deltas[idx]**4/4 +c[7]*deltas[idx]**5/5 )\n", - " pms[idx] = Rs*T_crt*d_crt*( 0 +c[1]/tau_iso +c[2]*deltas[idx] +c[3]*deltas[idx]**2 +c[4]*deltas[idx]**3 +c[5]*deltas[idx]**4 +c[6]*deltas[idx]**5 +c[7]*deltas[idx]**6 )\n", - "\n", - "# now plot \n", - "plt.figure(figsize=(width,width*2/1/golden))\n", - "\n", - "plt.subplot(2,1,1)\n", - "plt.plot(vs/v_crt, fs/Rs/T_iso, color='red', label='stable equilibrium')\n", - "plt.plot(vs/v_crt, fms/Rs/T_iso, color='blue', label='metastable Maxwell loop')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.legend(loc='upper right')\n", - "plt.ylabel(r'$\\alpha$')\n", - "\n", - "plt.subplot(2,1,2)\n", - "plt.plot(vs/v_crt, ps/p_crt, color='red', label='stable equilibrium')\n", - "plt.plot(vs/v_crt, pms/p_crt, color='blue', label='metastable Maxwell loop')\n", - "plt.ylim(ymax=3)\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.legend(loc='upper right')\n", - "plt.ylabel(r'$p/p_c$')\n", - "plt.xlabel(r'$v/v_c$')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "tau_iso = 1.0733860015\n", - "T_iso = 315.984184184\n", - "p_sat(T_iso) = 2148665.30554\n", - "d_vap(T_iso) = 155.769812405\n", - "d_liq(T_iso) = 1065.91685036\n", - "coeffs = [-4.18587381 -0.00876351 1.02344077 -1.76846622 0.95090984 0.33340544\n", - " -0.56970975 0.16802998]\n" - ] - }, - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 4, - "text": [ - "" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAOUCAYAAAAvg7yBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8VOXZ//HPHRKyb+w7YRW0QpBVMBA2yyoutVZFQaVV\nWy3Sp4/+XOFxqY+2Wm1rrVJcUFGLjy0CgqwBXFiURVFZZJewBbIDIST3749DMhACzMBkzkzyfb9e\n84KTOZlck17SK3e+5z7GWouIiIiIiISeMLcLEBERERGR86NhXkREREQkRGmYFxEREREJURrmRURE\nRERClIZ5EREREZEQpWFeRERERCREuTrMG2P+yxhTaoypc4bnk4wxHxhjvjfGfGeM6RXoGkVERERE\nglW4W1/YGNMcGAzsOMtpLwIfW2t/ZowJB2IDUpyIiIiISAhwc2X+eeD+Mz1pjEkE0qy1rwFYa49b\na3MDVZyIiIiISLBzZZg3xowCfrTWfn2W01oBB4wxrxtjVhtjJhtjYgJUooiIiIhI0KuyYd4YM98Y\n800lj6uAB4GJJ59eyUuEA5cBf7fWXgYUAv+vquoVEREREQk1xlob2C9ozE+AhcDhEx9qBuwGelhr\n9590XiPgC2ttqxPHVwD/z1o7opLXDOybEBEREREJAGttZYve5QJ+Aay1dj3QsOzYGLMN6GqtPVTh\nvL3GmF3GmPbW2k3AIODbs7xuVZUs1cikSZOYNGmS22VIiFC/iLfUK+IL9Yt4y5izzvFAcOwzXz6F\nG2OaGGNmn/TcvcA7xph1QCfgD4Eurir98APMnet2FSIiIiISqlzbmrKMtbb1SX/PBIafdLwO6O5G\nXYGwbh288w4MGeJ2JTXH9u3b3S5BQoj6RbylXhFfqF/En4JhZb7GioqCoiK3q6hZUlNT3S5BQoj6\nRbylXhFfqF/EnwJ+AWxVMMbYUHwfCxfCH/7g/CkiIiIicjJjTPBdACsekZFw9KjbVYiIiLjLm4v8\nRKq7812YVszGRYrZBF5GRobbJUgIUb+It9QrF85aq4ceNfZxITTMuygqSivzIiIiInL+lJl30Q8/\nODvZ/PCD25WIiIi450Qu2O0yRFxzpv8GvMnMa2XeRZGRitmIiIiIyPnTMO8ixWwCT7lW8YX6Rbyl\nXhFvZGRk0Lx58zM+P3bsWB599NEAVnRu77zzDj/96U/Lj8PCwti6dSsAd999N08++SRw7vdWmZM/\nX86fdrNxkS6AFRERCV2TJk1iy5YtvPXWW355PWNM0O3sc/PNN3PzzTdX+tzLL798Qa99oZ8vDq3M\nu0hbUwZeenq62yVICFG/iLfUK+IvNeXagdLSUrdLqDY0zLsoIgKOH4eSErcrERERkTN55plnaNas\nGQkJCXTo0IFFixYxd+5cnn76ad5//33i4+Pp0qULAK+//joXX3wxCQkJtGnThldfffW013v66aep\nX78+rVq1Ytq0aWf8urNmzSI1NZXk5GT69OnDN998c8ZzN2zYwODBg6lbty4dOnRg+vTp5c8dPHiQ\nq666isTERHr27Mmjjz5KWloaANu3bycsLOyU4To9PZ0pU6YA8MYbb5SfW1FlsaAzvbexY8dy9913\nM2zYMOLi4li8ePEpn1/Z1zk50jN27Fh+/etfM2zYMOLj40lLS2Pv3r2MHz+e5ORkOnbsyNq1a8/4\n/anONMy7yBhFbQJNuVbxhfpFvKVeqb42btzISy+9xJdffkleXh7z5s0jJSWFIUOG8NBDD/GLX/yC\n/Px81qxZA0DDhg2ZPXs2eXl5vP7660yYMKH8OYC9e/dy8OBBMjMzefPNN/nVr37F5s2bT/u6a9as\n4Y477mDy5MkcOnSIO++8k6uuuopjx46ddm5hYSGDBw9m9OjRHDhwgPfee49f//rXfP/99wD85je/\nISYmhr179/Laa6/x+uuvnzXO423cp+J5lb23TZs2lT//7rvv8uijj1JQUMAVV1zhc6xo+vTpPPXU\nU2RlZVG7dm169epF9+7dOXToED/72c/43e9+5/VrVSca5l0WHQ1HjrhdhYiISJAz5sIf56FWrVoU\nFRXx7bffUlxcTIsWLWjdujVApTf8GTZsGK1atQKgb9++XHnllSxbtuyUc5544gkiIiLo27cvw4cP\n5/333z/pbTp1vvrqq9x55510794dYwy33norkZGRLF++/LQaZ82aRatWrRgzZgxhYWGkpqZy7bXX\nMn36dEpKSvjwww95/PHHiY6O5pJLLmHMmDF+i/NUfJ2K7+1f//pX+XNXX301l19+OQCRkZE+fR1j\nDNdeey1dunQhMjKSa665htjYWEaPHo0xhp///Oen/NBUk2iYd5l2tAks5VrFF+oX8ZZ6JQCsvfDH\neWjbti0vvPACkyZNomHDhtx4443s2bPnjOfPmTOHXr16UbduXZKTk/n44485ePBg+fPJyclER0eX\nH7ds2bLS19uxYwfPPfccycnJ5Y8ff/zxjOeuWLHilHOnTZvGvn37yMrK4vjx46fsNNOiRYvz+l6c\ny9nemzHG591uKmrQoEH536Oiok45jo6OpqCg4IJeP1RpmHeZVuZFRESC24033siyZcvYsWMHxhge\neOABgNMiIkVFRVx33XXcf//97N+/n+zsbIYNG3bK6nV2djaHDx8uP96xYwdNmjQ57Wu2aNGChx9+\nmOzs7PJHQUEBN9xwQ6Xn9uvX75Rz8/Pzeemll6hXrx7h4eHs3Lmz/PyT/x4bGwtwSk179+71+ntz\n8vfA2/dWmdjY2POuoabTMO8yDfOBpVyr+EL9It5Sr1RfmzZtYtGiRRQVFREZGUlUVBS1atUCoFGj\nRmzfvr18WD927BjHjh2jXr16hIWFMWfOHObNm3faa06cOJHi4mKWLVvG7Nmzuf7664FTYzu//OUv\n+cc//sHKlSux1lJYWMjs2bMrXX0eMWIEmzZt4u2336a4uJji4mJWrVrFhg0bqFWrFtdeey2TJk3i\nyJEjfPfdd0ydOrV8CK9fvz5NmzblrbfeoqSkhNdee40tW7Z49b2pLGZ0tvd2ts/v3Lkz3377LevW\nrePo0aNMmjTptHOlchrmXRYVpWFeREQkWBUVFfHggw9Sv359GjduTFZWFk8//TRA+aBat25dunXr\nRnx8PH/5y1/4+c9/Tp06dXj33XcZNWrUKa/XuHFjkpOTadKkCbfccguvvPIK7du3B069oLRr165M\nnjyZe+65hzp16tCuXTumTp1aaY1xcXHMmzeP9957j6ZNm9K4cWMefPDB8otl//a3v1FQUECjRo24\n/fbbue22204ZjidPnswf//hH6tWrx3fffUefPn3Kn6t4kWrFv5987O17q+zz27dvz2OPPcagQYO4\n6KKLSEtLO+vXOtPr1USmOvykY4yxofo++vaFJ590/hQREamJjDFaeQ2gN954gylTppx2Ya6450z/\nDZz4+Fl/StHKvMsUsxERERGR86Vh3mWK2QSWcq3iC/WLeEu9IqHE1/3dJbhpmHdZdLS2phQREZHA\nGTNmDEuXLnW7DPETZeZddtttTl7+ttvcrkRERMQdysxLTafMfAhTzEZEREREzpeGeTd99BHRyz5R\nzCaAlGsVX6hfxFvqFRFxi4Z5NxlD9NEcrcyLiIiIyHnRMO+mmBiiSgs1zAdQenq62yVICFG/iLfU\nKyLiFg3zboqJIbqkQDEbERERqXIpKSksXLiw0ucyMjJo3rx5gCsKrEmTJnHLLbcAsH37dsLCwigt\nLa303LN9r4KNhnk3xcQQfTxfK/MBpFyr+EL9It5Sr4i30tPTmTJlygW/zrmG0cpU1f7yY8eOJSws\njI8++uiUj0+YMIGwsDDefPNNv3/N8+HLew+lvfg1zLspJoao4gIN8yIiIjWEvwfEYNjS0xhD+/bt\nmTp1avnHjh8/zr/+9S/atm0bNENxMHyvqoKGeTfFxBBdnKeYTQAp1yq+UL+It9Qr1VtKSgp/+tOf\n6NSpE/Hx8dxxxx3s27ePoUOHkpiYyODBg8nJySk/f/ny5fTu3Zvk5GRSU1NZsmQJAA8//DDLli3j\nnnvuIT4+nt/+9rcAjB8/nhYtWpCYmEi3bt349NNPy19r5cqVdOvWjcTERBo1asTvf/97APr27QtA\nUlIS8fHxrFixgi1btjBgwADq1atH/fr1GT16NLm5uae8l5UrV3LJJZdQp04dbr/9doqKiip9z5mZ\nmVx33XU0aNCA1q1b89e//vWs36ORI0fy6aefln8f5s6dS+fOnWnYsGH5EH22+rZs2ULdunVZs2ZN\n+ddv0KABS5cuZfHixXTq1Kn8aw0ePJgePXqUH6elpZX/VsDXur1RVFTEfffdR9OmTWnatCkTJkzg\n2LFj5c9PnjyZdu3aUbduXUaNGsWePXvKnwsLC+Ovf/0rbdq0oX79+tx///1+/6FCw7ybYmKIPpar\nlXkREZEgZozhww8/ZOHChWzcuJFZs2YxdOhQ/vd//5f9+/dTWlrKX/7yFwB2797NiBEjeOyxx8jO\nzuZPf/oT1113HQcPHuSpp54iLS2Nl156ifz8/PLP6dGjB+vWrSM7O5ubbrqJ66+/vnxYHD9+PBMm\nTCA3N5etW7dy/fXXA7Bs2TIAcnNzyc/Pp2fPnoDzA8OePXv4/vvv2bVrF5MmTSp/H9Zapk2bxrx5\n89iyZQubNm3iySefPO39lpaWMnLkSLp06UJmZiYLFy7khRdeYN68eWf8HkVFRTFq1Cjee+89AKZO\nncqtt95a/v0rc6b62rRpwzPPPMPo0aM5cuQIt912G2PHjqVv37706tWLzZs3c+jQIYqLi/n666/Z\ns2cPhYWFHDlyhK+++oq0tLTzqtsbTz31FCtXrmTdunWsW7eOlStXln/fFi1axEMPPcT06dPZs2cP\nLVu25Be/+MUpn/+f//yHr776itWrVzNjxgxee+21C6qnIg3zboqJIepYnob5AFKuVXyhfhFvqVeq\nnjEX/rgQ9957L/Xr16dJkyakpaVx+eWX07lzZyIjI7nmmmvKV5Tffvtthg0bxpAhQwAYNGgQ3bp1\nY/bs2eWvVXFl9uabbyY5OZmwsDB+97vfUVRUxMaNGwGoXbs2mzdvJisri5iYmPKhvbLV3TZt2jBw\n4EAiIiKoV68eEyZMKP+tgPM9NNxzzz00bdqU5ORkHn74Yd59993TXmfVqlVkZWXxyCOPEB4eTqtW\nrRg3blz5oH4mt956K1OnTiU3N5elS5dy9dVX+1TfuHHjaNu2LT169GDfvn089dRTAERHR9O9e3eW\nLFnCV199RWpqKn369OHTTz9l+fLltGvXjuTk5POu+1ymTZvGY489Rr169ahXrx4TJ07krbfeAuCd\nd97hjjvuIDU1ldq1a/P000/zxRdfsHPnzvLPf+CBB0hKSqJ58+bcd999lX7PL0S4X19NfFO7NtEl\nBRw5bIHgyJOJiIgEI7fjzg0bNiz/e3R09CnHUVFRFBQUALBjxw6mT5/OzJkzy58/fvw4AwYMKD+u\nmCH/05/+xGuvvUZmZibGGPLy8sjKygJgypQpPPbYY3Ts2JFWrVoxceJEhg8fXmmN+/btY/z48Xz6\n6afk5+dTWlpKnTp1Tjnn5B1rWrRoQWZm5mmvs2PHDjIzM0lOTi7/WElJSXm0pzLGGPr06cOBAwd4\n8sknGTlyJFFRUT7XN27cOEaNGsXkyZOJiIgo/3i/fv3IyMigWbNm9OvXj+TkZJYsWUJkZGR5zO18\n6vZGZmYmLVu2LD8++fu2Z88eunXrVv5cbGwsdevWZffu3bRo0QLw7nt+IbQy7yZjiI6yHD3s/ZXo\ncmGUaxVfqF/EW+qVmudMuecWLVpwyy23kJ2dXf7Iz8/n/vvvB04f5JctW8Yf//hHpk+fTk5ODtnZ\n2SQmJpa/ftu2bZk2bRoHDhzggQce4Gc/+xlHjhyp9KLShx56iFq1arF+/Xpyc3N56623Ttvt5uQV\n4507d9KkSZPTXqd58+a0atXqlPeQl5fHrFmzzvl9GT16NM8//3x5xMaX+goKCrjvvvsYN24cEydO\nJDs7u/y5fv36sXjxYpYuXUp6enr5cL9kyRL69evnVd3neyFukyZN2L59e/nxzp07adq0aaXPFRYW\ncvDgwfLny86v7HP9RcO8y6Ki4IiGeRERkWph9OjRzJw5k3nz5lFSUsLRo0fJyMhg9+7dgLPCv2XL\nlvLz8/PzCQ8Pp169ehw7dozHH3+cvLy88ufffvttDhw4AEBiYiLGGMLCwqhfvz5hYWGnvFZBQQGx\nsbEkJCSwe/du/vjHP55Sm7WWl156id27d3Po0CGeeuqp0/Ld4GT44+PjefbZZzly5AglJSWsX7+e\nL7/8stL3bK0t/+Hjt7/9LQsWLCAtLe20885V3/jx4+nRowevvvoqw4cP56677ip/rnfv3mzcuJFV\nq1bRo0cPLr74Ynbs2MGKFSvKV9579ux51rrP98LTG2+8kSeffJKsrCyysrJ4/PHHGT16dPlzr7/+\nOuvWraOoqIiHHnqIXr16la/Kg/Obl5ycHHbt2sVf/vIXbrjhhvOq40xcHeaNMf9ljCk1xtQ5w/MP\nGmO+NcZ8Y4yZZoyJDHSNVS06xnDksNtV1BzKtYov1C/iLfVKzXPyKu/Je5I3a9aMGTNm8Ic//IEG\nDRrQokULnnvuufJBcvz48XzwwQfUqVOH++67jyFDhjBkyBDat29PSkoK0dHRpwyCn3zyCT/5yU+I\nj49nwoQJvPfee0RGRhITE8PDDz9Mnz59qFOnDitXrmTixImsXr2axMRERo4cyXXXXXdanTfffDNX\nXnklbdq0oV27djzyyCOnvadatWoxa9Ys1q5dS+vWralfvz6/+tWvTvkho+L3ouxzk5OT6d+/f6Xn\nna2+GTNmMG/ePF5++WUAnn/+eVavXl2eL4+JiaFr165ccsklhIc7KfHevXuTkpJCvXr1AGfnmLPV\nXXHveG9X6h955BG6detGp06d6NSpE926dSv/vg0cOJAnnniC6667jiZNmrBt27bTMvqjRo2ia9eu\ndOnShREjRnD77bd79XW9Zdzac9MY0xyYDFwEdLXWHqrwfAqwCOhorS0yxrwPfGytPe3OA8YYG6p7\nh+5qP5DeeXPZtTfi3CfLBcvIyNCvw8Vr6hfxlnrlwhhjqu0e4FKzhYWF8cMPP9C6deuznnem/wZO\nfPysP3W4uTL/PHD/WZ7PA4qBGGNMOBAD7A5EYYEUFRPGEe0zHzD6P1vxhfpFvKVeERG3uDLMG2NG\nAT9aa78+0zknVuqfA3YCmUCOtXZBgEoMmOi4Whwp0qULIiIiItVNIO5+W2VbUxpj5gONKnnqYeBB\n4MqTT6/k89sA9wEpQC4w3Rhzs7X2ncq+3tixY0lJSQGcu6GlpqaWr5SUZRmD8TgqthZHipayeLGh\nf3/366nuxyfnWoOhHh0H97H6RcfeHpd9LFjqCbVjkeqqpKTE63MzMjJYu3Zt+V10T94l52wCnpk3\nxvwEWAiUXfbZDCc+08Nau/+k824ABltrx504vgXoZa39TSWvGbKZea67jogZ0yk8HEbt2m4XU/1l\nKNcqPlC/iLfUKxdGmXmp6S4kM+/aBbDlBRizjcovgO0MvAN0B44CbwArrbUvVfIaoTvM33ILCR9M\nYdfe2iQmul2MiIhI4GmYl5ouVC+ALVNeuTGmiTFmNoC1dh0wFfgSKMvWvxr48qpYTAxRESUc1UWw\nIiIiIuKjKsvMe8ta2/qkv2cCw086fhZ41o26AiYmhpjwYxw+HO12JTWCfhUuvlC/iLfUKxcuEBcK\nilRHrg/zNV509Ilh3u1CRERE3FHTIjb64U/8KRhiNjVbTAyxtYooLHS7kJpB/3iKL9Qv4i31ivhC\n/SL+pGHebXFxxIQd1cq8iIiIiPhMw7zb4uKIDTuilfkA0Z7G4gv1i3hLvSK+UL+IP2mYd1tsLLEU\namVeRERERHzm+j7z/hDS+8zPnMmYu2Po/+RAxo51uxgRERERCRahss98zRYbS6wtUMxGRERERHym\nYd5tcXHElOQrZhMgyimKL9Qv4i31ivhC/SL+pGHebXFxxJbkaWVeRERERHymzLzbduzgmc7TOPir\nB3m2et/rVkRERER8oMx8KIiLI/ZYtlbmRURERMRnGubdFhtLzLEcZeYDRDlF8YX6RbylXhFfqF/E\nnzTMuy0yktjSfArzS92uRERERERCjDLzQWBm7C945Yq3mPVJhNuliIiIiEiQUGY+RMRGl1KYX+J2\nGSIiIiISYjTMB4GYGDhcGLq/WQglyimKL9Qv4i31ivhC/SL+pGE+CMTGQmGB21WIiIiISKhRZj4I\nbO1+AwN/fINte6LdLkVEREREgoQy8yEiJiGcw0f1P4WIiIiI+EYTZBCIjQ+j8Ij+pwgE5RTFF+oX\n8ZZ6RXyhfhF/0gQZBGISIzh8LJwQTgqJiIiIiAuUmQ8G99xD1CsvkJ0XTrRi8yIiIiKCMvOhIy6O\nmIhiDh92uxARERERCSUa5oNBXByx4ccoLHS7kOpPOUXxhfpFvKVeEV+oX8SfNMwHg9hYYmoVaWVe\nRERERHyizHwwmDyZyx68ksmftKRrV7eLEREREZFgoMx8qIiNJS7sMAW6C6yIiIiI+EDDfDCIjyee\nAvLz3S6k+lNOUXyhfhFvqVfEF+oX8ScN88EgIYE4m69hXkRERER8osx8MFizhnGDttPzf6/hl790\nuxgRERERCQbKzIeKhATij2drZV5EREREfKJhPhjExxNffEjDfAAopyi+UL+It9Qr4gv1i/iThvlg\nkJBA3LFD2s1GRERERHyizHwwsJaXw+9l3e0v8o/JtdyuRkRERESCQNBm5o0xk4wxPxpj1px4DDnD\neUOMMRuMMZuNMQ8Eus6AMYb4mBLyDxW7XYmIiIiIhBC3YjYWeN5a2+XEY27FE4wxtYC/AUOAi4Eb\njTEdA1xnwMTHlJCfU+J2GdWecoriC/WLeEu9Ir5Qv4g/uZmZP+uvDIAewA/W2u3W2mLgPWBU1Zfl\njrg4KMgrdbsMEREREQkhbg7z9xpj1hljphhjkip5vimw66TjH098rFqKTzDazSYA0tPT3S5BQoj6\nRbylXhFfqF/En6psmDfGzDfGfFPJ4yrgZaAVkArsAZ6r5CVC+IpW38UnGPILzvXLChERERERj/Cq\nemFr7WBvzjPG/BOYWclTu4HmJx03x1mdr9TYsWNJSUkBICkpidTU1PKffMuyacF8fOD4XvIPhwVN\nPdX1+OScYjDUo+PgPla/6Njb47KPBUs9Og7u47KPBUs9Og6e47Vr15KTkwPA9u3b8YYrW1MaYxpb\na/ec+PsEoLu19qYK54QDG4GBQCawErjRWvt9Ja8X2ltTArm3jafFe8+SeyTS7VKqtYyMjPL/aETO\nRf0i3lKviC/UL+Itb7amdGuYn4oTsbHANuBOa+0+Y0wTYLK1dviJ84YCLwC1gCnW2qfP8HohP8wf\n/68HiPzz0xwvCcMobSMiIiJS43kzzFdZzOZsrLW3nuHjmcDwk47nAHMCVZebwpPiiKx1nMOHaxMb\n63Y1IiIiIhIKwtwuQE5ISCA+4igFBW4XUr2dnFcUORf1i3hLvSK+UL+IP2mYDxbx8cSHH9H2lCIi\nIiLiNVcy8/5WHTLzfPABqeO68vriVnTp4nYxIiIiIuI2bzLzWpkPFgkJxJsCrcyLiIiIiNc0zAeL\nhATibb6G+SqmnKL4Qv0i3lKviC/UL+JPGuaDRUICCaXZ5OW5XYiIiIiIhApl5oNFZiZ3tV1A6vO3\nctddbhcjIiIiIm5TZj6UJCWReGw/J+7gKyIiIiJyThrmg0V0NEnkkHvwuNuVVGvKKYov1C/iLfWK\n+EL9Iv6kYT5YGENidDE5+4vcrkREREREQoQy80HknSa/Z/ZljzJtVqLbpYiIiIiIy5SZDzFJCZac\ng6VulyEiIiIiIULDfBBJTDLk5ob+bxiCmXKK4gv1i3hLvSK+UL+IP2mYDyKJdWqRm6//SURERETE\nO8rMB5Fdtz7M5TMf5MfsOLdLERERERGXKTMfYhIbRJJ7OMLtMkREREQkRGiYDyJxDWI4XBzBcW01\nX2WUUxRfqF/EW+oV8YX6RfxJw3wQCaubTELEEfLy3K5EREREREKBMvPB5P/+j5Rb01j0TQNat3a7\nGBERERFxkzLzoSY5mSSTR26u24WIiIiISCjQMB9MkpJIJFfDfBVSTlF8oX4Rb6lXxBfqF/EnDfPB\nJDmZxNJD5OS4XYiIiIiIhAJl5oNJTg63NpjDgFdvZOxYt4sRERERETcpMx9qEhJIPn6AnEOlblci\nIiIiIiFAw3wwCQujTtRhDu4+6nYl1ZZyiuIL9Yt4S70ivlC/iD9pmA8ydeOOcTCzyO0yRERERCQE\nKDMfZKa1n8RHLX7Dewvqu12KiIiIiLhImfkQVLcuHMyqHj+YiIiIiEjV0jAfZOo2CONQtv5nqSrK\nKYov1C/iLfWK+EL9Iv6kqTHI1GlYm4N5EW6XISIiIiIhQJn5IJP7Py/Q/A93kVcU5XYpIiIiIuIi\nZeZDUEKzBI4Uh3PsmNuViIiIiEiw0zAfZEz9eiRHFJCd7XYl1ZNyiuIL9Yt4S70ivlC/iD9pmA82\n9epRNyyHgwfdLkREREREgp0y88Fm0yb6dM7nmfldueIKt4sREREREbcEdWbeGDPJGPOjMWbNiceQ\nSs5pboxZbIz51hiz3hjzWzdqDah69ahbsl8r8yIiIiJyTm7GbCzwvLW2y4nH3ErOKQYmWGsvAXoB\nvzHGdAxolYGWlESd4/s5dKDE7UqqJeUUxRfqF/GWekV8oX4Rf3I7M3/WXxtYa/daa9ee+HsB8D3Q\nJBCFuSYsjLqRhRz88bDblYiIiIhIkHMtM2+MmQjcBuQCXwL/Za3NOcv5KcAS4JITg/3Jz1WfzDzw\nvw2eI3vkGJ6ZUs/tUkRERETEJd5k5sOruID5QKNKnnoYeBl4/MTxE8BzwB1neJ044ANgfMVBvszY\nsWNJSUkBICkpidTUVNLT0wHPr7NC5fhQ5Ea+/mYJcF1Q1KNjHetYxzrWsY51rOOqP167di05Oc7a\n9vbt2/EoC3jrAAAgAElEQVRGUOxmc2LVfaa19tJKnosAZgFzrLUvnOHzq9XK/Ky0Z/h7wS18vKZ6\nJ4rckJGRUf4fjci5qF/EW+oV8YX6RbwV7LvZND7p8Brgm0rOMcAU4LszDfLVUcOm4ezPquV2GSIi\nIiIS5NzMzE8FUnF2tdkG3Gmt3WeMaQJMttYON8ZcASwFvj5xHsCDFXe+qW4r8zv++29c8cpoduUl\nuV2KiIiIiLjE9cz82Vhrbz3DxzOB4Sf+/inu77gTcA3axLO/MBZrwZz1fz4RERERqclq3KAcCqJb\n1CfSHCMvz+1Kqp+yi01EvKF+EW+pV8QX6hfxJw3zwahRIxrUOsi+fW4XIiIiIiLBLCh2s7lQ1S0z\nT2YmfVJ+5JlFPbjiCreLERERERE3BPVuNnIW9evT4Hgm+/aUuF2JiIiIiAQxDfPBKCKChpG57N9a\n6HYl1Y5yiuIL9Yt4S70ivlC/iD9pmA9SDRKOsH/7YbfLEBEREZEgpsx8kPpbh7/xXbur+PvMFm6X\nIiIiIiIuUGY+hDVpVErmbrerEBEREZFgpmE+SDVtGc7u/a7d06vaUk5RfKF+EW+pV8QX6hfxJw3z\nQapp+1h2Z8e4XYaIiIiIBDFl5oPU8f/MIuban1JYFEFEhNvViIiIiEigKTMfwsJbNqVerWz27nW7\nEhEREREJVhrmg1Xz5jSzu9iti2D9SjlF8YX6RbylXhFfqF/EnzTMB6u6dWlqd7N7yxG3KxERERGR\nIKXMfBC7J+lt2v9mML99qqHbpYiIiIhIgCkzH+Ka1j3K7h90F1gRERERqZyG+SDWtHEpu3eWuF1G\ntaKcovhC/SLeUq+IL9Qv4k8a5oNY85Ra7NqjG0eJiIiISOWUmQ9i255+j/SnBrGjoJ7bpYiIiIhI\ngCkzH+Kad2vI3sMJFBe7XYmIiIiIBCMN80EsvF0rGoftY+dOtyupPpRTFF+oX8Rb6hXxhfpF/EnD\nfDBr3pxWpVvZtvGY25WIiIiISBBSZj7I3Z74Ab1/34dxjzZ2uxQRERERCSBl5quBVg0Os219odtl\niIiIiEgQ0jAf5Fq1LGXbFu017y/KKYov1C/iLfWK+EL9Iv6kYT7IpXSIYtvuSLfLEBEREZEgpMx8\nkNv3xhx+cmdvDhQlul2KiIiIiASQMvPVQIOerSg+bsjKcrsSEREREQk2GuaDnGnbhg52Axu/LnK7\nlGpBOUXxhfpFvKVeEV+oX8SfNMwHu4gILkrYw4al+92uRERERESCjDLzIeDpn7xDdqvLeHZmR7dL\nEREREZEAUWa+mujQ0bBh01n/dxQRERGRGkjDfAi4qEciGzIT3C6jWlBOUXyhfhFvqVfEF+oX8ScN\n8yGgbf/m7Cqsw9GjblciIiIiIsHElcy8MWYSMA44cOJDD1pr557h3FrAl8CP1tqRZzinWmfmKSqi\nU/QmXl/Wlq59ot2uRkREREQCIJgz8xZ43lrb5cSj0kH+hPHAdyc+p2aKjCQ1aQdrZu9xuxIRERER\nCSJuxmzOeUWnMaYZMAz4pzfnV2dd2hey9vNCt8sIecopii/UL+It9Yr4Qv0i/uTmMH+vMWadMWaK\nMSbpDOf8GfhvoDSAdQWl1F6RrN2giI2IiIiIeFRZZt4YMx9oVMlTDwPL8eTlnwAaW2vvqPD5I4Ch\n1trfGGPSgf+qsZl54NAnq0gZ1pGc4jjCdNmyiIiISLXnTWY+vKq+uLV2sDfnGWP+Ccys5KnewFXG\nmGFAFJBgjJlqrb21stcZO3YsKSkpACQlJZGamkp6ejrg+XVWSB/bo9SxB9m8PoI9h75wvx4d61jH\nOtaxjnWsYx379Xjt2rXk5OQAsH37drzh1m42ja21e078fQLQ3Vp701nO7wf8viavzAPcWOcTfnp3\na8Y+1c7tUkJWRkZG+X80IueifhFvqVfEF+oX8VYw72bzjDHma2PMOqAfMAHAGNPEGDP7DJ9T/af1\nc+jdqYDPF+giWBERERFxuLIy7281ZWV+9bMLuPXJdqzPa+l2KSIiIiJSxbxZmdcwH0KO79pDcos4\ndh2MJamOW79UEREREZFACOaYjZyH8OaN6Rn9NUvf3ul2KSGr7GITEW+oX8Rb6hXxhfpF/EnDfIi5\nMnU/894/5HYZIiIiIhIEFLMJMWtfXMLPH2zNpsPN3S5FRERERKqQMvPVUGleAY2TDrN8XQytLo1z\nuxwRERERqSLKzFdDYQlxXNnwaz7+yw9ulxKSlFMUX6hfxFvqFfGF+kX8ScN8CLru6hI++CjC7TJE\nRERExGWK2YSgoz9m0bh5OBu2RNCwdazb5YiIiIhIFVDMppqKalaPYY1W88GT37tdioiIiIi4SMN8\niBozBv45PYka9AsJv1BOUXyhfhFvqVfEF+oX8ScN8yFq0MQ+5B0OZ9UHO9wuRURERERcosx8CHum\n/1y+3VOHqRt6uF2KiIiIiPiZ9pmv5nI27KXtxRGs+KyENpc3cLscEREREfEjXQBbzSV1aMSve3zJ\nH8ZtcbuUkKGcovhC/SLeUq+IL9Qv4k8a5kPchDe7MPv7NqyeroFeREREpKZRzKYamHLzIibPbMin\nWR0Jr62fz0RERESqA7/FbIwxLY0x1xhj+p44/pk/ChT/uO2NfsSFHeGJIZ+5XYqIiIiIBJC3y7gx\nwLXAq8aYr4B+VVeS+CosohZvL27K5CXtmPHol26XE9SUUxRfqF/EW+oV8YX6Rfwp3MvzrgHGW2sP\nGWNigP5VWJOch0ZdGvPR5K8ZNq4lMfFrGHx/F7dLEhEREZEq5lVm3hhzi7X2rZOOR1hrZ1VpZT6o\n6Zn5ky3761p+Nr4pT47+nnFvpGHCzhqzEhEREZEg5c+tKbOMMe8ZY0YaYzoDHS+8PKkKafemsnR2\nPi/+qzFXN1nJ9k9/dLskEREREakiXg3z1to5wETgcuAW4KOqLEouzEVDW/PV/hZ0vfgIXfvGcHu7\npXz+0hps0TG3S3OdcoriC/WLeEu9Ir5Qv4g/eb2PobV2o7X2IWvt7621G6uyKLlwkQmRPLYonc2b\nDW1bl/LL3yfSMnoftzZbyKs/X8Dyt38g64BF6SQRERGR0KV95msIa2HD8hyWvbGFzzKO8d2OWH44\n1oLS8No0qXeMxEYxJNavTWIiJCRAYuKpj7KPJSWd+mdEhNvvTERERKR68iYzr2G+Jtu2jUMzlrFn\nzlryln9HbmILci++nNw2l5Hb6CJyi6LIy4Pc3FMfOTmev0dGeob7+vWhYUPn0ajRqX82b+78aXQ9\nroiIiIhXNMyL90pLYc0aWLAA5s+HFSugUycYPBgGDYKePU9bhrcWCgs9A/6BA7B3L+zb5/lz3z7Y\nswd27YKCAmjZ0nmkpHgerVvDRRc5PxBUtYyMDNLT06v+C0m1oH4Rb6lXxBfqF/GWN8O8t/vMS3UX\nFgZduzqPBx6AI0fgs8+cwX78ePjhB+jb1zPcd+yIMYa4OIiLg6ZNz/0lCgpg507Yvt3zWLvWeemN\nG53Xuegi6NDBeZT9vWVLqFWrit+/iIiISAjSyrx4JysLFi1yhvv586G42Bnqyx6NG1/Qy1sLu3c7\nQ/3GjbBhg+fPrCzo2BE6d3Z+WVD2Z506fnpvIiIiIkFIMRupGtbCli2eSM7ixdCkiWfVvl8/Z5nd\nTwoKYP16WLfOeXz9tfNITHQG+7JH165OZEe5fBEREakONMxLYJSUwOrVzmC/YAGsWgVduniG++7d\nIdy/ia7SUiem8/XXzoC/di18+SUcPgzdujlfsuzRpInn85RTFF+oX8Rb6hXxhfpFvKXMvARGrVqe\nyfmhh5yrYj/91Bns777bmbrT053BfvBgaN/+gpfPw8KcVfjWreHqqz0f37vX+Vli1Sr4xz/gjjuc\nHXfKyqtdG1JTA3OxrYiIiEhV08q8VL39+2HhQk8sBzxZ+4EDnT0rq4i1zs8SZQP+qlXw1VfORbV9\n+kDv3s6fbdooniMiIiLBRTEbCT7WwubNnkhORga0aOFZtU9Lg9jYKi2huNiJ53z2GXz+ufPnsWOe\nwb53byd/HxlZpWWIiIiInJWGeQl+x487YfeyVfvVq53Qe9lw37WrX/elPFNOcedOz2D/+efOLjqp\nqc5w368fXHGFc8Gt1CzKtYq31CviC/WLeEuZeQl+4eHQq5fzeOQRZ+uapUud4f6OO5z9KtPTPRfT\ntm1bJXmYFi2cxy9+4RwXFMDKlU70//nnnY9fdJEz2Pfr5/wCITnZ72WIiIiI+MSVlXljzCRgHHDg\nxIcetNbOreS8JOCfwCWABW631i6v5DytzFdXe/c6efuy/e0jIjyr9gMGQP36ASmjqMjJ2y9Z4iSD\nli93fq5IT3eG+759te+9iIiI+FfQxmyMMROBfGvt8+c4701gibX2NWNMOBBrrc2t5DwN8zWBtU7+\npSySs2SJc+Vq2cW0aWkQHR2QUo4dc9JBS5Y4j88/h1atnMG+bMCvWzcgpYiIiEg1FezDfIG19rmz\nnJMIrLHWtvbi9TTM10TFxU4Wpmy4X7cOevTwRHK6dDktb19VOcXiYifun5HhPD77zNmBs+znjD59\nAvZzhviRcq3iLfWK+EL9It7yZpgPC1QxlbjXGLPOGDPlRJymolbAAWPM68aY1caYycaYmEAXKUEs\nIsKZkidOdMLtu3fDhAmwZw+MGQMNGsD118Mrr8DWrVVeSs+e8MADMGcOZGXBn//s7IgzcaJTyqBB\n8PTTTlynpKRKyxEREZEaospW5o0x84FGlTz1MLAcT17+CaCxtfaOCp/fDfgC6G2tXWWMeQHIs9Y+\nVsnXsmPGjCElJQWApKQkUlNTy3/qzcjIANBxTTtu1w4WLiTj7bfhyy9JT0qCwYPJaNwYunQhfdSo\ngNVTWAilpeksWAAffZRBVhZceWU6gwZBfHwGTZtC//5B9v3TsY51rGMd61jHAT1eu3YtOTk5AGzf\nvp0333wzOGM2pxRgTAow01p7aYWPNwK+sNa2OnF8BfD/rLUjKnkNxWzk7KyF777z7G+/bBm0a+eJ\n5PTpA1FRASsnMxMWLXJKWbDAuaNtWSRn0CBnJV9ERERqtqCN2RhjGp90eA3wTcVzrLV7gV3GmPYn\nPjQI+DYA5Ul1ZAxccgkZqakwaxYcOODkYCIi4NFHnV1xrrwSnn0W1qyB0tIqLadJExg9Gt54A3bt\ngnnznC31//UvJ2vfrZuzU+eyZU4eX9xRtmoici7qFfGF+kX8ya195p8xxqTibDe5DbgTwBjTBJhs\nrR1+4rx7gXeMMbWBLcBtbhQr1VDt2s7uN2lp8PjjkJsLGRnOMvmNN8LBgzBwoGcbzJYtq6wUY6BD\nB+fxm984w/sXX8DcuTB+PGzb5uzCOWQI/PSnzn74IiIiIhAEMRt/UMxG/G7XLk8GZsECSEjwDPb9\n+wf0jlH79jkr93PnOn/Wr+8M9kOGBHQ3ThEREQmwoN2a0t80zEuVKi2F9es9W2B+9hl07OgZ7i+/\n3Nm2JkClrF7tDPZz5zq7cV5xhWe4b9++Sm6QKyIiIi7QMC9SQUZGRvlV4+etqMjJwZQN999/71xA\nW3b16qWXOle0BkBOjnOD3LLhvlYtz2A/aBDExQWkjGrLL/0iNYJ6RXyhfhFvBe0FsCIhLTIS0tPh\nySdhxQrYsQN+9SvYssXZ175xY7jpJnj9dSeuU4WSkuC662DyZNi5E2bPdlbn//Y3p4wrr4QXX4Qf\nfqjSMkRERMQlWpkX8bcdOzyr9gsXQt26nlX7/v0hMTEgZeTnOyXMng0ff+zE/ocPdx5pac41wCIi\nIhK8FLMRcVtpqRNsL7uQ9vPP4Sc/8exv36tXQKbq0lJnx83Zs53Hxo3OZj3Dh8OwYdCostu7iYiI\niKs0zItU4HpO8ehRZ6Avu3nVpk3OFaxlw/0llwTkCtb9+2HOHGewnz8f2rTxrNp36xawyH/Qc71f\nJGSoV8QX6hfxljLzIsEmKsrZNP7pp2HVKti6FW67zbmIdtQo525St9wCb74Ju3dXWRkNGsCYMc5N\nqvbvhz/9CQ4fhrFjnaz92LEwfbqz/b6IiIgEL63MiwSTrVs9kZyFC6FhQ8+qfXo6xMdXeQnbtnni\nOJ9+6qzUl63ad+igrS9FREQCRTEbkVBWUgJr13oiOStWQOfOnv3te/SAiIgqLaGwEBYtcgb7WbOc\nG1SNGuU8evd2tsIUERGRqqFhXqSCkM4pHjniLJWX7ZSzdSv07esZ7qt42dxa54ZVM2Y4j8xMGDnS\nGewHD4aYmCr70q4J6X6RgFKviC/UL+ItZeZFqpPoaGdqfuYZZ6revBluvhm++QaGDoVmzZwg/Ntv\nw549fv/yxkDXrvD4484GPStXOr8oePFFZzecUaPgtdecDL6IiIgEhlbmRaoDa52bVpWt2i9eDE2b\nelbt+/at0tvBHjrk7GU/YwbMm+fcBLcsjtO+fZV9WRERkWpNMRuRmqqkBL76yjPcf/klXHaZ5+ZV\n3btDeHiVfOmjR52fJf7zH/joI+cutWWDfc+e2vZSRETEWxrmRSqosTnFwkJYtsyzU86OHdCvn2en\nnPbtqyRvX1rq7MA5Y4Yz2GdleXL2Awc6yaFgVmP7RXymXhFfqF/EW8rMi4gjNhaGDHE2lF+7FjZs\ngBtucFbvBw2Cli3h9tth2jS/ht7DwpzV+D/8Adavd67f7dABnn3Wydlfe62zpf7Bg377kiIiIjWK\nVuZFajprnTvRlkVyMjKc4b5s1b5v3yrZqiYry9nucsYMZ0v9Ll08cZw2bfz+5UREREKOYjYi4rvj\nx52Mfdn+9qtXO3eOKhvuu3b1+wbzR444X2rGDJg5E+rXd4b6q692vpxy9iIiUhNpmBepQDnF81BQ\nAEuXeob73buhf3/PTjlt2vg1b19S4twfq2w/+/x8uOoqZ7jv3x8iI/32pc5J/SLeUq+IL9Qv4i1l\n5kXkwsXFwbBh8Oc/O3vaf/stXHONM3H36wetWsEvfwnvv+9kZy5QrVrO3WWfecaJ9i9a5HyJJ56A\nhg3h5z+Hd96B7Gw/vDcREZEQp5V5ETl/1joTd9mq/ZIlzkp92ar9FVf4dcuaffs8OfuMDGeHzbKc\nfcuWfvsyIiIiQUExGxEJrOJi59awZRfTrlvnbGdTNtynpvotb19Y6HyJGTOcAb9pU89g36VLley0\nKSIiElAa5kUqUE4xwPLynNX6suF+/34YMMBz86rWrf3yZUpK4PPPPTn7oiJPzr5fP6hd+/xeV/0i\n3lKviC/UL+ItZeZFxF0JCc5dol58Eb77zlmpHz7cuYFVnz5OJOfOO+GDDy5os/latSAtzdlGf9Mm\nmDvXWal/9FEnZ3/TTU6kPy/Pj+9NREQkCGhlXkTcYa1zMW3Zqv2yZc6daMu2wOzTB6KiLvjL7Nnj\nbHf5n/84N626/HJnxX7kSGje3A/vQ0REpIooZiMioePYMVi+3DPcr1/vTN5lw33nzhe84Xx+Pnzy\niRPF+fhjZ5ecspz9pZcqZy8iIsFFw7xIBcophpDcXGfLmrKdcg4ehIEDPcP9BW5fc/y488uAspw9\neAb7tDQID1e/iPfUK+IL9Yt4S5l5EQldiYnOZP23vznbX371Ffz0p7BwobMnZfv28Otfw4cfntem\n8+Hhzk2oXngBtm51Bvq6deG//9vJ2d9yi3Ptbn5+Fbw3ERERP9HKvIiEntJSJ4ZTtmr/2WfQsaNn\n1f7yyy/oVrE//ggffeQM+F984WyXP2qUs0NO48Z+fB8iIiJnoZiNiNQMRUXO1F023H//vXMBbdn+\n9hcQiM/NdXbHmTHD+bNdO08c5+KLlbMXEZGqo2FepALlFGuI7GxYvNhzMW1enmdv+0GDvN7GpmK/\nHDsGS5d6cva1aztD/dVXQ+/efrsfloQg/dsivlC/iLeUmReRmik5Ga69Fv7+d9i8GVascALyn3wC\nl10GHTrAPfc4E3lurtcvW7u287PAX/8KO3bA9OkQHw+//S00agS33eZsgVlYWIXvTURE5CRamReR\nmqW01Ll5VVkk54svnBhOWSSnZ8/zumXsjh2enP3KlZCe7tnPvkED/78NERGp/hSzERE5l6NHnQto\nyyI5mzY5e1OWXUx7ySU+B+Ozs2HOHGew/+QT5yXKcvYXXVRF70NERKodDfMiFSinKOd08CAsWgQL\nFpDx0Uekg2fVfuBAaNrUp5crKnK2y58xw1m5j4vzDPY9eypnX13o3xbxhfpFvBW0mXljzCRjzI/G\nmDUnHkPOcN6DxphvjTHfGGOmGWPOf685ERFv1K0L118Pr7wC777rrNqnpcHMmdCpk7PMPn48zJrl\n1Sb0kZHO9vh//zvs2gVvv+2keO66C5o0gXHjnJc+ciQA701ERKodV1bmjTETgXxr7fNnOScFWAR0\ntNYWGWPeBz621r5ZyblamReRqldSAmvWeCI5K1dC586eSE6PHhAR4fXLbd3qydmvXg0DBjgr9iNG\nQL16Vfg+REQkJARtzObEMF9grX3uLOfUAb4AegH5wL+BF621Cyo5V8O8iATe4cPOyn3ZxbRbt0Lf\nvp7hvkMHr/P2Bw/C7NnOYL9ggfMzQlkcp23bKn4fIiISlII2ZnPCvcaYdcaYKcaYpIpPWmsPAc8B\nO4FMIKeyQV7EFxkZGW6XICHknP0SE+MM7s8+6yytb94MN9/s7JYzZIizn/3YsU62Zu/es75U3bpw\n663wf/8H+/bBAw/Axo1OwueSS+Dhh51fBJSW+u3tiR/p3xbxhfpF/KnKhnljzPwTWfeKj6uAl4FW\nQCqwB2dor/j5bYD7gBSgCRBnjLm5quoVEblg9evDDTfAP/8J27c7N67q2RP+/W/ndrGXXgq/+x18\n/DEUFJzxZaKiYPhwePVV2L0bpkxxhvixY6FZMydvP2eOc3GtiIjUbK7vZnMiGz/TWntphY/fAAy2\n1o47cXwL0Mta+5tKXsOOGTOGlJQUAJKSkkhNTS2/UrzsJ2Ad61jHOnbtOC0NvvqKjFdega++In3L\nFrjsMjLatIFu3Uj/1a8gPPycr/f22xl89hmsX5/ON99A584Z9OkDv/99OnXqBNH71bGOdaxjHft8\nvHbtWnJycgDYvn07b775ZtBm5htba/ec+PsEoLu19qYK53QG3gG6A0eBN4CV1tqXKnk9ZeZFJLQU\nFsKyZZ68/c6dkJ7u2QazXbtz5u0PHPDk7Bctcm5ue9VVTs6+devAvA0REak6wXwB7FSciI0FtgF3\nWmv3GWOaAJOttcNPnHc/MAYoBVYD46y1xZW8noZ58UpGRkb5T8Ai5xLQftm3DxYu9OyUY4znQtqB\nA895G9kjR5xPnzHD2eqyfn3PYN+tG4SFBeZt1FT6t0V8oX4Rb3kzzIcHqpiTWWtvPcPHM4HhJx0/\nCzwbqLpERFzTsCHcdJPzsNa5E+38+fD++3D33ZCS4lm1T0tzLr49SXS0s6XliBFOvn7lSmewHzsW\ncnJg5EhnsB8wwMnki4hI9eB6Zt4ftDIvItXa8eOwapVn1X7NGuje3RnuBw2Crl3PeivZzZud/ew/\n+gjWrnU+ZdQoGDZM+9mLiASzoI3Z+JuGeRGpUQoKYMkSz3CfmQn9+3tiOW3anDFvn5Xl5Ow/+sj5\n9NRUTxxH+9mLiAQXDfMiFSinKL4ImX7Zs8cJzJddTFu7tieSM2DAGZffjx51Pq1s1b5OHc9g36OH\ncva+CJlekaCgfhFvBftNo0RExB8aN4bRo+HNN+HHH52l90svhbfeclbpL7vMuQvV/PnOlbInlO1n\n/8orzn72r73mDPDjxkGTJvDLX8KsWad8ioiIBBmtzIuIVGfFxbBihbNiv2CBc3fanj09kZwuXSpd\ngt+yxVmtnzHDiegPGOCs2A8f7uyUIyIiVU8xGxEROVVenpO3L4vk7N/vTOplsZxWrU77lIMHnZvW\nzpjhfFqnTs5gf9VV0L69C+9BRKSG0DAvUoFyiuKLGtEvu3d7Vu0XLHC2vCxbtR8wwAnSn+ToUVi8\n2BnsP/oIEhM9g33PnmfdVKdaqxG9In6jfhFvKTMvIiJn17QpjBnj5OszM50p/aKL4PXXnb3tu3eH\nhx5ybjF79ChRUTB0KPzjH048f+pUCA+Hu+5ycvZ33OEM+YcPu/3GRERqBq3Mi4hI5Y4dg+XLPZGc\n9euhd29PJKdTp1Py9lu3enL2X30F/fo5N6saMcIZ9EVExDeK2YiIiP/k5EBGhmd/++xsGDjQc/Oq\nli3LT83OhrlzYeZM58/WrZ3BfuRI55rbM2yDLyIiJ9EwL1KBcoriC/XLOezceWrePinJs2rfv79z\njLOhzmefOYP9zJlOBGfECGewHzAAoqNdfh9+oF4RX6hfxFvKzIuISNVp0QJuvx2mTYO9e2H6dGdf\n+1decZ7r1QseeYSIzzJIv7yI556DTZucG1W1bQvPPgsNGzoX0P7zn869r0RExDdamRcREf8rKoLP\nP/dEcjZsgD59PDvlXHopGMOhQzBnjrNi/8kn0K6dJ47TubPiOCJSsylmIyIiweHQIWdPy7JITn6+\nk7cvG+6bNaO4GJYt88Rxjh3zxHH693fuWCsiUpMoZiNSQUZGhtslSAhRv/hRnTpw3XXw8suwebOz\nS07//s6yfGoqdOhAxO/uZUD+DP48KZfNm50LZ1u2hKeecuI411wDr70G+/a5/WZOp14RX6hfxJ80\nzIuISOClpMC4cfD++85daN99F5o3h5degmbNMH16c/H7E3mg9zI+XVzMli3OMD9njrMNfq9ezpD/\n9degX8yKSE2mmI2IiASXI0ecvH3Z/vabN0NaWvlOOcfaXsySpaY8jlNa6snZp6dDZKTbb0BExD+U\nmRcRkdCXleXk7efPdx5FReV729uBg/g2u0n5YP/tt85TI0fCsGHQoIHbxYuInD9l5kUqUE5RfKF+\nCRL16sH118Orr8K2bfDpp87OODNnYjpdyk9uuIQH993H5w/NYvOaAkaOdAb79u2hZ0944glYvbpq\n43dW2I8AACAASURBVDjqFfGF+kX8ScO8iIiEltat4c47nX3t9++HN990rpD9859p0LkxY6ek8X+d\n/of9M77gD48f59Ah+MUvoGlTJ6b/7387m+mIiFQHitmIiEj1cfiws3Jftr/9tm3Qrx8MGsTmtkOZ\nvaENsz82LF8Ol18Ow4c7j7Zt3S5cROR0ysyLiEjNduCAc8vZsuG+pAQGDSL/iqHMN1cy+/NkPv4Y\nEhI8g31aGtSu7XbhIiIa5kVOk5GRQXp6uttlSIhQv1Qz1sIPP3gG+8WLoXlzSgcOZk2ra5m9vzuz\n59dm40bnItrhw52LaBs2PPdLq1fEF+oX8ZYugBURESljDLRrB3ffDR9+6KzaT55MWL06dP3wYR57\noQ4rovqx8a4/M6LjFj6eXcpFF0H37vA//wNffulsgykiEky0Mi8iIgJQWAhLlzor9wsWwM6dFPcd\nyKetRjM7vy+zPksmJ8cwbJizaj94sBPPERGpKorZiIiInK+9e2HRIs/+9rVqsaXHjcyOuZ7ZO3/C\n519G0qMHjBjhDPft27tdsIhUNxrmRSpQTlF8oX6RctbCxo2evP2SJRQ078jCtncy6+gg/r1yE8l1\nBjB8uDPc9+2ri2jlzPRvi3jLm2E+PFDFiIiIhCxjoEMH53HPPXD8OHGrVjFq/nxGLbiJmw6vIqn1\nLcz+9mYeXdiV73fFMmCAYehQGDoUmjVz+w2ISHWllXkREZELlZ/v5O3nz4cFCziw+xhz297DHIby\nyQ+tado8jKFDneG+Tx+IiHC7YBEJBYrZiIiIuCEzs3x/+5J5C1lJD+Y0vp05ub3ZnJXEwEFh5av2\nTZu6XayIBCsN8yIVKKcovlC/iLfO2ivWwvffl6/a78v4nk/q3sSc6GuZt/timrYMZ9hwZ7jv3Vur\n9jWB/m0RbykzLyIi4jZj4OKLncf48TQsLubWFSu4dcF/KJl3LyvX1mbOv27jv94eyA+59Rk4uBZD\nhxmt2ouIV7QyLyIi4qa8PMjIcFbt56zmk72dmJN8M/MOdaVZc8PQUZFatRepoRSzERERCTU//ggL\nFnB83iJWzj3EHIYwp9ZIthxpzMABMHRUbYYM0aq9SE2gYV6kAuUUxRfqF/FWlfWKtbB+vbNqP2sV\ncz9PYE7Mtcw/fAXNmpQw7Npoho4M5/LLtWofSvRvi3jLm2E+LFDFVGSMudcY870xZr0x5pkznDPE\nGLPBGLPZGPNAoGsUERFxlTFw6aUwYQINF05jTO5feO/DSPb97hlejvod4S8+x4QRm2mQeJSfDcph\nyuRSMjPdLlpEAsmVlXljTH/gIWCYtbbYGFPfWnugwjm1gI3AIGA3sAq40Vr7fSWvp5V5ERGpeXJy\nICODvTNW8MmcUubk9GKeHUzzBkX8dHgEP70+gSuugMhItwsVkfMRtDEb8//Zu/PwqOrz7+OfezKT\njTUQ9sWwuhaDAiIIBBSluLV1r6i4VGurRfpr9XGFVq1tbfv42FoXigsuqGirVYqi7LSCG1hXVDQg\nIMgOISSZSb7PH8T8IIQwh0w4M2fer+vK1XxnTs7cM7mx95x85hyzZyU94JybXc82x0ua4JwbVb3+\nP5LknPttHdsyzAMAsHKlYq/O0lvTivXqv5vq1aqT9GHlYRraZ6tOObe5Tvlernr12nXAH0DyS+aY\nTS9JQ81skZnNNbN+dWzTSdJXu61XVd8GHLC5c+f6XQJSCP2CeCVNr3TtqvCPLtXxM3+lidv/R28s\nCqn4lsm6ODZZS29+TsOP+kY9Wm3S1Weu0QvTotq2ze+C01PS9AsCodHOM29mr0lqX8ddN1c/bp5z\nbqCZ9Zf0rKTutbbzdKh97NixKigokCS1bNlShYWFNR8u+fYfDWvWrFmzZt0Y628lSz1FRUVSKKS5\nmzdLQ4/SubcV6dyyMs356/0qnrVcm5b01F+n99EFrkK9223XeWcP0SkXt9PWbfMUCiVJ/QFefytZ\n6mGdPOulS5dqy5YtkqTi4mLFw6+YzQxJv3XOzatefy7pOOfcxt22GShp4m4xmxslVTnn9vqwLDEb\nAAA82rRJpa/M17wnV+nVfzfRKyUnaFO4rU7uu0GnnJ+nk89vpXbt/C4SSG/JnJm/SlJH59wEM+st\n6XXnXNda24S16wOwJ0paI+lN8QFYAAAax5dfasUzi/Tqc9v1yvsdNTs2VN1bb9UpQ8t0yqUdNWhk\nE2Vm+l0kkF6SOTP/sKTuZva+pKmSLpYkM+toZtMlyTkXk3SNpFclfSTpmboGecCL2n/iBOpDvyBe\ngeiVbt10yP+5QFe+faX+vnO01v/nc9171jxlvPOmfnnGJ2qTW6IzD/1Ef/2fz7X8k6jf1aa0QPQL\nkkajZebr45yLSrqojtvXSDp1t/UMSTMOYmkAACAUUuS4Y3TCccfoBEl37Nyp9dPf1GtT1ujVR5vp\n1/+3mZrlVOqUY9brlPNbavjFXdW0GafIAfzAFWABAIAnbv0G/ffRd/XKtO169f0Oequ8j/q3XamT\nh5Zp5GVd1PfkNgr59bd/IECSNjOfaAzzAAD4p+S/X2jOg5/qtVer9NqXPbXB8nVij2KdPCpDI3/c\nQ10Ob+p3iUBKSubMPOALcorwgn5BvNK9V5r26a7T7xulez8frY8reujdF77SyUd9rZlPb9IxR5Tp\nsNwV+tnAxXrp9x9r++aY3+X6Lt37BYnFMA8AABInI0NdTjtalz1/qp5eN1zrtufqqbvXqGPmRt1z\n+zZ1bLVTQ1t/qNtPXaRFTxcrFuUv60BDELMBAAAHTWnxN5r/wEd67eVyvfZpV62KddDwrp/r5BGV\nGvnjHuo+IN/vEoGkQWYeAAAkL+f09X++1OsPfaHX5oT12qrDlBuJ6uTDvtLI07M14upD1bJTE7+r\nBHxDZh6ohZwivKBfEC965QCZqcPg7rrosZM0ZWWR1pTn64WHN6tXxx166K8xde1cqeObf6jbhi/Q\nwgc/VHRnMPL29AsSiWEeAAAkBYuE9Z0L++jnM0bqlU0D9M36kO68sUQVJRUad50pP7dUZ3R4S385\nd76WvVosV8Vf5QFiNgAAICWs/2CdZj3wmV6bWaWZX/RUSFU6qfuXOnFkSCOu6qX2fdr6XSKQUGTm\nAQBAILkqp2UzvtDrj67SrH9nae7aw9Q5c71OPHyNTjwtR8OuOkzNOzf3u0ygQcjMA7WQU4QX9Avi\nRa8cfBYyHXZqD10zbZj+sWag1pc21eT7K9SurdM994XVqYtpULP3deuQuZr3/5aqfFu53yXXoF+Q\nSAzzAAAg5YWzwxpw6ZG68dUizdp0jL7ZGNbtt0UVi0m/vDmi/BYVGpX/tu4+da7effJjVcWq/C4Z\nSAhiNgAAIPA2f7lFcx/4RLNmlOv1ZV20IdpCwzt+qhOHRnXS5Yeox/CuslC9aQbgoCMzDwAAUIdV\nb32t2ZOW6/VZ0qziHgpbpU7s/qVO4sO0SCJk5oFayCnCC/oF8aJXUk/n/h108UMnaMryE7Qq2l6v\n/rNCxxxdpWn/yNDhhZk6KvszXdd3nl669U1tW7UtoY9NvyCRGOYBAEBas5DpsNHd9/gw7cPVH6b9\nf/eF1bFLKGk/TAsQswEAAKjHzk079Z/JH+v1v2/TrPfb6OMdXTWo9TKddFyJTvxhOxWed6hCYY6P\nIvHIzAMAACRY7Q/Tro+21ND2n2rEoHINv7CjjjyzJx+mRUKQmQdqIacIL+gXxIteSS953Vrq+78b\nqL/8d5g+Ke+u99+u0Dnfr9R774d05rmZahfeoPO6/kcP/HC+ls34Qq5qzwOO9AsSKex3AQAAAKms\n4zHt9cNj2uuH1esV/16lOY9Uac6ckH7zbJYq3VoN7/qFhg+r0ojLCvwsFQFEzAYAAKCRuCqn5XNW\nas5jKzRnfoZmf9VL2Vah4d2+1IgTTcMv76HO/Tv4XSaSFJl5AACAJOKqnD751xea88QqzVmYqTlr\neisvvF0jeqzU8JFhDb+yl9od1cbvMpEkyMwDtZBThBf0C+JFryBeFjKta/qVfvL0ME1bdby+qcjT\n809V6IjDnaZOy9BhfSI6MvtzXdNnnp7/5Rva+Nkmv0tGkmOYBwAA8EkoHFKfs3tr3N+H6cWvj9OG\nsmaa8reoDuniNPmxsLr3zlBhzjKNP2bXBay2rtzqd8lIMsRsAAAAklS0NKp3nlqm2c9u0Jx3mmnR\npt46LPcrjTjqGw0/vakGX3aomnVs5neZaCRk5gEAAAKkfFu5Fj/2ieb8fbPmLGmpt7f21JFNijXs\niA0qOrWJTrj8UDXv3NzvMpEgZOaBWsi1wgv6BfGiV+BFQ/olq3mWhl57tCbMKdLcLYXasDms398Z\nU9Om0h/uCatTF1O/Jh/pF/3m6qVb39SWFcRygo5hHgAAIEVlt8zWsHGFum12kWZv7qsNWzN1z90x\ntWwp3fvXDHUpCKlv7icaf8w8vXDjYm1avtnvkpFgxGwAAAACqqKkQm8/uUzz/r5R895pqv9s7K1u\n2V9rWO+1GnZyloZe3kttDmvtd5nYBzLzAAAAqBEtjerdqcs07/kNmvd2Ey1c31tdsr7RsF5rNOyk\nTA27vCfnuU8iZOaBWsi1wgv6BfGiV+CFn/0SyY3ouMuP0vX/KtL0b/pr484mevShqLoXOD3+1K7z\n3B+etVw/PnK+pl77H61Zss63WhGfsN8FAAAAwB/h7LD6XXyE+l18hP5HUmVFpf77/FrNfaZKzzyX\noWvui6h1+EsN675KRSNCGnZpd3Xu38HvsrEbYjYAAACoU1WsSu///TPNe2at5i3K0ryve6lFxg4N\n67ZSRcNNwy4p0CGDOvldZmCRmQcAAEDCVMWq9NFLyzVv6hrN/U+m5q3pqdxQuYYVFGvoEKchF3RR\nr5MOkYXqnT8RJzLzQC3kWuEF/YJ40SvwIpX7JRQO6ajv99JPnx2maauO17pYvma8UK7jB1Rp9pyQ\nThodUYfIep3T5Q3de/Y8LXl6mSorKv0uO9B8zcyb2bWSfiKpUtJ059wNte7vImmKpLaSnKSHnHP3\nHvRCAQAAsBcLmQ4/rYcOP62HfixJzmnFv1dp/hOVWjDP9NeXIlp7QYkGtflUQ47ZoaHfa61+Fx6q\nrGaZfpceGL7FbMxsuKSbJI12zkXNrI1zbn2tbdpLau+cW2pmTSW9I+l7zrmPa21HzAYAACAJffPB\nN1r42HLNf71CC5a11bKdXXRsi8819DtbNGR0Mx0/9lA169DU7zKTUlJn5s3sWUkPOOdme/iZFyT9\n2Tk3q9btDPMAAAApYNuqbfrPo59qwYwSLfigpd7d1lOH567UkMPWa+jJ2Trh0l7K793K7zKTQrJn\n5ntJGmpmi8xsrpn1q29jMyuQ1FfS4oNQGwIqlXOKOPjoF8SLXoEX6d4vzTs316hb+unOfxdp/tZC\nbdgc1p9+F1V+qyo9MClDPQ7N0BHV57p/8qf/0cpFa/wuOak1ambezF6T1L6Ou26ufuw859xAM+sv\n6VlJ3fexn6aSnpM0zjlXUtc2Y8eOVUFBgSSpZcuWKiwsVFFRkaT//UfDmjVr1qxZN8b6W8lSD+vk\nXn8rWepJhvWQa45W5VFzNUglOmFgE/33+dV6+P539eAzEY2/v5dyQ6vUq80/1Ocopx/9/HQdekqB\n5s2flzT1J2q9dOlSbdmyRZJUXFysePgZs5kh6bfOuXnV688lHeec21hru4iklyXNcM7ds499EbMB\nAAAIIFfltGzGF1rw9Got+HdI81ceotKqHJ3Q4XMNHVCuM67rru7DuvhdZqNI9sz8VZI6OucmmFlv\nSa8757rW2sYkPSZpo3NufD37YpgHAABIE18tWq0Fjxdr/pyYTj0rR6ffPsDvkhpFsmfmH5bU3cze\nlzRV0sWSZGYdzWx69TaDJY2RNNzMllR/jfKnXARB7T9xAvWhXxAvegVe0C8N12VgJ/3wvsF64KNh\ngR3k4+Xbeeadc1FJF9Vx+xpJp1Z/v1Bc2AoAAACok28xm0QiZgMAAICgSfaYDQAAAIAGYJhHWiGn\nCC/oF8SLXoEX9AsSiWEeAAAASFFk5gEAAIAkRGYeAAAACDCGeaQVcorwgn5BvOgVeEG/IJEY5gEA\nAIAURWYeAAAASEJk5gEAAIAAY5hHWiGnCC/oF8SLXoEX9AsSiWEeAAAASFFk5gEAAIAkRGYeAAAA\nCDCGeaQVcorwgn5BvOgVeEG/IJEY5gEAAIAURWYeAAAASEJk5gEAAIAAY5hHWiGnCC/oF8SLXoEX\n9AsSiWEeAAAASFFk5gEAAIAkRGYeAAAACDCGeaQVcorwgn5BvOgVeEG/IJEY5gEAAIAURWYeAAAA\nSEJk5gEAAIAAY5hHWiGnCC/oF8SLXoEX9AsSiWEeAAAASFFk5gEAAIAkRGYeAAAACDCGeaQVcorw\ngn5BvOgVeEG/IJEY5gEAAIAURWYeAAAASEJk5gEAAIAA822YN7NrzexjM/vAzH5Xz3YZZrbEzF46\nmPUhmMgpwgv6BfGiV+AF/YJE8mWYN7Phks6Q1Mc5d5SkP9Sz+ThJH0kiR4MGW7p0qd8lIIXQL4gX\nvQIv6Bckkl9H5q+WdJdzLipJzrn1dW1kZp0ljZb0N0n15oWAeGzZssXvEpBC6BfEi16BF/QLEsmv\nYb6XpKFmtsjM5ppZv31s938l/VJS1cErDQAAAEgN4cbasZm9Jql9HXfdXP24ec65gWbWX9KzkrrX\n+vnTJH3jnFtiZkWNVSfSS3Fxsd8lIIXQL4gXvQIv6Bckki+npjSzGZJ+65ybV73+XNJxzrmNu23z\nG0kXSYpJypbUXNLzzrmL69gfeXoAAAAEzv5OTenXMH+VpI7OuQlm1lvS6865rvVsP0zSL5xzpx+0\nIgEAAIAk51dm/mFJ3c3sfUlTJV0sSWbW0cym7+NnOPoOAAAA7CYQV4AFAAAA0lFKXwHWzEaZ2Sdm\n9pmZ3eB3PUheZvawma2r/msQUC8z62Jmc8zsw+oL2/3M75qQnMws28wWm9lSM/vIzO7yuyYkNy6G\niXiZWbGZ/be6X97c53apemTezDIkLZN0kqTVkt6SdIFz7mNfC0NSMrMhkkokTXHOfcfvepDczKy9\npPbOuaVm1lTSO5K+x39fUBczy3XOlZpZWNJC7fqM10K/60JyMrOfSzpWUjPn3Bl+14PkZWZfSjrW\nObepvu1S+cj8AEmfO+eKqy8+9bSkM32uCUnKObdA0ma/60BqcM6tdc4trf6+RNLHkjr6WxWSlXOu\ntPrbTEkZkur9P16kLy6GiQOw3z5J5WG+k6Svdluvqr4NABLGzAok9ZW02N9KkKzMLGRmSyWtkzTH\nOfeR3zUhaXExTHjhJL1uZm+b2Y/2tVEqD/OpmQ8CkDKqIzbPSRpXfYQe2Itzrso5Vyips3Zd3bzI\n55KQhHa/GKY4Ko/4DHbO9ZX0XUk/rY4M7yWVh/nVkrrstu6iXUfnAaDBzCwi6XlJTzjnXvC7HiQ/\n59xWSdMl9fO7FiSlQZLOqM5BT5U0wsym+FwTkphz7uvq/10v6R/aFTHfSyoP829L6mVmBWaWKek8\nSf/0uSYAAWBmJmmypI+cc/f4XQ+Sl5nlm1nL6u9zJI2UtMTfqpCMnHM3Oee6OOe6STpf0uy6rmoP\nSLs+WG9mzaq/byLpZEl1npEvZYd551xM0jWSXpX0kaRnONME9sXMpkr6j6TeZvaVmV3qd01IaoMl\njZE0vPqUYEvMbJTfRSEpdZA0uzozv1jSS865WT7XhNRAXBj1aSdpwW7/bXnZOTezrg1T9tSUAAAA\nQLpL2SPzAAAAQLpjmAcAAABSFMM8AAAAkKIY5gEAAIAUxTAPAAAApCiGeQAAACBFMcwDAAAAKYph\nHgAAAEhRDPMAAABAimKYBwAAAFIUwzwAAACQohjmAQAAgBTFMA8AAACkKIZ5AAAAIEUxzAMAAAAp\nimEeAAAASFEM8wAAAECKYpgHAAAAUhTDPAAAAJCiGOYBAACAFMUwDwAAAKQohnkAAAAgRTHMAwAA\nACmKYR4AAABIUQzzAAAAQIpimAcAAABSFMM8AAAAkKIY5gEAAIAUxTAPAAAApCiGeQAAACBFMcwD\nAAAAKYphHgAAAEhRDPMAAABAimKYBwAAAFIUwzwAAACQohjmAQAAgBTFMA8AAACkKIZ5AAAAIEUx\nzAMAAAApimEeAAAASFEM8wAAAECKYpgHAAAAUhTDPAAAAJCiGOYBAACAFMUwDwAAAKQohnkAAAAg\nRTHMAwAAACmKYR4AAABIUQzzAAAAQIpimAcAAABSFMM8AAAAkKIY5gEAAIAUxTAPAAAApCiGeQAA\nACBFMcwDAAAAKYphHgAAAEhRDPMAAABAimKYBwAAAFIUwzwAAACQohjmAQAAgBTl2zBvZtlmttjM\nlprZR2Z21z62u9fMPjOz98ys78GuEwAAAEhWYb8e2DlXZmbDnXOlZhaWtNDMTnDOLfx2GzMbLamn\nc66XmR0n6X5JA/2qGQAAAEgmvsZsnHOl1d9mSsqQtKnWJmdIeqx628WSWppZu4NXIQAAAJC8fB3m\nzSxkZkslrZM0xzn3Ua1NOkn6arf1KkmdD1Z9AAAAQDLz+8h8lXOuULsG9KFmVlTHZlb7xxq9MAAA\nACAF+JaZ351zbquZTZfUT9Lc3e5aLanLbuvO1bftwcwY8AEAABA4zrnaB7b34Nswb2b5kmLOuS1m\nliNppKRf1drsn5KukfS0mQ2UtMU5t66u/TmX3vP8g2f+S++uzNeDSwb4XUpSmzhxoiZOnOh3GUgR\n9AviRa/AC/oF8TKrd46X5O+R+Q6SHjOzkHbFfR53zs0ys6skyTn3oHPuX2Y22sw+l7RD0qU+1pvU\nwhFTrHL/v3AAAAAEh5+npnxf0jF13P5grfU1B62oFBYOS7FKv6tIfsXFxX6XgBRCvyBe9Aq8oF+Q\nSFwBNiA4Mh+fwsJCv0tACqFfEC96BV7QL0gkC0LW3MxcEJ5HQzxz2av6+/x8PfP5sX6XAgAAgAQw\ns+T9ACwSiyPzAIBUFc+H/ICgO9AD08RsAiIcMcWq+I/h/sydO9fvEpBC6BfEi15pOOccX3yl7VdD\nMMwHBEfmAQAA0g/DfECEM0OKVfLr3J+ioiK/S0AKoV8QL3oFgF+Y/gKCmA0AAED6YZgPiHBmSLEq\nfp37Q64VXtAviBe9gnjMnTtXXbp02ef9Y8eO1a233noQK9q/J598UqecckrNOhQK6YsvvpAkXX31\n1brjjjsk7f+51WX3n8eB42w2AUHMBgCAg2vixIlavny5Hn/88YTsz8yS7sw+F154oS688MI677v/\n/vsbtO+G/jx2YfoLCI7Mx4dcK7ygXxAvegWJ0tAzm6SKqqoqv0sIDKa/gGCYBwCgcfzud79T586d\n1bx5cx122GGaPXu2XnnlFd1111165pln1KxZM/Xt21eS9Mgjj+iII45Q8+bN1aNHDz300EN77e+u\nu+5SmzZt1K1bNz311FP7fNyXX35ZhYWFysvL0+DBg/X+++/vc9tPPvlEI0eOVOvWrXXYYYdp2rRp\nNfdt3LhRZ5xxhlq0aKHjjjtOt956q4YMGSJJKi4uVigU2mO4Lioq0uTJkyVJjz76aM22tdUVC9rX\ncxs7dqyuvvpqjR49Wk2bNtWcOXP2+Pm6Hmf3SM/YsWP1k5/8RKNHj1azZs00ZMgQrV27VuPGjVNe\nXp4OP/xwLV26dJ+vT5Ax/QVEODOkmOPXuT/kWuEF/YJ40SvBtWzZMt133316++23tW3bNs2cOVMF\nBQUaNWqUbrrpJp1//vnavn27lixZIklq166dpk+frm3btumRRx7R+PHja+6TpLVr12rjxo1as2aN\nHnvsMV155ZX67LPP9nrcJUuW6PLLL9ekSZO0adMmXXXVVTrjjDNUUVGx17Y7duzQyJEjNWbMGK1f\nv15PP/20fvKTn+jjjz+WJP30pz9Vbm6u1q5dq4cffliPPPJIvXGeeOM+tber67l9+umnNfdPnTpV\nt956q0pKSnTCCSd4jhVNmzZNd955pzZs2KDMzEwNHDhQ/fv316ZNm3T22Wfr5z//edz7ChKmv4Dg\nyDwAAImXkZGh8vJyffjhh4pGo+ratau6d+8uSXVe8Gf06NHq1q2bJGno0KE6+eSTtWDBgj22uf32\n2xWJRDR06FCdeuqpeuaZZ2ru+3a4feihh3TVVVepf//+MjNdfPHFysrK0qJFi/aq8eWXX1a3bt10\nySWXKBQKqbCwUD/4wQ80bdo0VVZW6u9//7t+/etfKycnR0ceeaQuueSShMV5au+n9nN79tlna+77\n3ve+p+OPP16SlJWV5elxzEw/+MEP1LdvX2VlZen73/++mjRpojFjxsjMdO655+7xpimdMP0FRDgr\ng2E+DuRa4QX9gnjRKweBWcO/DkDPnj11zz33aOLEiWrXrp0uuOACff311/vcfsaMGRo4cKBat26t\nvLw8/etf/9LGjRtr7s/Ly1NOTk7N+pBDDqlzfytWrNAf//hH5eXl1XytWrVqn9suXrx4j22feuop\nrVu3Ths2bFAsFtvjTDNdu3Y9oNdif+p7bmbm+Ww3tbVt27bm++zs7D3WOTk5KikpadD+UxXTX0Bk\nZGYo5jL8LgMAgMbhXMO/DtAFF1ygBQsWaMWKFTIz3XDDDZK0V0SkvLxcZ511lq6//np988032rx5\ns0aPHr3H0evNmzertLS0Zr1ixQp17Nhxr8fs2rWrbr75Zm3evLnmq6SkROedd16d2w4bNmyPbbdv\n36777rtP+fn5CofDWrlyZc32u3/fpEkTSdqjprVr18b92uz+GsT73OrSpEmTA64h3THMB0Q4K0OV\nZOb3i1wrvKBfEC96Jbg+/fRTzZ49W+Xl5crKylJ2drYyMnYdPGvfvr2Ki4trhvWKigpVVFQoPz9f\noVBIM2bM0MyZM/fa54QJExSNRrVgwQJNnz5d55xzjqQ9Yzs/+tGP9MADD+jNN9+Uc047duzQOu06\nUgAAIABJREFU9OnT6zz6fNppp+nTTz/VE088oWg0qmg0qrfeekuffPKJMjIy9IMf/EATJ07Uzp07\n9dFHH2nKlCk1Q3ibNm3UqVMnPf7446qsrNTDDz+s5cuXx/Xa1BUzqu+51ffzRx99tD788EO99957\nKisr08SJE/faFnVj+guIXTEbjswDAJBI5eXluvHGG9WmTRt16NBBGzZs0F133SVJNYNq69at1a9f\nPzVr1kz33nuvzj33XLVq1UpTp07VmWeeucf+OnTooLy8PHXs2FEXXXSRHnzwQfXu3VvSnh8oPfbY\nYzVp0iRdc801atWqlXr16qUpU6bUWWPTpk01c+ZMPf300+rUqZM6dOigG2+8sebDsn/5y19UUlKi\n9u3b67LLLtOll166x3A8adIk3X333crPz9dHH32kwYMH19xX+0Oqtb/ffR3vc6vr53v37q3bbrtN\nJ510kg499FANGTKk3sfa1/7SkQXhnY6ZuSA8j4ZYO2+ZCk9srbWxfL9LAQDAEzPjyOtB9Oijj2ry\n5Ml7fTAX/tnXv4Hq2+t9l8KR+YAIZ5GZBwAASDcM8wERzg4rJob5/SHXCi/oF8SLXkEq8Xp+dyQ3\nhvmA4Mg8AACIxyWXXKL58+f7XQYShMx8QJR9sUYte7RSmcv2uxQAADwhM490R2Ye1TGbsN9lAAAA\n4CBimA+IjKywKhVuyDUx0gK5VnhBvyBe9AoAvzDMB4RFwspQTJWVflcCAACAg4XMfFCUliq7SUhb\ndmYrm9g8ACCFkJlHuiMzDykcVlgxxWJ+FwIAAJJRQUGBZs2aVed9c+fOVZcuXQ5yRQfXxIkTddFF\nF0mSiouLFQqFVFVVVee29b1WyYZhPigY5uNCrhVe0C+IF72CeBUVFWny5MkN3s/+htG6NNb55ceO\nHatQKKR//vOfe9w+fvx4hUIhPfbYYwl/zAPh5bmn0rn4GeaDIhTaNcxXxP+PGgAAHFyJHhCTIZ5k\nZurdu7emTJlSc1ssFtOzzz6rnj17Js1QnAyvVWNgmA+QsGKK7Yz6XUZSKyoq8rsEpBD6BfGiV4Kt\noKBAf/jDH9SnTx81a9ZMl19+udatW6fvfve7atGihUaOHKktW7bUbL9o0SINGjRIeXl5Kiws1Lx5\n8yRJN998sxYsWKBrrrlGzZo1089+9jNJ0rhx49S1a1e1aNFC/fr108KFC2v29eabb6pfv35q0aKF\n2rdvr1/84heSpKFDh0qSWrZsqWbNmmnx4sVavny5RowYofz8fLVp00ZjxozR1q1b93gub775po48\n8ki1atVKl112mcrLy+t8zmvWrNFZZ52ltm3bqnv37vrzn/9c72t0+umna+HChTWvwyuvvKKjjz5a\n7dq1qxmi66tv+fLlat26tZYsWVLz+G3bttX8+fM1Z84c9enTp+axRo4cqQEDBtSshwwZUvNXAa91\nx6O8vFzXXXedOnXqpE6dOmn8+PGqqKiouX/SpEnq1auXWrdurTPPPFNff/11zX2hUEh//vOf1aNH\nD7Vp00bXX3994t9UOOdS/mvX00AnrXJfLdvhdxkAAHiS7P8/XlBQ4I4//nj3zTffuNWrV7u2bdu6\nvn37uqVLl7qysjI3YsQI96tf/co559yqVatc69at3YwZM5xzzr322muudevWbsOGDc4554qKitzk\nyZP32P8TTzzhNm3a5CorK90f//hH1759e1deXu6cc27gwIHuiSeecM45t2PHDrdo0SLnnHPFxcXO\nzFxlZWXNfj7//HP3+uuvu4qKCrd+/Xo3dOhQd91119Xcf8ghh7jvfOc7btWqVW7Tpk1u8ODB7pZb\nbnHOOTdnzhzXuXNn55xzlZWV7phjjnG33367i0aj7osvvnDdu3d3r776ap2vz9ixY90tt9zirrzy\nSnf//fc755w755xz3NSpU90JJ5zgHnvssbjqmzRpkjviiCNcaWmpO/nkk90vf/lL55xzpaWlLjs7\n223cuNFVVFS4tm3bus6dO7uSkhJXWlrqcnJyal6/+uqeMGGCGzNmjHPOuS+//HKv16/273zWrFnO\nOeduvfVWd/zxx7v169e79evXu0GDBrlbb73VOefcrFmzXH5+vluyZIkrLy931157rRs6dGjNfszM\njRgxwm3evNmtXLnS9e7d2/3tb3/b6/H29W+g+vZ652COzAdI2GKKlRGarw+5VnhBvyBe9ErwXXvt\ntWrTpo06duyoIUOG6Pjjj9fRRx+trKwsff/73685ovzEE09o9OjRGjVqlCTppJNOUr9+/TR9+vSa\nfblaR2YvvPBC5eXlKRQK6ec//7nKy8u1bNkySVJmZqY+++wzbdiwQbm5uTruuOPq3Ick9ejRQyee\neKIikYjy8/M1fvz4mr8KSLviMNdcc406deqkvLw83XzzzZo6depe+3nrrbe0YcMG3XLLLQqHw+rW\nrZuuuOIKPf300/W+RhdffLGmTJmirVu3av78+fre977nqb4rrrhCPXv21IABA7Ru3TrdeeedkqSc\nnBz1799f8+bN0zvvvKPCwkINHjxYCxcu1KJFi9SrVy/l5eUdcN3789RTT+m2225Tfn6+8vPzNWHC\nBD3++OOSpCeffFKXX365CgsLlZmZqbvuuktvvPGGVq5cWfPzN9xwg1q2bKkuXbrouuuuq/M1bwgu\nGRogGValWDknmgcABE8iYtcNSTe0a9eu5vucnJw91tnZ2SopKZEkrVixQtOmTdNLL71Uc38sFtOI\nESNq1rUz5H/4wx/08MMPa82aNTIzbdu2TRs2bJAkTZ48WbfddpsOP/xwdevWTRMmTNCpp55aZ43r\n1q3TuHHjtHDhQm3fvl1VVVVq1arVHtvsfsaarl27as2aNXvtZ8WKFVqzZo3y8vJqbqusrKyJ9tTF\nzDR48GCtX79ed9xxh04//XRl1zpXdjz1XXHFFTrzzDM1adIkRSKRmtuHDRumuXPnqnPnzho2bJjy\n8vI0b948ZWVl1cTcDqTueKxZs0aHHHJIzXr31+3rr79Wv379au5r0qSJWrdurdWrV6tr166S4nvN\nG4Ij8wEStkpVVjDM14dcK7ygXxAveqXxOdfwr8TWU/cOu3btqosuukibN2+u+dq+fbuuv/56SXsP\n8gsWLNDdd9+tadOmacuWLdq8ebNatGhRs/+ePXvqqaee0vr163XDDTfo7LPP1s6dO+v8UOlNN92k\njIwMffDBB9q6dasef/zxvc52s/sR45UrV6pjx4577adLly7q1q3bHs9h27Ztevnll/f7uowZM0Z/\n+tOfdPHFF3uur6SkRNddd52uuOIKTZgwQZs3b665b9iwYZozZ47mz5+voqKimuF+3rx5GjZsWFx1\nH+gHcTt27Kji4uKa9cqVK9WpU6c679uxY4c2btxYc/+329f1s4nCMB8gYavkyDwAAD4aM2aMXnrp\nJc2cOVOVlZUqKyvT3LlztXr1akm7jvAvX768Zvvt27crHA4rPz9fFRUV+vWvf61t27bV3P/EE09o\n/fr1kqQWLVrIzBQKhdSmTRuFQqE99lVSUqImTZqoefPmWr16te6+++49anPO6b777tPq1au1adMm\n3XnnnTr//PP3eg4DBgxQs2bN9Pvf/147d+5UZWWlPvjgA7399tt1Pudvs9uS9LOf/Uyvv/66hgwZ\nstd2+6tv3LhxGjBggB566CGdeuqp+vGPf1xz36BBg7Rs2TK99dZbGjBggI444gitWLFCixcvrjny\nftxxx9Vb977egO3PBRdcoDvuuEMbNmzQhg0b9Otf/1pjxoypue+RRx7Re++9p/Lyct10000aOHBg\nzVF5addfXrZs2aKvvvpK9957r84777wDqmNfGOYDhGF+/8i1wgv6BfGiV9LP7kd5dz8neefOnfXi\niy/qN7/5jdq2bauuXbvqj3/8Y80gOW7cOD333HNq1aqVrrvuOo0aNUqjRo1S7969VVBQoJycnD0G\nwVdffVVHHXWUmjVrpvHjx+vpp59WVlaWcnNzdfPNN2vw4MFq1aqV3nzzTU2YMEHvvvuuWrRoodNP\nP11nnXXWXnVeeOGFOvnkk9WjRw/16tVLt9xyy17PKSMjQy+//LKWLl2q7t27q02bNrryyiv3eJNR\n+7X49mfz8vI0fPjwOrerr74XX3xRM2fO1P333y9J+tOf/qR33323Jl+em5urY489VkceeaTC4V0p\n8UGDBqmgoED5+fmSdp05pr66a587Pt4j9bfccov69eunPn36qE+fPurXr1/N63biiSfq9ttv11ln\nnaWOHTvqyy+/3Cujf+aZZ+rYY49V3759ddppp+myyy6L63HjZQf6LiWZmJkLwvNoqGOzPtBDz7bQ\nsWcG+wpuDTF37lz+HI640S+IF73SMPu6lD2Q6kKhkD7//HN179693u329W+g+vZ633VwZD5AwqFK\nxcq5aFR9+D9beEG/IF70CgC/MMwHSJiz2QAAACSNg3H1W4b5AAmHKhWr4Mh8fci1wgv6BfGiVwDU\npbKycr8Rm4ZimA+QcKiKYR4AACCNMMwHSNgY5veHXCu8oF8QL3oFgF8Y5gOEI/MAAADphWE+QMIZ\nDPP7Q64VXtAviBe9AsAvYb8LQOJwZB4AkKoOxlk/gCBimA+QcMgpFuWiG/Uh1wov6BfEi15pGC4Y\nBRw4YjYBQswGAAAgvTDMB0g45Bjm94NcK7ygXxAvegVe0C9IJIb5AAmHidkAAACkEwtCTs3MXBCe\nR0Nd1eN1HTO8ha76W3+/SwEAAEADmZmcc/V+Opwj8wGSkSGOzAMAAKQRhvkACWcQs9kfcorwgn5B\nvOgVeEG/IJEY5gMknOFUGWOYBwAASBdk5gPk+sKZat2tuW74x0C/SwEAAEADkZlPM5GwUzTqdxUA\nAAA4WBjmA4Rhfv/IKcIL+gXxolfgBf2CRGKYD5BI2ClGZh4AACBt+JaZN7MukqZIaivJSXrIOXdv\nrW2KJL0o6Yvqm553zt1Rx77IzEv6XdEMbazK0+/nk5kHAABIdfFk5sMHq5g6RCWNd84tNbOmkt4x\ns9eccx/X2m6ec+4MH+pLOZGIFC3xuwoAAAAcLL7FbJxza51zS6u/L5H0saSOdWxa77sR/K9IRIrG\n/K4iuZFThBf0C+JFr8AL+gWJlBSZeTMrkNRX0uJadzlJg8zsPTP7l5kdcbBrSyWRTFOMYR4AACBt\n+BmzkSRVR2yekzSu+gj97t6V1MU5V2pm35X0gqTede1n7NixKigokCS1bNlShYWFKioqkvS/74CD\nvg5HTNGoJU09ybguKipKqnpYJ/eafmHNmjVr1gdzvXTpUm3ZskWSVFxcrHj4etEoM4tIelnSDOfc\nPXFs/6WkY51zm2rdzgdgJT124UzNeqelpnwywO9SAAAA0EBJfdEoMzNJkyV9tK9B3szaVW8nMxug\nXW8+NtW1LXbFbKKVfMSgPt++CwbiQb8gXvQKvKBfkEh+xmwGSxoj6b9mtqT6tpskdZUk59yDks6W\ndLWZxSSVSjrfj0JTxa7MPMM8AABAuvA1ZpMoxGx2+ce1s/XYiy30wspj/S4FAAAADZTUMRsk3q6Y\nDb9SAACAdMHkFyCRrBDD/H6QU4QX9AviRa/AC/oFicTkFyCRrJBiDPMAAABpg8x8gMy/69+6+e6W\nWrDpSL9LAQAAQAORmU8zkewMRav4lQIAAKQLJr8A2ZWZz/C7jKRGThFe0C+IF70CL+gXJBLDfIBE\nsjMU48g8AABA2iAzHyAfPrlU51zRQh/t7OZ3KQAAAGggMvNpJpKdoagjZgMAAJAuGOYDJJITVrSK\nYb4+5BThBf2CeNEr8IJ+QSIxzAdIJCukGEfmAQAA0gaZ+QBZ++/lOnpYC62L5ftdCgAAABqIzHya\nieSEFXVhv8sAAADAQcIwHyAM8/tHThFe0C+IF70CL+gXJBLDfIBEcsJk5gEAANIImfkAia7bpJz2\nzRXj6DwAAEDKIzOfZsI5EVUqLN7XAAAApAeG+QCxzIjCiioa9buS5EVOEV7QL4gXvQIv6BckEsN8\nkEQiiiiqWMzvQgAAAHAwkJkPEufUPLRdX21qqhZ5vE8DAABIZWTm042ZIooqWkrOBgAAIB0wzAdM\nRDFFd5Kz2RdyivCCfkG86BV4Qb8gkRjmAyZiUcV2cmQeAAAgHZCZD5huGSs0640m6j4g3+9SAAAA\n0ABk5tNQxGKKllX6XQYAAAAOAob5gImEKsnM14OcIrygXxAvegVe0C9IJIb5gIlYTLEyhnkAAIB0\nQGY+YPrlfKD7H81V//O6+10KAAAAGoDMfBqKWCWZeQAAgDTBMB8wkVClouVVfpeRtMgpwgv6BfGi\nV+AF/YJEYpgPmEhGpWLlHJkHAABIB2TmA+aUvMUaf3MTjfrFUX6XAgAAgAYgM5+GIqEqMvMAAABp\ngmE+YCIZVWTm60FOEV7QL4gXvQIv6BckEsN8wEQyqhSrYJgHAABIB2TmA+aHnefr1LNzdOE9/f0u\nBQAAAA1AZj4NRcJVilbwxgYAACAdMMwHTCTDKUrMZp/IKcIL+gXxolfgBf2CRGKYD5hI2CnGkXkA\nAIC0QGY+YK49YpZ6HZ2rn0093u9SAAAA0ABk5tNQJOzIzAMAAKQJhvmAiUQY5utDThFe0C+IF70C\nL+gXJBLDfMBEwlIsxjAPAACQDsjMB8zEwa/JZefoV7NO8LsUAAAANACZ+TQUiUjRqN9VAAAA4GBg\nmA+YSESKxvyuInmRU4QX9AviRa/AC/oFicQwHzCZmVI0Wu9fYwAAABAQZOYD5q/ff00ffNlEf106\nyO9SAAAA0ABk5tNQJCJVxDgyDwAAkA4Y5gMmM8sUZZjfJ3KK8IJ+QbzoFXhBvyCRGOYDJjNLqojx\nawUAAEgHZOYD5rmfzNbU6c31/Ip+fpcCAACABiAzn4Yys0McmQcAAEgTTH0Bk5kdUrSSX+u+kFOE\nF/QL4kWvwAv6BYnE1BcwmdkhVTDMAwAApAUy8wGz4Pdv6MbfNtfCTUf6XQoAAAAaIKkz82bWxczm\nmNmHZvaBmf1sH9vda2afmdl7Ztb3YNeZajJzMojZAAAApAk/p76opPHOuSMlDZT0UzM7fPcNzGy0\npJ7OuV6SrpR0/8EvM7Vk5mSoojLD7zKSFjlFeEG/IF70CrygX5BIvg3zzrm1zrml1d+XSPpYUsda\nm50h6bHqbRZLamlm7Q5qoSkmkhNWRVXY7zIAAABwECRFHsPMCiT1lbS41l2dJH2123qVpM4Hp6rU\nlJkbVrSKI/P7UlRU5HcJSCH0C+JFr8AL+gWJ5Pswb2ZNJT0naVz1Efq9Nqm15pOu9cjMyeDIPAAA\nQJrwdeozs4ik5yU94Zx7oY5NVkvqstu6c/Vtexk7dqwKCgokSS1btlRhYWHNO99vs2npsI7kRrS9\ncrHmzm2VFPUk23r3nGIy1MM6udf0C+t419/eliz1sE7u9be3JUs9rJNnvXTpUm3ZskWSVFxcrHj4\ndmpKMzPtysNvdM6N38c2oyVd45wbbWYDJd3jnBtYx3acmrLa+rdX6Ijjmmp9ZWu/S0lKc+fOrflH\nA+wP/YJ40Svwgn5BvOI5NaWfw/wJkuZL+q/+Nzpzk6SukuSce7B6u79IGiVph6RLnXPv1rEvhvlq\nWz9eo65HNtXWquZ+lwIAAIAGSOphPpEY5v9X6Yr1al3QVDtdjt+lAAAAoAGS+qJRaByZTTNVoUy/\ny0hau+cVgf2hXxAvegVe0C9IJIb5gMnIyZSTqbLS70oAAADQ2IjZBE1lpbLCMW3dmaXsbL+LAQAA\nwIEiZpOOMjKUqQpV7OTQPAAAQNAxzAdQpioU3VHhdxlJiZwivKBfEC96BV7QL0gkhvkAilhMFTui\nfpcBAACARkZmPoC6ZqzSgrdydMgxXDgKAAAgVZGZT1OZFlV0Z8zvMgAAANDIGOYDKDMUU0Upw3xd\nyCnCC/oF8aJX4AX9gkRimA+giFUyzAMAAKQBMvMB1D/nA/31kRz1P7+H36UAAADgAJGZT1OZGcRs\nAAAA0gHDfABFQlVcNGofyCnCC/oF8aJX4AX9gkRimA+gzIxKRcsY5gEAAIKOzHwAnZa/SD++Llun\n3VLodykAAAA4QGTm01Qkg5gNAABAOmCYD6DMcJUqyvlLRV3IKcIL+gXxolfgBf2CRGKYD6DMcJWi\n5RyZBwAACDoy8wF0WY+5GjwiW5dPGuh3KQAAADhAZObTVGbYqaK8yu8yAAAA0MgY5gMoM+IUJTNf\nJ3KK8IJ+QbzoFXhBvyCRGOYDKBIRH4AFAABIA2TmA+jGAbPULD9TN/1riN+lAAAA4ACRmU9TmRGn\naIXfVQAAAKCxMcwHUGamVMEwXydyivCCfkG86BV4Qb8gkRjmAyiSaaqI+l0FAAAAGhuZ+QC65/RZ\nKv46U/e8TWYeAAAgVZGZT1OZWaaKinp/7wAAAAgAhvkAimSZKqIM83Uhpwgv6BfEi16BF/QLEolh\nPoAys0KKxhjmAQAAgo7MfABNvXq+XpyRqaeLB/pdCgAAAA4Qmfk0lZUTUnmMXy0AAEDQMfEFUFa2\nqTyW4XcZSYmcIrygXxAvegVe0C9IJIb5ANp1ZD7sdxkAAABoZGTmA2j+H97UTXfmauHmo/wuBQAA\nAAeIzHyaysrNUEUlMRsAAICgY5gPoKzcDJVXErOpCzlFeEG/IF70CrygX5BIDPMBlNUsk2EeAAAg\nDZCZD6AvXvlUJ56Rqy8rOvtdCgAAAA4Qmfk0ldU0ovKqiN9lAAAAoJExzAdQVrNMlVdl+l1GUiKn\nCC/oF8SLXoEX9AsSiWE+gLKaZarcMcwDAAAEHZn5AKpYv1VN2uYq6ojaAAAApCoy82kq0jRLMUVU\nVeV3JQAAAGhMDPMBZFmZylS5ysv4a0Vt5BThBf2CeNEr8IJ+QSIxzAdRKKQslatie7nflQAAAKAR\nkZkPqDahDfrw00y17dnc71IAAABwAOLJzHOZ0IDKsgqVb/e7CgAAADQmYjYBlWUVKi+J+l1G0iGn\nCC/oF8SLXoEX9AsSiSPzAZUViqq8hPdqAAAAQUZmPqD6Zn+syY9n6phzevhdCgAAAA4Amfk0lpUR\nVfkOjswDAAAEGdNeQGVlxFS+I+Z3GUmHnCK8oF8QL3oFXtAvSCSG+YDKyqhkmAcAAAi4hGXmzexH\nzrlJZtbPOfd2QnYa/2OTma/ltDaLdeVPwzpj4rF+lwIAAIADcLAz89vMzCRVJXCfOEBZ4UpV7Kz3\ndw8AAIAUl8iYzRuS7pVUGO8PmNnDZrbOzN7fx/1FZrbVzJZUf92SqGKDLitSpfJS3lfVRk4RXtAv\niBe9Ai/oFyTSAR+ZN7P/kTRaUntJL0qa4Jy71uNuHpH0Z0lT6tlmnnPujAOrMn1lRapUvpNhHgAA\nIMgacmR+mXPuRElHSZol6VavO3DOLZC0eT+bkRU5AFmRKpWX8TmC2oqKivwuASmEfkG86BV4Qb8g\nkRoyzLc3s9GSmjjnZkl6K0E17c5JGmRm75nZv8zsiEZ4jEDKynQqL+PIPAAAQJA1ZJjvIukISY+Y\n2WxJvzSzMWZ2Q2JKkyS9K6mLc+5o7YrjvJDAfQfarmHe7yqSDzlFeEG/IF70CrygX5BIDTmbzYuS\ncpxzf5AkM+shaZB25eh/l4Da5Jzbvtv3M8zsr2bWyjm3qfa2Y8eOVUFBgSSpZcuWKiwsrPkz1rf/\naNJp/fXOJWpa1j9p6mHNmjXrIK+/lSz1sE7u9beSpR7WybNeunSptmzZIkkqLi5WPOI+z7yZHSqp\nyjn32X626+Cc+zqune7avkDSS86579RxXztJ3zjnnJkNkPSsc66gju04z3wtd4yYrZ3RsO5cMNTv\nUgAAAHAAEn2e+eWSiszsZO06l/xbdV0cyuMgP1XSMEn5ZvaVpAmSItX7eVDS2ZKuNrOYpFJJ53uo\nN61lZUlbSvyuAgAAAI0pFO+GzrmYc+5159x9zrn7JYXM7Goz+6mZnWRmniM7zrkLnHMdnXOZzrku\nzrmHnXMPVg/yqn6so5xzhc65Qc65RV4fI11lZpnKKzgRUG21/8QJ1Id+QbzoFXhBvyCRDjgz75x7\nU9KbkmRmh0m63MwyJa2W9KpzbkdiSsSByMo2VUT9rgIAAACNKe7MfNw7NOsoaYhz7pmE7rj+xyQz\nX8sjl87TvIVhPfrZYL9LAQAAwAGIJzMfd8ymjp3/j5nNMrMPzew3ZvZt1n3NwRzkUbes7JDKowf8\n6wUAAEAKaMi01+ArwKLxZOUyzNeFnCK8oF8QL3oFXtAvSKSGTHsH4wqwOEBZORkqjzHMAwAABNkB\nZ+bN7FeStks6TlJr7fow7UOSOjnnEnLRKA+1kJmv5bXfvKXf/TFDr288xu9SAAAAcAAaNTOvXVeA\nfcM5d45zboSkSyWZdl0BFj7LahJWeawhF/gFAABAsjvgYd45965z7t+7rZc75x4XF3ZKCllNwiqv\nzPC7jKRDThFe0C+IF70CL+gXJFLCD916uQIsGk9207DKGOYBAAACLeHnmfcDmfm9LXv5M51+VkSf\nlhf4XQoAAAAOQGNn5pHEcppHVFaZ6XcZAAAAaEQM8wGV3TxTO12W32UkHXKK8IJ+QbzoFXhBvyCR\nGOYDKrtFlsqqGOYBAACCjMx8QEW37FBuXqaiLuJ3KQAAADgAZObTWLhptqoUUizKmxwAAICgYpgP\nKAtnKFtlKttW4XcpSYWcIrygXxAvegVe0C9IJIb5AMuxMpVtLfe7DAAAADQSMvMB1jljjd54M6wu\nx7b1uxQAAAB4FE9mPuFXgEXyyA5VqGxbld9lAAAAoJEQswmwnFAFmflayCnCC/oF8aJX4AX9gkTi\nyHyAZWdEtXMb8SMAAICgIjMfYEObL9Edv41o6E+O8rsUAAAAeERmPs1lhyu1c5vfVQAAAKCxkJkP\nsOxITGU7Kv0uI6mQU4QX9AviRa/AC/oFicSR+QDLiVSqrMTvKgAAANBYyMwH2CXdF2gQ7RqLAAAg\nAElEQVT4SRka+9Agv0sBAACAR2Tm01x2ZpXKSuv9/QMAACCFkZkPsJzsKpWVctGo3ZFThBf0C+JF\nr8AL+gWJxDAfYNlZTjt3Ej8CAAAIKjLzATZx2Bw5C+lXc4f5XQoAAAA8iiczz5H5AMvJcSor87sK\nAAAANBaG+QDLzglpZxkfgN0dOUV4Qb8gXvQKvKBfkEgM8wGWnWsqK2eYBwAACCoy8wE25UcL9Prs\nkKYsH+x3KQAAAPCI88ynuewmGdpZwZF5AACAoCJmE2DZTTJUFs3wu4ykQk4RXtAviBe9Ai/oFyQS\nR+YDLKdphsqiHJkHAAAIKjLzAbbgz0t14y0hLdzax+9SAAAA4BGZ+TSX3TxTZTG/qwAAAEBjITMf\nYDnNIyqrjPhdRlIhpwgv6BfEi16BF/QLEokj8wGW3TxTOyv9rgIAAACNhcx8gK1552v1G2BaU9ne\n71IAAADgEZn5NJebl6VSx6kpAQAAgorMfIDltspWqcvxu4ykQk4RXtAviBe9Ai/oFyQSw3yARZpl\nq0ohRcur/C4FAAAAjYDMfMA1t21atSZDzTs08bsUAAAAeBBPZp4j8wGXazu1Y2OZ32UAAACgETDM\nB1xuqFylmxjmv0VOEV7QL4gXvQIv6BckEmezCbjcjHKVbuI9GwAAQBCRmQ+4AU0+0J/vy9BxYw/3\nuxQAAAB4wHnmoSaRCpVu4VzzAAAAQUT+IuByIzGVbo36XUbSIKcIL+gXxItegRf0CxKJI/MBl5sZ\nU+k23rMBAAAEEZn5gLuk+wKNOCmkSx4a7HcpAAAA8IDMPJSbXaUd2/2uAgAAAI2B/EXA5eZUqbSk\nyu8ykgY5RXhBvyBe9Aq8oF+QSAzzAZebI5WW+l0FAAAAGoOvmXkze1jSqZK+cc59Zx/b3Cvpu5JK\nJY11zi2pYxsy8/tw1ylztHWb6bdvFPldCgAAADyIJzPv95H5RySN2tedZvb/27v3KLnKMlHjz9eX\npNPpTndXk4TcIGEEROUmF1kKEg8yg84RkUGRo6OoeFvi9Zwj4rBQZ+kwriNLQFTU4YioYxgdRBxR\nUCAKBwnXiAKJXNKQGyR0dXf6mr5954/dSTr3qqTSu6r381trr127elfVW8mbzvvt/e5vvxl4WYzx\ncOBDwLcnKrDJor4+0Ne/xxyQJElShUq1mI8x3gN07GGXs4EfjO27DGgOIcyeiNgmi+mNgb7+tMds\n5cM+RRXDfFGhzBUVw3xRKZV7lTcPWD1uew0wP6VYKlJ9Yw19m8v9r1mSJEn7ohKmptyxR2SXzfEX\nXnghCxcuBKC5uZnjjjuOxYsXA9tGwFncrm+s5vlNj7B06VBZxJP29uLFi8sqHrfLe9t8cdttt912\neyK3ly9fTmdnJwBtbW0UIvWbRoUQFgK/3NUFsCGE64ClMcYlY9srgNNjjC/usJ8XwO7GHf/yEP/n\nyip+2/7qtEORJElSESrhAti9uRV4D0AI4RSgc8dCXntW3zyFvqFKOAEzMbaMgqVCmC8qlLmiYpgv\nKqVUq7wQwk+A04GDQgirgS8AtQAxxu/EGG8LIbw5hPA00Au8L71oK1N9Uy19w85mI0mSNBml3mZT\nCrbZ7N6K257lrecEVg4uSjsUSZIkFaGQNhv7Lya5+lwdfaNpRyFJkqQDodx75rWfprfW0Tdal3YY\nZcM+RRXDfFGhzBUVw3xRKXlkfpKrb51Gnx1IkiRJk5I985NcHI1UV0eGNkeqp1SnHY4kSZIKNBmm\nptR+ClWB6fTSu7Ev7VAkSZJUYhbzGdBQ1UfPxv60wygL9imqGOaLCmWuqBjmi0rJnvkMaKzqo+cl\nW2wkSZImG3vmM+DV057ke9dXccL/ODLtUCRJklQg55kXAA1TNtPTbkeVJEnSZGOFlwENUwbpyQ+m\nHUZZsE9RxTBfVChzRcUwX1RKHpnPgIapw/R07vEMjSRJkiqQPfMZ8IEj/sBrXxf4wPdPSzsUSZIk\nFch55gVAw7RRursc7EiSJE02FvMZ0NAQ6dk0mnYYZcE+RRXDfFGhzBUVw3xRKVnMZ0BDA/T0ph2F\nJEmSSs2e+Qy49u2/Z8VKuPax09MORZIkSQVynnkB0DCjiu4+Z7ORJEmabGyzyYCG5hp6+h23gX2K\nKo75okKZKyqG+aJSssLLgIbcFHo224YkSZI02dgznwH3fusxLvkc/L9Nx6QdiiRJkgpkz7wAaJxZ\nR8+Qgx1JkqTJxp75DGg4qI7u4Wlph1EW7FNUMcwXFcpcUTHMF5WSR+YzoGFWPT0jHpmXJEmabOyZ\nz4Del/qZOTPSF+vTDkWSJEkFKqRn3mI+A+JopKZ6lMGBSPVUT8ZIkiRVgkKKeXvmMyBUBabTS/cL\nvWmHkjr7FFUM80WFMldUDPNFpWQxnxFN1T1sWm8xL0mSNJnYZpMRr5z6NEuWwNFve1naoUiSJKkA\nzjOvrZqm9NP14h5zQZIkSRXGNpuMaKoboGvD5rTDSJ19iiqG+aJCmSsqhvmiUvLIfEY0TRti08a0\no5AkSVIp2TOfER8+6g8c/2r4yI9fn3YokiRJKoA989qqqXGUro60o5AkSVIp2TOfETNmQFdX2lGk\nzz5FFcN8UaHMFRXDfFEpeWQ+I5qaAy9sSDsKKX0xwtAQDA8n6x0fj99euRKmT9+3zwkBamp2Xmpr\nd/18TQ1UVSWvkySpUPbMZ8SNH7qX3/4OfvjsqWmHIu3V6Cj09CRnk3a3dHdDX1+y9Pfv+XF/f7IM\nDcHIyPaF9ZZlV9tbCux9/Q4jI9sGBsPDe19GR7ePra5u+2Xq1J2f29PzW5bp06GhIVnvaqmvdxAh\nSeXInnlt1XRQLV19aUehLBodhfZ22LgxWV56KVm2PB7/3EsvQWdnUsjX10NT0/bLjBnbP25pSfar\nr4dp03Z+PP65urptRXq5Fq7jBwCDg7B5MwwM7Lzs7vnxP+vsTNZ9fdDbu+dlYCD5s9pb0b/l5zNm\nbL80Nu783NSp5fvnLEmTicV8RjTNmkpXf9pRpG/p0qUsXrw47TAmje5ueP55WLdu+2Xt2m2PX3gh\nKfZmzYKDDoKZM7etDz0UTjwx2d6yNDcn+1dXp/3tJj5fqqqSpbY2Ka4nyujorov+np5dP5fPQ1sb\nbNqU5MCmTdsv3d3JgKSQon/8c01Nyd//+GXKlIn7c9gf/m5RMcwXlZLFfEY0za6jazDtKFRpenvh\nuedg1aqkeGtr2/5xfz8ccgjMmwdz5ybL4YfD6adv254zJzlKq/JVVZUccW9oKN17Dg7uXOjvqvB/\n/vltjzs7kxaqzs5k6ehIBjbji/uWlp0L/j0ttbWl+06SVI7smc+IZ5au5swzI88OHZJ2KCozw8NJ\nYb5iRXLB5/ilqys5er5wYbIsWrT9euZMWyl04MSYDBi3FPdbCvzx23tbpkzZ+yCgtRVyuZ3XDgQk\npa2QnnmL+Yx46akOjjwy0j6aSzsUpWRkBJ5+Gv70J3jsMXj88aRgf/ZZOPhgOPJIePnLk/WWZe7c\nfb8AVEpbjEn70J4GAPn8tqW9fdu6oyNpddpdob+7dUtLebSISZocLOa11VD/MPX1kcHhakJ1dquz\nrPQpdnbC8uVJ0b6leH/iiaRoP+aYZHnlK5Pi/fDDJ7Y/u5JkJV+0sxiT1p8di/zxj8evV69eysDA\nYrq6kusACin+xz+eMcOBc5b4u0WFcjYbbVU7rYZa+ujb0M/0OTPSDkcl1N+fFO4PPggPPJCs161L\nCvZjj4WTToKLLoJXvSopMiTtXQjbZk5atGjv+y9dCosXJ2fAurp2X/SvXLnrgUFvb3JUv5izAK2t\nyXUOtrpJ2eaR+QyZU/0iD98/zNyT5qUdivbD88/DPffAvffCsmVJr/tRRyVF+8knJ8tRR3mqX6ok\nQ0NJa8+uBgB7Wg8OJoV9IUf/x6/r69P+xpIK4ZF5baelpofOdaPMTTsQFSzGpFi/555k+cMfkiPx\np50Gp54K731vcvTdNhmpstXWJtO3zppV3Os2b95zwf/ss7tuFQqh+LMAuZwzU0nlyGI+Q3JTe8iv\nzfb52EroU3zuObjjDvjtb+Huu5PT6KedBq9/PfzTPyUXpnpafWJUQr6oPKSVK1OnJtO/zplT3Ov6\n+nZ/PcCGDclBhB0HBvl8MjtQsWcBcrnkZm3axt8tKiX/eWVIrn6A/BrbkcrNpk1Jv+0ddyRLZyec\neSb8/d/DlVfCggVpRyhpstlyZ+T58wt/TYzJTcN2fxFwcv3Ojj/r7EzuHlzsWYDmZtsFpULYM58h\nFx5xH4sXtnHhp1vSDiXznl0/jVuXzebW+2fx4FNNnHJkJ2ce/xJ/++qXOGZRt7NaSJo0Rkehq7eG\nfM8U2jfVku+upb17SrLeVEu+p5b2TWPb3WOPe2rp7qtmRv0wrTOGyDUM0TpjkNbGIXKNQ8lzjWPb\nM6tpXTCN3CGNtB7WxIxZdZ691KTh1JTazmfe8hTznlrK/1x0c9qhZM5oDDzYdQS3bjiFWze8hg2D\nzbxl1jLOnnU/b2xdTn315rRDlKSyMjxaRedwA+2DjeSHGmkfmjG2HtsenEF+qIH2genkB+qT7dEm\n+plGS1UXudpuWqf2kqsfoLVxkFzTCK2tkdxB1bTOriE3t47WBfXkDk0GAdMPmuYgQGXHYl7b+fKX\nk4snv/KVtCNJz0T2KcYI998PN90EP/1pcsr47LOT5TWvcU7pSmBfqwplrpSJGBns7KNjVSftqzaR\nX9NH+7oB2l8YJr9xhPY85DurkjMDvXW0b55OfrCR/GgTQ9SSq+rcbhCQaxyitWk46f2fWU1udg2t\nc+vIza8nd0gDrX/TnAwCqoobBZgvKpSz2Wg7uRz8+c9pRzG5xQiPPJIU8DfdlPSJvvOdcNddyYWr\nkqQDKASmtExndst0Zr+6uGmYB/J95J8dJv/cMPnVw7SvHyX/wgj5jaPk89D2XCDfHcn3jZIfGKV9\nCPIjkSGGxg0CesYNAkbI5SK5g6rIzaqldd62QUB/vp84GoseBEi74pH5DLnpJrj55mSt0lq7Fm68\nEW64IblpzPnnJ0X8q17lzDOSNJkNdPTT0da19UxAft0A+RcHad8wSj4fyXdW095dS763jvxAfdIa\nNNK87UxATTetdWODgIbBsUEAySBgdg2tc6aSWzA9ORNwWBPTZzc4CMgQj8xrO7lcMruASmPzZvjl\nL+H734c//hHOOy8p5k85xQJekrKirmUac1qmMef4g4t63UDnAB1tkfxzkfbnIb8O8i9AfiO05+G5\nNZDfFMj3Bdr7A/mhQH4kMLjlTMCWQcC0ZBCQaxqhdcuZgNm1tM6dSm7eNHKHNpJb1ETDnEYHAZOU\nxXyGWMyXpk/xqafgW9+CH/0Ijj4a3ve+pCfeOypOPva1qlDmioqxJV/mHFfHnONmF/Xaga7NdLRB\n/jnIrw60rw3kXwjkNwbyeXjuT1Xku6vI9wbyA1W0D1aRH6lKBgGhk1ztJnJTe2mZNkDL9EFyM4Zp\naYq0tFbRclA1uYNraTm4jpb502lZ0EDLomamNntnwnJmMZ8hFvP7bnQUfvMb+MY34OGH4aKLYNky\nOOywtCOTJGVJXdNU5hw7iznHFne74M09Q3SsCrSvCuTXVNGxvoqOF6vIb6ymIx956plAx/Iq8j01\ndAzU0LG5mvxwLR2jNUyhd+sMQS1T+2iZtpmWhkFyM0ZoaY605AItM2vIHTyFljnJQCB3SAPNC5up\naag7QH8S2sKe+Qzp6kpuQLRpU9qRVI6urqSN5pvfhBkz4OMfT3rh6/zdJEnKgBih96XkuoD88z10\nrOunY/0A+RcG6WgfoSMPHV2B/KZaOnpr6eifRn5wOh3DjXTFGdTTR0v1ph0GAkPkmoZpaSY5I7Dj\nQGDhDJoObaaqbkraXz91ZT81ZQjhLOAqoBr4txjjV3f4+WLgF8CzY0/9Z4zxy7t4H4v5AsQItbXJ\n9JS1tWlHU95efBGuugq+973kbqyf+IS98JIkFWN0JNK9oZ/8qi46VicDgfz6zXRsGKLjpRE6OpIL\nhDu6a+jom0K+v56OoWQg0BOn00j32ECgh5a6PlrqB8cGAmNnBFqraJlVywnnLGDRGxam/XUPiLK+\nADaEUA1cC7wRWAs8GEK4Ncb45A67/j7GePaEBzgJhQAtLdDRAbOKOzs3aeytr7WtDb72Nfj3f4cL\nLoCHHoKFCycqOpUb+6BVKHNFxchKvlRVB5rm1NM0p55FRb52ZDjSubaWjuen0LF6Cvm1I3S8EOnY\nEOhoH2FDPrBydRUdPTXUNm6ctMV8IdLsmT8ZeDrG2AYQQlgCvBXYsZj3WGgJbembz2oxvzurVsGX\nvpTMTvOhD8GTT8Ls4q5JkiRJJVJdE2g9tIHWQxvSDqXspXkPynnA6nHba8aeGy8Crw0h/CmEcFsI\n4RUTFt0k1doK7e1pR5GeHY+ErF8PF18MJ54Ihx4KzzwDV1xhIa9EFo6cqTTMFRXDfFEppXlkvpAm\n90eABTHGvhDCm4BbgCN2teOFF17IwrF+iObmZo477rit/1iWLl0K4PbixcycCXffvZShofKIJ63t\n7m64777FfPe7cMYZS7n+ejjnnPKJz2233Xbbbbfdzt728uXL6ezsBKCtrY1CpHYBbAjhFOCLMcaz\nxrYvBUZ3vAh2h9esAk6IMeZ3eN4LYAv0wQ/CSSclrSRZdOedS1mxYjFf+hK89a1w+eXJDD/Srixd\nunTrL1lpT8wVFcN8UaHK+gJY4CHg8BDCQmAdcD5wwfgdQgizgQ0xxhhCOJlk8OFM6fth1izYsCHt\nKNJx993JYGbhQrjzzuSGT5IkSZUs7akp38S2qSmvjzFeEUL4MECM8TshhI8BHwWGgT7gMzHG+3fx\nPh6ZL9DVVyd94ddck3YkE2fNGvj0p+HBB+HKK+Hcc51iUpIklb+yn2e+VCzmC7dkCdxyS7Ke7EZH\n4brr4AtfgI99DC65BKZ5R2pJklQhCinmqyYqGJWHWbOSGyJNditWwOmnw49+BL//PXzxi0khv+Vi\nE6kQ5osKZa6oGOaLSsliPmMme8/8yAh89atw6qlw/vlw773wCic0lSRJk5RtNhmzYQO88pWwcWPa\nkZTe6tXwj/8IMcKNNybzxkuSJFUq22y0k9ZW6OyE4eG0Iymt//gPOOEEOOssuOsuC3lJkpQNFvMZ\nU10NudzkuQtsfz9cdBFcdhncdht87nPJd9wd+xRVDPNFhTJXVAzzRaVkMZ9Bk6Vvvq0t6Y3v6YFH\nHoETT0w7IkmSpIllz3wGnXFGcgT7zDPTjmTf3X47vPe9yff45CedN16SJE0+5X4HWKVk7lxYty7t\nKPZNjPC1r8HXv570yb/+9WlHJEmSlB7bbDJo/nxYuzbtKIo3NAQf+Qj8+MfwwAP7Vsjbp6himC8q\nlLmiYpgvKiWPzGfQvHnw5JNpR1Gcri54xzuSi1vvuQcaG9OOSJIkKX32zGfQz38ON9wAv/hF2pEU\nZv16+Lu/Sy52veYaqHEIKkmSMsB55rVL8+ZVTptNWxucdhq8853wzW9ayEuSJI1nMZ9BlVLMr1iR\n9MV/6lPw+c+XZsYa+xRVDPNFhTJXVAzzRaXkcc4MOvjg5KZRQ0NQW5t2NLu2fDm86U3wr/+aTEEp\nSZKkndkzn1Hz58N998Ehh6Qdyc7+/OdkDvxrr4Xzzks7GkmSpHTYM6/dKtdWmxUrkotdr77aQl6S\nJGlvLOYzav58WLMm7Si298wzyRH5K66A888/MJ9hn6KKYb6oUOaKimG+qJQs5jNq4UJYtSrtKLZZ\nswbOOAMuu8weeUmSpELZM59R114Ljz8O3/522pEkN4Q67TR417vgkkvSjkaSJKk82DOv3TrsMHj2\n2bSjgMFBOPfcZArKz3427WgkSZIqi8V8Ri1alH6bzegovP/9MGNGcsFrKeaR3xv7FFUM80WFMldU\nDPNFpeQ88xm1cCE8/zyMjEB1dToxXH55cnbgzjvTi0GSJKmS2TOfYXPnwrJlsGDBxH/2kiVw6aXw\nwAMwc+bEf74kSVK5s2dee7RoUTp98488Ah//ONxyi4W8JEnS/rCYz7DDD4e//nViP/PFF+Ftb4Pr\nroNjj53Yzwb7FFUc80WFMldUDPNFpWQxn2FHHQVPPjlxn7d5M/zDP8CFFyZrSZIk7R975jPs1luT\neeZ//euJ+byLL05uDnXzzVDlMFKSJGmPCumZdzabDHvFKybuyPxNN8FvfgMPPWQhL0mSVCqWVRm2\naBFs2AC9vQf2c1auTI7K//Sn0Nx8YD9rb+xTVDHMFxXKXFExzBeVksV8hlVXw8telhTbB0pfH5x3\nHnzlK3D88QfucyRJkrLInvmMe9e74Mwzk4tSD4T3vx8GB+GHP5yYO7xKkiRNFs4zr7064YSkj/1A\n+P734f77k2koLeQlSZJKz2I+4048ER5+uPTv+5e/wGc/Cz/7GTQ0lP7995V9iiqG+aJCmSsqhvmi\nUrKYz7jjj4fHHoOhodK9Z08PvP3tcOWVyYw5kiRJOjDsmRdHHQVLlpTmjqwxwnveA1OmwPXX7//7\nSZIkZZXzzKsgr3kN3HdfaYr566+H5cth2bL9fy9JkiTtmW024g1vgLvv3v/3eewxuPTSZD75+vr9\nf78DwT5FFcN8UaHMFRXDfFEpWcyLxYth6dKkRWZfdXcnffJXXQUvf3mpIpMkSdKe2DMvAA47DG65\nBY45pvjXxpjMVz99Onzve6WPTZIkKYvsmVfB3vIW+MUv9q2Y/+534fHHkznlJUmSNHFssxEA554L\nN99c/OsefRQuuyzpk582rfRxlZp9iiqG+aJCmSsqhvmiUrKYFwCnngrr18PKlYW/pqsL3vEOuOYa\nOOKIAxebJEmSds2eeW31uc8lN4+68sq97zs4CGedBUcfDVdffeBjkyRJyppCeuYt5rXVqlVw0knw\n9NPQ3Lz7/bbcGKqnB372M6iunrgYJUmSsqKQYt42G221aBGccw5cccXu9xkZgY9+FJ55Bn7848or\n5O1TVDHMFxXKXFExzBeVksW8tvPP/ww33JDcEXZHfX3w7nfDihVw++3le2MoSZKkrLDNRjv51a/g\nAx+AG2+EM89Mnrv9dvj0p+HEE5OpKCth5hpJkqRKZs+89tnvfpe00/T0JBe7zpsHl18O552XdmSS\nJEnZYM+89tkb3wh//SssWwZ/+Qs89tjkKOTtU1QxzBcVylxRMcwXlZJ3gNVuhQCHHJJ2FJIkSdod\n22wkSZKkMmSbjSRJkjSJWcwrU+xTVDHMFxXKXFExzBeVksW8JEmSVKHsmZckSZLKkD3zkiRJ0iSW\najEfQjgrhLAihPBUCOGS3exzzdjP/xRCOH6iY9TkYp+iimG+qFDmiophvqiUUivmQwjVwLXAWcAr\ngAtCCEftsM+bgZfFGA8HPgR8e8ID1aSyfPnytENQBTFfVChzRcUwX1RKaR6ZPxl4OsbYFmMcApYA\nb91hn7OBHwDEGJcBzSGE2RMbpiaTzs7OtENQBTFfVChzRcUwX1RKaRbz84DV47bXjD23t33mH+C4\nJEmSpIqQZjFf6PQzO17B67Q12mdtbW1ph6AKYr6oUOaKimG+qJRSm5oyhHAK8MUY41lj25cCozHG\nr47b5zpgaYxxydj2CuD0GOOLO7yXBb4kSZImnb1NTVkzUYHswkPA4SGEhcA64Hzggh32uRW4GFgy\nVvx37ljIw96/pCRJkjQZpVbMxxiHQwgXA7cD1cD1McYnQwgfHvv5d2KMt4UQ3hxCeBroBd6XVryS\nJElSuZkUd4CVJEmSsqii7wBbyE2nJIAQwv8NIbwYQvhz2rGo/IUQFoQQ7g4hPB5C+EsI4RNpx6Ty\nFEKoCyEsCyEsDyE8EUK4Iu2YVN5CCNUhhEdDCL9MOxaVtxBCWwjhsbF8eWC3+1Xqkfmxm06tBN4I\nrAUeBC6IMT6ZamAqSyGE04Ae4MYY49Fpx6PyFkI4GDg4xrg8hNAAPAyc4+8X7UoIoT7G2BdCqAHu\nBf5XjPHetONSeQohfAY4AWiMMZ6ddjwqXyGEVcAJMcb8nvar5CPzhdx0SgIgxngP0JF2HKoMMcYX\nYozLxx73AE8Cc9ONSuUqxtg39nAKyTVge/yPV9kVQpgPvBn4N3aeelvalb3mSSUX84XcdEqS9svY\njFvHA8vSjUTlKoRQFUJYDrwI3B1jfCLtmFS2vg78b2A07UBUESLwuxDCQyGED+5up0ou5iuzP0hS\nxRhrsfkZ8MmxI/TSTmKMozHG40juUP76EMLilENSGQoh/HdgQ4zxUTwqr8K8LsZ4PPAm4GNjLcM7\nqeRifi2wYNz2ApKj85K030IItcB/Aj+KMd6SdjwqfzHGLuBXwIlpx6Ky9Frg7LE+6J8A/y2EcGPK\nMamMxRjXj603Aj8naTHfSSUX81tvOhVCmEJy06lbU45J0iQQQgjA9cATMcar0o5H5SuEcFAIoXns\n8TTgTODRdKNSOYoxfj7GuCDGuAh4J3BXjPE9acel8hRCqA8hNI49ng78LbDLGfkqtpiPMQ6T3B32\nduAJ4CZnmtDuhBB+AtwHHBFCWB1C8AZk2pPXAe8G3jA2JdijIYSz0g5KZWkOcNdYz/wy4JcxxjtT\njkmVwXZh7cls4J5xv1v+K8Z4x652rNipKSVJkqSsq9gj85IkSVLWWcxLkiRJFcpiXpIkSapQFvOS\nJElShbKYlyRJkiqUxbwkSZJUoSzmJUmSpAplMS9JkiRVKIt5SVJBQgg1IYQj045DkrSNxbwkqVCL\ngdG0g5AkbWMxL0kq1JExxqfSDkKStI3FvCSpUB6Vl6QyYzEvSdoqhPA3IYRPhRDOCyEsDCH8YOz5\nk4EH97SPJGniWcxLksabBWwA6mKMbcAzY8+fEGN8aC/7SJImmMW8JGmrGOMfgXOAX4899fjYuqqA\nfSRJE8xiXpK0o9kxxvYQwonA/WPTUa7c0z4TH6IkCSzmJUk7+0MI4TygJca4lluaCxAAAAClSURB\nVGRKyqV72ieEcEgI4fwQwgcnOFZJyrQQY0w7BklSGQshfDzG+I297PMN4BPR/1QkaUJ5ZF6StFsh\nhLnA2gJ2fRQ4fqztRpI0QTwyL0narRDC+cB/xRh7045FkrQzi3lJkiSpQtlmI0mSJFUoi3lJkiSp\nQlnMS5IkSRXKYl6SJEmqUBbzkiRJUoWymJckSZIqlMW8JEmSVKEs5iVJkqQK9f8BfhZvNjTGb14A\nAAAASUVORK5CYII=\n", - "text": [ - "" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "# copy coeffs for all points\n", - "c0 = x[:,0]\n", - "c1 = x[:,1]\n", - "c2 = x[:,2]\n", - "c3 = x[:,3]\n", - "c4 = x[:,4]\n", - "c5 = x[:,5]\n", - "c6 = x[:,6]\n", - "c7 = x[:,7]\n", - "\n", - "# plot the values of all 8 coeffs over T_sat\n", - "plt.figure(figsize=(width,width*4/2/golden))\n", - "\n", - "plt.subplot(4,2,1)\n", - "plt.plot(T_sat, c0, label='c0')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.legend(loc='upper center')\n", - "\n", - "plt.subplot(4,2,2)\n", - "plt.plot(T_sat, c1, label='c1')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.legend(loc='upper center')\n", - "\n", - "plt.subplot(4,2,3)\n", - "plt.plot(T_sat, c2, label='c2')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.legend(loc='upper center')\n", - "\n", - "plt.subplot(4,2,4)\n", - "plt.plot(T_sat, c3, label='c3')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.legend(loc='upper center')\n", - "\n", - "plt.subplot(4,2,5)\n", - "plt.plot(T_sat, c4, label='c4')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.legend(loc='upper center')\n", - "\n", - "plt.subplot(4,2,6)\n", - "plt.plot(T_sat, c5, label='c5')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.legend(loc='upper center')\n", - "\n", - "plt.subplot(4,2,7)\n", - "plt.plot(T_sat, c6, label='c6')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.legend(loc='upper center')\n", - "\n", - "plt.subplot(4,2,8)\n", - "plt.plot(T_sat, c7, label='c7')\n", - "plt.grid(b=True, linestyle=':')\n", - "plt.minorticks_on()\n", - "plt.legend(loc='upper center')" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "pyout", - "prompt_number": 5, - "text": [ - "" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "png": "iVBORw0KGgoAAAANSUhEUgAAAusAAAN/CAYAAABneZbcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmYVMXZ/vHvA4iiqBANiIoMblGJZnAF49ImahBR8kqM\nGo0Qo+hrBE2MEdcZkl/cF+IaY1wwbolbxLgFX2njgkSFcUFcMI4gEWJExKiE7fn9UT3QjN3DDL2c\n6p77c119zVR3dZ+7Zw5Fzenn1DF3R0RERERE4tMh6QAiIiIiIpKbJusiIiIiIpHSZF1EREREJFKa\nrIuIiIiIREqTdRERERGRSGmyLiIiIiISqbJN1s3sLDObbmavmtmdZrZ2ubYtIiKtZ2aDzOwNM3vb\nzM7M8fh2ZjbZzBaZ2eltea6IiLRNWSbrZlYDnADs7O47Ah2BI8uxbRERaT0z6whcAwwCdgCOMrPt\nm3X7CBgFXLYGzxURkTYo15H1hcASYF0z6wSsC8wp07ZFRKT1dgdmunujuy8B7gaGZndw9w/d/UXC\nuN6m54qISNuUZbLu7vOBy4FZwD+BBe7+RDm2LSIibbIZMDur/X7mvlI/V0REcihXGcxWwGlADbAp\n0NXMji7HtkVEpE08oeeKiEgOncq0nV2B59z9IwAzux/YE7ijqYOZaZAXkXbF3S3pDDnMAXpntXsT\njpAX7bka70WkvSlkvC9XzfobwAAz62JmBuwPvN68k7u3eKurqyvo8dj6xJRFeZPvE1OWaswb23uK\n2IvANmZWY2adgSOACXn6Nv/Pp9XPbY+/c+WNv09MWdrre4opS7HyFqosR9bd/WUzu40wkC8HpgK/\na+vrpFKpgh5vbZ/GxsaivE4x8pYrS2v6xJSlNXliytKa14kpS2v6xJSlWHnKmSVW7r7UzE4BHies\n3HWTu88wsxMzj99gZpsALwAbAMvN7FRgB3f/T67nrkkOjWvxZ2nN68SUpTV9YspSrDwxZWnN68SU\npTV9yjLer+6vgXLdQpQ4DB8+POkIKyhLfjHlUZbcYsriHleezJiX+NibxE3jfX4x5VGW3GLK4h5X\nHmXJrdDxXlcwzWHEiBFJR1hBWfKLKY+y5BZTFogvjyQvtn0ipjzKkltMWSCuPMpSGuZFqKUpBjPz\nuro6UqlURX+ELCLSknQ6TTqdZuzYsXicJ5iWnJl5LP/3iIiUmpkVNN5HdWS9vr4+iol6Op1OOsIK\n7S2LmVX9rdTa2z7TFjHkSaVS1NfXJx0jcfX19VH8PmLIkC2mPBrz4x/vof3tM60VQ5Z0Ol2U8b5c\nSzeKtFo1H3Er1+AtEjv9wSJNqnXM13gvTdUiY8eOLeh1oiqDiSWLJCfzUVHSMUqm2t+ftF6hH4tW\nMo330qSax8Rqfm/SNlVVBiMiIiIiIitV9WR96dI1e14MdU5NlEXaKqbfU0xZIL48krzY9omY8sSU\nRfKL6fekLKUR1WS92Cccff/7cNlloE+hRCQWxTrhSERE2oeqrlmfPRsOOQR23hl++1vo3LmoLy8l\nUKk1fnfeeSdnnXUWH330EQcccAA333wz3bt3/1K/Sn1/UnyqWde/A6m8MXHu3LmMHDmSl156iQ8+\n+IDGxka22GKLnH0r7b1J6ahmvQW9e8Mzz8D8+XDAAfDvfyedSKrR9OnTOemkk7jjjjuYN28e6667\nLieffHLSsUSiFsvSjSJt0aFDBwYPHsx9992XdBSpAMX6JLWqJ+sAXbvC/ffDwIGwxx7w+uurf05M\n/4EoS1xmz57NYYcdRo8ePdh4440ZNWoUd955J4ceeih77bUX6623Hr/61a+4//77+eyzzxLJGNPv\nKaYsEF+e9kzX1cgtpjwxZUlCrvG+R48enHTSSey6665Jx1shpt+TsqyqWNfVqPrJOkCHDnDRRXDe\neZBKweOPJ51IKtGyZcsYMmQIffv25b333uOf//wnRx55JNOnT+cb3/jGin5bbrkla6+9Nm+99VaC\naUVEZE01H+/nzJnDkUcemXQsaaequmY9l6efhsMPh3PPhVNOKfnmpI1aU+NXrOtMtHV3mzx5MkOH\nDmXu3Ll06LDy79z999+f73//+4wcOXLFfZtvvjl33nkn++yzzyqvoRpGaaKadf07kNWPibGN902W\nLl1K586dVbMurVLoeB/VFUybPhYt5Ueje+8Nzz0XTjx9/XX4zW9grbVKtjkpgaTGvtmzZ9OnT58v\nDdxdu3blk08+WeW+Tz75hPXXX7+c8aRCpNPpKD6eFakEsY33IkmIai8sVw3jllvC5MnQ2BhOPP3w\nw1Ufj+k/UmWJR+/evZk1axbLli1b5f5+/frx8ssvr2i/8847LF68mG233bbcEYG4fk8xZYE48hSr\nhlGKI4Z9IltMeWLKUm75xvsYxfR7UpbSKNtk3cy6mdm9ZjbDzF43swHl2nYuG2wADz0Ee+4Ju+0G\nU6cmmUYqwR577EGvXr0YM2YMn3/+OYsWLeK5557j6KOP5qGHHuKZZ57hs88+47zzzmPYsGGst956\nSUcWEZE1kG+8B1i0aBGLFi360vcipVK2mnUzGw885e43m1knYD13/yTr8cRqGO+5B04+Ga68Eo45\nJpEIkhF7jd/s2bMZPXo0Tz/9NGbG0Ucfzbhx47jrrrsYM2bMinXWb7nlFrp16/al58f+/qR82nvN\nel1dXcnLHiV+MY+J+cb7ptKYpuxmlvMIfMzvTcqjqexx7NixBY33ZZmsm9mGwDR337KFPomecPTq\nq/Dd74bbxRdDp6iq+duPah/cqv39Seu198m6/h0IVPeYWM3vTdqmUi6K1Bf40MxuMbOpZnajma1b\npm23yo47wgsvwGuvwR57pKO5gFJMNVcxZZH8Yvo9xZQF4ssTKzMbZGZvmNnbZnZmnj5XZR5/2cz6\nZ91/lplNN7NXzexOM1u7fMnbLrZ9IqY8MWWR/GL6PSnLqq64At54o/DXKdfx407AzsAp7v6CmY0D\nxgDnZ3caMWIENTU1AHTr1o3a2toVH5E2/dBL3X7kkRTHHAM77pjmV7+C448v7/abt5sktf3sdkND\nQ9neb7WL4fdZjnZs7zfJPA0NDSxYsACAxsZGYmVmHYFrgP2BOcALZjbB3Wdk9RkMbO3u25jZHsD1\nwAAzqwFOALZ39/+a2R+BI4HxZX4bIiKJmzAB+vdffb/VKVcZzCbAZHfvm2nvBYxx9yFZfaL6WPTu\nu2HUqLC04w9+kHSa9qPaPzas9vcnrRdrGYyZDQTq3H1Qpj0GwN0vyurzW2CSu/8x034D2BdYAkwG\nBgCfAg8Av3H3J5ptI6rxXpJTzWNiNb83aZ1994Vf/hJSqQoog3H3ucBsM2tay25/YHo5tr2mjjwS\nnngC6urgJz+B//436UQiImWxGTA7q/1+5r7V9nH3+cDlwCzgn8CC5hN1EZH2YvlyKMZS/eU8jXIU\ncIeZdQbeAX5Uxm23STqdJpVK8Y1vwIsvwogR4WJK99wDffokkyUGMWWR/GL6PcWUBeLLE6nWHgr8\n0lEiM9sKOA2oAT4B7jGzo939juZ9a2trqa2tpaamJrGyx1QqtUqJVNJlWrHlaZ6pVNurdqX++Y0b\nNy6xfz/N2+1x/83Vbip7fOONRn70owYK5u5R3EKUOEyaNGmV9vLl7pde6t6zp/ujjyabJUnlyBLT\nflAK5Xh/7W2faYuY8mT2hcTH3uY3QgnLY1nts4Azm/X5LXBkVvsNoCdwBPD7rPt/CFybYxtF/mmu\nuZj2Cfe48mjML0y53lt722daK4YsAwe6P/ts4eN92dZZX51KqGH829/gqKPg+OPh/POhY8ekE1Uf\ns+hKeIsu9v1cyiPimvVOwJvAtwmlLH8HjvIvn2B6irsPzlzgbpy7DzCzWuB2YDdgEXAr8Hd3v7bZ\nNqIf76U8qn3M137evg0YAOPGwcCBhY33Ua0mXl9fTyoV70Uy9tkHXnopTNgPOgjuuAO++tWkU1UX\nDWxS7dLp9Cof08bG3Zea2SnA40BH4CZ3n2FmJ2Yev8HdHzGzwWY2E/iMTFmjuzeY2W3Ai8ByYCrw\nu0TeiFQEjflSzZYvh2L8PVqWE0xbq2mynrSW/iPdZBOYOBF22SXcJk9OLku5xZQF4sqjLLnFlAXi\nyJNKpaivr086Rovc/VF3/5q7b+3uF2buu8Hdb8jqc0rm8W+4+9Ss+y9x937uvqO7D3f3JUm8h9aK\nYZ/IFlMeZcktpiwQVx5lWZV7cU4wjWqyXik6dYILL4Rrrw1XPL3ssvDXk4iIiIgIFG81GNWsF6ix\nMazDvuGGMH489OiRdCIRqQSx1qyXQ6WO9yIibdG/P9x0E+yySwWss17NamrgqafCL2TnneHJJ5NO\nJCISv/r6+ig+phYRKZVPP03zu9/VF/w6mqzn0Nb/QNZaCy64AG65BY45Bs47D5YuTSZLKcWUBeLK\noyy5xZQF4svTnlXCOUpJiCmPsuQWUxaIK4+yrGrddVOcfHJ9wa8T1WS90o+0HHAATJ0KU6bAfvvB\n7Nmrf46ItC/pdDr6E0xFRKRwxVoNRjXrJbB8OVxyCVx5JfzudzB0aNKJRCQ2qlmvjvFeRCSffv3g\nT3+Cr39dNevR6dABxoyBBx6AU0+F0aPhiy+STiUiIiIi5VKs1WA0Wc+hWKU4e+4J06bBvHmw227w\n8svJZSmGmLJAXHmUJbeYskB8eSR5se0TMeVRltxiygJx5VGWVVXlRZGqUffucPfd8ItfwP77w+WX\na012ERERkWpXrIsiqWa9jN59F374Q1h77bAm++abJ51IRJLS3mvW6+rqSKVSUawIIyJSCpttlmbY\nsDRXXz22oPE+qsl6exi8ly6Fiy+Gq66Ca66Bww9POpGIlFM6nSadTjN2bGGDdyVrDwdnRES23BKe\neAK22qpCTjA1s45mNs3MHsrXpz2su9upE5xzDvzlL3DuuTB8OCxcmEyWtoopC8SVR1lyiykLxJEn\nlUpp6caIxLBPZIspj7LkFlMWiCuPsqyqEmvWTwVeB3Q4hXDC6dSp0KUL1NbCs88mnUhEREREiqWi\natbNbHPgVuDXwM/c/ZAcfdrtx6IPPQQjR4Z69l/+EtZZJ+lEIlJq7b1mvb2O9yLSfvTuDc89B1ts\nURllMFcCZwBaByWHQw6BV14JJ6Dusgu8+GLSiURERESkEMUqg+lU+Eu0zMyGAP9y92lmlmqp74gR\nI6ipqQGgW7du1NbWrqhhb6o9Kkc7u86pXNufPj3NySfDvHkpDj4YDjwwzbHHwlprrZopiZ9HU7uh\noYHTTjstse3HnGfcuHGJ7a/N20nsv/nazTO15zwNDQ0sWLAAgMbGRtq7pnOUmn5GSUmn04lnyBZT\nHmXJLaYsEFceZVnVokVprrwyXfgLuXtJb8AFwGzgXeAD4DPgthz9PBaTJk1KdPsffOB+yCHuO+3k\nfuONyWbJlvTPpbmY8ihLbjFlcY8rT2bMK/kYHONN431+MeVRltxiyuIeVx5lWVXPnmFOV+h4X9al\nG81sX+Dnrpr11XKH226DM86AUaNgzJhwlF1EqoNq1jXei0h169EDXn0VNtmkMmrWs2mEbgWzsKzj\n1KlhpZiBA2H69KRTiUh7YGaDzOwNM3vbzM7M0+eqzOMvm1n/rPu7mdm9ZjbDzF43swHlSy4iEo9i\nrQZT1sm6uz/l7oeWc5trIru+NWkzZ6Z59FE48URIpeCCC2DJkmSyxPRzgbjyKEtuMWWB+PLEyMw6\nAtcAg4AdgKPMbPtmfQYDW7v7NsBI4Pqsh38DPOLu2wM7ATPKEnwNxbZPxJRHWXKLKQvElUdZVrV8\neQVO1mXNmMEJJ4RVYp5+OqzR/tJLSacSkSq1OzDT3RvdfQlwNzC0WZ9DgfEA7j4F6GZmPc1sQ2Bv\nd78589hSd/+kjNlFRKJRrNVgylqz3hIz87q6uihWB4iZO9x+O/z856FMpr4e1l036VQi0lrpdJp0\nOs3YsWOjrFk3s+8B33H3EzLtY4A93H1UVp+HgAvd/blM+wngTGAZcAPhAnjfAF4CTnX3z5ttQzXr\nIlL1unWDxkbo3r2wmvWoJuuxZKkE//oXjB4djrDfeGMokRGRyhHrCaZmNgwY1IrJ+kXu/mym/QTw\nC8KntZOBPd39BTMbByx09/ObbcOHDx8exVK9aqutttrFbjct1XvhhTBsWCN33TW+sPG+kKVkinlD\nS3nltLosDz7ovvnm7iNHui9YkGyWcospj7LkFlMW97jyEOnSjcAA4LGs9lnAmc36/BY4Mqv9BtAT\n2AR4N+v+vYC/5NhGcX+YBYhpn3CPK4+y5BZTFve48ijLqtZbz33hwsLHe9WsV7hDD4XXXgs1Uf36\nwYQJSScSkQr3IrCNmdWYWWfgCKD5yDIBOBYgs9rLAnef5+5zgdlmtm2m3/6A1rESkXapWKvBqAym\nijz1FBx/POy8M4wbB716JZ1IRPKJtQwGwMwOAsYBHYGb3P1CMzsRwN1vyPRpWjHmM+BH7j41c/83\ngN8DnYF3Mo990uz1Nd6LSNXr0gXmz4d111XNumT54gv41a9CHfvYsWHJx44dk04lIs3FPFkvNY33\nItIerL02fPIJdOlSeRdFyqu+vn5FoX6SYsjQpK1ZunQJa7Gn03DXXeFiStOmJZOl1GLKoyy5xZQF\n4siTTqepr69POoZkxLBPZIspj7LkFlMWiCuPsqyqIi+KtDr19fUrzqaVwvTrF8piTjoJBg2Cn/4U\nPv006VQikkqlNFkXEWkHinVRJJXBtAP//jeccQY88QT85jfwP/9TnEX6RWTNtfcyGF1XQ0SqnVma\n889P88tfFnZdDU3W25GnnoL//V/Yaiu4+mrILHEsIglo75N1jfciUu3Mmo6uV1HNeixiqHNqUsws\n++4LDQ2hjn3XXeHii2Hx4mSyFENMeZQlt5iyQHx5JHmx7RMx5VGW3GLKAnHlUZaVmo5HFKOSQZP1\ndqZzZzj7bPj73+Fvf4OddoK//jXpVCIiIiLVo1j16hBZGYxqGMvLHf7yFzj1VKithSuuUGmMSKml\n02nS6TRjxxZWw1jJVAYjItVuyZKwQt/SpYWXPZZlsm5mvYHbgB6AA79z96ua9dHgnZBFi+DSS8OF\nlE49NZyM2qVL0qlEqptq1jXei0j1WrwYunYNXwsd78tVBrME+Km79wMGAD8xs+3LtO02S7rOKVs5\nsqyzDpx3HkydCq+8EpZ9nDBhZb1VObO0RUx5lCW3mLJAfHkkebHtEzHlUZbcYsoCceVRlpWKWQZT\nlsm6u89194bM9/8BZgCblmPb0np9+sC998INN8CZZ8LBB8PbbyedSkSqUSwXwRMRKYXly2H58uJc\nBK/sNetmVgM8BfTLTNyb7tfHohFZvBiuugouughOOAHOOSd8nCMixaEyGI33IlK9Pv0UNt00fK2U\nMhgAzKwrcC9wavZEXeLTuTP8/OehLOb99+FrX4Nbbgl/KYqIiIhIfkuXQqdOxXmtIr3M6pnZWsB9\nwO3u/udcfUaMGEFNZjmSbt26UVtbu2JlmKaPS8vRzv5oNontZ7ebZ0oizx/+ANddl2bs2AauueY0\nrrwyfLSTVJ6mdkNDA6eddlpi289ujxs3LrH9tXlb+2+ceRoaGliwYAEAjY2NSBzS6fSK31MMYsqj\nLLnFlAXiyqMsKy1dCh07FunF3L3kN8AIq8Fc2UIfj8WkSZOSjrBCTFmefHKS33WX+xZbuA8b5v7O\nO8nmielnoyy5xZTFPa48mTGvLGNwbDeN9/nFlEdZcospi3tceZRlpQ8+cO/ZM3xf6HhfrqUb9wL+\nBrxCWLoR4Cx3fyyrj5cjixTuiy/CmuxXXAHHHx/q2TfYIOlUIpVFNesa70Wker3/PgwYEL5WRM26\nuz/j7h3cvdbd+2duj63+mRKjLl3CBP211+DDD0M9++9+B8uWJZ1MRCqFVoMRkWq2dCksWVKc1WDK\neoJppYjpP5CYs/TqBTffDA8/DHfcAf37wxNPJJcnScqSW0xZIL487Vl9fX0Uta2x7RMx5VGW3GLK\nAnHlUZaVli2Drl1TmqxLHHbeGdJpqK+Hk06Cgw4Kq8iIiIiItEfFXA2m7Ous52NmXldXRyqViuJo\ni6yZxYvDRZV+/WsYNAh++UvYYoukU4nEI51Ok06nGTt2bLQ162Y2CBgHdAR+7+4X5+hzFXAQ8Dkw\nwt2nZT3WEXgReN/dD8nxXNWsi0hVmz4dDj8cXn+98Jr1qCbrsWSRwi1cCJdcAtdfH05CHTMGundP\nOpVIPGI9wTQz0X4T2B+YA7wAHOXuM7L6DAZOcffBZrYH8Bt3H5D1+M+AXYD13f3QHNvQeC8iVe2V\nV+CYY8LXijjBtNIkXeeUrVKzbLAB/L//B6++Ch9/HE5CvfxyWLQomTylpiy5xZQF4ssTqd2Bme7e\n6O5LgLuBoc36HAqMB3D3KUA3M+sJYGabA4OB3xOW7Y1abPtETHmUJbeYskBceZRlpWKWwWiyLiW1\n6aZhpZh0Gv72N9huO7j9dl0JVSRimwGzs9rvZ+5rbZ8rgTMA/SsXkXarmBdFUhmMlNXTT8MZZ4Ta\n9osuggMOAIv+2JtI8UVcBjMMGOTuJ2TaxwB7uPuorD4PARe5+7OZ9hPAmUAv4CB3/4mZpYDT89Ws\nDx8+PIorVqutttpqF7vd0NDAq68u4PHHYf/9Gxk/frxq1qWyuMN994W12jfdNJyMuueeSacSKa+I\nJ+sDgHp3H5RpnwUszz7J1Mx+C6Td/e5M+w0gBYwGfggsBdYBNgDuc/djm21D472IVLWnn4azzw5f\nq6pmPZaLZMSQoUk1ZjGD730vnCn9wx/CUUfBkCHQ0JBMnmJQltxiygJx5Emni3ORjBJ6EdjGzGrM\nrDNwBDChWZ8JwLGwYnK/wN3nuvvZ7t7b3fsCRwJPNp+oxyaGfSJbTHmUJbeYskBceZRlpWKWwUQ3\nWW/6GEGqX6dOcNxx8NZb8J3vhPXZjzgC3nwz6WQipZNKFeciGaXi7kuBU4DHgdeBP7r7DDM70cxO\nzPR5BPiHmc0EbgBOzvdy5cgsIhKbql1nPZYskozPPoOrrw6rxhx6KJx/PvTpk3QqkdKItQymHDTe\ni0i1e+wxGDcufK2qMhhp39ZbL6zH/vbb0KtXuDLq6NEwd27SyURERERaT0s3lljSdU7Z2mOWbt3C\nGu0zZoR6r3794KyzYP78ZPK0hrLkFlMWiC+PJC+2fSKmPMqSW0xZIK48yrJSVdesJ/3DlXj06AFX\nXgnTpsFHH8E228C553550i5SSSrgBNOy0HgvItVs2TL4+OPijPeqWZeK8e67cMEFcP/98L//Cz/7\nGXzlK0mnElkzqlnXeC8i1evuu+GBB+CPf6ygmnUzG2Rmb5jZ22Z2Zrm2K9Wjb1+48UZ48UWYNy8c\naT/vPB1pFxERkbgsXgydOxfntcoyWTezjsA1wCBgB+AoM9u+HNteEzF9NKssX9Y0ab/mmjRz58Yx\naY/lZwPK0pLY8kjyYtsnYsqjLLnFlAXiyqMsKy1eDGuvXZzXKteR9d2Bme7e6O5LgLuBoWXatlSp\nXr1WHmmPZdIuIiIiUswj62WpWTez7wHfcfcTMu1jgD3cfVRWH9UwSkH+8Y9Q0/7AA6Gm/bTTYOON\nk04lkptq1jXei0j1GjcOGhvD10LH+yKtALlarRqVR4wYQU1NDQDdunWjtrZ2xRVNmz7OUFvtltq/\n/32Ks8+GUaPS9O0LI0emOP10eOutOPKp3X7bDQ0NLFiwAIDGxkbau6YrVjf9jEREqsnixTB3bpr6\n+nThL+buJb8BA4DHstpnAWc26+OxmDRpUtIRVlCW/FaXZ9Ys99Gj3bt3dz/pJPd3300uSzkpS34x\n5cmMeWUZg2O7abzPL6Y8ypJbTFnc48qjLCv96lfu55wTvi90vC9XzfqLwDZmVmNmnYEjgAll2ra0\nU717w29+A2+8Ad27wy67wPDhoS0iIiJSKhVXsw5gZgcB44COwE3ufmGzx71cWaR9WrAArrkGrroK\n9t0Xzj4b+vdPOpW0V6pZ13gvItVrzJhwRfYxYyponXV3f9Tdv+buWzefqIuUQ7du4Qqo//gHDBwI\nQ4bAwQfDc88lnUxERESqScWts15pmk4Oi4Gy5Lemebp2DVc/fecdOOQQOPpo2G8/ePxxWNODfTH9\nbJQlv9jySPJi2ydiyqMsucWUBeLKoywrVe1kvb6+PvEfrrQf66wDJ50Eb70Fxx0HP/851NbCHXfA\nkiVJp5NqlU6nqa+vTzqGiIiUUEXWrK+Oahglae7w2GNwySWhVOanP4Xjjw9H4kWKrb3XrNfV1Wnp\nRhGpWiNGwCabpFlnnTRjx44taLzXZF0khxdegEsvhUmT4MQTYdQo6Nkz6VRSTdr7ZF3jvYhUsx/8\nIJwb94MfVNAJppUkplIcZcmvlHl22w3+9CeYPBnmz4fttw8lM2+/Xf4sbaUs+cWWJ1ZmNsjM3jCz\nt83szDx9rso8/rKZ9c/c19vMJpnZdDN7zcxGlzd528W2T8SUR1lyiykLxJVHWVaq2pp1kdhsvTVc\nd11Ym71nT9hzTxg2DKZMSTqZSGmYWUfgGmAQsANwlJlt36zPYGBrd98GGAlcn3loCfBTd+9HuBje\nT5o/V0SkPVDNukhCPvsMbr4ZLr8cttgirCpzyCHQsWPSyaTSxFoGY2YDgTp3H5RpjwFw94uy+vwW\nmOTuf8y03wD2dfd5zV7rz8DV7v5/ze7XeC8iVW3QIDjttPC1qspgtBqMxG699UL9+syZ8JOfwEUX\nwbbbhiulfvpp0umkElTAajCbAbOz2u9n7ltdn82zO5hZDdAf0OdQItLuVG0ZTH19fRQrA8T0B4Oy\n5Jdknk6d4Igj4Pnn4fbb4YEH0tTUwOmnQ2NjYrGAuH5PMWWBOPKkUqnYJ+utPeTd/CjRiueZWVfg\nXuBUd/9PsYKVQgz7RLaY8ihLbjFlgbjyKMtKxZysdyrOy4i0XwMHQn099O0LV18Nu+wC3/pW+Phr\nzz3Boit0EGnRHKB3Vrs34ch5S302z9yHma0F3Afc7u5/zreR2tpaamtrqampoVu3btTW1q44WNP0\nn6zaybbjUQNlAAAgAElEQVSbxJCnoaEh8Z9HU7uhoSHR7ceeJ5Z2k6T213ffXcCFFzYyZ04DhVLN\nukiRffop3HJLKI3ZaKOwXvv3vgdrrZV0MolJxDXrnYA3gW8D/wT+Dhzl7jOy+gwGTnH3wWY2ABjn\n7gPMzIDxwEfu/tMWtqHxXkSqWm0t3Hpr+FpVNesi1WD99WH06HBl1HPOgRtugC23hIsvDstAisTM\n3ZcCpwCPA68Df3T3GWZ2opmdmOnzCPAPM5sJ3ACcnHn6N4FjgP3MbFrmNqj870JEJFlVW7Mei+Yf\noSRJWfKLKU+uLB07wtChkE7Dgw/C9Olh0n788dBQ+KdibcqSlJiyQHx5YuXuj7r719x9a3e/MHPf\nDe5+Q1afUzKPf8Pdp2bue8bdO7h7rbv3z9weS+p9tEZs+0RMeZQlt5iyQFx5lGWlqp2sazUYqVY7\n7wy33QZvvhlq2w85BPbaC+6+O/yDlvYjHf9qMCIiUqCKWmfdzC4FhgCLgXeAH7n7Jzn6qYZR2o2l\nS8PR9muvDRdcGjky3DbdNOlkUi6x1qyXg8Z7Eal2PXvCyy/DJptURs36X4F+7v4N4C3grDJsUyRq\nnTqFK6E++SRMnAj/+hf06wdHHgnPPAOax0i10yepIlLNFi2CF14oziepJZ+su/tEd1+eaU6h2YUz\nYhTTfyDKkl9MeQrJ0q8fXHddWJ99zz3hxz+G/v3h97+Hzz8vb5ZiiykLxJenPdN1NXKLKY+y5BZT\nFogrj7Ks9MUX8J3vFOe6GuWuWT8OeKTM2xSpCBtuGFaRmTEDLrkEHnoIttgirNc+Y8bqny8iIiLJ\nW7oUli0r3pLNRalZN7OJwCY5Hjrb3R/K9DkH2Nndh+V5DdUwijTT2BiOsN98M2y9NZx4YiifWWed\npJNJoVSzrvFeRKrTp5+Gc9A+/TS0Cx3vy3JRJDMbAZwAfNvdF+Xp48OHD6empgZAV7RTW+2s9hNP\npHnuOXj22RRTp0IqleaQQ+DYY+PIp/bq2w0NDSxYsACAxsZGxo8fr8m6iEgVmjcPdtwxnI8GRTg4\n4+4lvQGDgOnAxqvp57GYNGlS0hFWUJb8YspTzizvvOM+Zox7z57u++7rfued7osWJZNldWLK4h5X\nnsyYV/IxOMabxvv8YsqjLLnFlMU9rjzKErz7rnufPivbhY735ahZvxroCkzMXM3uujJsU6Rqbbkl\nXHghzJoFp5wSSmR694YzzoC33046nYiISPv2+eew7rrFe72ylMG0hj4WFVlzM2fCjTfCrbeG1WV+\n/GM47DDo0iXpZJJPe69Zr6urI5VKrSgVEhGpFi++GM4xu/zyNOl0mrFjx8Zfs94amqyLFO6//4UJ\nE+CWW2DKFPj+9+G442DXXcHa5bQwXu19sq7xXkSq1dNPw9lnh69QGRdFqjhNJ4fFQFnyiylPLFnW\nXhu++tU0jzwSrpzWuzccdRTstBNceSV8+GF588Tyc2kSWx5JXmz7REx5lCW3mLJAXHmUJSh2GUxU\nk3Vd0U6keDbfPPxl//bbcO210NAA22wTymP+8pewDqyUXzpdnCvaiYhInL74orhlqCqDEWlHFi6E\nP/4xnJT63ntw7LHwox/B176WdLL2R2UwGu9FpDrdeWc4KHbnnaGtMhgRabUNNoATToDJk+GJJ8IV\n1vbdF/bcE66/Hj76KOmEIiIila2qy2BiEVMpjrLkF1OeSsyyww5w6aUwezaccw489VRYFvJ//gfu\nvz+crFquLOUSWx5JXmz7REx5lCW3mLJAXHmUJSh2GYwm6yLt3FprwcEHw913h7XbDzkErr4aNtsM\nTjoJnn0WVLEgxaZzlESkWjUdWS/WOUpR1axr3V2ReMyaBXfcAX/4QzjKfswx8MMfwtZbJ52ssqXT\nxVl3t5KpZl1EqlnT/Lzpa6E161FN1mPJIiIrucPUqWHSftddoVTmhz+Eww+Hr3416XSVK+YTTM1s\nEDAO6Aj83t0vztHnKuAg4HNghLtPa8NzNd6LSNU6/XTYdNPwFXSCaUnE9NGssuQXU55qzmIGu+wC\n48bB++/DeefBM8+EZSAHDQpXTV2woDxZChVbnhiZWUfgGmAQsANwlJlt36zPYGBrd98GGAlc39rn\nxia2fSKmPMqSW0xZIK48yhIsXBgWdCgWTdZFpNXWWgsGDw7LUc2ZE5Z9fPBB6NMHvvvdUPf+2WdJ\np5QC7Q7MdPdGd18C3A0MbdbnUGA8gLtPAbqZ2SatfK6ISFVbuBDWX794r6cyGBEp2CefwJ//HCbr\nkyfDQQfBkUeGI+9rr510ujjFWgZjZt8DvuPuJ2TaxwB7uPuorD4PARe6+3OZ9hPAmUANMKil52bu\n13gvIlVr8GA45ZTwFQof7zsVK5iItF8bbgjDh4fbv/8N990HV14ZjrwPHRom7t/6VjgyL9Fr7Sw6\nqj80/vrXsKpRLpYnaRL3x5SlrffHlKVY95f6tTt0gI4dV35dk++z2506QefO4SBIa2/rrgtdu4Yj\nveuvv/L7Ll3yvx8pTLHLYKKarNfX10exGkw6nU48QxNlyS+mPMqy0sYbw4knhts996SZMydFXR0c\nfXRYFnLYMDjggGSOuCf9s2nKEFNdZw5zgN5Z7d7A+6vps3mmz1qteC4AI0aMoKamBoBu3bpRW1u7\n4nfT9PNpS7tTJ/j889B+6qnw+L77pnBftd30uHtoNz2W3f9vfwv37bNP6P+3v4X+2e2mx9vSf++9\nQ/vpp1dtZz/e9BjAXnutvn/24039n3kmnfP5zR//5jdb7t90X/P+zz67su2+arvpcfe29QfYc8/Q\nfu65lW330H7ttQZGjjxtxePuLffP9XoDB4b25MmhPWDAqu2mx1fX/6abxrHDDrV5H3/++dDeffcU\ny5eHx5cvh112Ce0pU0K7f/8Uy5bBiy+G9k47hfbUqeH99esX2q+8Eh7fbrsUS5eG9pIl0KdPiv/+\nFyZNGsfGG9eyySah/e674fHu3UP7/ffTfPEFdOiQ4tNPYf78NJ9/DsuWpejaFTp3TtOlC/TunWLj\njWHJkjQbbhjybbwxfPBBaB9ySIpevVb+fHL9e8we2wr591yMdvNM5dz+O+80cPvtC3jiCWhsbKRQ\nKoPJIYb/0JsoS34x5VGW3LKzzJoVLrZ0333w2mvh48Fhw0KpTDGv9NbaPEmLuAymE/Am8G3gn8Df\ngaPcfUZWn8HAKe4+2MwGAOPcfUBrnpt5vsb7PGLKoyy5xZQF1jzP0qXwn//Ap5+SmcSHT0Y/+ih8\nzb59+CH8858wdy5stBFsvnm49e4dzlnadttwmzUrzQEHtD1LKST5e6qpgUmToG/f0K6YpRvN7HTg\nUmBjd5+f4/FoBm8RKa25c+GBB8LE/YUXwpH2YcNCGUMxPzqMWayTdQAzO4iVyy/e5O4XmtmJAO5+\nQ6ZP06ovnwE/cvep+Z6b4/U13otUoKVLYd68sDLY+++HK2C/+y68/Ta89Va4r3fvMHHfaSfo3z/c\nttoqlPK0FxttBG++GT5phgqZrJtZb+BG4GvALpqsi0iTf/8bJkwIE/enn4Z99w0T9yFDVg501Sjm\nyXqpabwXqU6LF8M//hEmqi+/DNOmhdv8+VBbC3vuCXvvDd/8JnTrlnTa0nAP5xX85z8ryz0rZZ31\nK4BflGlbBYupnlRZ8ospj7Lk1posG28Mxx0HDz8cjtIceWSYvG+1FeyzD1x2WThiU6480r7Etk/E\nlEdZcospC8SV57nn0my3XVhY4PzzwyeojY3hdv754aTWK64IR99ra8NFgyZNgiVLip8lqZ/LokXh\nZOBinpdV8hNMzWwo8L67v2I67VhEWrDhhuFE1KOPDgPek0+GiXsqFcpjDj003AYODIOhiIjE7ytf\ngf33DzcIR+BffBEmToRf/AJmzoQDDwzX6xg6tHznMZVCsddYhyKVwZjZRGCTHA+dA5wNHOjuC83s\nXWBXd/8ox2v48OHDi7o6gNpqq10d7SefTPP22zBnTooJE8JqBwMHwsiRKQ48MKymEFPeXO2GhgYW\nZC712tjYyPjx49t1GUxdXR2pVPKrf4lI8j74AB59FO65B55/PhyUOeaYsORvpR2YeeONkP+tt1au\n/jV27Nh4a9bN7OvA/wGfZ+7anLDk1+7u/q9mfVXDKCKt8t578NBD4aj75Mmw115hWcghQ2CLLZJO\n1zqqWdd4LyJfNm9euMDeH/4Qzmk65RT48Y+he/ekk7XOc8+F8p7Jk1feF3XNuru/5u493b2vu/cl\nrLe7c/OJemyajorFQFnyiymPsuRWqix9+oQB/K9/DasPjBgRBsaddw51kOeeC1OmwPLl5ckjlSu2\nfSKmPMqSW0xZIK48xcjSsyecemook7nnHnjlFdhySzjppLDyTDmzrImPPgplP8VU7oV0dChFRIpq\nww3hiCPCUZi5c+Gaa8LJSj/6EfTqFU5efeCBcGa+iIhUjt12g9tugxkzwmIEu+4KI0eGT1djNX9+\nWLqxmHRRJBGpWu+8A3/5SyiZmTIllMsMGRJuffokm01lMBrvRaRtPvoILr8cbrghHJA5//z4rs1x\n5ZXhj4lx41beF3UZjIhIkrbaKnyc+sQToVzmuOPCpH2XXcIFO845J5zMtGxZ0klFRGR1NtoILrgA\nXn8dPv4YttsObr31yyWPSfroo+IfWY9qsl5fXx9F7VUMGZooS34x5VGW3GLKsuGG8NWvprnttnAC\n0/XXhwH++ONh003DUZr77w+X3S6ldDpNfX19aTcirRbTPgpx5VGW3GLKAnHlKVeWnj3hppvgz3+G\n664LV8FubEwmS3Pz51d+zXqL6uvrtYyXiJRcx47hCnoXXgivvbby5NTf/jZM3L/znVD7Xoq6yFQq\npck68RycEZHKtfvuYfWV73wn1Lf/7nfhCqJJyj7BtFgHZ1SzLiKSZeHCcKGOhx6CRx4JR3AOOSTc\n9tgDOhTpEIdq1jXei0jxTJ8Oxx4LffvCzTcnV8u+335w3nlhjfgmqlkXESmiDTaAYcNCHeQHH4Qj\nNRDW+d12W7joorDqjIiIxKNfP3j2WejRI6wa88oryeSYOxc2yXWZ0AJosp5DTB/NKkt+MeVRltxi\nygJtz9OxIwwcGE5omj4dbr8d3n4btt8+LBc5bVppckr5VPo+WkrKkltMWSCuPElnWWedUMNeXw97\n753mvvvKn0GTdRGRhJjBgAHhpKb33gslMUOGwMEHa9IuIhKTH/wALrssrAZ22WXlq2NftAg+/7z4\nV1uNqma9rq6OVCqlk0xFpCIsWhRqI3/5S/if/4Ff/3r1qwCk02nS6TRjx45VzbqISAnNnh0OqOy1\nF1x9dfi0tJTeew/23htmzVr1/kJr1qOarMeSRUSkLT7+OKzZ/pe/hFKZffZZ/XN0gqnGexEpvYUL\n4bvfDSt93XordOpUum1NmQKjR4ev2XSCaQkkXXOVTVnyiymPsuQWUxYoXZ7u3UOd5G9/G2rZr7++\nJJupKrEs3RhDhmwx5VGW3GLKAnHliTHLBhuEAykffhjKY5YsKd02338//FGQnaEYSzdqsi4iUiSD\nB4fVCK64IpTESH66roaIlMu668KDD4Z68u9/v3QT9vfegz59VraLdV0NlcGIiBTZvHmhRvL00+Gk\nk3L3ibUMxsy+AvwR6AM0At939wU5+g0CxgEdgd+7+8WZ+y8FhgCLgXeAH7n7J82eq/FeRMpu8WI4\n7DDo1g1uu614181ocuqpUFMDP/3pqverDEZEJDI9e8Jjj8H558MLLySdps3GABPdfVvg/zLtVZhZ\nR+AaYBCwA3CUmW2fefivQD93/wbwFnBWWVKLiKxG585wzz3hxNPRo4u/Skxj46pH1oslqsm6ahi/\nTFnyiymPsuQWUxYob56ttoJrrw01kosWrZqhGB+LltChwPjM9+OB7+boszsw090b3X0JcDcwFMDd\nJ7r78ky/KcDmJc5bkPa8j66OsuQWUxaIK08lZOnSBSZMgOeeg7q64m6zeRlMsZRlsm5mo8xshpm9\nZmYX5+unGkYRqSaHHw477gjjxq28r1g1jCXU093nZb6fB/TM0WczYHZW+/3Mfc0dBzxS3HgiIoXZ\ncMPw6eedd4bld4vBHd55JxyoKbaS16yb2X7A2cBgd19iZl919w9z9FMNo4hUnZkzwwWUGhth/fVX\n3p9kzbqZTQRyXWPvHGC8u3fP6jvf3VdZPd7MhgGD3P2ETPsYYA93H5XV5xxgZ3cflmP7Pnz4cGpq\nagDo1q0btbW1Kw7WNB0RU1tttdUuZfvNN2HAgDTnngunn17Y6221VYrdd4e77krT0NDAggXhVJ/G\nxkbGjx8f9zrrZvYn4Lfu/uRq+mmyLiJV6fDDw9rro0atvC/iE0zfAFLuPtfMegGT3H27Zn0GAPXu\nPijTPgtYnnWS6QjgBODb7r6IZjTei0gs0umwQkw6DTvssOavM3EiXHABTJr05ccq4QTTbYB9zOx5\nM0ub2a5l2GZBmv5KioGy5BdTHmXJLaYskFyeUaPCGuwVYgIwPPP9cODPOfq8CGxjZjVm1hk4IvO8\nplVizgCG5pqox0b7aH7KkltMWSCuPJWYJZWCyy6DIUPgX/9a8+3NmAHbbbf6fmuiKJN1M5toZq/m\nuB0KdAK6u/sAwgD+p2JsU0SkUuy1V7iK3muvJZ2kVS4CDjCzt4BvZdqY2aZm9jCAuy8FTgEeB14H\n/ujuMzLPvxroCkw0s2lmdl2534CISFsceywcfXS40umiNTzEMG0a1NYWN1eTcpTBPApc5O5PZdoz\nCbWNHzXrpxpGtdVWu2rb557bQJcuC/jmN4tTw1jJVAYjIrFZvhyOOgo6doQ77gBr4+i8007hZNVd\nc9SPFFoGU47J+onApu5eZ2bbAk+4+xY5+mnwFpGqde+9cMst8PDDoR1rzXo5aLwXkRh98QXstx8M\nGgRtWbTrs8/gq1+Fjz+Gtdf+8uOVULN+M7Clmb0K3AUcW4ZtFqTpqFgMlCW/mPIoS24xZYFk8+yz\nDzz7bPEvwiGF0T6an7LkFlMWiCtPpWfp0gUefBBuvTUs69hazzwDu+2We6JeDJ1K87IrZS6Y8cNS\nb0dEJGY9esBaa8HcudCrV9Jpktd0XY2mUiERkRj07AkPPQTf/jbU1MCee67+Of/3f/Ctb335/nQ6\nXZQ/YEpeBtNa+lhURKrdPvvA2LHhY1aVwWi8F5F4PfooHHdcuNJp3775+7nD174W6tx32y13n0oo\ng2m1+vr6qD5CEREppu22gwkT0rFfwVREpN076CA4++ywpGPm+kY5vfQSLF2a+8TSYolush7DR6Ix\n/cGgLPnFlEdZcospCySfp29f6Nw5pcl6RJLeJ5qLKY+y5BZTFogrT7VlGTUqnGy6//7w0Ue5+/zm\nN3DiiW1fPaYtopqsi4hUs402gvnzk04hIiKtddllYbK+337w7rurPjZlSrhy6YknljaDatZFRMrk\n3nvh7rvDV9Wsa7wXkcrgDlddBb/+NZx1FhxyCMycCT/+MVx9NRx2WMvPr6qadRGRavaVr+jIuohI\npTGDU08Nq7688EJYKea88+C661Y/US8GTdZzqLaaq2KJKQvElUdZcospCySfp0cP2HDDRCNEI5YF\nBWLIkC2mPMqSW0xZIK481Z5lxx3D+uvvvRcm7UOHrj5DMc5RimqyHsvgLSJSCl//Opx6qlaDgXgW\nFBARKZVUqjgLCqhmXUQkAapZ13gvIu2DatZFRERERKqUJus5xFSKoyz5xZRHWXKLKQvEl0eSF9s+\nEVMeZcktpiwQVx5lKQ1N1kVEREREIqWadRGRBLT3mvW6ujpSqZROMhWRqpVOp0mn04wdO7ag8T6q\nyboGbxGpdsUavCuZDs6ISHtSVSeYxrKUV0x1TsqSX0x5lCW3mLJAHHmKtZSXFEcM+0S2mPIoS24x\nZYG48ihLaZR8sm5mu5vZ381smpm9YGa7lXqbhWpoaEg6wgrKkl9MeZQlt5iyQHx5YmNmXzGziWb2\nlpn91cy65ek3yMzeMLO3zezMHI+fbmbLzewrpU9dmNj2iZjyKEtuMWWBuPIoS2mU48j6JcB57t4f\nOD/TjtqCBQuSjrCCsuQXUx5lyS2mLBBfngiNASa6+7bA/2XaqzCzjsA1wCBgB+AoM9s+6/HewAHA\ne2VJXKDY9omY8ihLbjFlgbjyKEtplGOy/gHQdIHtbsCcNX2h1X2k0ZqPPIr1sUgxthVTltb2UZY1\np/23dFla26eSsiTkUGB85vvxwHdz9NkdmOnuje6+BLgbyL7o9hXALwoNEtPvQlnW/HViytKaPjFl\naW2fSsrSmteJKUtr+pRjvC/HZH0McLmZzQIuBc5a0xcq1y+4sbGxKK9TjLzlytKaPjFlaU2emLK0\n5nViytKaPjFlKVae2P5TS0BPd5+X+X4e0DNHn82A2Vnt9zP3YWZDgffd/ZVCg2hciz9La14npiyt\n6RNTlmLliSlLa14npiyt6VOO8b4oq8GY2URgkxwPnQOMBq519wfM7HBgpLsfkOM1tDSAiLQrSawG\ns5rxery7d8/qO9/dV6k7N7NhwCB3PyHTPgbYg3A0PQ0c4O4LzexdYFd3/yhHBo33ItKuRL10o5kt\ndPcNMt8bsMDdN1zN00REpMzM7A0g5e5zzawXMMndt2vWZwBQ7+6DMu2zgOXAw4Q6988zXTcnlD3u\n7u7/Ktd7EBGpNuUog5lpZvtmvv8W8FYZtikiIm03ARie+X448OccfV4EtjGzGjPrDBwBTHD319y9\np7v3dfe+hPKYnTVRFxEpTKcybGMkcK2ZrQ18kWmLiEh8LgL+ZGY/BhqB7wOY2abAje5+sLsvNbNT\ngMeBjsBN7j4jx2up1EVEpAiiuYKpiIiIiIisqixXMDWzm81snpm92uz+UWY2w8xeM7OLs+4/K3Ox\njTfM7MBSZ2npwk0lztLbzCaZ2fTMz2B05v68FyZJKM+lmd/Ty2Z2v5ltmPWckuTJlyXr8S9ddCWJ\nLOXeh1v4HZV9Hzazdcxsipk1mNnrZnZh5v6k9t98eZLYf3NmyXq8bPtvEnKNs5n7NeZHMua3kEXj\nfSTjfUt5ktiHWxhjk9h/29d47+4lvwF7A/2BV7Pu2w+YCKyVaX8183UHoAFYC6gBZgIdSpwlDXwn\n8/1BhJOqypFlE6A2831X4E1ge8KFo36Ruf9M4KKE8xzQtB3Cx+Qlz5MvS6bdG3gMeBf4SlJZktiH\nW8iS1D68buZrJ+B5YK+k9t8W8pR9/82XJYn9N4kbGvPzZYlmzG8hi8b7SMb71eRJah+OZszPk6Uq\nx/uyHFl396eBj5vd/b/AhR4uqoG7f5i5fyhwl7svcffGzJvYvcRZ8l24qdRZ5rp7Q+b7/wAzCOsV\n57swSRJ5NnX3ie6+PNNtCmGVh5LmyZcl83Cui66UO8tmwEmUeR9uIUtS+3DTyh+dCfXLH5PQ/psn\nz/wk9t98WTLtsu6/SdCYnzdLNGO+xvs2ZUlkvF9NnnY/5ren8b4sk/U8tgH2MbPnzSxtZrtm7t+U\nsIpAkxUX3CihfBduKlsWM6shHP2ZQv4LkySVJ9txwCPlzJOdxfJfdKXsWYBtSXAfzsryPAntw2bW\nwcwaCPvpJHefToL7b448rzfrUrb9N1eWpPffhGnMzxLTmK/xfvVZSHi8b5ZHY37uLFU73ic5We8E\ndHf3AcAZwJ9a6Fvqs2BvAka7+xbAT4Gby5nFzLoC9wGnuvunq2wsfGbS0jZLlefeTJ7/ZN1/DrDY\n3e8sV57sLIS1nM8G6rK7JJEl83tKbB/O8TtKZB929+XuXks4erGPme3X7PGy7r858qSaHiv3/psj\ny2DCf6iJ7L8R0JifEdOYr/F+9VmSHu9z5NGYnztLqumxahvvk5ysvw/cD+DuLwDLzWxjwkc5vbP6\nNV1Yo5R2d/cHMt/fy8qPI0qexczWIgzaf3D3pjWN55nZJpnHewFN6xSXM8/tWXkwsxHAYODorO4l\nzZMjy1aE+q6XLVwdcXPgJTPrmUAWSGgfzpMlsX0YwN0/IVwUZxcS3H9z5Nk1k2MEZd5/c2TZGehL\nAvtvJDTmE9eYr/G+1Vkgwf1XY36rs1TveO9FKq5f3Y3wjy77BJ8TgbGZ77cFZvmqhfedM2/0HTJL\nTJYwy1Rg38z33wZeKEcWwl9ZtwFXNrv/EuDMzPdj+PIJEuXOMwiYDmzc7P6S5cmXpVmfXCdslC1L\nEvtwC1nKvg8DGwPdMt93Af6W2XZS+2++PEnsvzmzJLH/JnVDY36uHNGM+S1k0XgfyXi/mjztesxv\nIUtVjvdF2Zla8UbuAv4J/BeYDfyIcBbsH4BXgZcIl7hu6n82oeD+DTJnO5cgy+KsLLsSatIagMlA\n/zJl2YvwUV8DMC1zGwR8BXiCcLXXvzbtBAnlOQh4G3gv677rSp0nX5Zmff7RtPMnkGVQEvtwC7+j\nsu/DwI6E/zAagFeAMzL3J7X/5suTxP6bM0sS+28SNzTm58sSzZjfwlii8T6S8X41v6d2Pea3kKUq\nx3tdFElEREREJFJJ1qyLiIiIiEgLNFkXEREREYmUJusiIiIiIpHSZF1EREREJFKarIuIiIiIREqT\ndRERERGRSGmyLiIiIiISKU3WRUREREQipcm6iIiIiEikNFkXEREREYmUJusiIiIiIpHSZF1ERERE\nJFKarIuIiIiIREqTdRERERGRSGmyLiIiIiISKU3WRUREREQipcm6iIiIiEikNFkXEREREYmUJusi\nIiIiIpEqeLJuZjeb2TwzezXP40eb2ctm9oqZPWtmOxW6TRERiZeZ9TazSWY23cxeM7PRSWcSEalU\n5u6FvYDZ3sB/gNvcfcccjw8EXnf3T8xsEFDv7gMK2qiIiETLzDYBNnH3BjPrCrwEfNfdZyQcTUSk\n4hR8ZN3dnwY+buHxye7+SaY5Bdi80G2KiEi83H2uuzdkvv8PMAPYNNlUIiKVqdw16z8GHinzNkVE\nJN8C6psAACAASURBVCFmVgP0JxysERGRNupUrg2Z2X7AccA3y7VNERFJTqYE5l7g1MwRdhERaaOy\nTNYzJ5XeCAxy95wlM2ZWWPG8iEiFcXdLOkOpmNlawH3A7e7+52aPabwXkXalkPG+5GUwZrYFcD9w\njLvPbKmvu7d4q6urK+jx2PrElEV5k+8TU5ZqzBvbe6pmZmbATYTFBcbl6tMef+fKG3+fmLK01/cU\nU5Zi5S1UwUfWzewuYF9gYzObDdQBawG4+w3A+UB34PowfrPE3Xdfk22lUqmCHm9tn8bGxqK8TjHy\nlitLa/rElKU1eWLK0prXiSlLa/rElKVYecqZpcp9EzgGeMXMpmXuO8vdH2vtC2hciz9La14npiyt\n6RNTlmLliSlLa14npiyt6VOW8X51fw2U6xaixGH48OFJR1hBWfKLKY+y5BZTFve48mTGvMTH3iRu\nGu/ziymPsuQWUxb3uPIoS26Fjve6gmkOI0aMSDrCCsqSX0x5lCW3mLJAfHkkebHtEzHlUZbcYsoC\nceVRltIo+KJIxWJmHksWEZFSMzO8ik8wbYnGexFpD669Fg44AL72tcLGex1ZzyGdTicdYYX2mMXM\nqvpWau1xn2mtQvMsXw7PPw8XXww/+xlccQW0oixScqivr49i/4ghQ7aY8pQjS9Ljscb84lKWVd14\nY5oLLqgv+HWimqzHMnhL8gqp7Yr5JpXJHe6+G3bcEY47DubNg003hbfegl13hYsuCn1aI51OU19f\nX9K8laC+vl4n4gpQveO9xnzp2jXFj39cX/DrqAxGopMpD0g6RklU83urVjNnwsiRsGBBmJQfcABk\nHyybMwcOPhgOOwzOP7/1r6syGP07kOofE6v9/UnLBg4Mn8DuuafKYERESuLuu8NgO2QI/P3vcOCB\nq07UATbbDB5/HG64AZ56KpmcIiISn6VLoWPHwl9Hk/UcYirFURZpq5h+TzFlgdbn+e9/4eST4Zxz\nwkT8Zz+DTi1claJnTxg3Dn7601DXLpWjUvfRcogpi+QX0+9JWVa1bJkm6yIiRTd/fjiCPmcOTJ0K\nO+/cuud973thUH7wwdLmExGRyrB0acsHelpLNesSnUqr8Xv44Ye58MILmT59Ouussw5Dhgzhyiuv\npGvXrl/qW2nvrb15551Qf37wwXDJJW0/InL77fCHP4Sj8avT3mvW6+rqSKVSOsm0nau0MXHSpEmc\neuqpzJ49GzNj1113Zdy4ceywww45+1fa+5PiqqlJM3hwmuuvH1vQeK/JukSn0ga3u+66i4022oh9\n9tmHRYsW8YMf/IA+ffpw/fXXf6lvpb239mTy5HCS6HnnhRKYNbFoEWy+Obz0EvTp03Lf9j5Z178D\ngcobE//1r3+xZMkSNttsM5YsWcK5557LU089xfPPP5+zf6W9Pymu7baDP/8Ztt9eJ5gWXQx1Tk2U\nJS6zZ8/msMMOo0ePHmy88caMGjWKo446igMPPJB11lmHbt26ccIJJ/Dss88mljGm31NMWSB/nnvv\nhUMPhd//fs0n6gDrrBNeR6UwlaNS9tEkxJQlCbnG+x49erDZZpsBsHz5cjp06ECvXr0SzRnT70lZ\nVlWVJ5hqnXWJ2bJlyxgyZAh9+/blvffeY86cORx55JFf6vfUU0/x9a9/PYGE0lbucPnlcNpp8Ne/\nhvKXQh16KEyYkP9xrbMuEr+WxvtZs2bRvXt31l13XR5++GFuuummhNNKrJYtU826VKnVfWxYrAvC\ntXV3mzx5MkOHDmXu3Ll06JD779yJEydyxBFH8Pe//52tt976S4/rI9F4LFsWVm958kl49FHo3bs4\nr/vZZ7DJJvDPf8L66+fvpzIY/TuQyh7vP/74Y0aPHs3ChQt5MM/HaRrz27feveHZZ6FPn8LG+yLM\n90XKK6lxb/bs2fTp0yfvwP38889z9NFHc9999+WcqEs8vvgCjj46XOjomWegW7fivfZ660H//vD8\n8+ECSiKy5mId7wG6d+/OZZddRq9evVi4cCEbbLBBGRNKJdDSjSUUUymOssSjd+/ezJo1i2XLln3p\nsWnTpjF06FBuvfVW9ttvvwTSrRTT7ymmLBDy/Pvf8K1vwbrrhiPqxZyoN/nmN8MfAZJfLGWPMWTI\nFlOemLKUW0vjfbYlS5bQoUMH1l577TIl+7KYfk/Ksqov/j97dx4mRXW+//992MQFwYgbShxwwx1Q\ncUMZBQ2iBqOfJG4JaGKMRtSf0bjEyEz8Go0miokxonFBEzWiuBsVkUZUVEQGEEFBHAFRFGQA2Zfn\n98eZYYahehjopU5X36/r6mumuovqe3qK089UP3VqWYo77ijLeDsq1kUa6fDDD2eXXXbhmmuuYenS\npSxfvpy3336bDz/8kN69e3PXXXfRp0+fuGNKA774Ao46Co47Dh5+GHL1/tq9u//oU9IrKyvTtI0S\nrKjx/q233uLpp5/m448/Zu3atXzzzTdcccUV9OnTJ9ZiXcLVpEkp11xTlvF21LMuwQm5x2/WrFlc\neumljB49GuccZ599NosXL2bIkCFstdVW69YrKSlh0qRJG/z7kH+2pHvnHfjRj2DgQPj1r3P7XN9+\n66duXLgQ0n2Krp51/T+QsMfE+uP9Oeecw5577sntt9/O119/zXbbbUefPn245ZZb2G677SK3EfLP\nJ7nXpg1UVsJ222U23qtYl+AkeXBL8s8WskcegSuugAcfhFNOyc9zfv/7kEpBx47Rj6tY1/8DSf6Y\nmPSfTxq2zTbw5Zew7baaZz3rQuhzqqEssqlC+j3FnWXNGrj6an80feRI2Gab/OU58ECYODFvTyeb\nKe59tL6Q8oSURdIL6fekLOtL5AmmoZxwJCKFb9Ei6NsX3n0X3nsP8j31/YEHQkQnlOZZFxEpEqtX\na551Sagkf2yY5J8tJJ984vvTjzkG/vY3aNEi/xn+8x9/JdMnnoh+XG0w+n8gyR8Tk/7zScOaNIFV\nq6BZM7XBiIisM3SonzpxwAD45z/jKdTBH8mfPDme5y4E+iRVRJJs7VowS/HHP5ZlvK2Mi3Xn3APO\nubnOuYgPfNet8zfn3DTn3ATnXJdMnzPXQnoDURbZVCH9nvKZZeVKuOwy36P+8st+xpf6Vz/MZ56O\nHeGzz+K7qEucGvO+EMrUjSH9f4Gw8oSURdIL6fekLLV8v3op5eVlGW8rG0fWHwR6p3vQOdcH2NPM\n9gJ+BfwzC88pIrLOzJlw7LF+iqxx4+CQQ+JOBK1a+duXX8adJBYNvi+IiCRdtk4uhSz1rDvnSoDn\nzezAiMfuAUaa2X+rl6cCPcxsbr311MMogO/xSzLt59n12GP+iPpVV8GVV254ND1ORx4Jt93mL5JU\nX9J71jfyvqDxXoDkj/egMb9YLV4M7dr5r5mO91k4R3WjdgVm1VmeDewGzI1eXYqdBjZpjKoquPhi\nGD8e/ve/MI6m17fHHvDpp9HFuohovJfkWrEie+dM5esE0/p/TQT9vzPuPqe6lCW9kPIoS7RcZUml\n4OCD4Xvf27S2l3y/Nh07wowZeX1K2UQh/X+BsPIoS7SQskBYeZSl1ooVsMUW2dlWPo6sfwG0r7O8\nW/V9G+jcuTOdO3empKSENm3a0Llz53UnINW86MW2XCOEPBUVFbG/HqHmqaioiPX5Q12uka3tdelS\nyjXXwNChKa68Eq65Jt48G1vu2LGU116r3V+rqqqorKxct78Us/79+1NSUgKg8T7Q5Roh5NF4Xzh5\nQlmuEdf++tlnVSxdCv37V5KpfPSs9wEuMbM+zrkjgEFmdkTEeuphFJG0nnsOfvMb6N3b94G3aRN3\noo17/XX44x+h3nsHoJ51jfcikmRTp8Jpp/mvsfesO+ceA3oAbZ1zs4CBQHMAMxtsZi855/o456YD\nS4DzMn1OESkec+fCpZfCBx/Aww/DccfFnajx2rWDOXPiTpF/dd4Xtq9+X7jBzB6MOZaISN4E1bNu\nZmeZWTsza2Fm7c3sgeoifXCddS4xsz3N7GAz+yDT58y1+h+hxElZ0gspj7JEyyTLqlVwxx2w//5Q\nUgITJ2ZeqOf7tSnWYr3O+8IW1e8LwRbqIf1/gbDyKEu0kLJAWHmUpVah9ayLiGyS4cP9dIzt28Po\n0bDvvnEn2jytWvmLIi1e7L8XEZHikM1iPSs969mgHkYRmTEDfvtbfxT9jjvg1FPDmjd9c+y1F7zw\nAuyzz/r3J71nvSEa70Uk6UaMgJtu8ucuZTreZ9wGIyKSqblzYcAAOOwwf5s8GX74w8Iv1MG3whTp\nVUwbVFZWFvvH1CIiubJiBXz3XYqysrKMt6ViPUJIbyDKkl5IeZQl2sayLFoEN9wA++3nL8s8dSpc\ndx20bBlPnlzYZZfi7FvfmLKysnVTncUppP8vEFYeZYkWUhYIK4+y1FqxAtq1K01esa4jLSLFYelS\nuP123yLy+ef+wkaDBsEOO8SdLPvqn2SaSmXnSIuIiIRLPesiUpAWL4a77/b96Ecd5ecgP+CAuFPl\n1m23wVdfwV//uv796lnXeC8iyXX//fDWW/DAA+pZF5ECUFUFN94IHTtCRYWf7WXYsOQX6gA77gjf\nfBN3ChERyaelS2GrrbKzLRXrEUJqxVGW9ELKoyzRhg5Nce21sMceMH06vPkmPPYYHLjBNS3zI47X\nZvvtYf78vD+tNFJI/18grDzKEi2kLBBWHmWptXQpbL11dralYl1Esm78ePj5z+H882HJEhg7FoYM\n2XD6wmLQti3Mmxd3ivDoHCURSbIlS2Du3Oyco6SedRHJirVr4aWX/Imjn3zip2L81a9gu+3iThav\nadPgpJP8Jwt1qWdd472IJNeVV8JOO8FVV2U+3usKpiKSkfnz4aGHYPBg2GYbf1GjH/8YWrSIO1kY\ndGRdRKT4JLZnPZSPRUPIUENZ0gspT7FlMYMxY3yryx57+JNGH3zQT8F4zjm1hXpIrwvEk6d1a/9x\n6KpVtRk0dWM4tI+mpyzRQsoCYeVRllrZ7FkP6si63sBEwrZ4MfznP3DPPfDdd/DrX/u2l7Zt404W\nriZNfCvQt9/6j0RLS0spLS2lvLw87mgiIpIjS5Zk78i6etZFpEFr18Ibb/hWl2eegeOPh4sugp49\nfSEqG7fvvvDkk7D//rX3qWdd472IJNfJJ/v3ylNOUc+6iOTIjBnw8MN+FpdttoHzzoM//9kfHZZN\n06YNLFwYdwoREckXTd2YY3H3OdWlLOmFlCcpWRYv9kfQS0vh8MN968ZTT8HEiXDFFZteqIf0ukB8\neVq3VrFen85RihZSHmWJFlIWCCuPstRasgSmTMnOOUo6si5S5JYvh//9z1+s6JVXoEcPuPRS/xHe\nFlvEnS4ZdGR9QzpHSUSSbOlSOOaYUg48MPNzlNSzLlKEVq2CESPg8cfhueegc2c480w44wx/xU3J\nrgsvhC5d/Am5NdSzrvFeRJKrY0cYPtzPmKaedRFplLVrYfRoX6A/9ZQfQM48E/70J2jXLu50yaY2\nGBGR4pLN2WCC6llXD+OGlCW9kPKEmmXlSnj1VX9Ed9ddfXvL7rvDu+/6edIvuyy3hXpIrwvEl6dN\nG6iqqs2gFpBwaB9NT1mihZQFwsqjLLUWLYJtt83OtoI6sq43MJHMLV8OTz8Nw4bBiy/CPvvAj37k\np1/ca6+40xWn1q1h9mz/veZZFxFJtpUrfbup5lkXkXWqquCFF3yBPmIEHHYYnH469O3rj6hLvP79\nb3jpJXj00dr7ir1nfeDAgev+cBERSZJvvoFOneCpp1KkUinKy8szGu9VrIsUqBkz/JHz55/3bS2l\npb5AP+UUnSQamhdegH/+0/++ahR7sa7xXkSSavp0OPFE/z4NmY/3GfesO+d6O+emOuemOeeujni8\nrXPuZedchXPuQ+dc/0yfM9fi7nOqS1nSCylPPrKsXu1bWa6+2l8J86ijYPx4P9PIF1/As89Cv34w\naVLuszRWSL8jiC/PttsW1wmmG3tfCIn20fSUJVpIWSCsPMriLVzoz1XKlox61p1zTYG7gF7AF8BY\n59xzZjalzmqXAOPN7FrnXFvgY+fcv81sdSbPLVIMvv0WXn7ZH5l95RUoKfFHzh96CA45BJoEdYq4\npLPNNn5mgGLQyPcFEZHEWrjQn6uULRm1wTjnjgQGmlnv6uVrAMzsljrrXAgcZGa/cc51BF42s70j\ntqWPRaXomcGUKb44f+EFqKiA447zBXqfPuo/L1QffwynngqffFJ7X1LbYBr5vqDxXkQS6+mnYcgQ\neOYZvxz3POu7ArPqLM8GDq+3zn3A6865OUAr4CcZPqdIolRVwWuv+SPnr7wCzvni/NprfR/6llvG\nnVAytc028N13cafIm8a8L4iIJFa2j6xnWqw35tDIdUCFmZU65/YAhjvnDjazxfVX7N+/PyUlJQC0\nadOGzp07r5spoKb3KB/Ldfuc4nj+usv1M8WZp6Kigssvvzy25w85z6BBgxq9v65ZA/fem2LsWPj4\n41ImTYJOnVJ06wavvlrKPvvAqFF+/S233PQ82n/DyzN+fIr58ysoK/OTrVdWVpJgjTpkrvE+/Dz1\nM8WZp1DH+2LLo/3XLz/7bAVz5lRRVpal8d7MNvsGHIFva6lZvha4ut46LwFH11keARwasS0LxciR\nI+OOsI6ypBdSno1l+eILswcfNDvzTLPttzfbf3+zK64we/VVs2XL8psln0LKYhZfnlWrzJo0MVu7\ntva+6jEvozE4xFsj3xcyfEWzR/toesoSLaQsZmHlURavvNzs+utrlzMd7zPtWW8GfAz0BOYA7wFn\nWZ0TiZxztwMLzazcObcTMA7fw/5tvW1ZJllEQrJiBbz5Zm1ry6xZ0KsX/OAH/rbbbnEnlHxr2RIW\nLKhta0pwz3pj3hc03otIYl1+uZ8QovrDoHh71s1stXPuEuAVoClwv5lNqT6pFDMbDPwJeNA5NwE/\nVeTv6hfqIoXOzM+r+vLLvjh/4w3Ybz/o3RvuucdfpKhZUNcLlnyrmREm6ecgpHtfiDmWiEjezJsH\nhx6ave01yXQDZvY/M9vHzPY0s5ur7xtcXahjZvPM7FQzO9jMDjSzRzN9zlyr2+8UN2VJL+4833wD\njz8Ov/wl7LJLitJSP+/5z38OlZXwzjtQVgZHHpnfQj3u16WukLJAvHm23rp4TjKNel8IlfbR9JQl\nWkhZIKw8yuLNm5fdixPqWJ9IIy1bBqNH+5lbhg/3Vybr0QNOOAGOOcYX6S5xTQ2SLUU2I4yISNGa\nNw/ats3e9jLqWc8m9TBKaNas8UfKa4rz996Dgw/2xXmvXtCtGzRvHndKKRTdusHf/w6HV09imNSe\n9cZwztnAgQMpLS1dN4OCiEhSlJTAyJHw+ecpUqkU5eXlGY33KtZF6pgxwxfmr70Gr78OO+/sC/MT\nToBjj/WXjRfZHMcfD7//PfTs6ZeLvVjXeC8iSbXNNvDll9CqlV/OdLzPuGc9m8rKyoLodwohQw1l\nSS8beebPh6FD4cILoWNHOPpoP4vLqafCxIkweTLceae/SFFDhXpIr42ypBdnnpo2mFQqRVlZWWw5\nZH3aR9NTlmghZYGw8igLLF8OK1f6MT9bgupZ1xuY5Nry5fDWW7WtLdOm+X7zXr1gwADYf3/1nUtu\nbLUVLF0Kffv61o/y8vK4I4mISJZ98w3ssEN2awm1wUiirV0LEybUtraMGQMHHljb2nL44dCiRdwp\npRj07+9PSD7vPL+sNhiN9yKSPO+9B7/5DYwdW3tfrPOsi4To889ri/MRI/z0SSec4P/zDB0KrVvH\nnVCKUcuW/pMdERFJri++gHbtsrvNoHrWQ6Geq2ghZYHaPAsWwLBhcPHFsNdeftaNkSP9lUI/+ACm\nTvWzcPTtm7tCPaTXRlnSizPPlluqWA+R9tH0lCVaSFkgrDzKAnPmZL9Y15F1KTgrVvh2ln/9C66+\nGqZM8SeG9uoFv/41HHAANNGfoRIYHVlfX1lZmaZuFJHEqVusp1KprPzRoJ51CZ4ZTJpU29ry1luw\n7761850feSRssUXcKUUaVl7u5+7/4x/9snrWNd6LSPKcdx507w6/+EXtfepZl0SaNcsX5jW3bbf1\nxfkFF8Cjj8J228WdUGTTtGzppwoVEZHkykUbTFDNAppnfUPFkmXhQnj2WbjkEujUCbp2hVdegeOO\ng3ff9VMs3n03nH56baFeLK/NplKW9ELoWdc862HRPpqeskQLKQuElUdZiqBnXW9gxWPlSl+E17S2\nTJrk21lOOAEeewwOPlh955IsNT3rNX3ammddRCR5clGsq2dd8sIMPvzQT6X42mswerSfuaWm7/zo\no30xI5JUDz/s/zh95BG/rJ51jfcikizffQc77ui/1j3gqJ51CVZlZW1x/vrr0KoV9OwJ/frBkCF+\n/nORYqHZYNan2WBEJGlmzIAOHWoL9WzNBqNGgwjquYq2sSzffANPPAG/+hXssQcccYQv0k84wV/R\na/p0GDwYfvzj7BTqhfTa5JOypBdCz7p4NcV63LSPpqcs0ULKAmHlKfYsM2ZAx461y6WlpVlp8daR\nddls330Hb7zhj56PGOGPpB97rD96fumlsP/+4IryQ36RDenIuohIstUv1rNFPevSaDUnhdYU5+PH\nw2GH+eK8Z0//fTP9+ScSafRouPZaePNNv6yedY33IpIsl1ziz8e77LL1709Uz7p6GMOydi1MnFhb\nnL/5Juy9ty/M//AHP+n/VlvFnVKkMNQcWc9WD6OIiIRlxgzo3Tv72w2qZ109jBvKZxYz+PRTuPde\n+OlPYaed/NdPP/VX4vr3v1O8/z78+c9w4onxF+rF+nvaGGVJL4Se9Wz1MEp2aB9NT1mihZQFwspT\n7Fk+/TQ3bTBBHVmX/Js7158E+tpr/uj5ypX+yPlJJ8Ff/gLt29euG9D/QZGCo5719emTVBFJkhUr\nYOZM2HPP2vuy9UmqetaLzKJFMGpUbWvL7NnQo4cv0Hv18lcP1UmhItk3e7afIWn2bL+snnWN9yKS\nHBMnwplnwkcfbfhY7D3rzrnewCCgKfAvM/tzxDqlwB1Ac2CemZVm+rzSOCtWwJgxtcX5pEnQrZsv\nzO+/H7p21UmhIvnQsiUsWxZ3itxyzv0YKAM6AYeZ2QfxJhIRyY8PP/Sz4OVCRj3rzrmmwF1Ab2A/\n4Czn3L711mkD/AM41cwOAP4vk+fMh0LuuVqzBsaNg1tvhR/8AHbYAX73O3//jTfC11/7ov3aa33R\nvimFekivC4SVR1mihZQF4s3TogWsWhXb0+fLJOBHwBtxB2ks7aPpKUu0kLJAWHmKOcvkybkr1jM9\nptoNmG5mlQDOuceBvsCUOuucDTxlZrMBzGxehs8pdZjBtGm1R85HjvQnhvbsCRddBP/9L7RpE3dK\nEWnRwp8TkmRmNhX8R74iIsVk8mQ455zcbDujnnXn3P8BPzCzC6qXzwUON7MBddapaX/ZH2gF3Glm\nj0RsSz2MjfTll7XF+Wuv+ftq5jo//njYddd484nIhtasgebN/ZSokOyedefcSOC36dpgNN6LSNK0\nb+8n4thjjw0fi7tnvTGjbXOgK9AT2AoY45x7x8ym1V+xf//+lJSUANCmTRs6d+68bqaAmo8zinG5\nqgruuivFuHHw8celfPUVHHBAiq5d4bXXStl7bxg1yq+/667x59WylrW84XJFRQVmVdxwA8ycWUmh\ncs4NB3aOeOg6M3u+sdvReK9lLWs5KcvffgtLl5bSsWPteF9VVQVAZWUlGTOzzb4BRwAv11m+Fri6\n3jpXA2V1lv8F/F/EtiwUI0eOjPX5ly0ze+01s2uvNevUaaRts43ZCSeY3XKL2dixZqtXx5Mr7tel\nvpDyKEu0kLKYxZ+nZUuzpUv999VjXkZjcKg3YCTQtYHHM34tsyXufaK+kPIoS7SQspiFladYszz3\nnNkPfpD+8UzH+0yPrL8P7OWcKwHmAD8Fzqq3zrPAXdUno24BHA7cnuHzJkrNSaE1rS3vvgsHHODb\nWi680Peeb7FF3ClFJFMtWvi+9S23jDtJXiSyxUdEpL733oPDDsvd9jOeZ905dxK1Uzfeb2Y3O+cu\nBDCzwdXrXAmcB6wF7jOzv0VsxzLNUijMYOrU2uJ81Cho1652rvNjj4XWreNOKSLZ1rYtTJniZ2lK\nYs+6c+5HwN+AtsBCYLyZnRSxXtGM9yKSfMcfD1deCX36RD+e6XiviyLlyezZtcX5iBF+ysRevWpP\nCt05qgNURBKlXTsYO9afBJ7EYr2xkj7ei0jxWL7cH4CZMwdatYpeJ9Pxvsnm/sMkqzl5IBPffgvD\nhsHFF8M++0DnzvDii3D00f5IemWlvyjR2Wc3XKhnI0u2hJQFwsqjLNFCygLx52nRoijmWi8oce8T\n9YWUR1mihZQFwspTjFneecfPr56uUM8GXbsyS5Yuhbfeqp1O8ZNPfGHesydccAEcfDA00Z9GIkWt\npmddRESSYcQIOO643D6H2mA20+rV8P77vjAfMcJ/tN25c+1850cc4d+YRURqHHAAPP64/1rsbTAD\nBw6ktLR03fRnIiKF6MADYfBgOOqoDR9LpVKkUinKy8uT07Me8uBtBh99VFucv/EG7L57bXF+7LG5\n/QhERApfly5w0UUp5szJfPAuZIV2cEZEJMr06dC9u+9Xb6h7IlE962VlZUEU6jV9Tp9/Dg884C8f\n264dnHoqfPih7zP/5BOYMAFuvx1OPjl3hXox9n81Vkh5lCVaSFkg/jwtWsBBB5VSVlYWaw6pFfc+\nUV9IeZQlWkhZIKw8xZbl2Wehb9/ctzmrZ72OefNg5Eh45BHfZ75woZ+ppWdPuPFG6Ngx7oQiUsia\nNfPXVRARkcL32GNw0025f56g2mDynWXJEhg9unY6xenT4Zhjauc7P+AAnRQqItnTowf88Y/+a7H3\nrIfy3iMisjnGj4fTToMZM6Bp04bXzXS8L6oj66tW+atM1czY8sEH0LWrL8z//nfo1g2aN487WMBK\n2AAAIABJREFUpYgkVbNm/uR0EREpbPfdB7/4xcYL9WxI9HHjtWth4sTavvK2beGSS2DxYrjuOpg7\n158oesMNfprFmkK92HquGiukLBBWHmWJFlIWiD+PivVaZWVlsf8+IP59or6Q8ihLtJCyQFh5iiXL\n/Pnw3//C+edvPEM2zlFK9JH1vn1h6lTf1tK/PwwZ4gt2EZE4NGumiyLV0Em2IlKoBg2CM86A3XZr\neL2aGQ7Ly8szer5E96wvWQJbb53VTYqIbLa+feG883yfo3rWw3jvERHZFF9/Dfvt56+v06FD4/5N\nonrWa6ZuzNb0jSrURSQkzZvDhAkpKipScUcREZHN8Lvf+W6Nxhbq2RBUz3po86yHQFnSCymPskQL\nKQvEn6dZM9hnH82zHpK494n6QsqjLNFCygJh5Ul6lldf9ZOUDByY9U03KKgj6yIiSaYTTEVECtMX\nX0C/fn5u9XxfsT7RPesiIiHp3x9KS/3XYu9ZHzhwYFbbHkVEcuXbb/31MX72M98G01ipVIpUKkV5\neXlG472KdRGRPPnlL+GII/zXYi/WNd6LSCGYNQtOPdVfk+e228Btxqid6XgfVM96KJLec7W5QsoC\nYeVRlmghZYH486gNJjxx7xP1hZRHWaKFlAXCypO0LC++6A+wnHvu5hfq2aCedRGRPFGxLiKFZPVq\nWL4cVqzwX2tudZfXrAEzf5swAZYtq1028wVuixbpby1b+h7wrbeOrxiub9w4uPFGmDQJ/v1vOO64\nePOoDUZEJE8uvxxKSvxXtcFovBfJtbVrYcEC+OYbmDev9uu8eVBVBYsWNXxbvdoX0zW3LbZY//st\ntvAHIZxLfzPzF4NbuTL6tmyZv7L88uW+YG/Vav3btttC69bRtzZtNrxvyy03vehfuRIqKiCVgqFD\n4auv4Kqr4IIL/PYypXnWRUQKRLNm8PHHKcrKUnFHEZECtmIFzJnjZyiJ+vr1174wX7DAF7tt28IO\nO/ivNbfttoPdd/eP19xat679vlUrX5Tny5o18N13vnCve6v5w2HhQv8Hxpdf+qvTL1xYe1/N9wsX\n+j8w0hXyrVv7o/nffecvnPn111BZ6fvS99wTjj4abr7ZTwTQLKAKWUfWI6RSqWD+YFCW9ELKoyzR\nQsoC8ee55hr/BnLNNTqyHspsMHHvE/WFlEdZouUjy5Il8NlnG94qK2H2bF+87rIL7LorNG+eonPn\nUtq188vt2sFOO/mCfPvt81t0hvB7WrHCF+2vvpqiU6fS9Qr5qip/lH+bbfxR/O239xc3KinJzYU0\nszUbTEB/N4iIJJt61mvpwlBS7L77Dj75BD7+uPY2Y4Yvyhcv9gVkhw61t+7d/X3t2/tCvEn1FCGp\nlD8SLN4WW8COO8Juu8Ghh8abpeaARHl5eUbbyfjIunOuNzAIaAr8y8z+nGa9w4AxwE/MbFjE48Ec\nWRcRyYWyMt+/WV6e3CPrzrnbgFOAlcCnwHlmtrDeOhrvpSiY+baNyZN960ZNUT51Ksyf71svOnWC\nffbxt44dfWG+0061xbgUvlh71p1zTYG7gF7AF8BY59xzZjYlYr0/Ay8DiXtzEhFpjKZN/YlMCfcq\ncLWZrXXO3QJcC1wTcyaRnFuyxBflEyf626RJ/mvTprD//r4o79QJTjnFf/3+91WQS+Nkupt0A6ab\nWaWZrQIeB/pGrDcAeBL4JsPny4ukzROaLSFlgbDyKEu0kLJA/HmaNPGzMySZmQ03s5qf8l1gtzjz\nbEzc+0R9IeVRlmgjR6aYPRuefdZ/Wnb66bDXXv4Ezosugjff9O0q110HH33kT2IcORL++U+47DLo\n3ds/nq1CPaTXRllyI9Oe9V2BWXWWZwOH113BObcrvoA/HjgM0GefIlKUiqFYr+d84LG4Q4hsLjM/\nu8q4cfD++/7rmDHQvDkccgh06QJnngk33eQL9pBmEJHkyKhn3Tl3BtDbzC6oXj4XONzMBtRZZyjw\nFzN71zn3EPC8mT0VsS31MIpIov35z/Dtt/5rIfesO+eGAztHPHSdmT1fvc7vga5mdkbEv9d4L0Ga\nOxfee2/94nz1an+i4qGH+gL9kEP8yYuhXMBHwhf3POtfAO3rLLfHH12v6xDgcef36rbASc65VWb2\nXP2N9e/fn5KSEgDatGlD586d100BVPNxhpa1rGUtF+JyRUUFr71WxZIl0L9/JYXMzE5o6HHnXH+g\nD9Az3Toa77Uc9/JRR5UyYQI8/HCKjz6CGTP8NH977JFin33gF78o5e674dNPUzi3/r//9NP482s5\n3OWKigqqqqoAqKysJGNmttk3fLH/KVACtAAqgH0bWP9B4PQ0j1koRo4cGXeEdZQlvZDyKEu0kLKY\nxZ/nL38xu+IK/331mJfRGBziDegNTAbaNrBO5i9mlsS9T9QXUp6kZfniC7MnnzS78kqzo48223pr\ns4MOMvvVr8wefNBs6lSzNWvykyWbQsqjLNEyHe8zOrJuZqudc5cAr+CnbrzfzKY45y6sfnxwJtsX\nEUmSJk2Komf97/iDN8OrP1EdY2YXxxtJis3q1TBhAowe7XvMx4yBpUvhiCPgyCPhj3+Eww7zV+kU\nCZ2uYCoikid33ukvenLnnYXds54pjfeSbcuX+17zN97wBfo77/iLB3Xv7i8hf8QRfk5z9ZlLHOLu\nWRcRkUYqkiPrIjm3cCG8/XZtcV5R4ecyP+YYuPhiePRRfyl5kSRoEneAENWcLBACZUkvpDzKEi2k\nLBB/HhXr4Yl7n6gvpDwhZXn22RRPPQWXXuqnS9x1V7j1VmjRws91/tVX8O678Je/QN++uS3UQ3pd\nIKw8ypIbOrIuIpInKtZrlZWVUVpaum4GBZG6Fi3yR8xff93fPv4YSkuhRw+4+24/fWKLFnGnFGlY\nKpXKyh8NQfWsDxw4UIO3iCTW4MHwwgspDjkkRXl5uXrWRaotXerbWl5/3V/tc9Ik6NYNjj/e3w47\nzF+ISKQQZdqzHlSxHkoWEZFcuO8+fxLcfffpBFON98Vt9WrftjJihC/Q338fDj64tjg/8kho2TLu\nlCLZkel4r571CCH1OSlLeiHlUZZoIWWB+POoDSY8ce8T9YWUJ9tZPv8c7r0XzjgDdtgBfvMb3+5y\n9dXw5Zfw1ltw441w3HEbFupJfl0yFVIeZckN9ayLiOSJinUpJkuWwKhR8PLL8MorsGABnHCCPwH0\nH/+AnXeOO6FIYVAbjIhIngwZ4j/yHzJEbTAa75PHDCZPhv/9zxfn777rTwT9wQ/gxBP9LC5N9Hm+\nFCHNsy4iUiB0ZL2WZoNJhhUr/NHz55+HF17wBfvJJ/spFo87TlcIleKWrdlg9DduhJD6nJQlvZDy\nKEu0kLJA/HlUrNeqKdbjFvc+UV9IedJl+fpreOgh33u+005QXg7t2vmC/bPPfIvLD3+Y3UK9EF6X\nuISUR1nWV1paSllZWcbb0ZF1EZE8UbEuhcgMPvoInnnGHz2fMsX3nv/wh3DPPf5kURHJnaB61jXP\nuogk2X//C/fck6JHD82zHsp7j0Qzg3HjYNgweOopWL4cTjsNTj0Vjj1WFyQS2RSaZ11EpEAMHQpP\nPOG/6gRTjfehWbvWX5ho2DB/a9HCt7qcfjoceii4otxbRTKnedZzIIQ+pxrKkl5IeZQlWkhZIP48\naoMJT9z7RH35zrNmjb8w0cUXw667+q+tW/v+88GDU9x8s796aNyFeki/p5CyQFh5lCU31LMuIpIn\nKtZraTaY+Jj5aRUfe8x/0tOuHfz4x/DGG7DXXrXrJajWEYlFtmaDURuMiEiePPssPPCA/6o2GI33\n+TZ5Mjz6KDz+ODRrBmefDWedBXvvHXcykWTTPOsiIgVCR9Yl3z7/3B9Bf/RR+PZbX5wPHeovUBR3\na4uINI561iOE1OekLOmFlEdZooWUBeLPo2I9PHHvE/VlI8/SpfDII9CzJ3TtCpWVcNddMHMm3Hab\nv68xhXpIr42ypBdSHmXJDR1ZFxHJExXrkitmfiaXBx/0Uy0eeST8+td+qsWWLeNOJyKZCKpnXfOs\ni0iSvfIKXH99ipNP1jzrobz3FLrZs+Hhh/0VRZs2hfPOg3PP9SeNikgYNM+6iEiBGD4cbr3Vfy32\nE0x1cGbzrVnj//C75x548034yU98kd6tm/rQRUJSMxtMpgdn1LMeIaQ+J2VJL6Q8yhItpCwQfx61\nwdSqmboxbnHvE/U1lOerr+BPf4I99oCyMn9F0VmzfNF++OHZL9RDem2UJb2Q8ijL+kpLSykrK8t4\nOxkX68653s65qc65ac65qyMeP8c5N8E5N9E595Zz7qBMn1NEpBAlvVh3zt1YPd5XOOdGOOfax52p\n0JnB66/7o+f77utPFn3qKXjvPTj/fNh667gTikiuZdQG45xrCnwM9AK+AMYCZ5nZlDrrHAl8ZGYL\nnXO9gTIzOyJiW2qDEZFEGzUKbrjBf01iG4xzrpWZLa7+fgBwsJn9MmI9jfcb8d13vhf9b3+D5s3h\noovgnHP81UVFpLDEPc96N2C6mVVWh3kc6AusK9bNbEyd9d8FdsvwOUVEClLSj6zXFOrVtgHmxZWl\nUM2c6adZfOABOPZYGDzYf1UvukjxyrQNZldgVp3l2dX3pfML4KUMnzPnQuhzqqEs6YWUR1mihZQF\n4s+T9GIdwDl3k3NuJtAPuCXuPBsT9z4BtdMu/uQncMABKVav9m0uw4ZBjx7xFeohvDY1lCW9kPIo\nS25kemS90Z9jOueOA84Hjs7wOUVEClISinXn3HBg54iHrjOz583s98DvnXPXAHcA5+U1YAFZs8b3\nn//1rzB/Plx6KfTrByefHHcyEQlJpsX6F0DdE4ja44+ur6f6pNL7gN5mtiDdxvr3709JSQkAbdq0\noXPnzutmC6j5Cykfy6WlpXl9vkJarqE86y/X3Bf366H9N9zliooKPvywipkzoX//SgqVmZ3QyFUf\npYFPUot5vH/11RSvvgrPPlvKjjvCqaemOPJI6NmzFND/33TLNeLOU3Nf3K9HiHni+P8U4nJFRQVV\nVVUAVFZWkqlMTzBthj/BtCcwB3iPDU8w/T7wOnCumb3TwLZ0wpGIJNrYsXDxxf5rQk8w3cvMplV/\nPwDoZmY/i1ivKMf7xYt9D/odd8DBB8O110L37upHF0m6TMf7Jpk8uZmtBi4BXgE+Av5rZlOccxc6\n5y6sXu0GYDvgn8658c659zJ5znyo/1d8nJQlvZDyKEu0kLJA/Hm22AJ22CHWCLl2s3NuknOuAigF\nfhtzno3Kxz7xzTfwhz9Ax44wbhy8+CK89BIcc8yGhXrc+2hdyhItpCwQVh5lyY1M22Aws/8B/6t3\n3+A63/8S2GDqLhGRYnPQQb5ISyoz+7+4M4Rk3jy47Tb417/gxz+GMWNgzz3jTiUihSajNphsKtaP\nRUWkOCWxDaaxkj7ez5/vTxodPBh++lPf7tJel4cSKVqxtsGIiIiIt2CBb3fZe29/VP2DD+Duu1Wo\ni0hmVKxHCKnPSVnSCymPskQLKQuEl6eYlZWVBfH7yEaGxYuhvBz22gvmzIH334d774Xdd48nT7Yo\nS7SQskBYeZRlwwxlZWUZb0fFuoiI5F1ZWdl6U88VolWr4B//8EfSp02Dd9+F+++HDh3iTiYiISgt\nLc1KsR5Uz/rAgQPXzdMpIpJEqVSKVCpFeXm5etYLlBk8+SRcd52f4eWWW6BLl7hTiUioMu1ZD6pY\nDyWLiEiu6QTTwhzvR42C3/3OH1W/9Vbo1SvuRCISOp1gmgMh9DnVUJb0QsqjLNFCygLh5ZH4NXaf\nmD4d+vaF/v3hsst8X3ouCvWQ9lFliRZSFggrj7Lkhop1ERGRNBYvhquvhiOOgKOPhqlT4eyzoYne\nPUUkT9QGIyISg2Jvgwn9HKW1a+GRR/wc6SeeCDffDLvsEncqESkk2TpHScW6iEgMir1YD3m8f+89\nGDDAf/+3v8Hhh8ebR0QKm3rWcyCkPidlSS+kPMoSLaQsEF4eiV/dfWLBArjwQjjtNLj4YhgzJv+F\nekj7qLJECykLhJVHWXIjqGI9lItkiIjkSrYukiHZYwb/+Q/stx80awYffQT9+qkvXUTCoDYYEZEY\nqA0mjPF+2jR/FP2bb2DwYLW8iEj2qQ1GRERkE61cCTfeCEceCSed5KdiVKEuIiFSsR4hpFYcZUkv\npDzKEi2kLBBenmIWZ9vj++/DIYfA2LHwj3+kuOIK3/4SgpD2UWWJFlIWCCuPsmyYIRttjyrWRUQk\n78rKyvI+beOKFfD738PJJ/spGZ99FnbaKa8RRKSIlJaWZqVYV8+6iEgM1LOe3/F+7Fh/9dF99oG7\n74add87r04tIEct0vA/kgz8REZHsW74cysrgoYfgzjvhJz8BV5R/IolIoVIbTIQQ+pxqKEt6IeVR\nlmghZYHw8khuTZoEhx3mZ3yZMAF++tMNC/XQ9omQ8ihLtJCyQFh5lCU3girWNc+6iCSd5lnPvbVr\nYdAgOP54uPJKePJJ9aaLSOFSz7qISAzUs56b8X7OHN+bvngx/PvfsMceOXkaEZFG0zzrIiJScHLx\nSeozz0DXrnD00TB6tAp1EYmXpm7MoZBacZQlvZDyKEu0kLJAeHmKWbanbhw92re8PP00DBzY+HnT\nQ9snQsqjLNFCygJh5VGW9WVr6saMi3XnXG/n3FTn3DTn3NVp1vlb9eMTnHNdMn3OXKuoqIg7wjrK\nkl5IeZQlWkhZILw8SeWc+61zbq1z7nv5es7u3f1JpEceuWn/LrR9IqQ8yhItpCwQVh5lyY2MinXn\nXFPgLqA3sB9wlnNu33rr9AH2NLO9gF8B/8zkOfOhqqoq7gjrKEt6IeVRlmghZYHw8iSRc649cALw\neX6fF7beetP/XWj7REh5lCVaSFkgrDzKkhuZHlnvBkw3s0ozWwU8DvStt84PgSEAZvYu0MY5t1nn\n5W/sI43GfOSRrY9FsvFcIWVp7DrKsvm0/+YuS2PXKaQsBex24HeZbiSk34WybP52QsrSmHVCytLY\ndQopS2O2E1KWxqyTj/E+02J9V2BWneXZ1fdtbJ3dNufJ8vULrqyszMp2spE3X1kas05IWRqTJ6Qs\njdlOSFkas05IWbKVJ7Q3tULjnOsLzDaziZluS+Na+Fkas52QsjRmnZCyZCtPSFkas52QsjRmnXyM\n9xlN3eicOwPobWYXVC+fCxxuZgPqrPM8cIuZvVW9/BrwOzP7oN62NG+jiBSVQpy60Tk3HNg54qHf\nA9cBJ5rZIufcZ8ChZjY/Yhsa70WkqGQy3jfyfPm0vgDa11lujz9y3tA6u1Xft55CfNMSESk2ZnZC\n1P3OuQOADsAE5y8TuhswzjnXzcy+rrcNjfciIo2UaRvM+8BezrkS51wL4KfAc/XWeQ74OYBz7gig\nyszmZvi8IiISEDP70Mx2MrMOZtYBf+Cma/1CXURENk1GR9bNbLVz7hLgFaApcL+ZTXHOXVj9+GAz\ne8k518c5Nx1YApyXcWoREQmdWl1ERLIgo551ERERERHJnbxcwdQ594Bzbq5zblK9+wc456Y45z50\nzv25zv3XVl9Eaapz7sRcZ3HOdXPOveecG++cG+ucOyxPWdo750Y65yZXvwaXVt//PefccOfcJ865\nV51zbWLOc1v172mCc26Yc651rvOky1Ln8Q0uuhJHlnzvww38jvK+DzvnWjrn3nXOVTjnPnLO3Vx9\nf1z7b7o8cey/kVnqPJ63/TcOUeNs9f0a8wMZ8xvIovE+kPG+oTxx7MMNjLFx7L/FNd6bWc5vwDFA\nF2BSnfuOA4YDzauXd6j+uh9QATQHSoDpQJMcZ0kBP6j+/iRgZJ6y7Ax0rv5+G+BjYF/gVvyMOQBX\n42fTiTPPCTXPA9ySjzzpslQvtwdeBj4DvhdXljj24QayxLUPb1X9tRnwDtA9rv23gTx533/TZYlj\n/43jhsb8dFmCGfMbyKLxPpDxfiN54tqHgxnz02RJ5HiflyPrZjYaWFDv7ouAm81fTAkz+6b6/r7A\nY2a2yswqq3+IbjnO8iVQ89dXG2pnq8l1lq/MrKL6+++AKfh56dddSKr662kx5mlnZsPNbG31au9S\nO09+zvKky1L9cNRFV/KdZVfg1+R5H24gS1z78NLqb1vgz1tZQEz7b5o838ax/6bLUr2c1/03Dhrz\n02YJZszXeL9JWWIZ7zeSp+jH/GIa7/NSrKexF3Csc+4d51zKOXdo9f3tWH/6x6gLLWXbNcBfnXMz\ngduAa/OdxTlXgj/68y6wk9XOmDMXqLnia1x56jofeCmfeepmcekvupL3LMDexLgP18nyDjHtw865\nJs65Cvx+OtLMJhPj/huR56N6q+Rt/43KEvf+GzON+XWENOZrvN94FmIe7+vl0ZgfnSWx432cxXoz\nYDszOwK4CniigXVzfRbs/cClZvZ94P8DHshnFufcNsBTwGVmtni9J/OfmTT0nLnK82R1nu/q3P97\nYKWZPZqvPHWzAGvxF10ZWHeVOLJU/55i24cjfkex7MNmttbMOuOPXhzrnDuu3uN53X8j8pTWPJbv\n/TciSx/8G2os+28ANOZXC2nM13i/8Sxxj/cReTTmR2cprXksaeN9nMX6bGAYgJmNBdY659rSyIso\nZVk3M3u6+vsnqf04IudZnHPN8YP2I2b2TPXdc51zO1c/vgtQM09xPvP8u04enHP9gT7AOXVWz2me\niCx74Pu7Jjh/dcSai67sFEMWiGkfTpMltn0YwMwWAi8ChxDj/huR59DqHP3J8/4bkaUrtRcNyuv+\nGwiN+YQ15mu8b3QWiHH/1Zjf6CzJHe8tS831G7vh/9PVPcHnQqC8+vu9gZm2fuN9i+of9FOqp5jM\nYZYPgB7V3/cExuYjC/6vrIeBO+rdfytwdfX317DhCRL5ztMbmAy0rXd/zvKky1JvnagTNvKWJY59\nuIEsed+HgbZAm+rvtwTeqH7uuPbfdHni2H8js8Sx/8Z1Q2N+VI5gxvwGsmi8D2S830ieoh7zG8iS\nyPE+KztTI36Qx4A5wApgFv7CSM2BR4BJwDigtM761+Eb7qdSfbZzDrKsrJPlUHxPWgUwBuiSpyzd\n8R/1VQDjq2+9ge8BrwGfAK/W7AQx5TkJmAZ8Xue+u3OdJ12WeuvMqNn5Y8jSO459uIHfUd73YeBA\n/BtGBTARuKr6/rj233R54th/I7PEsf/GcUNjfroswYz5DYwlGu8DGe838nsq6jG/gSyJHO91USQR\nERERkUDF2bMuIiIiIiINULEuIiIiIhIoFesiIiIiIoFSsS4iIiIiEigV6yIiIiIigVKxLiIiIiIS\nKBXrIiIiIiKBUrEuIiIiIhIoFesiIiIiIoFSsS4iIiIiEigV6yIiIiIigVKxLiIiIiISKBXrIiIi\nIiKBUrEuIiIiIhIoFesiIiIiIoFSsS4iIiIiEigV6yIiIiIigVKxLiIiIiISKBXrIiIiIiKBylux\n7pxr45x70jk3xTn3kXPuiHw9t4iI5Idzbh/n3Pg6t4XOuUvjziUiUqicmeXniZwbAowyswecc82A\nrc1sYV6eXERE8s451wT4AuhmZrPiziMiUoia5eNJnHOtgWPMrB+Ama0GVKiLiCRbL+BTFeoiIpsv\nX20wHYBvnHMPOuc+cM7d55zbKk/PLSIi8TgTeDTuECIihSwvbTDOuUOBMcBRZjbWOTcIWGRmN9RZ\nJz/9OCIigTAzF3eGXHHOtcC3wOxnZt/Ue0zjvYgUlUzG+3wdWZ8NzDazsdXLTwJd669kZg3eBg4c\nmNHjoa0TUhbljX+dkLIkMW9oP1MROAkYZ/UK9RrF+DtX3vDXCSlLsf5MIWXJVt5M5aVYN7OvgFnO\nub2r7+oFTN7U7ZSWlmb0eGPXyUaWxqwTUpbGrqMsm0/7b+6yNHadQsqSAGcBj23uPw7pd6Esm7+d\nkLI0Zp2QsjR2nULK0pjthJSlMevkZbzf2F8D2boBBwNjgQnAMKB1vcctFP369Ys7wjrKkl5IeZQl\nWkhZzMLKUz3m5W0MzucN2BqYB7RK83h2XsQsCGmfMAsrj7JECymLWVh5lCVapuN9XmaDqR6ZJwCH\n5ev5MtG5c+e4I6yjLOmFlEdZooWUBcLLk1RmtgRoG3eOxghtnwgpj7JECykLhJVHWXIjb/Osb4xz\nzkLJIiKSa845LMEnmDbEOWcDBw6ktLRULUMiklipVIpUKkV5eXlG472KdQmKc8mvXbSfC6hY1/8D\ngeSP+drPBTIf7/M1G0xBSaVScUdYpxizZNLXFfotH4pxn2ms0PJI/ELbJ0LKozE//PEeinOfaYyQ\nsmQqqGK9rKwsUS+uiEh9qVSKsrKyuGOIiEiBUBuMBKX6o6K4Y+RM0n8+abxib4NRz7pAssfEJP9s\n0jjqWZdESvrglvSfTxqv2It1/T8QSPaYmOSfTTaNetZzIKRWHGWRTRXS7ymkLBBeHolfaPtESHlC\nyiLphfR7UpbcULEuIiIiIhIotcFIUAr9Y8Pzzz+fhx56iOnTp9OxY8cNHi/0n0+yp9jbYNSzLlB4\nY2IqleL4449n6623Xnff3Xffzc9+9rMN1i20n02yTz3rkkiFPLi9+eabXH/99YwePZpp06apWJcG\nFXuxrv8HAoU3JqZSKX72s58xa9asja5baD+b5I561nMgpD4nZQnLrFmzOP3009lxxx1p27YtAwYM\nAGD16tVceuml/P3vf499cA7p9xRSFggvj8QvtH0ipDwhZYlD1Hgf4kWcQvo9KUtuBFWsa551Cdma\nNWs45ZRT6NChA59//jlffPEFZ511FgB33HEHPXr04MADD4w5pYRO86yLhC9qvD/zzDMB+Prrr9l5\n553p2LEjV1xxBUuXLo05rSSd2mAkKI352DAbBzY2Z1cbM2YMffv25auvvqJJk9q/c2fNmsXxxx/P\nBx98QKtWrWjSpIl61mWjktwG45xrA/wL2B8w4Hwze6fO4+pZF2DjY2K2DmRv6rCbbrzNJe6FAAAg\nAElEQVSfO3cuCxYsoFOnTlRWVtKvXz/23Xdf7rnnng22ofFeBg5MsWhRikGDMutZD+rIukhjmGV+\n2xyzZs1i9913X2/gBrj88su54YYbaNWq1bqBWQO0FLk7gZfMbF/gIGBK/RXKyspUqMtGZWO835zh\nON14v9NOO9GpUycASkpKuPXWW3nqqaey8aNKAo0aVUrfvmUZb0fFeoSQWnGUJRzt27dn5syZrFmz\nZr37X3/9da666ip22WUX2rVrB8CRRx7J448/HkfMoH5PIWWB8PIkkXOuNXCMmT0AYGarzWxhzLHS\nCm2fCClPSFnyLd14H2Xt2rV5SJReSL8nZVnf6tXQrFnm21GxLtJIhx9+OLvssgvXXHMNS5cuZfny\n5bz99ttMmzaNiRMnMmHCBCoqKgB44YUXOO2002JOLBKLDsA3zrkHnXMfOOfuc85tFXcokU0RNd6/\n9dZbpFIpPv/8c8yMWbNmcfXVV2usl7SyVayrZ12CEnqP36xZs7j00ksZPXo0zjnOOeccBg0atN46\nTZs21dSNslFJ7Vl3zh0KjAGOMrOxzrlBwCIzu6HOOtavXz9KSkoAaNOmDZ07d17XFlNzREzLyV8O\neUyMGu933313/vrXv7JgwQK23357Tj/9dG666ab15l2vUfOzhfR6azk/yxUVFVRVVXHvvdC1ayUv\nvjhE86xLcoQ8cGdD0n8+abwEF+s7A2PMrEP1cnfgGjM7pc46Gu8FSPaYmOSfTRqnc2d46CHo0kXz\nrGddzV9JIVAW2VQh/Z5CygLh5UkiM/sKmOWc27v6rl7A5BgjNSi0fSKkPCFlkfRC+j0py/oS2bOe\n7XnWJ0yA5cuztjkRkYylimOe9QHAf5xzE/Czwfwp5jwiInmnnvVG+NWv4O234ZFHoEuXrG5aciTp\nHxsm/eeTxktqG0xjaJ51qZHkMTHJP5s0zq67pjjjjBR//3tm86wnulg3g//8B664AgYMgGuvzc5f\nOJI7SR/ckv7zSeMVe7Gu/wcCyR4Tk/yzSeOUlEAqBR06FEjPunOuqXNuvHPu+fw9J5x7LnzwAbz5\nJhx1FEzZ4NIcGwqhz6mGssimCun3FFIWCC+PxC+0fSKkPCFlkfRC+j0py/oKsWf9MuAj/KWn82q3\n3eDll+G88+CYY2DQIIj5GgYiIiIikmAF1bPunNsNeAi4CbjCzE6NWCcvH4tOnw79+/vv//UvqL5q\nsATCueR3BehjUQG1wej/gUDyx3zt58WtbVuYOhV22KEw2mDuAK4CYj+eveeeMGoUnHkmdO8ON94I\nK1fGnUpqmFnibyKS/dm/pDDFPR5rvJdcWr48xV/+UpbxdnJerDvnTgG+NrPxQBB/QjdtCpdcAuPH\nw3vvQdeuMGZM7eMhvYEoS3oh5VGWaCFlgfDyFLOysrIgZoIJbZ8IKY+yRAspC4SVR1nqK+X668sy\n3ko+5kY5Cvihc64P0BLY1jn3sJn9vP6K/fv3z/vlp597rpQnnoCTT05RWgpDhuT2+TZ1uUYIeSoq\nKmJ/PULNU1FREevzh7pcQ3lqLz8NUFlZiYiIJFtB9ayvezLnegBXxtmzns6338KVV8Lw4fCXv8BP\nfuJnkxERyQX1rKtFQESSrVkzf3HO5s0Lo2e9riBH6O99Dx54AB57DP70J+jVCz76KO5UIiLJpJ51\nEUkyM1izJsWNN5ZlvK28FutmNsrMfpjP59xU3bvD7benOO006NHDH21fvDi+PCG9mYWUBcLKoyzR\nQsoC4eUpZupZjxZSHmWJFlIWCCuPstRaswaaNi2lvLws423FcWQ9eE2b+iuefvghzJ/vp3d89FH/\nV5KIiIiISENWrcpOvzrkuWe9ISH3ML79ti/eW7SAv/7VXwlVRCQT6lkPc7wXEcmGqirYfXdYuDDz\n8V5H1hvhqKNg7Fi46CL46U/9yaczZsSdSkQkTM65SufcROfceOfce1HrqGddRJJs2TJo2jRFWVlZ\nxttSsR4h6g2kSRP4+c/h44/hoIOgWzffz75gQf6zxCWkLBBWHmWJFlIWCC9PghlQamZdzKxb1Arq\nWY8WUh5liRZSFggrj7LUWrYMWrcuTV6xXghHWrbaCq6/3vezL17s+9nvuMNPzSMisjGpVHaOtBSA\nomzxEREBXxe2bJmdbalnPUMffuiL93Hj4A9/gPPOg+bN404lIqFLcs+6c24GsBBYAww2s/vqPV6Q\n472ISGONGwcXXAAffJD5eK9iPUvefdcX7Z99BmVlcNZZflYZEZEoCS/WdzGzL51zOwDDgQFmNrrO\n49avX7+8X7Fay1rWspbzsVxRUcHEiVUMHw49e1YyZMiQzMZ7Mwvi5qOEYeTIkRn8W7OjjjLbf3+z\np54yW7s2vizZFlIWs7DyKEu0kLKYhZWnesyLfezN9Q0YCPy23n1ZeQ2zIaR9wiysPMoSLaQsZmHl\nUZZaw4ebHX+8/z7T8T6onvUkKC2FN9+EW2+F//f/oEsXGDrUT44vIpJ0zrmtnHOtqr/fGjgRmBRv\nKhGR/Fq2DLbcMjvbUhtMDpnBiy/6or2qCq67zrfHqKddRJLaBuOc6wA8Xb3YDPiPmd1cb53Ejfci\nInU98YQ/WDt0qOZZD5pzcMopMGYM/OMf8OCDsM8+cO+9sGJF3OlERLLPzD4zs87VtwPqF+o1CmH2\nLxGRzbVsGSxcmMB51kMZvLOdwTno2RNGjoRHHoFnnoE99vBXQ124ML9ZMhFSFggrj7JECykLhJEn\nVTxTNzZI86xHCymPskQLKQuElUdZai1fDiUlCZ1nPYTBO5eOPhpeegmee85P69OxI/z2tzBzZtzJ\nRCQfSkuzM3iLiEi41LOeIDNnwp13wkMPwYkn+sL90EPjTiUiuZbUnvXGKNbxXkSKx803++6JW25R\nz3rB+/73fTvMjBm+SD/9dOjRA4YNg9Wr404nIpIbobQ9iojkwvLl8NVXCexZD0UcbyCtW/uj6p9+\nChddBLffDh06wC9+keKrr/IeJ1Job6wh5VGWaCFlgfDyFLNQ2h5D2ydCyqMs0ULKAmHlUZZay5bB\nvvsmsGdd/LSOZ57p52p//nn4+mvYd18/5eObb/rpIEVEREQkXOpZLzJVVTBkCNx9N7Rs6Y+8n3WW\nPxovIoVJPesa70UkuS64AA47DH71K/WsF4U2beCyy2DqVN8eM2IE7L47/OxnfjrItWvjTigiIiIi\nNZYsga22ys62girWQznhKIQMNepmqZmvfehQmD7dn5B62WWw117+KqmzZuUvSwhCyqMs0ULKAmHk\n0Tzrnsb7aCHlUZZoIWWBsPIoS63Fi2HmzASeYBrKCUeFoG1bX6hPmAD//S/MmQOdO8NJJ8Fjj/m/\n6EQkPJpn3dN4LyJJtmgRHHVUdsZ79awnyNKl8PTT/iqp77wDp54KZ58NJ5wAzZrFnU5E6lLPusZ7\nEUmuLl3g/vuha9cC6Vl3zrV3zo10zk12zn3onLs0H89bbLbaCs45B15+GT7+GLp1g/Jy2HVXGDDA\nF/B6fxSRfHDONXXOjXfOPR93FhGRfFu0CLbdNjvbylcbzCrg/zOz/YEjgN845/bN03Nvsrj7nOra\n3Cw77VRboL/1Fuy4I/TvD3vuCdddB+PGbXrhHtLrAmHlUZZoIWWB8PIk3GXAR0DkSKOe9Wgh5VGW\naCFlgbDyKEutxYth0qQC6lk3s6/MrKL6+++AKUC7fDy3+AL9D3+AKVPgiSd8kX7mmdCxI1x5JYwZ\noxllRCR7nHO7AX2AfwGRH/2qZ11EkmzRIjjppALtWXfOlQCjgP2rC/ea+9XDmEdmMGkSPPUUPPkk\nLFwIp58OZ5wB3btD06ZxJxRJtiT3rDvnhgJ/ArYFrjSzU+s9rvFeRBJr5UrYemv/1bkC6Vmv4Zzb\nBngSuKxuoS755xwcdJDvaZ88GYYP960yl18OO+8M/fr5KSIXLYo7qYgUEufcKcDXZjaeNEfVRUSS\nbPFi36/usjQC5m2OEOdcc+Ap4N9m9kzUOv3796ekpASANm3a0Llz53Ufk9b0HuVjuW6fUxzPX3e5\nfqZcPd/cuSm6d4frry/l88/h9ttT3HYbnH9+KYcfDp06pWjduoKbbro81tej7nJFRQWXXx5GnkGD\nBsW2v9ZfLsb9txDyVFRUUFVVBUBlZSUJdhTwQ+dcH6AlsK1z7mEz+3ndlTTeh5+nfqY482i8L4w8\n2n/98ogRFaxZU0VZWZbGezPL+Q1/dOVh4I4G1rFQjBw5Mu4I68SdZfFis6efNjv/fLPtthtp++5r\nduWVZq+9ZrZsWazRYn9t6lKWaCFlMQsrT/WYl5cxOK4b0AN4PuL+rLyG2RDSPmEWVh5liRZSFrOw\n8iiLV1FhdtBBtcuZjvd56Vl3znUH3gAmUjszwLVm9nKddSwfWWTzrV0L778PL7zg22Y+/ND3t594\nor/tt1/2PvIRSbok96zXcM71AH5rZj+sd7/GexFJrFGj/MQeb7zhlzMd73VRJNlsCxbA66/Dq6/C\nK6/AqlW1hXuvXrDDDnEnFAlXMRTr6Wi8F5EkGzbMX6Dy6af9ckGdYFoo6vY7xS3kLNtt52ePGTwY\nPvsMRo6EQw+Fxx/300UefDBcdpnfWefPz32eOClLtJCyQHh5ipnmWY8WUh5liRZSFggrj7J48+ZB\n27Y+QzambtRF6CUrnIO99/a33/zGH2X/4ANIpeDee/3sMiUlUFrqb8ce63dkESlO2XgDExEJ0fz5\nsP32/qTT0tJSysvLM9qe2mAkL2qK91GjfAH/1lvw/e9Djx5w9NFw1FF+WT3vUizUBqPxXkSS6cor\n/ZXkr7rKL6tnXQrS6tW+eH/jDXj7bX9r2tQX7TW3Ll2gRYu4k4rkhop1jfcikkznnQfHHAPnn++X\nE9Wzrh7GDSU1S7Nm0K2b/+tz2DD48ksYPRr69oVp0+DCC31P/DHHwO9+B888A3Pm5C5PppQlWkhZ\nIIw82ephLHQa76OFlEdZooWUBcLKoyzevHm+DSaRPet6AytezkHHjv527rn+vkWL4L33/FH3e+6B\nX/wCWrb0J7Eedpg/6n7AAep9l8KSrR7GQqfxXkSSav58X5scfbR61qXImEFlJYwd6+d7f/99GDcO\nvvc9X7zXFPFdu0Lr1nGnFWmY2mA03otIMu2zDzz7LHTq5JfVsy5Fbe1a3zZTt4CvqPBzvB988Pq3\nDh2gSVCNX1LMVKxrvBeRZNp+e5g6tfZ6M4nqWQ+Feq6ihZQFfJ4mTfxfsOeeC4MGwZtvwsKF/iJN\n55wDa9bAgw/CccdBmzZ+5pmLL/Zzw7/zjm+1yVaWUChLeqHlKWbqWY8WUh5liRZSFggrj7L4umPh\nwv+fvXuPk7Ku+z/++nJQDgorgoCKrKLi2fUElqbrnRYekkpLzRLMtDtLs9LSrJvFykNWUnrXzzvN\nm25PechTHgKTyUOKqawHBBV1FVAUwUUBkcN+fn98Z9jZ5ZrdZeeaub5zzfv5eFyPmWvmYua9uxff\n/ew1n+t7+fPuUtmzLhKHnj1b53z/0pdaH1+6FJ57Dp59FmbOhD/+0f/lO3Ag7LqrX3bbrfX+Vltp\nKkmRUlHPuoikUXMzbL65n0hD86yLxKClBebPhzlz4MUX/W1uMfNF++jRMGpU22XQoKSTS6VTG4zG\nexFJn9mz/YHCF19sfazY8V5H1qWq9egBI0f6Zdy41sfNYPFi/5/tpZfgtdfgttvg1Vf90rNn2+K9\ntha23bZ12WILHZUvtXXrYMUKv3z0kV9vaWm7OAd9+0K/fq1L795JJxcRkbR66y3Yeut4XzOoYr2h\noWH9RwZJymQyiWfIUZbCSpnHOd8Gs9VW0P4tzPy0TLnC/dVX4a67MrS01LNggT9Sv3p12+J9m238\naw0ZsuHSp0+82UP6OWUyGQ49tJ6PP4YPP4Tly/1tZ/eXL28txKOW5cv9VXH79YP+/X1B3quX/+Mr\nf2lp8YX8ypV+WbEiw8CB9Qwf7gfTkSP99J977OFnESrHJyaZTCaovs64Oef6AP8ENgU2Ae4yswuS\nTVVYSP9fIKw8yhItpCwQVh5lgYULq6BYFwmdc37+1MGDYexY/1gm07ao//BD/x92wQK/LFzYOu3k\n4sVtl0039UV7TQ0MGOCXgQNb7+eW/v39tn36+Nv8+336+Hnne/Twf9W//rrP6Zx/LP9+S4u/guya\nNf42t0Stf/RR15dVq1oL6Vzh/f77/vEePWCzzXwf3+abd3x/+HD/tfbv79dz99svfftu/KcXM2bA\nnnv6i3Dlvk/PP+8vzNXYCDvtBIcfDl/8or9oVyk+HUn7POtmtso5d5iZrXTO9QIedc4dbGaP5m8X\nysEZEZE45R9Zj+vgjHrWRRJk5mekWbzYnz3+wQetS/76smX+yPDHH/tl1aq2t7mlpcW/Zu42t+Q/\n3rOnPwrdq5dvCcndj1rv23fDpU+f6Mdz7Sa5wju/EN9kk6S/051bvdqfeDxtGtx8s/8+ffvb8I1v\n+K8tbtXQs+6c64c/yj7BzF7Me1zjvYik0ne+4ye4OPvs1sc0z7qISMzM/JVzL7/cF/CTJsEZZ8Q7\nT3+ai3XnXA/gGWAU8Acz+2G75zXei0gqffGL8JWvwPHHtz6medZLIKR+UmUpLKQ8yhItpCzQ9TzO\n+Tn577wT7r8frr8ePvlJfwEu6ZyZtZhZHbAtcIhzrj7hSAVV6j5aDsoSLaQsEFYeZamCE0xFREJT\nVwcPPwy//70v4K+9Fj73uaRTVQYzW+acuxfYH8jkPzdx4kRqa2sBqKmpoa6ubn3/eu6XrNaTXc8J\nIU9jY2Pi34/cemNjY6LvH3qeUNZzyv3+r72W4YEHGpk2rRmApqYmiqU2GBGRLnriCTjuOLjoIjjt\ntOJeK61tMM65wcBaM2t2zvUF/g5MNrN/5G2j8V5EUmfdOn/u1gcf+MkfclI1z7pmBxCRkB14oJ9R\n5vDD/QmoEydu/GtkUj51IzAcmJrtW+8B/F9+oS4iklYLFviZ4vIL9TgE1bOeK9aTFtIvUmUpLKQ8\nyhItpCwQT56dd4bp0+FHP/KF+8aqr69P9TS1Zva8me1rZnVmtpeZXZ50po6kcR+Ni7JECykLhJWn\n2rM0NcH228f/ukEV6yIilWD0aLjpJjjpJH8ykWy8hoaGoH6xi4gU6/XX2xbrmUwmloMz6lkXEemm\nhgY/teN99238BZTS2rPeFRrvRSSNJk3yU/9edFHbxytm6kbn3Djn3Fzn3CvOuR+V631FRErlwgth\nyRK47rqkk4iISNLaH1mPS1mKdedcT+AqYBywG3CSc27Xcrx3d4T00ayyFBZSHmWJFlIWiD9P797w\nhz/AT37iz/6XypP2fbQYyhItpCwQVp5qz1LRxTowBphnZk1mtga4GRhfpvcWESmZ/faDcePgssuS\nTlJZ1LMuImkzbx6MGtW6XlE9686544HPmtnp2fWvAmPN7Ky8bdTDKCIVqanJF+3z5sEWW3Tt36hn\nXeO9iKRHczOMGOE/ZW1/DlOlzLPepVFZV7TTuta1XonrTU0ZDjgArryynv/6r+jtGxsbaW6O74p2\nIiISjjlzYJddNn6ygS4xs5IvwIHAA3nrFwA/areNhWLGjBlJR1hPWQoLKY+yRAspi1lp88yebTZs\nmNnq1V3bPjvmlWUMDm3ReF9YSHmUJVpIWczCylPNWa691uxrX4t+rtjxvlw9608BOznnap1zmwAn\nAHeX6b1FREput91gp53gbo1sXaKedRFJkxdf9L8H8mUqqWcdwDl3JDAF6Alca2aXtHveypVFRKQU\nbrgBpk6FadM631Y96xrvRSQ9jj4azjgDxkdMn1LseK+LIomIxOSjj2D4cHjpJRg6tONtVaxrvBeR\n9NhhB3jgAdh55w2fq5iLIlWSkD6aVZbCQsqjLNFCygKlz9O3Lxx1FNxxR0nfRmJUbfvoxlCWaCFl\ngbDyVGuWFSvg7bd9wV4KKtZFRGL0pS/BrbcmnSJZzrkRzrkZzrnZzrkXnHNnt99GPesikhaNjbDn\nntCr3RyLFdez3hl9LCoiafDRRzBsmL+S3aBBhbdLcxuMc24YMMzMGp1zmwFPA583sznZ5zXei0hq\n/Pa3vv3x97+Pfj5VbTA60iIila5vXzj4YHjooejn4zrSEjIzW2Rmjdn7y4E5wNbJphIRKY2nnvIX\nxiuV4Ir13EVEkhTSHwzKUlhIeZQlWkhZoHx5Dj8cHnww+rn6+vrUF+v5nHO1wD7AzGSTRKvWfbQr\nlCVaSFkgrDzVmuWpp2D//Uv3+kEV6yIiaXDEETB9etIpkpdtgbkN+G72CLuISKp8+CG8+eaGc6zH\nST3rIiIxM/NTOP7rX4VnB0hzzzqAc6438DfgfjOb0u45mzBhArW1tQDU1NRQV1e3/pPV3BExrWtd\n61oPff2KKzJccw3Mnt36fGNjI83NzQA0NTUxdepUzbMuIhKaE06AY46Br30t+vk0F+vOOQdMBZaY\n2fcintd4LyKp0NAAq1bBpZcW3iZVJ5iGIvdXUwiUpbCQ8ihLtJCyQHnzjB0LTzxRtrcLzUHAV4HD\nnHOzssu4pENFqeZ9tDPKEi2kLBBWnmrM8s9/wqGHlvY9enW+iYiIbKwDD4Qbbkg6RTLM7FF0MEhE\nUu7jj/3JpQcdVNr3URuMiEgJfPQRbLklvPce9Ou34fNpboPpjHPOJk2aRH19/fq+TxGRSvPII/D9\n78O//x39fCaTIZPJMHny5PT0rGvwFpE02WcfuPpqGDOm9bG4Bu9KpoMzIpIG//Vf/uj6ZZd1vF2q\netY1z/qGlKWwkPIoS7SQskD58+y9Nzz3XNvH6qtsnvXQVfs+2hFliRZSFggrT7VlufdeOProkr9N\nWMW6iEia7LXXhsW6iIhUvoUL4fXX4ZOfLP17BdUGE0oWEZE4PPgg/PznEHWARz3ransUkcr1xz/C\njBlw442Ft0llz3ooWURE4vDuu7DLLrBkCbh2w3S1F+sa70Wkko0bBxMnwokndr5tqnrWQ1FtPVdd\nFVIWCCuPskQLKQuUP89WW/nbxYvL+rayEap9H+2IskQLKQuEladasixe7K+j8bnPlewt2lCxLiJS\nQjvtBK+8knQKERGJy623wlFHQf/+5Xk/tcGIiJTQV78KRxwBEya0fbza22DUsy4ileoTn4ALL4Rj\njul4u1T2rGvwFpG0mTwZ1qzxJ5qC5lkHHZwRkco1axaMHw+vvQa9enXt36SqZ13zrG9IWQoLKY+y\nRAspCySTZ8cd27bBaJ71sGgfLUxZooWUBcLKUw1Z/vAH+OY3u16ox6GMbyUiUn3Usy4ikg7Nzb5f\nfc6c8r5vydtgnHOXA8cAq4FXgVPNbFnEdvpYVERSZ/Hi1ukb86W5Z9059yfgaOBdM9sz4nm1PYpI\nxfnZz/zBlz//uWvbV0zPunPuCOAfZtbinLsUwMzOj9hOxbqIpI4Z9Ovni/V+/VofT3mx/ilgOfDn\nQsW6xnsRqSTLlvm2xsceg5133rh/G3zPuplNN7OW7OpMYNtSv2exqqHnqjtCygJh5VGWaCFlgWTy\nOAfbbOMvTV0tzOwR4P2kc3SF9tHClCVaSFkgrDxpzvK738GRR258oR6Hcvesfx24qczvKSKSqG23\nhfnzff+6iIhUloUL4be/hZkzk3n/WIp159x0YFjEUz82s3uy21wIrDazGwu9zsSJE6mtrQWgpqaG\nurq69f2Mub+QyrFeX19f1verpPUc5Wm7nnss6e+H9t8w13v3znDNNY08/HAzAE1NTVQ7jfeVkSek\n9Zyk8+QeS/r7EWKetO6/F10E3/pWPaNGdW37xsZGmpvjG+/LMs+6c24icDrwaTNbVWAb9TCKSCpd\ncAFsvjn8+Metj6W5Zx3AOVcL3KOedRGpZPffD9/6Frz4YtvzjjZG8D3rzrlxwHnA+EKFemja/xWf\nJGUpLKQ8yhItpCyQXJ5tt4UFCxJ5a+mE9tHClCVaSFkgrDxpy/Luu3DaafC//9v9Qj0OJS/WgSuB\nzYDpzrlZzrnfl+E9RUSCMWKE71mvFs65m4B/ATs75+Y7505NOpOIyMZYuxZOOQW+9jXI6zhKRFna\nYLpCH4uKSFo9+SR8+9vw73+3Ppb2NpiOaLwXkdB9//vw3HO+DaZ37+Jeq9jxXlcwFREpsa228hdH\nklYNDQ3rT0gTEQnJJZf4Iv1f/yquUM9kMrG045SjDabipK3nKi4hZYGw8ihLtJCyQHJ5hgzxvY/S\nKlesJ037aGHKEi2kLBBWnkrPYgYXX+x71B96CLbYorgM9fX1NDQ0FPci6Mi6iEjJ9e/vL460YoW/\nLyIiYVm92rcrzpzpC/Xhw5NO1CqonvVJkybpY1ERSaXaWpgxA954w38sOnnyZPWsi6SImf+DfNky\naG729z/+GFat2vC2paXtv3V5I0GPHrDpptCnj19y93O3/fvDwIEwYEDxvdTivfyyP5l06FC4/no/\n1W6ciu1ZD6pYDyWLiEjcDjgA/vu/YcwYv17tJ5jq4IyEbt06eOcdWLTI37a//847vijPLR98AJts\n4gvpgQNhs802LLQ33dQvvfL6GtqXPuvWFS7yV61q/YMg934DBvglV8APHAiDB/tlyJDo+7lP+6rd\nqlVw5ZVw2WXQ0ABnnun/WIpLrme92IMzKtYjZPKuBJY0ZSkspDzKEi2kLJBsnqOP9hfWOOYYv17t\nxbrG+2gh5Ul7ljVr4I03oKnJ37Zf3noLamp8O8TQoTBsmL/98MMMBx9cz1ZbwaBBvjiuqfG35TzS\nbQYrV8IDD2TYffd6Pvig9aj+kiXw3nuty+LFbddbWnzRPmyY//qGD4++P2yY/4Ogqypln/noI7jx\nRvjZz2DvveHXv4YddyxdFs0GIyJSAbbcEpYuTTqFSHUxg4ULfZtD++XNN31BOnKkb1MbORIOPdTf\njhzpr4+w6aYbvmYmk/y82+CPjPfv78eWXXbZuH+7cqU/6f2dd+Dtt/2yaBE880tKFoIAACAASURB\nVEzr/bff9ttsvnl0EZ+7zd0fOLA0X2dczGDWLLj5Zn8C6X77+ZaXgw9OOlnndGRdRKQMzjoLdtoJ\nzj7br+vIusZ7iY+Zv0rwCy/A88/72xde8EX55pvDzjtvuOywQ3QxLq1aWvxR+vwCPnc/t567v3p1\na/EeVczn7g8dunFH67vLzH9q8vjj8NhjcO+9vv3oi1+EM84o7ZH09nRkXUSkAtTU+I+nxdM869Jd\ny5ZBY+OGhXnfvrDnnrDHHnDYYfCd7/gjzgMGJJ24cvXo4XvdhwyBvfbqeNsVK1r7+vOL+CefbL2/\naJE/Wj9ggC/ct9zSj41bbNF6m7s/cGBrj/+mm/oCP/fH1erVrcvKlf4PisWL/fLGG/DSS/4Ptc02\ng098wi9/+xvsvnt5e/XjmmddR9YjVErPVbmFlAXCyqMs0ULKAsnm+fWv/cfxv/mNX9eRdY33UULK\nE0KWpUt9a8Ytt2RYtqyep5/2Bd+ee/ricY89Wgv0wYPLkymE70u+kPJ0JUv+0fqlS/1BjPff90vu\nfnOz/6Ps44/9snp1633nfOGeW/r0aXsC7ciR/pOTd97JcOyxHWcpFx1ZFxGpADU1MHt20ilEwrV0\nqT8K+8wz8PTT/nbJEqir81cBHj8eJk2C0aOhZ8+k00p35R+tL6WArs9UtKCOrGsqLxFJq9tvhxtu\ngLPP1jzrIR1Zl2SsXetbV554wvcUP/GEP9K6336ty777+vM84pxKTyQJmmddRKQC/OMf8Itf+Cvj\nQbrbYJxz44ApQE/gGjO7rN3zOjhTZRYt8gV5bnn6aT/byoEHti67764j5pIucc2zrr9XI8RxMkBc\nlKWwkPIoS7SQskCyearlBFPnXE/gKmAcsBtwknNu1/bb5U4wTZr20cK6m8UMXn0VrrsOTj0VRo2C\nXXeFq6/2J4FecIGfNvHFF+FPf/Izc+y1V8eFehq+L6USUh5laau+vp6GhoaiX0c96yIiZVBT40+Y\nqgJjgHlm1gTgnLsZGA/MSTKUlE5Liy+8H3kEHn7YLwCHHOKXc8/1xbraWUS6R20wIiJlsHixn0Zu\nyRK/ntY2GOfc8cBnzez07PpXgbFmdlbeNhrvK5iZL84ffBBmzPBF+hZbtBbnn/qUn8Ncl7MX8TQb\njIhIBejf388HXAW6VIVPnDiR2tpaAGpqaqirq1vfFpP7+Frr4ay/+y6sXFnPgw/Cffdl6NMHjjmm\nnhNOgJNPzjBkSNvt588PK7/WtV7O9cbGRpqzfY9NTU0UzcyCWHyUMMyYMSPpCOspS2Eh5VGWaCFl\nMUs2z7p1Zs75WzOz7JiX+Ngb9wIcCDyQt34B8KN228TwHY2H9tFoS5eaXXTRDDvzTLOddzbbckuz\nL3/Z7H/+x+zVV8ufJ5Tvi1lYWczCyqMs0Yod73VkXUSkDHr08BfvWLUK+vVLOk1JPQXs5JyrBd4C\nTgBOSjKQdM7MXxX0vvv88txzvs/8y1+Gm2+GvfdWz7lIUoLqWddUXiKSZoMHw7XXZpg1K93zrDvn\njqR16sZrzeySds9bKL97qtmyZWTbWuD++/2l2Y86yi+HHOL/uBSR4mmedRGRCjFiBDz2GGy3XXpP\nMO0KHZxJzty58Le/wb33wlNPwUEH+eL8yCP9BYhEJD4ZzbNeOrmTBUKgLIWFlEdZooWUBZLP069f\n1Zxk2inNsx4t7jwtLTBzJpx/vp+N6PDD/RzoP/iBv1DRAw/A2WdHF+ohfW+UpbCQ8ihLW/WVNs+6\nc+4HwOXAYDNbWq73FREJhYp1KYfVqyGTgTvugLvu8tMqfv7zcP31sN9+mlJRpNKUpQ3GOTcC+CMw\nGtgvqlhXG4yIpN1BB8Fll8HBB6sNRuN9vFau9H3nf/2rv91lF1+gf/7zsPPOSacTqW6VMs/6b4Af\nAneV6f1ERILTrx989FHSKSQtPv7Yt7H85S/+JNEDDoDjjoNf/QqGD086nYjEpeQ968658cACM3uu\n1O8VlxD6nHKUpbCQ8ihLtJCyQPJ51AbTqqGhIfGfByS/T7TXWZ7Vq31hPmGCL8ivuMJfMfTll2H6\ndPjP/4yvUA/pe6MshYWUR1k2zBBMz7pzbjowLOKpC/EXxPhM/uZxvKeISKVRsd4qjl9g1aKlxfeg\n33gj3Hmnb2s54QS45BLYeuuk04lIIbkZryZPnlzU65S0Z905twfwDyD362lbYCEwxszebbetTZgw\nQZef1rrWtZ7K9cbGRqZObWbECBg0qImpU6eqZ106NHcu/PnP/sTQQYPg5JN9kb7ddkknE5GNUVHz\nrDvnXkcnmIpIlTrrLH9U9KyzdIKpxvto773nrxj65z/DggW+QP/a12CvvZJOJiLdVex4X+551iti\ndM4dFQuBshQWUh5liRZSFkg+T9++aoPJUc96qzVr/DSLn/881NZmePxx+NnP4M034fLLkyvUQ/je\n5ChLYSHlUZYNMwTTs95VZrZDOd9PRCQk6llvpZ51eOUVuOYamDoVRo+GiRPh9NPh6KOTTiYicaiv\nhJ71jaGPRUUk7X7xC1ixAi6+WG0w1Trer1rl50L/4x/hxRfhlFPgG9/wxbqIpFOlzLMuIlL1eveG\ntWuTTiFJmD3bF+g33AD77ANnngnjx8MmmySdTERCV+6e9YoQQp9TjrIUFlIeZYkWUhZIPk+vXr4/\nOa2cc19yzs12zq1zzu3b0bbV0LO+Zg3ccoufB/0zn4HNNoMnn4Rp0+BLX4ou1EP4nuQoS7SQskBY\neZRlwwwV17PemYaGhvX9PSIiadO7NzQ1ZWhoyCQdpVSeB74AXN3ZhmnuWV+0yB9F/3//D3baCb77\nXX/yaK+gfuOKSKmpZ11EpML84Q/w7LO+iEtzz7pzbgbwAzN7psDzqRvvzWDmTLjqKrj3Xvjyl+Hb\n39aUiyKinnURkYrRu3e622Cq0erV8Je/wO9+B0uX+gL9yithiy2STiYiaaFiPUImkwmmFUdZCgsp\nj7JECykLJJ+nV6/KP8HUOTcdGBbx1I/N7J6uvs7EiRODuGJ1fl/rxvz75cthzpx6fvtbGDo0w/HH\nww9/WE/PnsnkKcV6+0xJXwH4nHPOSez989enTJkS1BXWQ8qj/bd1f21ubgagqamJoplZEIuPEoYZ\nM2YkHWE9ZSkspDzKEi2kLGbJ57n+erOTTvL3s2Ne4mNvKRZgBrBvB88X/b2My8buE2+8Yfb975sN\nGmR28slms2Ylm6eUlCVaSFnMwsqjLNGKHe/Vsy4iUiZ/+QvcfrufIaQKetbPNbOnCzxfceP9rFnw\nq1/BAw/AqafC2WfDdtslnUpEKkGx472mbhQRKZO096w7577gnJsPHAjc65y7P+lMxTCDf/4TjjgC\nPvc5qKuD117zRbsKdREpFxXrEfL7nZKmLIWFlEdZooWUBZLPk/aLIpnZHWY2wsz6mtkwMzuy0LYh\nz7NuBn//OxxyCJx2Gpx0ki/SzzsPBg4sf56kKEu0kLJAWHmUZcMMmmddRKSC9OoF77yT6nnWuyzE\nedbN4J574Oc/hxUr4MIL/RSMmh9dRLojV9NqnnURkQrx4INw6aX+Ns09650Jbbxft86fS/CLX0DP\nnvCTn/iLGPXQZ88iEgPNsy4iUiF69Up3z3qlMYM774Sf/hQ22wwuvhiOOgpcVf4JJSKh0nGDCCH0\nOeUoS2Eh5VGWaCFlgeTzpL1nfWMk2bNu5md1OeAAOO+8DJddBo8/DkcfnXyhnvQ+mk9ZooWUBcLK\noywbZkhdz7qISJrpyHqrpHrW//lP3+ayZAlcdBEMGgT/8R+JRBGRlFPPuohIhXnxRZg0CW69VT3r\n5R7vn3zSnzD62mvQ0ABf+YrvTxcRKbVix3sV6yIiCVCxXp7xft48uOAC3+by05/C17/u25FERMpF\nF0UqgRD6nHKUpbCQ8ihLtJCyQHh5pHTeew+++10YO9ZfzOjll+Gb39ywUA9tnwgpj7JECykLhJVH\nWUojqGI9lItkiIiUSlwnHFW6Uo33q1bBL38Ju+ziT+adM8e3v/TrF/tbiYh0KK7xXm0wIiIJUBtM\nvON9SwvceKMvzPfd189nP3p0rG8hItItmmddRESq3iOPwJVXwvXXw6c+lXQaEZH4lKUNxjl3lnNu\njnPuBefcZeV4z2KE1IqjLIWFlEdZooWUBcLLk0bOucuz4/2zzrm/OucGluN9DzkEnnhi4wv10PaJ\nkPIoS7SQskBYeZSlNEperDvnDgOOBfYysz2AX5X6PYvV2NiYdIT1lKWwkPIoS7SQskB4eVJqGrC7\nme0NvAxcELVR3D3rznXvgkah7RMh5VGWaCFlgbDyKEtbcfWsl+PI+reAS8xsDYCZLS7Dexalubk5\n6QjrKUthIeVRlmghZYHw8qSRmU03s5bs6kxg26jtGhoaqK+vL1uuQkLbJ0LKoyzRQsoCYeVRlrbq\n6+srpljfCTjEOfeEcy7jnNu/uy/U2VGYrhylietIThzvFVKWrm6jLN2n/bd0Wbq6TSVlSYmvA/d1\n5x+G9LNQlu6/TkhZurJNSFm6uk0lZenK64SUpSvblGO8j6VYd85Nd849H7Eciz+JdQszOxA4D7il\nu+9Trh9wU1NTLK8TR95yZenKNiFl6UqekLJ05XVCytKVbULKElee0H6phaqDMf9zedtcCKw2sxu7\n8x4a18LP0pXXCSlLV7YJKUtceULK0pXXCSlLV7Ypx3hf8qkbnXP3A5ea2T+z6/OAsWa2pN12mrdR\nRKpKWqdudM5NBE4HPm1mqyKe13gvIlUl9Kkb7wT+A/inc25nYJP2hTqk95eWiEg1cc6Nw3+KemhU\noQ4a70VENkY5jqz3Bv4E1AGrgR+YWaakbyoiIolwzr0CbAIszT70uJmdmWAkEZGKFswVTEVERERE\npK1yXRTpT865d5xzz7d7PPJiSc65C5xzrzjn5jrnPlPqLM65Mc65J51zs5xz/3bOHVCmLCOcczOc\nc7Oz34Ozs48Pyp7A9bJzbppzribhPAUvclKqPIWy5D3/A+dci3NuUJJZyr0Pd/AzKvs+7Jzr45yb\n6ZxrdM696Jy7JPt4UvtvoTxJ7L+RWfKeL9v+m4SocTb7uMb8QMb8DrJovA9kvO8oTxL7cAdjbBL7\nb3WN92ZW8gX4FLAP8HzeY4cB04He2fUh2dvdgEagN1ALzAN6lDhLBvhs9v6RwIwyZRkG1GXvbwa8\nBOwK/BL4YfbxH+FP0E0yzxG59wEuLUeeQlmy6yOAB4DXgUFJZUliH+4gS1L7cL/sbS/gCeDgpPbf\nDvKUff8tlCWJ/TeJBY35hbIEM+Z3kEXjfSDjfSd5ktqHgxnzC2RJ5XhfliPrZvYI8H67hwtdLGk8\ncJOZrTGzpuwXMabEWd4Gcn991QALy5RlkZk1Zu8vB+YA2+Cv+Do1u9lU4PMJ5tnaCl/kpGR5CmXJ\nPv0b4Ift/km5s2wD/Cdl3oc7yJLUPrwye3cToCf+/1Yi+2+BPEuT2H8LZcmul3X/TYLG/IJZghnz\nNd5vVJZExvtO8lT9mF9N431ZivUCCl0saWtgQd52C/A7ZimdD/zaOfcmcDmtl8cuWxbnXC3+6M9M\nYKiZvZN96h1gaMJ58uVf5KQsefKzOOfGAwvM7Ll2m5U9C7AzCe7DeVmeIKF92DnXwznXiN9PZ5jZ\nbBLcfyPyvNhuk7Ltv1FZkt5/E6YxP09IY77G+86zkPB43y6PxvzoLKkd75Ms1jfmYkmlPgv2WuBs\nM9sO+B5+9pqyZXHObQbcDnzXzD5s82b+M5OO3rNUeW7L5lme93hXLnISa578LEAL8GNgUv4mSWTJ\n/pwS24cjfkaJ7MNm1mJmdfijF4c45w5r93xZ99+IPPW558q9/0ZkOQr/CzWR/TcAGvOzQhrzNd53\nniXp8T4ij8b86Cz1uefSNt4nWawvAP4KYGb/Blqcc4PxH+WMyNtuW1o/3imVMWZ2R/b+bbR+HFHy\nLM5PbXk78H9mdmf24Xecc8Oyzw8H3k0gz/V5eXIXOTkKODlv85LmicgyCt/f9axz7vXs+z3tnBua\nQBZIaB8ukCWxfRjAzJYB9wL7keD+G5Fn/2yOiZR5/43Isi+wPQnsv4HQmE9YY77G+y5ngQT3X435\nXc6S3vHeYmqu72zB/6fLP8Hnm8Dk7P2dgTetbeP9Jtkv9FWyU0yWMMsz+At4AHwa+Hc5suD/yvoz\ncEW7x38J/Ch7/3w2PEGi3HnGAbOBwe0eL1meQlnabRN1wkbZsiSxD3eQpez7MDAYqMne7ws8nH3v\npPbfQnmS2H8jsySx/ya1oDE/KkcwY34HWTTeBzLed5Knqsf8DrKkcryPZWfqwhdyE/AW8DEwHzgV\nfxbs/wHPA08D9Xnb/xjfcD+X7NnOJciyOi/L/vietEbgcWCfMmU5GP9RXyMwK7uMAwYBDwIvA9Ny\nO0FCeY4EXgHeyHvs96XOUyhLu21ey+38CWQZl8Q+3MHPqOz7MLAn/hdGI/AccF728aT230J5kth/\nI7Mksf8msaAxv1CWYMb8DsYSjfeBjPed/JyqeszvIEsqx3tdFElEREREJFBJ9qyLiIiIiEgHVKyL\niIiIiARKxbqIiIiISKBUrIuIiIiIBErFuoiIiIhIoFSsi4iIiIgESsW6iIiIiEigVKyLiIiIiARK\nxbqIiIiISKBUrIuIiIiIBErFuoiIiIhIoFSsi4iIiIgESsW6iIiIiEigVKyLiIiIiARKxbqIiIiI\nSKBUrIuIiIiIBErFuoiIiIhIoFSsi4iIiIgESsW6iIiIiEigVKyLiIiIiASq6GLdOTfOOTfXOfeK\nc+5HBbb5Xfb5Z51z+xT7niIikozOxnzn3LnOuVnZ5Xnn3FrnXE0SWUVE0sCZWff/sXM9gZeAw4GF\nwL+Bk8xsTt42RwHfMbOjnHNjgd+a2YHFxRYRkXLrypjfbvtjgHPM7PDypRQRSZdij6yPAeaZWZOZ\nrQFuBsa32+ZYYCqAmc0EapxzQ4t8XxERKb+ujPn5vgLcVJZkIiIpVWyxvg0wP299QfaxzrbZtsj3\nFRGR8uvKmA+Ac64f8Fng9jLkEhFJrV5F/vuu9tC4zv6dc677/TgiIhXIzNqPjaHbmHH6c8CjZtbc\n/gmN9yJSbYoZ74s9sr4QGJG3PgJ/pKWjbbbNPrYBM+twmTRpUlHPh7ZNSFmUN/ltQsqSxryhfU0V\nqitjfs6JdNACU40/c+UNf5uQslTr1xRSlmLzHnqoMWNG8eN9scX6U8BOzrla59wmwAnA3e22uRs4\nBcA5dyDQbGbvdOfN6uvri3q+q9vEkaUr24SUpavbKEv3af8tXZaublNJWQLVlTEf59xA4BDgru6+\nUUg/C2Xp/uuElKUr24SUpavbVFKWrrxOSFm6sk1Hz69bBz17blymSJ39RdHZAhyJnx1gHnBB9rFv\nAt/M2+aq7PPPAvsWeB0LxYQJE5KOsJ6yFBZSHmWJFlIWs7DyZMe8osfgci9dHPMnADd28BoxfieL\nE9I+YRZWHmWJFlIWs7DyKEtbn/iE2WOPFT/eF9uzjpndD9zf7rGr261/p9j3Kae6urqkI6ynLIWF\nlEdZooWUBcLLU4m6OOZPJTsLWOhC2ydCyqMs0ULKAmHlUZa21q2DXkVX2kXOsx4n55zFnWXiRP/x\nw/HHw6c/DZtsEuvLi4h0m3MOq7wTTGNRivFeRCQ0++0H//M/sP/+xY33MdT78WloaKC+vj62XqTJ\nk+Gvf4Vf/AJOPhmOOQaOOw4+8xno2zeWt5CYOZf+2kVFSnXLZDJkMpmkY4gEQWO+pFlcPevFnmAa\nq1yxHpeRI+F734NHH4UXXoCxY2HKFBg+HE48EW67DVas2PDfhfSLtBqzFNPXFfpSDtW4z3RVCHnq\n6+tpaGhIOkbiGhoagvh5hJAhX0h5NOZrzN9YytLWsmUZrr66oejXCapYL6Wtt4ZvfxtmzICXX4b/\n+A//0cTWW/uj7TfdBB98kHRKEZHqEPfBGRGR0PTpU8/ZZzcU/Tqp7lnviiVL4O674fbb4eGH4aCD\nYPx4OPZYX8hLeWX7eJOOUTJp//qk69Szrv8Hkv4xMe1fn3Rs553hb3+D0aOLG++rvljP98EH8MAD\nvni//34YNcoX7ePHwx57QBW01iUu7QNb2r8+6ToV6/p/IOkfE9P+9UnHRo2CadNgxx2LG++DaoNJ\nuodxwAD48pfhG9/IsGgRXHopvPeeL9hHjYJzzvFtNGvWlC9TCD1XOSFlkcJC+jmFlAXCyJPJZNSz\nHpAQ9ol8IeUJKYsUFtLPSVnaWrtWJ5iWVO/evq99yhR47TW4804YPBh++EMYNgy++lW49VZYtizp\npCJSSXSCqYhIddA86wlauBDuuce3yzz6KOy7Lxx1lF92313tMsWo1I8MFy9ezHe/+13uu+8+evTo\nwVFHHcX111+/wXaV+vVJ/Kq9DWbSpEmxTtUrlanSxsSLL76YSy65ZP36unXr+Pjjj1m8eDGDBg3a\nYPtK+/okXoMGZTj11Ay/+c1k9awnaeVKyGTgvvv8smZNa+H+6U/DZpslnbCyVOrA9qlPfYqxY8cy\nadIk+vXrxwsvvMDee++9wXaV+vVJ/Kq9WNf/A4HKHxMnT57MI488woMPPhj5fKV/fVKcIUNg9mwY\nOjRFPeuh2Jg+p379fGF+1VXw6qvw4IOwyy5+ffhwOOIIuOIKmDsXuvP/NYSeq5yQsiRl/vz5fPGL\nX2SrrbZi8ODBnHXWWUybNo0FCxbwy1/+ks0335yePXtGFurlEtLPKaQsEF4eSV5o+0RIeULKkoSo\n8T6fmTF16lQmTJiQUEIvpJ+TsrQVVxtMUMV60ieYFss5GD3aX4hp+nR46y34znd8oX7EEf4k1TPP\nhDvugObmpNPKxlq3bh3HHHMM22+/PW+88QZvvfUWJ554IjNnzmT06NFMmDCBwYMHM2bMGB5++OGk\n40qgdIKpSPjaj/cLFy7kxBNPbLPNI488wuLFiznuuOMSSimhi+sKpmqDKRMzfxXVadN8If+vf/n+\n9s98xhfyY8f6k1qrXVc+MozjnIDu7GqPP/4448ePZ9GiRfTo0fp37hlnnME111zDtddeyymnnMJt\nt93Gf/7nfzJv3jy23HLLNq+hj0QlR20w+n8gnY+JcZ0DtrG7W6HxPt9pp52GmfGnP/2p4OtozK9u\n/fvDO+/A5purDaYiOAd77gk/+IGfy/3dd+HnP4ePP4bvftf3NR17LFx5ZfdbZqqFWfFLd8yfP5+R\nI0duMHD37duX7bffnlNPPZWePXtywgknMGLECB577LEYvloRkeoVx3jfnTG/0Hifs3LlSm677bbE\nW2AkbHEdWVexHqEcrTh9+vgTUC+9FJ5+GubNg5NPhmef9UfbR46E006Dn/40w9tvlzxOl1Ryi1Ic\nRowYwZtvvsm6devaPF7oRFKX0LRAIf2cQsoC4eWpZqG0PYaQIV9IeULKUm6FxvucO+64gy233JJD\nDz20zMk2FNLPSVnaWrMmw8UXNxT9OirWAzF4MJxwAlxzDbzxhm+V2WcffxGm3Xf3J61+61vwl7/A\nokVJp61OY8eOZfjw4Zx//vmsXLmSVatW8a9//YsvfOELvP/++/z5z39m3bp13HbbbSxcuJCDDjoo\n6cgiwQrpuhoi7RUa73OmTp3KKaeckmBCqQRm9Uye3FD066hnvQK0tMBzz/kpImfMgIcf9jPN1NfD\nYYfBoYfCVlslnTIeoff3zZ8/n7PPPptHHnkE5xwnn3wyU6ZM4dFHH+XMM8/k9ddfZ9ddd+WKK66I\nLNZD//qkfNSzrv8HEvaYWGi8X7hwIdtvvz1z585lhx126PA1Qv76pLRaWnwLjFnx431QxbouktE1\n69b5dplc8f7II7DNNr5wr6+HQw6p3OI97QNb2r8+6VwmkyGTyTB5cnEXyahkKtYlJ+1jYtq/Pils\nzRro2xfWri2+WO92G4xzbpBzbrpz7mXn3DTnXE2B7Zqcc88552Y5557s6DVD+Vg0hD6nnKgsPXv6\nq6Z+//v+SqpLlsDUqVBbC9ddBzvv7Jevfx2uvRZeeimeE1ZD+r5IYSH9nELKAmHkqa+v19SNAQlh\nn8gXUp6QskhhIf2clKVVXCeXQnE96+cD081sZ+Af2fUoBtSb2T5mNqaI95MCevaE/feHc8+Fe++F\npUvh9tvhgAPgoYfgs5/1R9o//3n41a/giSdg9eqkU4uIiIik0+rVsMkm8bxWt9tgnHNzgUPN7B3n\n3DAgY2a7RGz3OrC/mS3p5PX0sWgJzZ8Pjz0Gjz7qb195BfbbDw4+GA46yM/z3m5K8ESk/SPDtH99\n0nXV3rOutkeB9I+Jaf/6pLDFi2HHHTN873vFtz0WU6y/b2ZbZO87YGluvd12rwHLgHXA1Wb2xwKv\np2K9jJYt80fYcwX8U0/B0KG+aM8te+8Nm25a3lxpH9jS/vVJ11V7sa7/BwLpHxPT/vVJYQsW+Fpq\n4cLix/teHT3pnJsODIt46sL8FTMz51yhvfEgM3vbOTcEmO6cm2tmj0RtOHHiRGprawGoqamhrq5u\n/VGXXO9ROdbz+5ySeP/89faZ4nr9WbMybLopXHSRX//HPzK8+Sa0tNQzcyZMmZJh4UKoq6tn7FjY\nfPMMZo38/Ofn4Fxpv95qoP23+vI0NjbS3NwMQFNTE5XIOTcOmAL0BK4xs8sitqkHrgB6A++ZWX05\nM26sTCYT1NH9kPKElEUKC+nnpCytPv44vgOexbbB1JvZIufccGBGVBtMu38zCVhuZr+OeC6YIy1J\n/4DzJZll+XJ/waaZM/3y8MMZoJ4xY2DMGH+S6777wtZbx3dJ6LQfhSjH16f9t7CQ8lTakXXnXE/g\nJeBwYCHwb+AkM5uTt00N8BjwWTNb4JwbbGbvRbyWxvsCQspTjiwa84tXbftMVyWd5cUX4bjjYM6c\nBKdudM79ElhiZpc5584Haszs/Hbb9AN6mtmHzrn+wDRgsplNi3i9YAZvV2TnsgAAIABJREFUKWzh\nQnjySb/MmuWL+dzsNLllv/1gu+26V8AnddXPctJ+LlCRxfongElmNi67fj6AmV2at82ZwDAz+69O\nXkvjvQAa8yW9Zs2CU0+FxsYSt8F04lLgFufcaUAT8GUA59zWwB/N7Gh8C81fs/8ZewE3RBXqUjm2\n2Qa+8AW/gJ8ScsECeOYZX7j/6U/wne/4j39yhfu++/qrsY4aBT06mX9Ig1p1Wr0a3n7b/zH41lv+\nKr3vvw/NzW2X1av93LVr1/qlRw/o1w/69/e3gwf7fXTbbWH77WGvvWDIkKS/utTYBpift74AGNtu\nm52A3s65GcDmwG/N7P/KlE8qkMZ8Sas422C6Xayb2VL8x6HtH38LODp7/zWgrtvpEpL0Ryf5Qs/i\nHIwY4Zfx41sff/ttX8A/8wzcdBOcd56fD36PPXwBteeerbeDBsWXJynKEi2X5cMP4bXX2i5NTa3F\neXMzDBvmW6q22cbf32ILv77bblBT45dNN4VevVqXdetg5UpYscIvixf71/zXv/y1B55/3hfxBxwA\nn/40DBiQYcKE+tjatqpMV6qq3sC+wKeBfsDjzrknzOyVkiYrQkj/XyCsPMoSLaQsEFYeZWkVRLEu\n0pHhw+Hoo/2S09wML7wAzz3nl5tv9sXUgAG+cM8v4kePjm9+Uim9lhb/CUv7gnzWLHjvPV9Q77BD\n67LLLjBunC/Mt9nGH/3u7FOX7jCDN9+Exx+HBx/0FxG77DL4yldgwgTfriVdthAYkbc+An90Pd98\n/EmlHwEfOeceBvYGNijW6+rqqKuro7a2NtEJBbTe+Qn/IeRpbGxM/PuRW29sbEz0/UPPE8p6TlL7\n69NPN/PKK03U1TVSrG73rMdN8+5Wp5YWeOMNX7Q/91zrbVOTb2PYZRfYddfWZfRo2GyzpFNXp3Xr\n/Hz98+b5efrnzWu9//rr/kj4qFF+yS/Md9jBTwsawtFsMz9l6fXX+z8WjzoKfvhD/0diuWQyGTKZ\n4ufdLTfnXC/8CaafBt4CnmTDE0x3Aa4CPgtsCswETjCzF9u9lnrWRSTV7rkHrr4a/va3BE8wjZsG\nb8m3apUvAufMaV3mzoWXX/Z9ybvu2raQ33FHfzS/RwmOzlaTdev8kej2xfi8eb4gHzwYdtrJf79z\ntzvu6Av0/v2TTr9xli3zA+kVV/ii/eKL/R8V5VJpJ5gCOOeOpHXqxmvN7BLn3DcBzOzq7DbnAqcC\nLfjzl34X8Toa70Uk1W67zbcB3367ivWSyKjnKlIIWdat80fi586Fe+7JsGZNPXPn+mLygw/80fjc\n0d38pba2tG01IXxvcjrKYubPHWhq8svrr7fef/VVf7vVVhsW4zvt5I+Q9+sXX5YkROVZtgx+/nPf\n4/6738GJJ5YnSyUW63HReF9YSHmUJVpIWSCsPMrS6oYb/FH1m25KdjYYkbLr2bO1taJfP8j/f7h8\nue+TfvVVv8yeDXff7e8vWOCPvG+3nT8ZdtttW0+Mzd0fPLjyj8wvX+5bVWbM8CduvvWWP1KeX5Rv\nson/4yW3jB4Nn/1sa/tK376JfgllN3AgXH45nHSSX/7+d/j976vv+yAiIvEJ4qJIcQvpSIukz5o1\nvmidP791WbCg7e3y5X72ka228ic8DhnS9v6QIb6gHzgQNt/cnxjbr1/perHXrvUznDQ3+6PhUct7\n7/mZd3KF+dq1/oTNrbf2y/DhMHJka2E+cqSfVUWirVgBp53m95W77irttI86sq7xXkTS6w9/8HOs\nX311yo6sNzQ06ARTKYnevVtbYgr56CM/7d+77/opABcv9vcXLPCzmrz7ri+OP/zQt9x8+KH/y3mz\nzXzhvvnm0KePf6+oBXwbT/6ydq2/XbXKF4rLl7dOQ7hmjf9joKYGttxyw2X77WH//X1BnivOBw4M\n40TOStW/P9x4I/z0p3DwwZDJ+O9vnHInmFY7jfcikmYffwyLF2doaMgU/Vo6sh4h6T6nfMpSWAh5\n1q71Rfu0aRn22KOeVat8kR21gG/jyS29erXe79PHF4r9+/viv39//1h3Cu8Qvi85IWWBjcvzi1/4\nnsNMxn/CEjcdWdd4HyWkPMoSLaQsEFYeZWn1y1/6g36XX56yI+silaZXLz9l4dChsPvuSaeROF14\noZ8f/thjfcHep0/SiUREpFKoZ11EpAzM4IQTfDvSddfF22KkI+sa70UkvX7yE1+s//SnxY/3FT73\nhYhI6Tjni/TGRvjjH5NOIyIilSLOI+tBFesNDQ1BnHgVQoYcZSkspDzKEi2kLNC9PLmTTi+80E8N\nGkeGhoaG4l9IYpGGfbRUlCVaSFkgrDzK0irVxXooJyaIiOTsthtccAFMmAAtLcW9Vn19vYp1wjk4\nIyJSCh9/DG+8Ec/BGfWsi4h0QUuLn87x9NPh1FOLfz31rGu8F5H0mjgRDj3U/75Qz7qISBn06AG/\n+51vh/ngg6TTiIhIyFas8JMTxEHFeoSQPppVlsJCyqMs0ULKAsXn2X9/GDcOLrkknjySvLTto3FS\nlmghZYGw8ihLq5Ur/TlPcVCxLiKyERoa/OWj33sv6SQiIhKqFSviK9a73bPunPsS0ADsAhxgZs8U\n2G4cMAXoCVxjZpcV2M4mTZqky0+LSPC+9S2oqeneEfZMJkMmk2Hy5MnqWRcRSakDDoD//m8YM6b4\nnvViivVdgBbgauAHUcW6c64n8BJwOLAQ+DdwkpnNidhWg7eIVIQ334S6Oj+VY01N916j2k8w1cEZ\nEUmz3XaD887L8MYbxR+c6XYbjJnNNbOXO9lsDDDPzJrMbA1wMzC+u+9ZLkn3OeVTlsJCyqMs0ULK\nAvHl2W4737t+3XWxvFxVCmWq3rTuo3FQlmghZYGw8ihLqxUr4puqt9Q969sA8/PWF2QfExGpaGed\n5T/iLHbedRERSZ84TzDtsA3GOTcdGBbx1I/N7J7sNjMo3AZzHDDOzE7Prn8VGGtmZ0VsqzYYEakY\nZr4ncfJkOProjf/31d4Go/FeRNKsXz9YvNgX7MWO9706etLMjujuC2ctBEbkrY/AH12PNHHiRGpr\nawGoqamhrq5u/cekuY8ztK51rWs9lPVvfrOe666D/v07376xsZHm5mYAmpqaEBGRdGppgVWroG/f\nmF7QzIpagBnAfgWe6wW8CtQCmwCNwK4FtrVQzJgxI+kI6ylLYSHlUZZoIWUxiz/P+++bDRjgbzdW\ndswregyuxEXjfWEh5VGWaCFlMQsrj7J4H35o1q9f63qx4323e9adc19wzs0HDgTudc7dn318a+fc\nvdnReC3wHeDvwIvAXyxiJhgRkUpUUwNHHAG33pp0EhERCUWcVy+FIqZujJt6GEWkEt11F/z61/Dw\nwxv376q9Z11TN4pIWr3+Ohx2GPzv/8ZzXQ0V6yIiRVi9GoYOhblz/W1XVWqx3tmF7pxz9cBdwGvZ\nh243s5+320bjvYik1gsvwAknwOzZfr3Y8b7UUzdulIaGhvUnZiUphAw5ylJYSHmUJVpIWaA0eTbZ\nxLfC3Htv1zPEMe9uErIXursKGAfsBpzknNs1YtN/mtk+2eXnEc8Hoxr20e5SlmghZYGw8iiLt2JF\nfNM2QoDFuj4SFZFKc+yxcPfdXdu2PqaLZCSkqxe6q7hPDERE4vLBBzBgQHyvpzYYEZEiLVkC228P\n77zT9am6KrENxjl3PPBZ6+DaGc65Q4G/4qfpXQica2Yvtnsdjfciklq33w433AB//atfT1UbjIhI\nJdpyS6irg4ceSjpJyXWlwn4GGGFmewNXAneWNpKISFiWLYOBA+N7vQ4vilStMplMMO04ylJYSHmU\nJVpIWaC0eY48EqZP797VTCtIpxe6M7MP8+7f75z7vXNukJktzd8ulIvg5fe1Jn2RrdDytM+UZJ7G\nxkbOOeecxN4/f33KlClBXbQxpDzaf/36Pfc08tZbzTQ0xHQRvGImaY9zQRfJiKQshYWUR1mihZTF\nrLR5Hn/cbK+9ur49FXhRJLpwoTtgKK0tlmOApojX6fo3qsSqaR/dWMoSLaQsZmHlURZv8mSzn/yk\ndb3Y8T6onnXNuysilWrtWt8OM28eDBlSeLtMJp55d5PinDuS1qkbrzWzS5xz3wQws6udc98GvgWs\nBVYC3zezJ9q9hoXyu0dEJG7nngvDhvlbKL5nPahiPZQsIiLdcfTRcOqpcPzxnW9biSeYxkXjvYik\n2RlnwP77+1vQCaYlkd/vlDRlKSykPMoSLaQsUPo8hx0GgX3J0olq20c3hrJECykLhJVHWbxly+Kd\nulHFuohITD75SXjiic63ExGR9Prgg3hng1EbjIhITD76CAYPhsWLoV+/jret9jYYnaMkIml10EHw\ny1/CmjXxnKMUVLGuwVtEKt2YMfCb38DBB0c/X+knmMZBB2dEJM122w1uuQX22MOvp6pnvaGhIYhC\nXT1X0ULKAmHlUZZoIWWB8uQZOxZmziz8fH19PQ0NDSXPIV1TjftoVylLtJCyQFh5lMVbutTPDhaX\noIp1EZFKd+CB8PjjSacQEZEkmPlifdCg+F4zqDaYULKIiHTX3Ll+CsdXX+14u2rvWdd4LyJp9OGH\nMHw4LF/e+liq2mBERCrdTjvBokV+wBYRkeoS91F1CKxYb2hoCKLfKYQMOcpSWEh5lCVaSFmgPHl6\n9vQnFz3/fOEM6lnXeF9ISHmUJVpIWSCsPMrStl89rvG+28W6c+5LzrnZzrl1zrl9O9iuyTn3nHNu\nlnPuyY5eM5QTTEVEirH33vDcc9HP6QRTT+O9iKTRkiWtR9bjGu+73bPunNsFaAGuBn5gZs8U2O51\nYD8zW9rJ66mHUURS4cor4cUX4Q9/KLyNetY13otI+txyC9x6q19yEutZN7O5ZvZyFzevyl9IIlKd\n9toLnn026RQiIlJucU/bCOXpWTfgQefcU86508vwfkVTz1W0kLJAWHmUJVpIWaB8efbaC154wU/h\nJWGr1n20K5QlWkhZIKw8ytK2DSYuvTp60jk3HRgW8dSPzeyeLr7HQWb2tnNuCDDdOTfXzB7Z2KAi\nIpViiy2gTx8/K8zw4UmnERGRclm6NP5xv+h51p1zM+igZ73dtpOA5Wb264jnbMKECdTW1gJQU1ND\nXV3d+hOQcn8haV3rWtd6JayfdRZcdVU9hx7q1xsbG2lubgagqamJqVOnqmddRCRlJk6EQw+FU09t\nfazYnvW4ivVzzezpiOf6AT3N7EPnXH9gGjDZzKZFbKvBW0RS4+tfh098Ak4v0PxX7SeYTpo0ifr6\n+vV/4IiIpMHnPgff+AaMH+8P1GQyGSZPnpzMCabOuS845+YDBwL3Oufuzz6+tXPu3uxmw4BHnHON\nwEzgb1GFemhyR8lCoCyFhZRHWaKFlAXKm2f0aHjppbK9XcUJZerGat5HO6Ms0ULKAmHlURZ45x0Y\nlm0gr49p6sYOe9Y7YmZ3AHdEPP4WcHT2/mtAXbfTiYhUqJ13hsceSzqFiIiU0zvvwNCh8b5m0W0w\ncVEbjIikyezZcNxxMHdu9PPV3gaj8V5E0sYM+vaF99/3tzmJzbNeCqFcflpEpFijRkFTE6xd2/bx\nTEyXnxYRkbAsWwabbNK2UI9DcMW6ehjbUpbCQsqjLNFCygLlzdOnj+9bfOONto/H1cMo8ajmfbQz\nyhItpCwQVp5qz5Lfrx6noIp1EZE0GTlyw2JdPH2SKiJp075fPa5PUtWzLiJSIqecAocd1na+3Rz1\nrGu8F5F0ueUWv9x2W9vHU9WzLiKSJrW1vm89LZxz45xzc51zrzjnftTBdgc459Y6575YznwiIkmq\nijaYUD4WDSFDjrIUFlIeZYkWUhYof56oNphKPcHUOdcTuAoYB+wGnOSc27XAdpcBDwDBf3JQ7fto\nR5QlWkhZIKw81Z6lFNM2QoDFeggnmIqIxCGqWK/gE0zHAPPMrMnM1gA3A+MjtjsLuA1YXM5wIiJJ\ne/vt0hxZV8+6iEiJzJsHRxwBr7++4XOV1rPunDse+KyZnZ5d/yow1szOyttmG+B64D+APwH3mNlf\nI15L472IpM5nPgPf/z6MG9f28WLH+25fwVRERDo2YgQsXAjr1kHPnkmnKVpXquspwPlmZs45Rwdt\nMBMnTqS2thaAmpoa6urq1n+ymvv4Wuta17rWK2l9wQJ4++0MU6Y00tzcDEBTHCcumVkQi48Shhkz\nZiQdYT1lKSykPMoSLaQsZsnkGTzYbNGiDR/PjnmJj71dXYADgQfy1i8AftRum9eA17PLh8A7wLER\nr1XU9zRO2kcLU5ZoIWUxCytPtWfZfHOz5uYNHy92vNeRdRGREtp6a3jrrdKcdFRmTwE7OedqgbeA\nE4CT8jcwsx1y951z1+HbYO4uY0YRkUQsWwZmMGBA/K8dVM/6pEmTqK+vX//RgohIpTvySDjrLDjq\nKL+eyWTIZDJMnjy5onrWAZxzR+JbXXoC15rZJc65bwKY2dXtts0V6+pZF5HUmz0bjj8e5szZ8Lli\ne9aDKtZDySIiEpevfx0++Un4xjfaPl5pJ5jGSeO9iKTN3/8Ov/41TJu24XO6KFIJ5E4WCIGyFBZS\nHmWJFlIWSCZPrg1GwqR9tDBliRZSFggrTzVnmT8ftt22NK+tYl1EpIS23trPvStthXIRPBGROLzx\nBmy3XdvHMjFdBE9tMCIiJXTnnXDddXDXXW0fVxuMxnsRSY+TT/bzq3/taxs+l6o2GB1pEZG0GT68\nbRtMXEdaREQkHK+9Bjvs0Pl23dHtYt05d7lzbo5z7lnn3F+dcwMLbDfOOTfXOfeKc+5HHb1mQ0ND\nEDPBhPQHg7IUFlIeZYkWUhZIJs+wYbBoUet6fX29ivWAaB8tTFmihZQFwspTzVmCLNaBacDuZrY3\n8DL+AhltOOd6AlcB44DdgJOcc7sW8Z4iIhVlyBB47z0//66IiKTP8uXw4Yf+4EwpxNKz7pz7AnCc\nmX213eOfACaZ2bjs+vkAZnZpxGuoh1FEUqlfP1i8GPr3b31MPesa70UkHZ57Dk46yc+1HiWUnvWv\nA/dFPL4NMD9vfUH2MRGRqjF4sD+6LiIi6fPaazBqVOlev1dHTzrnpgNRB/V/bGb3ZLe5EFhtZjdG\nbLdRh04mTpxIbW0tADU1NdTV1a3vYc/1HpVjPb/PKYn3z19vnynJPI2NjZxzzjmJvX/IeaZMmZLY\n/tp+XftveHk23TTDb3/byIABzQA0NTVR7XLnKOW+R0nJZDKJZ8gXUh5liRZSFggrT7VmKdSvnsle\nsbpoZtbtBZgIPAb0KfD8gcADeesXAD8qsK2FYsaMGUlHWE9ZCgspj7JECymLWXJ5jjjC7IEH2j6W\nHfOKGoMrddF4X1hIeZQlWkhZzMLKU61ZzjzTbMqUws8XO953u2fdOTcO+DVwqJlFfsDrnOsFvAR8\nGngLeBI4yczmRGxr3c0iIhKyr3wFjjoKvpp3Vo961jXei0g6HH44nHuun2c9SpI961cCmwHTnXOz\nnHO/zwba2jl3L4CZrQW+A/wdeBH4S1ShLiKSZupZFxFJrzlzYNcSznXY7WLdzHYys5Fmtk92OTP7\n+FtmdnTedveb2Wgz29HMLokjdKnF0l8UE2UpLKQ8yhItpCyQXJ7c9I0SHu2jhSlLtJCyQFh5qjHL\nsmV+GTGidO8R1BVMRUTSSEfWRUTSac4c2GUX6FHCijqWedbj4JyzSZMmBTE7gIhInG69Ff7yF7jt\nttbZASZPnlzVPesa70UkDa67Dh56CP7v/zZ8Lq7xPqhiPZQsIiJxeughuOgiyP9UVieYarwXkcp3\n3nkwaBBccEHhbUK5KFKqVGPPVVeElAXCyqMs0ULKAsnlqamB5uZE3lo6oX20MGWJFlIWCCtPNWYp\n9cmloGJdRKTkamr8CUgiIpIuzz8Pe+xR2vdQG4yISIktXeovRf3++62PqQ1G472IVLYlS/yVS99/\nv+MTTIsd73t19x+WQiiXnxYRidOAAfDBB9DSAg8/HNPlp0VEJFGzZsHee5d2JhgIrA0mV6wnLaRf\npMpSWEh5lCVaSFkguTy9ekG/frB8OdTX19PQ0JBIjpA0NDQEsX+EkCFfSHmUJVpIWSCsPNWWZdYs\n2HffjjPEMd4HVayLiKSV+tbbCuXgjIhIdz3zDOyzT+Hn4zo4o551EZEy2GMPuOkm2HNPv16pPevO\nuXHAFKAncI2ZXdbu+fHARUBLdjnPzB5qt43GexGpeLvsArfcAnvt1fF2qepZFxFJqzQcWXfO9QSu\nAg4HFgL/ds7dbWZz8jZ70Mzuym6/J3AHsGPZw4qIlNCyZbBgQemnbQS1wUSqtp6rrgopC4SVR1mi\nhZQFks2TkrnWxwDzzKzJzNYANwPj8zcwsxV5q5sB75Ux30bTPlqYskQLKQuElaeassyc6fvVe/cu\n6dsAgRXroZxwJCISt9yMMHGdcJSQbYD5eesLso+14Zz7vHNuDnA/cHaZsomIlM3jj8MnP1me91LP\nuohIGZxxBhxwAJx+ul+vxJ5159xxwDgzOz27/lVgrJmdVWD7T+H72ke3e9wmTJhAbW0tADU1NdTV\n1a0/4TR30EbrWte61kNdv/TSer71LRg4cMPnGxsbac5+lNrU1MTUqVOLGu9VrIuIlMH3vgfbbedv\noWKL9QOBBjMbl12/AGhpf5Jpu3/zKjDGzJbkPabxXkQqVksLDBoEL78MW23V+fbFjvdBtcGEIvdX\nUwiUpbCQ8ihLtJCyQLJ5NtvMz7Ne4Z4CdnLO1TrnNgFOAO7O38A5N8o557L39wXIL9RD8//bu/d4\nqcp6j+OfHyAgKqGCN/AOKmpHUY9aqW0zPaglpV20i7djYh61elmZejzs/VJfltapXukpU0syL50K\nK8pM7DBdNEXSnQgooKACpqiAYslt/84fzxr2MKzZDHtm1npm+L5fr/WaWTPPnvmy98Ozn73mt56l\nPlqZsqSLKQvElWdzyTJzJgwbVt1EvR60GoyISAa23hpefz3vFLVx9zVmdhHwO8LSjbe5+2wzG588\nfzNwGnCmma0GVgCn5xZYRKQBfv97OPbY7N4vqjKYCRMm0NbWtq7uR0SkVdx0E8yaBR/9aIFCoUBH\nR0fTlcHUi8pgRKSZffCD8OlPw8c+Vl37Wstgej1ZN7MbgA8Aq4BngXPcfYNVhM1sAfAGsBZY7e6H\nV3g9Dd4i0rJuvx2mToWJE8N+M9as14vGexFpVqtXw9ChMG9eKIWpRp416w8AB7j7QcAc4PIK7Rxo\nc/cxlSbqsdlcaq42VUxZIK48ypIupiyQf836W29tvJ1kS320MmVJF1MWiCvP5pDlscdgr72qn6jX\nQ68n6+4+xd27kt1HgRE9NN8sjx6JiBS1yAmmdaPraohIM/r97+G446prW6jTdTXqUrNuZpOBu939\nrpTnngOWE8pgbnb3Wyq8hj4WFZGW9ac/weWXw5//HPZVBqPxXkSaz5FHwtVXw/HHV/81tY73Pa4G\nY2ZTgJ1SnrrC3Scnba4EVqVN1BPvcfeXzGwYMMXMnnb3P6U1PPvss3WRDO1rX/stuf/rX3cyb94y\n2tvDRTJERKS5vPRSWFv9ve/N+I3dvdcbcDbwEDCwyvYTgEsrPOexmDp1at4R1lGWymLKoyzpYsri\nnm+eOXPc9967ez8Z82oag5t103hfWUx5lCVdTFnc48rT6lm+9z33T3xi07+u1vG+1zXrZjYW+BIw\nzt3frtBmkJltk9zfCjgBmNHb9xQRaVaqWRcRaW6/+AWMG5f9+9aydONcoD9QvMzHX9z9QjPbBbjF\n3U82s72AScnz/YA73f26Cq/nvc0iIhK7Zctg991hebLArWrWNd6LSPNYvhx23RUWLoTBgzftaxta\ns94Tdx9V4fHFwMnJ/eeAg3v7HiIirWLAAFi5Mu8U8Whvb6dNF8ETkSbxs5+FVWA2ZaJeKBTWncNU\ni1rWWW9Z9fjG1ouyVBZTHmVJF1MWyDfPgAGwahXogHJQnKznTX20MmVJF1MWiCtPK2e54w4488xN\n+5q2tra6LN3Y6yPrjaAjLSLSqvr0gX79YMqUAg8/XMg5jYiIVOv55+Gpp+Ckk/J5/7qss14PqmEU\nkVY3eHB3vaNq1jXei0hzuOYaWLQIvvvd3n19bjXrIiKyaQYMgLff3vSTk0REJB9r1sD3vx9WgsmL\natZTtHLNVS1iygJx5VGWdDFlgfzzDByok0xjk3efKBdTHmVJF1MWiCtPK2aZPBlGjIBDDqnLy/WK\nJusiIhkpHlmXcI5STL/YRUTS3HgjXHxx7762UCjU5QTTqGrWJ0yYoBNMRaRlHXggXHppgeefL9DR\n0aGadRGRiD3xBHzgAzB/PvTv3/vXqbVmParJeixZREQa4dBD4eab4bDDdIKpxnsRid2pp8Ixx8Dn\nP1/b69Q63qsMJkVMH80qS2Ux5VGWdDFlgfzz6MJI8cm7T5SLKY+ypIspC8SVp5WyzJgBDz8M559f\nnzy10GRdRCQjAweqZl1EpBn853/CF78IgwblnURlMCIimTnxxHCi0kknqQxG472IxOrBB2H8eJg1\nK3wiWquWWmddVzAVkVY2cCBMn15g2rRC3lFyp/FeRGK0Zg184Qtwww21T9QLhUJdSoOiKoMpDt55\na6Waq3qKKQvElUdZ0sWUBfLPM2AAjBrVVpelvJqdxvt0MeVRlnQxZYG48rRClu98B4YOhQ9/uPYM\nbW31Ge+jmqyLiLSyVqhZN7OxZva0mc01s8tSnv+kmf3NzJ40s4fM7F/yyCkisqmeeQauvRZuuQUs\noiJF1ayLiGRk/HgYMwYuuKA5a9bNrC/wDPB+YBHwGHCGu88uafMuYJa7LzezsUC7ux9Z9joa70Uk\nKmvWwNFHwyc/CRddVN/X1tKNIiJNogWOrB8OzHP3Be6+GrgHGFfawN3/4u7Lk91HgREZZxQR2WSX\nXQbveAdceGHeSTakyXqKVqi5aoSYskBceZQlXUxZIP88LbDO+nBM+xCnAAAR9klEQVTgxZL9hclj\nlfw7cF9DE9Uo7z5RLqY8ypIupiwQV55mzfKTn8C998Jdd0GfCGfGUUVqb2+P6gctIlJPAwfC7NmF\nZj7BtOraFTM7FjgX2KCuXUQkFn/8Yyh7mTQJttsu7zTpel2zbmZXA6cQBu/XgLPd/cWUdmOBbwF9\ngVvd/WsVXk81jCLS0q6+OhxZv+aapq1ZP5JQgz422b8c6Cof15OTSicBY919Xsrr+FlnncUee+wB\nwJAhQzj44IPXrQ5TPGijfe1rX/uN3H/8cXjf+wpcdRVcemn9Xr+zs5Nly5YBsGDBAiZOnFjTeF/L\nZH0bd38zuX8xcJC7n1fWZqMnI5W01WRdRFraddfBG2+E2yadrPcjjOnHAYuBaWx4guluwP8Bn3L3\nRyq8jsZ7EcnVn/8Mp54KN99cn2Uae5LbCabFiXpia+DVlGYbPRkpRsW/kmKgLJXFlEdZ0sWUBfLP\n07dvWHGgWbn7GuAi4HfALOAn7j7bzMab2fik2X8B2wLfNbMnzGxaTnGrknefKBdTHmVJF1MWiCtP\ns2T56U/DRP3OOxs/Ua+Hmq5gambXAp8G/gEcmdIk7WSkI2p5TxGRZtWvH6xdm3eK2rj7b4Hflj12\nc8n984Dzyr9ORCRvq1eHVV/uvRfuvx8OOSTvRNXpsQzGzKYAO6U8dYW7Ty5p9xVgX3c/p+zrTyPU\nLH4m2f8UcIS7X5zyXqph1L72td+y+52dndx//zKWLoXRo2uvYWxmKoORGLnDihWwZEnYli/v3t54\nY/37b74ZlmF9++1wHkr5bU9/lJtB//7hhPMBA8Jt6f1Bg2Dw4LCMYPG2fBs6NGz9+2f3/Wl206fD\neefBrrvCxInZnkxaaxlMXS6KlNQo3ufuB5Y9XtXJSMlzGrxFpKXddBPMmhVum7FmvV403kuWVq6E\nxYth4cKwLVoEL78Mr7wSJuWlt337wrBhYSI8ZMj6E+TSifM226w/yS5OtIv3+/VQt9DVFY7wFif7\npRP9t9+Gf/xjwz8OSu8vWxbyvvYabL11yFu+7bAD7LwzDB8Ou+wStoEDs/uex2Tx4nBS/89/Dt/4\nRrjoUdZXJ611vO91GYyZjXL3ucnuOOCJlGbTgVFmtgfhZKSPA2f09j2zUigU1h0Ry5uyVBZTHmVJ\nF1MWyD9Ps9es11N7ezttbW2594+8+0S5mPI0Q5a1a8MEfP58eOGF7gl56cR86dIwcR0xImzDh8OO\nO8L++4dJ7Q47dE9yt9qq91my1tUVJu6//nWBPfdsW/eJwJIl8Nxz8NBD4d+/eDG89FKY2JdO3ov3\nS2932CGMU70Vy/cG4M47C0yf3saPfgTnngszZ4Y/wrJUKBTWfdJai1pq1q8zs32BtcCzwGcBzGwX\n4BZ3P9nd15hZ8WSkvsBtaSvBiIhsDlqhZr1emnitecmQO7z6KsyeDX//e5iUl24vvhgmYHvuCbvv\nHkoc9t8fTjghTD5HjKh9AhqrPn1CKcduu8HRR/fctqsrHIkvTt4XLw73OzvhN78J9xctCpP/nXYK\n37vyrfiHzvDhsOWW2fwbN9Wrr8LkyXDPPfDoo3D++TBjRvhjJA/FAxIdHR01vU5dymDqQR+Likir\n++EP4Q9/gNtvVxmMxnspWrs2HBWfO7d7e+657gl5//5hMl667bVX9wR9cy3vaISVK8NR+OLkvfjp\nROm2eHGoq0+bxJduQ4c2vtzktdfCpPyhh8LFjZ58Eo4/Hk47LazyEkvfyK0MphFi+VhURKQR+vWD\nRYsKtLcX8o4ikin3MNErnZDPmRNu588PE7tRo2CffWDkSDjmmO6J+ZAheafffAwYAHvsEbZK3MMk\nuXwiP23a+vtvvdVdcrP99rDttutvxXMCBgwIf5AVb7fYItT0r1zZvb3+ejin4JVXwicsc+fCM8/A\nqlVw6KHwnvfAlVeGfjNoUFbfrezoyHqKmGqulKWymPIoS7qYskD+ee66K3xEe/fdOrKu8T5dTHk2\nNYt7qJcuTsJLJ+Tz5oWTMosT8lGjureRIzc+wWrm70ujxZSnNMs//9l9JP7118O5A+Xb8uVhwl2+\nbbFF98m6/fuHcp8dd+w+x2DkSNhvv/BYpaP3MX1fWurIuohIK+vXTyeYSvNbsyaUqTz9dKglf/rp\n7vt9+64/If/IR7on5YMH551csrTllmFSPXJk3kman46si4hkZNIk+PGPw+3mfmR9woQJKnuM3IoV\nodSgdFI+e3aYqO+8M4weHY5u7rdf9/2sV9sQiVlxNZiOjo7811mvB03WRaTV/fKXcNtt8KtfabKu\n8T4O7mHN8bSj5K++Go6Ql0/I99kn3tVARGJU63jfp55hWkU91sSsF2WpLKY8ypIupiyQfx4t3Rif\nvPtEuUblcQ/LHP72t3DDDWHd6Xe9K9QCH3ggXHUVPP54WF3lc58LqxZNnlygszMsg9feDh//OBx0\nUD4T9Zh+TjFlgbjyKEtjRFWzrtVgRKSV9e0Lr7yi1WCkcdzDihkzZ8JTT3VvM2eGC/4ceCAccECY\nqJ97bs+lK88/n212EUmnMhgRkYw8+CB89avhVmUwGu9rtXRp96S8dHLe1RUm5cXtgAPCtv32eScW\n2TxpNRgRkSbRt69Wg5FN99ZbMGvWhkfK33gjXK2zOCkfNy7c9rScnYg0H9Wsp4ipzklZKospj7Kk\niykL5J9HNevd2tvbc/95QP59otTKlXDrrQXuvBOuuAJOOSVcqXPYMBg/HqZODWtMX3JJuGLj8uXw\nyCNw663w+c/D+98fLhVfr4l6TN8bZakspjzKsmGG9vb2ml9HR9ZFRDKiI+vd6vELrFmtWRMuElR+\npHzBgnBU/IgjwhHyc84J5St77x36jog0l+J5mB0dHTW9TlQ161p3V0Ra2bRpcOaZBU4/vfZ1d5vZ\n5lKz3tUVJuDlNeVz5sCIEd315MUyln32CVdrFJHWUmvNelST9ViyiIg0wjPPwNe/DrfcohNMW2m8\ndw+XVC8/Uj5rVvfSiKUne44eDYMG5Z1aRLKiddYbIIY6pyJlqSymPMqSLqYskH+effcNE3WJx6b2\niSVLQu34jTfCBRfAUUfBttvCoYeG9ctfeAHe/W749rdh0aKwf999cP31cOaZoV1PE/W8+2gpZUkX\nUxaIK4+yNIZq1kVERMosX75+6Urx/qpV3UfJ3/lOOP30cLR82LC8E4tIq1IZjIhIDlQGE8d4/9Zb\nMHv2hhcRWrq0e33y0jKWnXfWsogismlaap11XcFURFpdoVBoqY9neyvr8X7VqnDOQPmR8kWLQnlS\ncTJ+4YXhdvfdoY8KRUWkBvUa73t9ZN3MrgZOARx4DTjb3V9MabcAeANYC6x298MrvF40R1oKhUI0\nfzAoS2Ux5VGWdDFlgbjyNOuRdTMbC3wL6Avc6u5fK3t+P+CHwBjgSnf/RsprNGy8X7MGnn12wyPl\n8+fDnntueKR84cICxx3X1pAsvRFTH1WWdDFlgbjyKEu6PE8wvd7dD3L3g4FfABMqtHOgzd3HVJqo\nx6azszPvCOsoS2Ux5VGWdDFlgfjyNBsz6wvcCIwF9gfOMLPRZc1eAy4Gvp5ltmnTYMwYGDwYTjoJ\nJk4MFxn60Ifgnntg2bKwOstPfwoTJsBpp4Uj6jNmxNUnYuqjypIupiwQVx5laYxel8G4+5slu1sD\nr/bQvKmOHi1btizvCOsoS2Ux5VGWdDFlgfjyNKHDgXnuvgDAzO4BxgGziw3cfQmwxMxOzjLYyJFh\npZ3Ro2Grrar/utj6REx5lCVdTFkgrjzK0hg1VeSZ2bVm9gJwFvDVCs0ceNDMppvZZ2p5v43V/VRT\nF1SvWtF6vFdMWaptoyy9p/7buCzVtmmmLJEaDpSWOy5MHqu7Tf0+b7cdHHbYhhP1VusXMWWp5nVi\nylJNm5iyVNummbJU8zoxZammTRbjfY+TdTObYmYzUrYPArj7le6+G3A78M0KL/Medx8DnAj8h5kd\n3duwWf2AFyxYUJfXqUferLJU0yamLNXkiSlLNa8TU5Zq2sSUpV55YvulFqHMTizSuBZ/lmpeJ6Ys\n1bSJKUu98sSUpZrXiSlLNW2yGO/rsnSjme0G3OfuB26k3QRgRaUTjmoOIiLSRJrtBFMzOxJod/ex\nyf7lQFf5SabJcxrvRUQSuSzdaGaj3H1usjsOeCKlzSCgr7u/aWZbAScAHWmv12y/tERENkPTgVFm\ntgewGPg4cEaFthXHdI33IiLVq2Wd9evMbF/CkozPAp8FMLNdgFvc/WRgJ2CShStI9APudPcHaoss\nIiJ5cPc1ZnYR8DvC0o23uftsMxufPH+zme0EPAYMBrrM7HPA/u6+IrfgIiJNLJormIqIiIiIyPoy\nuT6bmf3AzF42sxllj19sZrPN7Ckz+1rJ45eb2Vwze9rMTmh0FjM73MymmdkTZvaYmf1rRll2NbOp\nZjYz+R5ckjy+XXJy7xwze8DMhuSc54bk5/Q3M5tkZu9odJ5KWUqev9TMusxsuzyzZN2He/gZZd6H\nzWygmT1qZp1mNsvMrksez6v/VsqTR/9NzVLyfGb9Nw9p42zyuMb8SMb8HrJovI9kvO8pTx59uIcx\nNo/+u3mN9+7e8A04mnA1uxkljx0LTAG2SPaHJbf7A53AFsAewDygT4OzFIB/S+6fCEzNKMtOwMHJ\n/a2BZ4DRwPXAl5PHLwO+mnOe44vvQ1iis+F5KmVJ9ncF7gfmA9vllSWPPtxDlrz68KDkth/wCHBU\nXv23hzyZ999KWfLov3lsaMyvlCWaMb+HLBrvIxnvN5Inrz4czZhfIUtLjveZHFl39z8BS8se/ixw\nnbuvTtosSR4fB9zt7qs9XHhjHuFCHI3M8hJQ/OtrCLAooyx/d/fO5P4KwoVFhgOnABOTZhOBD+WY\nZxd3n+LuXUmzR4ERjc5TKUvy9H8DXy77kqyzDAcuIOM+3EOWvPrwP5K7/Qk1zEvJqf9WyPN6Hv23\nUpZkP9P+mweN+RWzRDPma7zfpCy5jPcbybPZj/mb03ifyWS9glHAMWb2iJkVzOyw5PFdCBfaKGrY\nRTdKfAX4hoULPN0AXJ51FgurK4whdK4d3f3l5KmXgR1zzlPqXOC+LPOUZjGzccBCd3+yrFnmWYB9\nyLEPl2R5hJz6sJn1MbNOQj+d6u4zybH/puSZVdYks/6bliXv/pszjfklYhrzNd5vPAs5j/dleTTm\np2dp2fE+z8l6P2Bbdz8S+BLwvz20bfRZsLcBl3i4wNMXgB9kmcXMtgZ+DnzO3d9c783CZyY9vWej\n8vwsybOi5PErgVXufldWeUqzAF3AFcCE0iZ5ZEl+Trn14ZSfUS592N273P1gwtGLY8zs2LLnM+2/\nKXnais9l3X9TspxE+IWaS/+NgMb8RExjvsb7jWfJe7xPyaMxPz1LW/G5Vhvv85ysLwQmAbj7Y4Ql\nvoYSPsrZtaTdCLo/3mmUw9393uT+z+j+OKLhWcxsC8KgfYe7/yJ5+GULy59hZjsDr+SQ58cleTCz\ns4GTgE+WNG9onpQsexPqu/5mZvOT9/urme2YQxbIqQ9XyJJbHwZw9+XAb4BDybH/puQ5LMlxNhn3\n35QshwB7kkP/jYTGfOIa8zXeV50Fcuy/GvOrztK6473Xqbh+YxvhP13pCT7jgY7k/j7AC75+4X3/\n5B/6LMkSkw3M8jjw3uT+ccBjWWQh/JX1I+CbZY9fD1yW3P8KG54gkXWescBMYGjZ4w3LUylLWZu0\nEzYyy5JHH+4hS+Z9GBgKDEnubwn8MXnvvPpvpTx59N/ULHn037w2NOan5YhmzO8hi8b7SMb7jeTZ\nrMf8HrK05Hhfl85UxT/kbsLV7lYCLwLnEM6CvQOYAfwVaCtpfwWh4P5pkrOdG5BlVUmWwwg1aZ3A\nX4AxGWU5ivBRXyfhCrBPJB1tO+BBYA7wQLET5JTnRGAu8HzJY//T6DyVspS1ea7Y+XPIMjaPPtzD\nzyjzPgy8k/ALoxN4EvhS8nhe/bdSnjz6b2qWPPpvHhsa8ytliWbM72Es0XgfyXi/kZ/TZj3m95Cl\nJcd7XRRJRERERCRSedasi4iIiIhIDzRZFxERERGJlCbrIiIiIiKR0mRdRERERCRSmqyLiIiIiERK\nk3URERERkUhpsi4iIiIiEilN1kVEREREIvX/Y+QIP4JUz20AAAAASUVORK5CYII=\n", - "text": [ - "" - ] - } - ], - "prompt_number": 5 + "name": "stdout", + "output_type": "stream", + "text": [ + "6.3.0\n", + "ba41b1434002b1fce6e596386861bca2a890fb6f\n" + ] } ], - "metadata": {} + "source": [ + "############################################################\n", + "# Plots of meta-stable Maxwell loops\n", + "# Inspired by https://doi.org/10.1134/S0036024406040030\n", + "# Math tricks taken from: http://math.stackexchange.com/q/416823/92706\n", + "# Plot also shown on page 79 of https://doi.org/10.15480/882.1207\n", + "############################################################\n", + "\n", + "# load some bits and pieces\n", + "import numpy as np\n", + "from numpy.linalg import solve\n", + "from numpy.linalg import lstsq\n", + "from numpy import log\n", + "\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import CoolProp as CP\n", + "from CoolProp.CoolProp import PropsSI\n", + "\n", + "# Check: CoolProp version\n", + "print(CP.__version__)\n", + "print(CP.__gitrevision__)\n", + "\n", + "# Constants\n", + "eps = 1e-3\n", + "kilo = 1e3\n", + "Mega = 1e6\n", + "golden = (1 + 5 ** 0.5) / 2\n", + "width = 12.5" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "R = 8.31451\n", + "MM = 0.0440098\n", + "Rs = 188.92405782348476\n", + "T_crt = 304.1282\n", + "T_trp = 216.592\n" + ] + } + ], + "source": [ + "# Set FluidName\n", + "FluidName = 'CO2'\n", + "nPoints = 1000\n", + "# pick any int smaller than nPoints\n", + "myIdx = 860 \n", + "\n", + "# Constants, triple and critical data\n", + "R = PropsSI('GAS_CONSTANT',FluidName)\n", + "MM = PropsSI('MOLAR_MASS',FluidName)\n", + "Rs = R/MM\n", + "T_crt = PropsSI('T_CRITICAL',FluidName)\n", + "T_trp = PropsSI('T_TRIPLE',FluidName)\n", + "p_crt = PropsSI('P_CRITICAL',FluidName)\n", + "p_trp = PropsSI('P_TRIPLE',FluidName)\n", + "p_max = PropsSI('P_MAX',FluidName)\n", + "d_crt = PropsSI('RHOMASS_CRITICAL',FluidName)\n", + "v_crt = 1/d_crt\n", + "d_trp_liq = PropsSI('D','T',T_trp,'Q',0,FluidName)\n", + "d_trp_vap = PropsSI('D','T',T_trp,'Q',1,FluidName)\n", + "print(\"R = \" + str(R))\n", + "print(\"MM = \" + str(MM))\n", + "print(\"Rs = \" + str(Rs))\n", + "print(\"T_crt = \" + str(T_crt))\n", + "print(\"T_trp = \" + str(T_trp))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Calculation of the coefficients for the metastable region interpolation happens in this cell\n", + "\n", + "T_sat = np.linspace(T_trp, T_crt-eps, num=nPoints)\n", + "# empty arrays\n", + "# vap side\n", + "delta_vap = np.empty(nPoints)\n", + "tau_vap = np.empty(nPoints)\n", + "p_vap = np.empty(nPoints)\n", + "d_vap = np.empty(nPoints)\n", + "v_vap = np.empty(nPoints)\n", + "f_vap = np.empty(nPoints)\n", + "dP_dD_T_vap = np.empty(nPoints)\n", + "d2P_dD2_T_vap = np.empty(nPoints)\n", + "d2P_dDdT_vap = np.empty(nPoints)\n", + "# liq side\n", + "delta_liq = np.empty(nPoints)\n", + "tau_liq = np.empty(nPoints)\n", + "p_liq = np.empty(nPoints)\n", + "d_liq = np.empty(nPoints)\n", + "v_liq = np.empty(nPoints)\n", + "f_liq = np.empty(nPoints)\n", + "dP_dD_T_liq = np.empty(nPoints)\n", + "d2P_dD2_T_liq = np.empty(nPoints)\n", + "d2P_dDdT_liq = np.empty(nPoints)\n", + "# metastable coeffs: \n", + "AShape = (8,8)\n", + "A = np.empty(AShape)\n", + "b = np.empty(8)\n", + "xShape = (nPoints,8)\n", + "x = np.empty(xShape)\n", + "\n", + "HEOS = CP.AbstractState(\"HEOS\", FluidName)\n", + "# get values from CoolProp\n", + "for idx in range(0,nPoints):\n", + " # AT the vap line\n", + " HEOS.update(CP.QT_INPUTS, 1, T_sat[idx]) \n", + " delta_vap[idx] = HEOS.delta() \n", + " tau_vap[idx] = HEOS.tau()\n", + " p_vap[idx] = HEOS.p()\n", + " d_vap[idx] = HEOS.rhomass()\n", + " f_vap[idx] = Rs*T_sat[idx]*( HEOS.alpha0() + HEOS.alphar() ) \n", + " #f_vap[idx] = HEOS.umass() - T_sat[idx]*HEOS.smass()\n", + " dP_dD_T_vap[idx] = HEOS.first_partial_deriv(CP.iP, CP.iDmass, CP.iT)\n", + " d2P_dD2_T_vap[idx] = HEOS.second_partial_deriv(CP.iP, CP.iDmass, CP.iT, CP.iDmass, CP.iT)\n", + " d2P_dDdT_vap[idx] = HEOS.second_partial_deriv(CP.iP, CP.iDmass, CP.iT, CP.iT, CP.iDmass) \n", + " \n", + " # AT the liq line\n", + " HEOS.update(CP.QT_INPUTS, 0, T_sat[idx]) \n", + " delta_liq[idx] = HEOS.delta() \n", + " tau_liq[idx] = HEOS.tau()\n", + " p_liq[idx] = HEOS.p() \n", + " d_liq[idx] = HEOS.rhomass() \n", + " f_liq[idx] = Rs*T_sat[idx]*( HEOS.alpha0() + HEOS.alphar() )\n", + " # f_liq[idx] = HEOS.umass() - T_sat[idx]*HEOS.smass()\n", + " dP_dD_T_liq[idx] = HEOS.first_partial_deriv(CP.iP, CP.iDmass, CP.iT)\n", + " d2P_dD2_T_liq[idx] = HEOS.second_partial_deriv(CP.iP, CP.iDmass, CP.iT, CP.iDmass, CP.iT) \n", + " d2P_dDdT_liq[idx] = HEOS.second_partial_deriv(CP.iP, CP.iDmass, CP.iT, CP.iT, CP.iDmass) \n", + "\n", + " # calculate metastable coeffs by solving Ax=b\n", + " A = np.array([ [1/tau_vap[idx], -1/delta_vap[idx]/tau_vap[idx], log(delta_vap[idx]), delta_vap[idx], delta_vap[idx]**2/2, delta_vap[idx]**3/3, delta_vap[idx]**4/4, delta_vap[idx]**5/5 ], \n", + " [1/tau_liq[idx], -1/delta_liq[idx]/tau_liq[idx], log(delta_liq[idx]), delta_liq[idx], delta_liq[idx]**2/2, delta_liq[idx]**3/3, delta_liq[idx]**4/4, delta_liq[idx]**5/5 ], \n", + " [ 0, d_crt/tau_vap[idx], d_crt*delta_vap[idx], d_crt*delta_vap[idx]**2, d_crt*delta_vap[idx]**3, d_crt*delta_vap[idx]**4, d_crt*delta_vap[idx]**5, d_crt*delta_vap[idx]**6 ], \n", + " [ 0, d_crt/tau_liq[idx], d_crt*delta_liq[idx], d_crt*delta_liq[idx]**2, d_crt*delta_liq[idx]**3, d_crt*delta_liq[idx]**4, d_crt*delta_liq[idx]**5, d_crt*delta_liq[idx]**6 ], \n", + " [ 0, 0, 1, 2*delta_vap[idx], 3*delta_vap[idx]**2, 4*delta_vap[idx]**3, 5*delta_vap[idx]**4, 6*delta_vap[idx]**5 ], \n", + " [ 0, 0, 1, 2*delta_liq[idx], 3*delta_liq[idx]**2, 4*delta_liq[idx]**3, 5*delta_liq[idx]**4, 6*delta_liq[idx]**5 ], \n", + " [ 0, 0, 0, 2/d_crt, 6*delta_vap[idx]/d_crt, 12*delta_vap[idx]**2/d_crt, 20*delta_vap[idx]**3/d_crt, 30*delta_vap[idx]**4/d_crt ], \n", + " [ 0, 0, 0, 2/d_crt, 6*delta_liq[idx]/d_crt, 12*delta_liq[idx]**2/d_crt, 20*delta_liq[idx]**3/d_crt, 30*delta_liq[idx]**4/d_crt ]])\n", + " A = Rs*T_crt*A\n", + " b = np.array([f_vap[idx], f_liq[idx], p_vap[idx], p_liq[idx], dP_dD_T_vap[idx], dP_dD_T_liq[idx], d2P_dD2_T_vap[idx], d2P_dD2_T_liq[idx]])\n", + " x[idx] = solve(A,b)\n", + " \n", + " # for validation\n", + " if (abs(idx-myIdx)<0.9):\n", + " print(np.allclose(np.dot(A, x[idx]), b))\n", + " print(A)\n", + " print(b)\n", + " print(x[idx])\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Just some validation plots\n", + "plt.figure(figsize=(width,width*4/2/golden))\n", + "\n", + "plt.subplot(4,2,1)\n", + "plt.plot(T_sat, f_vap, color='red')\n", + "plt.plot(T_sat, f_liq, color='blue')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.ylabel('Helmholtz energy')\n", + "\n", + "plt.subplot(4,2,2)\n", + "plt.plot(d_vap, T_sat, color='red')\n", + "plt.plot(d_liq, T_sat, color='blue')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.xlabel('Density in kg/m³')\n", + "plt.ylabel('Temperature in K')\n", + "\n", + "plt.subplot(4,2,3)\n", + "plt.plot(T_sat, p_vap, color='red')\n", + "plt.plot(T_sat, p_liq, color='blue')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.ylabel('Pressure in Pa')\n", + "\n", + "plt.subplot(4,2,4)\n", + "plt.plot(d_vap, p_vap, color='red')\n", + "plt.plot(d_liq, p_liq, color='blue')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.xlabel('Density in kg/m³')\n", + "plt.ylabel('Pressure in Pa')\n", + "\n", + "plt.subplot(4,2,5)\n", + "plt.plot(T_sat, dP_dD_T_vap, color='red')\n", + "plt.plot(T_sat, dP_dD_T_liq, color='blue')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.yscale('log')\n", + "plt.ylabel('dP_dD_T')\n", + "\n", + "plt.subplot(4,2,6)\n", + "plt.plot(d_vap, dP_dD_T_vap, color='red')\n", + "plt.plot(d_liq, dP_dD_T_liq, color='blue')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.yscale('log')\n", + "plt.xlabel('Density in kg/m³')\n", + "plt.ylabel('dP_dD_T')\n", + "\n", + "plt.subplot(4,2,7)\n", + "plt.plot(T_sat, d2P_dD2_T_vap, color='red')\n", + "plt.plot(T_sat, d2P_dD2_T_liq, color='blue')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.ylabel('d2P_dD2_T')\n", + "plt.xlabel('Temperature in K')\n", + "\n", + "plt.subplot(4,2,8)\n", + "plt.plot(d_vap, d2P_dD2_T_vap, color='red')\n", + "plt.plot(d_liq, d2P_dD2_T_liq, color='blue')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.xlabel('Density in kg/m³')\n", + "plt.ylabel('d2P_dD2_T')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tau_iso = 1.0417217720566936\n", + "T_iso = 291.94762762762764\n", + "p_sat(T_iso) = 5569191.928520719\n", + "d_vap(T_iso) = 185.17587066325405\n", + "d_liq(T_iso) = 785.8632178765519\n", + "coeffs = [-0.38011836 -0.0331094 1.21278872 -2.00233849 1.1397745 0.285719\n", + " -0.5838537 0.17728102]\n" + ] + }, + { + "data": { + "text/plain": [ + "Text(0.5, 0, '$v/v_c$')" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvgAAAN8CAYAAAAtdN6ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XlcVWX+wPHPuYIg7uK+goo7iIi45Z6aLWqWaWlpZnu/amZs2samaXKysjLbrHHLxszUTLMy0zQ1TQXcFReUECUMFRFZBO75/XGSIjXxci+H++X7fr18NcK9h+f6Eee5D885xzBNE6WUUkoppZQMDrsHoJRSSimllHIfneArpZRSSikliE7wlVJKKaWUEkQn+EoppZRSSgmiE3yllFJKKaUE0Qm+UkoppZRSgugEXymllFJKKUF0gq+UUkoppZQgOsFXSimllFJKEB+7B+AJNWvWNIOCguwehkfk5ubi6+tr9zCUG2hLObSlHNpSDm0pg3YsLCYmJtU0zVpXepzICX5QUBDR0dF2D0MppZRSSim3MQzjp6I8TrfoeJnY2Fi7h6DcRFvKoS3l0JZyaEsZtKNrDNM07R6D20VGRppSV/CdTicOh74vk0BbyqEt5dCWcmhLGbRjYYZhxJimGXmlx+mfmJeJi4uzewjKTbSlHNpSDm0ph7aUQTu6RuQefMmCg4PtHoJyE20ph7aUQ1vK4Y6Wubm5JCUlkZ2d7YYRKVft27fP7iGUOH9/fxo2bOjyCcY6wfcyx48fp1mzZnYPQ7mBtpRDW8qhLeVwR8ukpCQqV65MUFAQhmG4aWTqamRnZ+Pv72/3MEqUaZqcPHmSpKQkl9+o6hYdL1OjRg27h6DcRFvKoS3l0JZyuKNldnY2gYGBOrm3kY9P2VuLNgyDwMDAYv3kSCf4XiYzM9PuISg30ZZyaEs5tKUc7mqpk3t7OZ1Ou4dgi+L+vdMJvpfRM8nl0JZyaEs5tKUc2lKVZfq338vo3dzk0JZyaEs5tKUckltOnTq1SD+hCAoKIjU19aKPP//880yZMsUTQ7ui6dOnM3fuXADGjh3LokWLABg/fjx79+4FoFKlSgWP/7OV7N8fSxVW9jY2ebmMjAxq1qxp9zCUG2hLObSlHNpSDsktp06dyujRowkICLB7KFftgQceuOTHZ8yYccmPX26LTl5e3mWPpXQF3+tI/ceqLNKWcmhLObSlHBJanjt3jhtuuIH27dvTrl07FixYwLRp0zh+/Dh9+vShT58+ADz44INERkbStm1b/vnPfxY6xquvvkpUVBRRUVEcOnTooq8RHx/PddddR8eOHenRo8clrzt/7tw5xo0bR6dOnejQoQNLly4FICsri5EjRxIWFsaIESPo3LkzF240+vtV+EWLFjF27Fjg8j896N27N7+/Senf/vY3IiIiGDRoEL/88kvBY5555hl69erFm2++WehYv39+amoqQUFBAMyZM4ehQ4dy0003ERwczNtvv83rr79Ohw4d6NKlC6dOnbpyCC+kK/heJikpiVatWtk9DOUG2lIObSmHtpTD7S0ffxy2b3ff8QDCw2Hq1Mt+esWKFdSvX58vv/wSgDNnzlC1alVef/111qxZU/AmZtKkSdSoUYP8/Hz69evHzp07CQsLA6BKlSps2bKFuXPn8vjjj7N8+fJCX+O+++5j+vTphISEsHnzZh566CG+++67Qo+ZNGkSffv2ZdasWaSlpREVFcW1117L+++/T0BAADt37mTnzp1ERES45Y/l3LlzRERE8NprrzFx4kT+9a9/8fbbbwOQlpbG999/D1hvFopi9+7dbNu2jezsbJo3b87LL7/Mtm3b+Mtf/lLw5yKNruB7mebNm9s9BOUm2lIObSmHtpRDQsvQ0FBWrVrFk08+yfr166lateolH/fpp58SERFBhw4d2LNnT8FedoDbb7+94L+bNm0q9LyMjAw2btzI8OHDCQ8P5/777yc5Ofmi469cuZLJkycTHh5O7969yc7OJjExkXXr1jF69GgAwsLCCt5UFJfD4WDEiBGAtU9/w4YNBZ+78PGr0adPHypXrkytWrWoWrUqN910E2D9+SYkJLhlzKWNruB7mT179tC+fXu7h6HcQFvKoS3l0JZyuL3ln6y0e0qLFi2IiYnhq6++4umnn2bAgAE899xzhR5z5MgRpkyZwtatW6levTpjx44tdP3035+k+scTVp1OJ9WqVWP7FX4yYZomixcvpmXLlhd97nInwf7+48W5nnt2dnahY1WsWPGSj/Px8SnYr//Hr+fn51fwvx0OR8HvHQ4HeXl5Lo+tNNMVfDc6dAg++8yzX0P/j0cObSmHtpRDW8ohoeXx48cJCAhg9OjRTJgwgdjYWAAqV67M2bNnAUhPT6dixYpUrVqVlJQUvv7660LHWLBgQcF/u3btWuhzVapUITg4mIULFwLWRH7Hjh0XjWPgwIG89dZbmKYJwLZt2wDo2bMn8+bNA6xtMDt37ix4Tp06ddi3bx9Op5MlS5Zc1et2Op0FV9dZsmQJ11xzzRWfExQURExMDEDBc8syneC70cKFcMst4Mn7pFz4y6u8n7aUQ1vKoS3lkNBy165dREVFER4ezqRJk/jHP/4BWPvmBw0aRJ8+fWjfvj0dOnSgbdu2jBs3ju7duxc6Rk5ODp07d+bNN9/kjTfeuOhrzJs3j5kzZ9K+fXvatm1bcALt702cOJHc3FzCwsJo164dEydOBKyTezMyMggLC+OVV14hKiqq4DmTJ0/mxhtvpG/fvtSrV++qXnfFihXZs2cPHTt25Ntvv73opxaXMmHCBN577z26det2yUuDljXGhXdjkkRGRpq/PxO7pMyaBffcA0eOwK8nbyullFLKS+3bt4/WrVvbPQyv0bt3b6ZMmUJkZKTdQxHhUn//DMOIMU3zin/AuoLvRnXqWP/9+WfPfQ0JKxLKoi3l0JZyaEs5tKUM586ds3sIXklPsnWjunWt/3pygt+xY0fPHVyVKG0ph7aUQ1vKoS1L3tq1a91+zMudVKv+nK7gu9GFLWaXuMKU2+zatctzB1clSlvKoS3l0JZyaEsZMj15YqNgOsF3o9q1wTA8u4LfokULzx1clShtKYe2lENbyqEtZfD397d7CF5JJ/hu5OMDtWp5dgU/MTHRcwdXJUpbyqEt5dCWcmhLGc6fP2/3ELySTvDdrG5dz67g17lwJq/yetpSDm0ph7aUQ1vK4Ovra/cQvJJO8N2sXj3PruCnpaV57uCqRGlLObSlHNpSDikty5UrR3h4eMGvyZMn/+njly9fTocOHWjfvj1t2rTh/fffL6GReobUO816ml5Fx83q1YM9ezx3fN2LJoe2lENbyqEt5ZDSskKFCmzfvr1Ij83NzeW+++5jy5YtNGzYkJycHBISEjw7QA9zOHQt2hX6p+ZmF7boOJ12j0QppZRSUq1evZoOHToQGhrKuHHjyMnJ4ezZs+Tl5REYGAiAn58fLVu2tHmkyg66gu9m9epBXh6cOgU1a7r/+NnZ2e4/qLKFtpRDW8qhLeVwd8vHVzzO9p+LtpJeVOF1w5l63dQ/fUxWVhbh4eEFv3/66acZMmQIY8eOZfXq1bRo0YK77rqL9957j8cff5zBgwfTpEkT+vXrx4033sjtt9/u1avgTl0xdYn3Fi+lLtzsylP78KtVq+aZA6sSpy3l0JZyaEs5pLS8sEXnwq8RI0awf/9+goODCy4FOmbMGNatWwfAjBkzWL16NVFRUUyZMoVx48bZOfxi8/HRtWhX6J+am1242dXPP0NoqPuPn5KSQpUqVdx/YFXitKUc2lIObSmHu1teaaW9JJmm+aefDw0NJTQ0lDvvvJPg4GDmzJlTMgPzgNzcXMqVK2f3MLyOruC7madX8Bs3buyZA6sSpy3l0JZyaEs5JLds1aoVCQkJHDp0CICPPvqIXr16kZGRwdq1awset337dpo0aWLTKN2jfPnydg/BK+kE381+v4LvCQcOHPDMgVWJ05ZyaEs5tKUcUlpe2IN/4ddTTz2Fv78/s2fPZvjw4YSGhuJwOHjggQcwTZNXXnmFli1bEh4ezj//+U+vXr0HPS/GVcaVfszjjSIjI83o6Gjbvn6lSnDvvfDGG7YNQSmllFLFtG/fPlq3bm33MFQZdam/f4ZhxJimGXml5+oKvgd48mZXMTExnjmwKnHaUg5tKYe2lENbynDu3Dm7h+CVdILvAQ0bQlKSZ47dsWNHzxxYlThtKYe2lENbyqEtZahYsaLdQ/BKOsF3o28XTubhJ0Np2MD02ARfVyTk0JZyaEs5tKUc2lIGXcF3jU7w3Wh3/I+8G7CbmtXTOHbMM3ez1RUJObSlHNpSDm0ph7aUQVfwXaMTfDcKqmvdDtrPcZC8PEhJcf/X2LFjh/sPqmyhLeXQlnJoSzm0pQyZmZl2D8Er6QTfjYKCrFtJG+wBPLMPv23btu4/qLKFtpRDW8qhLeXQljJUqFDB7iF4JZ3gu1FQyy4A5Di3A56Z4F+4qYXyftpSDm0ph7aUQ1taN7r66quvXHpuWloa77777hUfl5CQQLt27S75ud69e3M1ly0fO3YsAQEBnD17tuBjjzzyCIZhkJqaWuTjuMPvxx4UFHTJr3+5j5cGOsF3o2p1mlAlB9INa4J/9Kj7v0bDhg3df1BlC20ph7aUQ1vKoS1LZoLvbs2bN2fp0qUAOJ1O1q9fT4MGDUp8HN5OJ/huZDgcBGX587MjDj8/z6zgl9Z3iurqaUs5tKUc2lIOCS0TEhJo1aoV48ePp127dowaNYpVq1bRvXt3QkJC2LJlC2BdaWbcuHF06tSJDh06sHTpUs6fP89zzz3HggULCA8PZ8GCBWzZsoVu3brRoUMHunXrxv79+wHYs2cPUVFRhIeHExYWxsGDB3nqqaeIj48nPDycJ554goyMDPr160dERAShoaEFk3CAvLw8xowZQ1hYGLfeeusl982vXLmSrl27EhERwfDhw8nIyLjka7799ttZsGABAGvXrqVLly74+PgUfH7o0KF07NiRtm3b8sEHHwDw008/ERISQmpqKk6nkx49erBy5UpeeeUVpk2bBsBf/vIX+vbtC8Dq1asZPXr0VY3rSl5//XXatWtHu3btmDp16p9+/ELXK/2ZFYfPlR+irkYQ1TjsOO2xa+FXqlTJ/QdVttCWcmhLObSlHO5u+fjjsH27Ww9JeDj8bi54SYcOHWLhwoV88MEHdOrUiY8//pgNGzawbNky/vOf//D5558zadIk+vbty6xZs0hLSyMqKoprr72WF154gejoaN5++20A0tPTWbduHT4+PqxatYpnnnmGxYsXM336dB577DFGjRrF+fPnyc/PZ/LkyezevZvtv77ovLw8lixZQpUqVUhNTaVLly4MHjwYgP379zNz5ky6d+/OuHHjePfdd5kwYULBa0hNTeXFF19k1apVVKxYkZdffpnXX3+d55577qLXGxISwtKlSzl9+jTz589n5MiRrFy5suDzs2bNokaNGmRlZdGpUyduueUWmjRpwpNPPskDDzxA586dadOmDQMGDKBKlSq89tprPProo0RHR5OTk0Nubi4bNmygR48eVzWuPxMTE8Ps2bPZvHkzpmnSuXNnevXqhdPpvOTHq1evfsU/s+LSCb6bBfnX4TvHz3RsaHL0qOH24+fm5rr9mMoe2lIObSmHtpRDSsvg4GBCQ0MB68Thfv36YRgGoaGhJCQkANYq9LJly5gyZQoA2dnZJCYmXnSsM2fOMGbMGA4ePIhhGAV/Rl27dmXSpEkkJSUxbNgwQkJCLnquaZo888wzrFu3DofDwbFjx0j59XKBjRo1onv37gCMHj2aadOmFZqs/vjjj+zdu7fgMefPn6dr166Xfc3Dhg3jk08+YfPmzbz11luFPjdt2jSWLFkCwNGjRzl48CCBgYGMHz+ehQsXMn369II3JR07diQmJoazZ8/i5+dHREQE0dHRrF+/nmnTpl31uC5nw4YN3HzzzQWX9Bw2bBjr16/HNM1Lfnzw4MFX/DMrLp3gu1lQ1SAycnZQO/AsW2OruP34Tk9cXF/ZQlvKoS3l0JZyuLvllVbaPcXPz6/gfzscjoLfOxwO8vLyAGvyvXjxYlq2bFnouZs3by70+4kTJ9KnTx+WLFlCQkICvXv3BuCOO+6gc+fOfPnllwwcOJAZM2bQtGnTQs+dN28ev/zyCzExMfj6+hIUFER2djYAhlF4QfOPvzdNk/79+zN//vwiveaRI0cSERHBmDFjcDh+202+du1aVq1axaZNmwgICKB3794FY8jMzCTp160TGRkZVK5cuWCcs2fPplu3boSFhbFmzRri4+Np3bo18fHxVzWuyzFN86o+Dlf+Mysu3YPvZheuhV+xfKJHbnYVEBDg3gMq22hLObSlHNpSjrLUcuDAgbz11lsFE8pt27YBULly5UJXpDlz5kzBCatz5swp+Pjhw4dp2rQpjz76KIMHD2bnzp2XfG7t2rXx9fVlzZo1/PTTTwWfS0xMZNOmTQDMnz+fa665ptD4unTpwg8//FBwZaPMzEwOHDhw2dfTuHFjJk2axEMPPVRogn/mzBmqV69OQEAAcXFx/PjjjwWfe/LJJxk1ahQvvPAC9957b8HHe/bsyZQpU+jZsyc9evRg+vTphIeHYxjGVY/rcnr27Mnnn39OZmYm586dY8mSJfTo0eOyHy/Kn1lx6QTfzS5cC79cuYPk5sKJE+49/qlTp9x7QGUbbSmHtpRDW8pRllpOnDiR3NxcwsLCaNeuHRMnTgSgT58+7N27t+Ak27///e88/fTTdO/enfz8/ILnL1iwgHbt2hEeHk5cXBx33XUXgYGBdO/enXbt2vHEE08watQooqOjiYyMZN68ebRq1arg+a1bt+bDDz8kLCyMU6dO8eCDDxYaX61atZgzZw633347YWFhdOnShbi4uD99Tffffz/NmjUr+CkFwHXXXUdeXh5hYWFMnDiRLl2sy5N///33bN26tWCSX758eWbPng1Ajx49SE5OpmvXrtSpUwd/f/+CSbYr47qUiIgIxo4dS1RUFJ07d2b8+PF06NDhsh8vyp9ZcRl/9uMDbxUZGWlezXVX3el08hFqfNCUu+P/xeyPnmPzZoiKct/xs7Ky9KYPQmhLObSlHNpSDne03LdvH61bt3bTiJQrnE5noVV8CRISErjxxhvZvXv3nz7uUn//DMOIMU0z8kpfQ9afWClw4Vr4Wb7WLbKPHHHv8Y+4+4DKNtpSDm0ph7aUQ1vKkJOTY/cQvJJO8N3McDhonlWBX/ytnyD8eoK72/z+R2LKu2lLObSlHNpSDm0pg7+/v91DcLugoKArrt4Xl07wPSDEqEmC/3Fq1nT/Cv52d1+EV9lGW8qhLeXQlnK4q6XErczexN03gPIWxf17pxN8D2heqTEJlfJo0jjf7RP8iIgI9x5Q2UZbyqEt5dCWcrijpb+/PydPntRJvo0uXEO+LDFNk5MnTxbrpxd6HXwPCKnTmvzUH6hd4xfiE+q69dgxMTF07NjRrcdU9tCWcmhLObSlHO5o2bBhQ5KSkvjll1/cNCp1tc6fP0/58uXtHkaJ8/f3p2HDhi4/Xyf4HtA8KAJSoWKFeBIS6uJ0grtOANf/45FDW8qhLeXQlnK4o6Wvry/BwcFuGI1SJUu36HhASNueABjl9nD+PCQnu+/YsbGx7juYspW2lENbyqEt5dCWMmhH1+gE3wNqNW5N5RzI8bXuJOfOK+mEh4e772DKVtpSDm0ph7aUQ1vKoB1doxN8DzAcDkKyKnCqgnUGvztPtHXlDmuqdNKWcmhLObSlHNpSBu3oGp3ge0hzoybHq1nXOHXnCr7uBZRDW8qhLeXQlnJoSxm0o2t0gu8hIZUa81O1DOrVdXL4sPuOe/z4cfcdTNlKW8qhLeXQlnJoSxm0o2t0gu8hzWu3It8BDeqd4dAh9x23Ro0a7juYspW2lENbyqEt5dCWMmhH1+gE30NaNe8CQLXKhzl40H3HLat3dJNIW8qhLeXQlnJoSxm0o2t0gu8hrSMGAODjv4Off4b0dPcc1+GuC+or22lLObSlHNpSDm0pg3Z0jf6peUjV2o1pkOEgy38rgNtW8X19fd1zIGU7bSmHtpRDW8qhLWXQjq7RCb4HtcmtRmqVaMB9E/yMjAz3HEjZTlvKoS3l0JZyaEsZtKNrbJngG4Yx3DCMPYZhOA3DiPyTx1UzDGORYRhxhmHsMwyja0mOs7jaVGjMkXrWpTIPHHDPMWvWrOmeAynbaUs5tKUc2lIObSmDdnSNXSv4u4FhwLorPO5NYIVpmq2A9sA+Tw/MnVrXbkNmxWwa1Mtx2wQ/KSnJPQdSttOWcmhLObSlHNpSBu3oGlsm+KZp7jNNc/+fPcYwjCpAT2Dmr885b5pmWkmMz13aNLd+4FAr8Ljbtug0b97cPQdSttOWcmhLObSlHNpSBu3omtK8B78p8Asw2zCMbYZhzDAMo+LlHmwYxn2GYUQbhhGdnJxMamoqycnJHDt2jNOnTxMfH09WVhZ79+7F6XQSGxsLQExMDACxsbE4nU727t1LVlYW8fHxnD59mmPHjnHheAkJCWRkZBAXF0deXh47duwodIwL/921axc5OTlUqN4SgPJ+u9i/30lKygkSExNJT0/n4MGD5OTksGvXrkseY8eOHeTl5REXF0dGRgYJCQmkpqaydetWW1/TwYMHSU9PJzExkRMnTnDiRPFfk92d7HpNa9euFfeaJHYqymvaunWruNcksVNRXtOePXvEvSaJnYrymqKjo8W9JomdrvSafv89KeU1FadTURmmaRb5wVfDMIxVQN1LfOpZ0zSX/vqYtcAE0zSjL/H8SOBHoLtpmpsNw3gTSDdNc+KVvnZkZKQZHX3RIW1R50kHwVteZPPaZzhxAmrVsntESimllFLKGxmGEWOa5mXPX73AYyv4pmlea5pmu0v8WlrEQyQBSaZpbv7194uACM+M1nPa5FQlrar1Li0urvjHu/COT3k/bSmHtpRDW8qhLWXQjq4ptVt0TNP8GThqGEbLXz/UDyj6zyZKiVD/xhxtaF0Lf/fu4h+vY8eOxT+IKhW0pRzaUg5tKYe2lEE7usauy2TebBhGEtAV+NIwjG9+/Xh9wzC++t1D/w+YZxjGTiAc+E/Jj7Z4wutHkFnzKBUr5rFnT/GPp+9k5dCWcmhLObSlHNpSBu3oGo/twbdTadqDH/vdPDquH03I3CM0aBzEmjV2j0gppZRSSnkj2/fgK0ubqBvwyYeAKrvcskXnwlnYyvtpSzm0pRzaUg5tKYN2dI1O8D3Mv1I1WmX4kVtlC6mpcOJE8Y7XokUL9wxM2U5byqEt5dCWcmhLGbSja3SCXwLCjfqk1N4CFP9E28TERDeMSJUG2lIObSmHtpRDW8qgHV2jE/wSEF6zLSeb7AQo9om2derUccOIVGmgLeXQlnJoSzm0pQza0TU6wS8B4S16QqWfqVwpq9gT/LS0NPcMStlOW8qhLeXQlnJoSxm0o2t0gl8CwjsPBQNqBsazc2fxjuXv7++eQSnbaUs5tKUc2lIObSmDdnSNTvBLQGDDEJqe9aFcjR/ZsQPy8+0ekVJKKaWUkkon+CUkyqzPybobyMyE/ftdP052drb7BqVspS3l0JZyaEs5tKUM2tE1OsEvIZ1rR3A6yLr5Vmys68epVq2am0ak7KYt5dCWcmhLObSlDNrRNTrBLyGdwwZBzTjK++YWa4KfkpLivkEpW2lLObSlHNpSDm0pg3Z0jU7wS0iHHrfhSz6BtfYXa4LfuHFj9w1K2UpbyqEt5dCWcmhLGbSja3SCX0L8K1Wj/dkAjMDNbNsGTqdrxzlw4IB7B6Zsoy3l0JZyaEs5tKUM2tE1OsEvQZ39mnGy0UbS0yE+3rVjhIaGundQyjbaUg5tKYe2lENbyqAdXaMT/BLUpUl3chrFALB1q2vHiImJceOIlJ20pRzaUg5tKYe2lEE7usYwTdPuMbhdZGSkGR0dbfcwLpK4dxNNPumB38tnGX9vBd5+2+4RKaWUUkopb2EYRoxpmpFXepyu4Jegxm26EpRpUKVONBs3unYMfScrh7aUQ1vKoS3l0JYyaEfX6Ap+CRszoRkLN43l/OZ/kJZmUKmS3SNSSimllFLeQFfwS6lejXuSFbyR/HzDpX34O3bscP+glC20pRzaUg5tKYe2lEE7ukYn+CWsV887oeGPAC5t02nbtq2bR6Tsoi3l0JZyaEs5tKUM2tE1OsEvYU3DetMgP50qNQ64NME/dOiQ+welbKEt5dCWcmhLObSlDNrRNTrBL2GGw0E/M4icRmvZsMEkL+/qnt+wYUPPDEyVOG0ph7aUQ1vKoS1l0I6u0Qm+DQY2v46ckNWkpxvExl7dc1NTUz0zKFXitKUc2lIObSmHtpRBO7pGJ/g26H/9IxC0BoDVq6/uuZX0sjtiaEs5tKUc2lIObSmDdnSNTvBtUKtxazrlZRIQuJvvvru65+bm5npmUKrEaUs5tKUc2lIObSmDdnSNTvBtcl2VCDKbf8uGDU6ys4v+PKfT6blBqRKlLeXQlnJoSzm0pQza0TU6wbfJdZ1HQdPvyM52sGlT0Z8XEBDguUGpEqUt5dCWcmhLObSlDNrRNTrBt0nUtWOoUed7HI7zfP110Z936tQpzw1KlShtKYe2lENbyqEtZdCOrtEJvk18yvsz1KcuRuPv+WJZfpGfV79+fQ+OSpUkbSmHtpRDW8qhLWXQjq7RCb6NhoXfQX6rL4jbX474+KI958iRI54dlCox2lIObSmHtpRDW8qgHV2jE3wbXTv0r1QMWg7A8uVFe06rVq08OCJVkrSlHNpSDm0ph7aUQTu6Rif4NvKrWIXBAU7KBe5h2dKibdPZvn27h0elSoq2lENbyqEt5dCWMmhH1ximado9BreLjIw0o6Oj7R5GkSyZ8yTDZlaj3Ka/k5JSjsBAu0eklFJKKaVKI8MwYkzTjLzS43QF32bXD3+WyiGfkp9fjs8+u/LjY2JiPD8oVSK0pRzaUg5tKYe2lEE7ukZX8EuBB//ejvdnLqZH2yZ8v87f7uEopZRSSqlSSFfwvciYvo9jhn7C+g3lSU7+88fNox2TAAAgAElEQVTGxsaWzKCUx2lLObSlHNpSDm0pg3Z0ja7glwKm00nQuA4kfriDqVPhsccu/1in04nDoe/LJNCWcmhLObSlHNpSBu1YmK7gexHD4eDhkAZQL4Z33zrDn73niouLK7mBKY/SlnJoSzm0pRzaUgbt6Bqd4JcS4+56A5/wDzgQX5WtWy//uODg4JIblPIobSmHtpRDW8qhLWXQjq7RCX4pUbNRS4Y32wy+53j7zYzLPu748eMlOCrlSdpSDm0ph7aUQ1vKoB1doxP8UuSvQ/4K7eazYFE50tMv/ZgaNWqU7KCUx2hLObSlHNpSDm0pg3Z0jU7wS5HIa+8irOVHnD9fgenv5VzyMZmZmSU8KuUp2lIObSmHtpRDW8qgHV2jE/xSZvLgftBkLS9PziA39+LP65nkcmhLObSlHNpSDm0pg3Z0jf6plTLXjfgHzcLf5FRaIB/PO3/R5319fW0YlfIEbSmHtpRDW8qhLWXQjq7RCX4pYzgcvDw4BGrt5h/P/ILTWfjzGRmXPwFXeRdtKYe2lENbyqEtZdCOrtEJfil085j/ENzxNZKSG/DRnMJ/sWvWrGnTqJS7aUs5tKUc2lIObSmDdnSNTvBLIUc5H2bc2x7q7OCvT6QX2ouflJRk38CUW2lLObSlHNpSDm0pg3Z0jU7wS6m+wx6nU+dXOXWqPq9P/u0vd/PmzW0clXInbSmHtpRDW8qhLWXQjq7RCX4p9tE/7sRovJbn/lOR1FTrY3v27LF3UMpttKUc2lIObSmHtpRBO7rGME3T7jG4XWRkpBkdHW33MNzi/x4Zx9vvvc+Anrv4Zk2E3cNRSimllFI2MQwjxjTNyCs9TlfwS7nXXp1GYIdprFwbwfLPkomJibF7SMpNtKUc2lIObSmHtpRBO7pGV/C9wLpl8+h1dxQBuRU49lN9qlXX92VKKaWUUmWNruAL0nPwKB4a/i6ZGXXp03Ot3cNRbqKrEnJoSzm0pRzaUgbt6BpdwfcSzvw8QrpP4fDmp/j7/63j5Wk97R6SUkoppZQqQbqCL4yjnA+bFtxChaAVvPJOVxZ9tNvuIali2rVrl91DUG6iLeXQlnJoSxm0o2t0gu9FajcJ4Zt383BUO8zI+2vz49p4u4ekiqFFixZ2D0G5ibaUQ1vKoS1l0I6u0Qm+l6nbvCVzXthEvgE9B5dnV4ze4c1bJSYm2j0E5SbaUg5tKYe2lEE7ukYn+F6mTp063PnwWN6euJTc85XpdG022zYdtHtYygV16tSxewjKTbSlHNpSDm0pg3Z0jU7wvUxaWhoADz91L68+9Sk5WTXp1D+ArxfLOqm4LLjQUnk/bSmHtpRDW8qgHV2jE3wv4+/vX/C/Jzx/Hx++9g1OA24Y1ZzX/vW5jSNTV+v3LZV305ZyaEs5tKUM2tE1OsH3cnc9PIKVH8XhWymJCc8PZmD//5Gf57R7WEoppZRSyiY6wfcy2dnZF33s2qH9SIiuTqNWS1i5ajS1m25g46ptNoxOXY1LtVTeSVvKoS3l0JYyaEfX6ATfy1SrVu2SH68X1ICE3Tdz+y3vcSqlA91vaM4dt84hLzevhEeoiupyLZX30ZZyaEs5tKUM2tE1OsH3MikpKZf9nKOcg48XPci6z3dTvW408xePpUqD3Ux9cVEJjlAV1Z+1VN5FW8qhLeXQljJoR9foBN/LNG7c+IqP6TGoK6mHe/HQ3TM5n12dv0y8lXrNvmHBzJUlMEJVVEVpqbyDtpRDW8qhLWXQjq7RCb6XOXDgQJEe5yjn4J1Z95ByoCL9r53Jz0ldGTl+AHWafssHr+vVdkqDorZUpZ+2lENbyqEtZdCOrjFM07R7DG4XGRlpRkfrdeF/78i+nxj/8Hes2TQYMzuQyvV+ZFS/3Ux+eQhV69eye3hKKaWUUuoKDMOIMU0z8kqP0xV8LxMTE+PS84JbN2H1d3eTfMDJ0BtnkZ0dyPT/jad6c+jSaSYrZiwDgW/2SjNXW6rSR1vKoS3l0JYyaEfX6Ap+GZWXl8+UycuYNjeA5EPXglmOCnW20rvjZp5+ogM9ene3e4hKKaWUUup3dAVfKHe9k/XxKcdT/7iZ4wcGEh2byJChH+Nw+vH1V4/Qs29nKjddydA732H9zl1u+XrqYroqIYe2lENbyqEtZdCOrtEVfFXIms9ieen1A6zb0YWcjCDASYWGW+na4xiPPtiOm7qH4HAYdg9TKaWUUqrM0RV8oXbs2OHR4/cZFsHKDSPJOt2IlW98zfUdP6Bclg/fzR/G0J4t8K91hC7DvmfGZ4fIzZX35rAkebqlKjnaUg5tKYe2lEE7ukZX8L1MXl4ePj4+JftFU1OJnfYxr36ezMqTPTmV0hfy/XBUSKN1tyPcObwa948Iolo1Xdm/Gra0VB6hLeXQlnJoSxm0Y2GlegXfMIzhhmHsMQzDaRjGZQdpGMZffn3cbsMw5huG4V+S4yyNDh06VPJftGZNIl54lPk7/sPJZbU5PO4v3N/qdurU+5w9Gxvx1APBVK+ZS9PIgzw96TgJCSU/RG9kS0vlEdpSDm0ph7aUQTu6xpYVfMMwWgNO4H1ggmmaFy23G4bRANgAtDFNM8swjE+Br0zTnHOl40tewc/IyKBSpUp2DwOysmDJElI+/IA3EnJZ4DuYhJTBkNoagDrNUrh1qC9jRtSgY0dw6Gawi5SalqrYtKUc2lIObSmDdiysVK/gm6a5zzTN/UV4qA9QwTAMHyAAOO7ZkZV+qampdg/BUqEC3HEHdb5Zy+Rv5nHk1ixSavTnudAWBHd+gpS8ON55vSpRURBYJ4t77s1n+XLrfYGylJqWqti0pRzaUg5tKYN2dE2pXVc1TfMYMAVIBJKBM6ZprrR3VPYrle9ig4Lg+eepvS+Rf73+LoeDk0g8N4Cnu9Qm8IaxpNX+gtkfZXLTTRAYaDJkCMycCSkpdg/cXqWypXKJtpRDW8qhLWXQjq7x2ATfMIxVv+6d/+OvIUV8fnVgCBAM1AcqGoYx+k8ef59hGNGGYUQnJyeTmppKcnIyx44d4/Tp08THx5OVlcXevXtxOp3ExsYCv11fNTY2FqfTyd69e8nKyiI+Pp7Tp09z7NgxLhwvISGBjIwM4uLiyMvLKziz+8IxLvx3165d5OTkcPDgQdLT00lMTOTEiROcOHGCxMRE0tPTOXjwIDk5OezateuSx9ixYwd5eXnExcWRkZFBQkICqampnDhxovS+pvh4cnr0YNczz9BofzIP9BhPSvJOvj4/ggHDasKd/ckLm853G08yfjzUq2cSFZXLs8+ms3ZtCqdOlcLX5GKnovzdi4uLE/eaJHYqyms6ceKEuNcksVNRXlNubq641ySxU1FeU2pqqrjXJLHTlV7T778npbym4nQqKluvomMYxlouvwd/OHCdaZr3/Pr7u4Aupmk+dKXjSt6Df+zYMRo0aGD3MK7O9u0wezbbV8xhclg6C9pA5ZQoume8RMq+PmyLta6+ExICgwfDkCHQrRuUK2fzuD3MK1uqS9KWcmhLObSlDNqxsFK9B7+IEoEuhmEEGIZhAP2AfTaPyXYBAQF2D+HqhYfDm28SvvMEnwxfwM5d3eicuYUVIf3IurYSS195nXennqdpU5g2DXr2hDp1YOxY+OwzyMiw+wV4hle2VJekLeXQlnJoSxm0o2vsukzmzYZhJAFdgS8Nw/jm14/XNwzjKwDTNDcDi4BYYNevY/3AjvGWJqdOnbJ7CK7z84PbbiP0sx9Y+eJPfOEYzTlnDjdn/I0jqyrzedP7SF0Zy6cLTAYNgmXL4JZboGZNuOEG+OAD+Plnu1+E+3h1S1WItpRDW8qhLWXQjq7RG115maysLCpUqGD3MNwmPSuNJz66kw+SlxOZbLD4E5PGjUNh3DhyR4zmh/01WboUli6FI0fAMKB7dxg2zPrVpIndr8B10lqWZdpSDm0ph7aUQTsWJmGLjrqEI0eO2D0Et6pSoRrv3/cFS0Ys4UCTykT8tSKrG56Hv/wF3yb16f3OcN4Y8DXxB/LZtQuefx7OnoW//tW6eE+nTjB5Mhw8aPcruXrSWpZl2lIObSmHtpRBO7pGV/C9jNPpxCH0rlEHTh5g2IJh7D+5n1kRL3Dnd6kwdy6kpkKDBjBmDNx9NzRvzqFD1v78xYthyxbr+e3aWVt6brnF+t+GYe/ruRLJLcsabSmHtpRDW8qgHQvTFXyhtm/fbvcQPKZFYAs23rORnk16clf0M7x2S304dsyaxYeHW0v1ISHQqxfNN87l7w+fY/NmSEyEN9+EGjXghRcgLAxatoSnnoKtW6G0voeV3LKs0ZZyaEs5tKUM2tE1uoKvSp2cvBzuXHInC/cu5KV+L/HUNU9Znzh+3FrRnzXL2pNTuTKMHAnjxkHnzmAYpKTA559bq/vffQd5edC4Mdx6K4wYYW3pKe0r+0oppZRSl6Ir+EJduDGCZH4+fsy/ZT6jQkfx9OqnmfrjVOsT9etby/L798P69dZenHnzoGtXaNsWpkyhDincfz988411p9w5c6wV/bfest4DNGtmHWLbNvtX9stCy7JCW8qhLeXQljJoR9foCr4qtfKceYxcNJLF+xYzc/BMxnUYd/GDzp6FTz+1VvU3bgQfH7jxRmtVf9Ag6/dAWpq1sr9gAaxaZa3sh4RYq/ojRlh79pVSSimlSjNdwRfqwi2XywIfhw8f3/IxA5sN5P7l97P68OqLH1S5MtxzD/zwA+zbZ11eZ9Mm65a4jRrBk09CXBzVqlk3zvr6a+ta+h98YG3d+c9/IDTU+gHACy9YPxwoKWWppXTaUg5tKYe2lEE7ukZX8L1MWTybPD0nne6zunP0zFE23bOJ1rVa//kTcnOtmfysWbB8OeTnQ7du1huB4cOtNwW/SkmxzuH95BPYsMHattO+/W8r+02beu51lcWWUmlLObSlHNpSBu1YmK7gCxUXF2f3EEpcFb8qLL99OX4+ftw4/0ZOZ53+8yf4+lor+J9/DklJ8OqrcOqUNcGvV8/avvPrbL5OHXjoIVi3Do4ehTfegAoV4JlnrP36nTrBa69ZF/Nxt7LYUiptKYe2lENbyqAdXaMr+F6mLN/RbePRjfSa04sbQm5gyYglGFdzORzThM2bYeZMa7k+I8PahD9uHNx1l3UC7+/89JO1tX/BAoiJsa6806cPjBplndtbtWrxX09ZbimNtpRDW8qhLWXQjoXpCr5Qx48ft3sItunWqBuvXPsKS/cv5fVNr1/dkw0DunSB//7X2oQ/Z461mv/009Ze/ZtugiVL4Px5AJo0gSeegOhoa1/+c89Z19u/5x6oU8e67OZnn0FOjuuvpyy3lEZbyqEt5dCWMmhH1+gKvpc5ffo01atXt3sYtjFNk1sX3srSuKWsu3sd3Rp1K94BDx60Jvtz5ljX2a9VC+6801rZb9v2D1/bunHWvHnWDwFOnLBW8m+91VrZ79ULrmabYFlvKYm2lENbyqEtZdCOhekKvlCZmZl2D8FWhmEwa/AsGldtzJ1L7iTjfEbxDhgSApMmWXtyvvwSeva0Lprfrp114fwPPoAzZ3792hAVZd0199gxWLHC2uq/YAH07WtdleeJJ2D79qJdY7+st5REW8qhLeXQljJoR9foBN/L6JnkUNW/Kh8O/ZAjp48wYeUE9xzUxweuvx4WLbJm72+8AZmZcP/91laeu+6CtWvB6Sx4+MCB1o11U1Jg/nzo0AGmTrX+266ddQnOhITLf0ltKYe2lENbyqEtZdCOrtE/NS/j6+tr9xBKhR5NejCh2wTej3mfrw9+7d6D16oFjz8OO3fCli0wZgwsXWqdZRsSAi++aF2d51cBATByJHzxhbW9/733oEYNePZZCA6Ga66xPnbqVOEvoy3l0JZyaEs5tKUM2tE1OsH3MhkZxdySIsgLfV6gba223LPsHk5mnnT/FzAM6zqZ770Hycnwv/9BUBBMnGjtxxk0CBYuLHSmbWAgPPAArF8PR45Yq/hpadalOOvVs67As2yZdal+bSmHtpRDW8qhLWXQjq7RCb6XqVmzpt1DKDX8ffz56OaP+CXzF5749gnPfrGAAOtM2tWr4fBha5K/Zw/cdpt1ic3HHoMdOwo9JSjIukjPrl0QGwsPP2xdfn/IEOspr7xSn5iYou3XV6Wbfl/KoS3l0JYyaEfX6ATfyyT9bmuIgg71OjCh6wRmb5/N2oS1JfNFg4PhX/+ylui/+Qb694fp0yE8HCIj4d134fRvN+MyDGtf/uuvWzt7li+3TsqdOdOHyEhrv/7LL3vmZlqqZOj3pRzaUg5tKYN2dI1eJtPL5OXl4ePjY/cwSpXM3ExC3wvFx+HDzgd24ufjV/KDOHUKPv7YupHW9u3g5wfDhlmX2+zb95LXz/zllzyWLPFh7lz44QfrjcC111rn8958M1SsWPIvQ7lGvy/l0JZyaEsZtGNheplMofbs2WP3EEqdAN8A3rvhPQ6cPMBLG16yZxA1asAjj8C2bdZ+nHvvta6j2b8/NG0Kzz9vXYrzd44f38N991nbdg4etHb9HDxoXYa/bl24+25Ys6bgwj2qFNPvSzm0pRzaUgbt6BpdwVdijPpsFIv2LmLHAztoVbOV3cOB7Gzr6juzZsG331of69fPWtUfOhQucettp9Oa8M+dC59+CmfPWufz3nmn9atlyxJ+DUoppZQqNXQFX6iYmBi7h1BqvTHwDSr6VuShLx+iVLxx9feHESOsffpHjlir+IcOwR13QP36nLjtNv54lq3DYd1ra8YM65KbH38MbdrASy9Bq1bQpculL7mp7KXfl3JoSzm0pQza0TW6gq9EeXfruzz81cMsGr6IW9rcYvdwLuZ0WjfMmjULFi+2VvnDwuCee6yr9AQGXvJpx49bk/0PP4Tdu6F8eWuf/t13W/v2y5Ur2ZehlFJKqZKnK/hC6TvZP3dfx/sIrR3K31b+jazcLLuHczGHwzrp9n//Y/vXX1vL8eXLW5fZrF/fuuzmihWQn1/oafXrw4QJ1r23YmOtG+x++y1cd511Oc5//MP64YCyh35fyqEt5dCWMmhH1+gKvhJnbcJa+nzYhxd6v8DEXhPtHk7R7NwJs2fDRx/ByZPQsKF1B92774ZmzS75lJwc66ZZs2dbu4CcTmt7z913w623QqVKJfwalFJKKeVRuoIv1K5du+weQqnXO6g3t7a5lZc2vMTRM0ftHs5lFWoZFgZvvGHtxVm0yPr9Sy9B8+bQp4818c/MLPR8Pz8YPhy++goSE6275iYnWxP8evWsXT8bNuiNtEqCfl/KoS3l0JYyaEfX6Aq+l8nJycHPz4brvHuZn9J+otU7rRjaaijzb5lv93Au6Yotjx2zNt3PmgXx8VClCowcaV2FJyrKunD+H5imdU392bOtq/BkZEBIiDXpv+suaNDAgy+oDNPvSzm0pRzaUgbtWJiu4AuVmJho9xC8QpNqTfh7t7/zye5PWP/TeruHc0lXbNmgATzzjHVx/O+/t86q/d//rEvphIZat8Y9caLQUwwDrrnGut9WcrI10a9XzzpM48Zw/fWwcKG1vUe5j35fyqEt5dCWMmhH1+gKvpdJT0+nSpUqdg/DK2TmZtLq7VYEBgQSfW805Ryl61IzLrVMT7eW5mfNgk2bwMcHbrrJWtW/7jrr95dw6BDMmWP9QCApybov16hR1sp+hw7Ffy1lnX5fyqEt5dCWMmjHwnQFX6i0tDS7h+A1AnwDeLX/q2z/eTszt820ezgXcalllSowfjxs3Ah79sDjj1t7cm66yVqif/ppOHDgoqc1bw4vvggJCdYJuf37wwcfQESENcGfNs06t1e5Rr8v5dCWcmhLGbSja3SC72X8/f3tHoJXua3tbfRs0pNnv3uWtOzS9Y9EsVu2aQOvvmotyX/+OXTqZP2+ZUvo0cPan5ORUegp5crBgAHwySfWFp533rE+9thj1lae4cMveZVOdQX6fSmHtpRDW8qgHV2jE3wlmmEYTB04lZOZJ/n39/+2ezie4esLQ4bA0qXWZP/ll+GXX6xtO3XrWpfT2bjxosvpVK8ODz0E0dHWVTofecS6B9egQRAcbN14V7c+KqWUUt5HJ/heJjs72+4heJ0O9TowrsM4pm2ZxoGTF29fsYtHWtatC3//O+zbZ23dGTnS2rPfvTu0bg2vvGIt3f/BhXN2jx2zTsJt0wZeeMG6idagQdZNd8+fd/9wpdDvSzm0pRzaUgbt6Bqd4HuZatWq2T0ErzSp7yQq+FRgwsoJdg+lgEdbGgZ06wYzZlgT+lmzoFYtePJJaNQIBg+2tvXk5hZ6Wvny1k2yVqyAI0dg4kTYvdv6WMOG8MQTEBfnuWF7K/2+lENbyqEtZdCOrrniBN8wjI4lMRBVNCkpKXYPwSvVqVSHZ3s8yxcHvuDb+G/tHg5Qgi0rVbIul7N+Pezfb83So6Oty25emLXv3XvR05o0gX/9yzox96uvrG39U6daPwjo0cO6Is+5cyXzEko7/b6UQ1vKoS1l0I6uueJlMg3DmAbUB6aYpvnjrx973TTNv5bA+Fwi+TKZesMH1+Xk5dDm3TZU8KnA9ge24+O49CUlS2w8drbMy7MupzNrFixbZv2+Sxdr3/6IEdbVei4hJQXmzrV+MHDggPWwO+6wLuwTEXHJe2+VCfp9KYe2lENbyqAdC3PnZTJPAJHAZ4Zh7DcM4whQt7gDVK45cIlLIKqi8fPx49X+r7Lnlz38N+a/dg/H3pY+PnDDDdbm+mPH4LXXrGvs33eftY9/zBhYt+6iE3Pr1Pltm866dTB0qLWSHxlpTfDfeQdOn7bpNdlIvy/l0JZyaEsZtKNrirKCHwe0N00zxzCM+sBLwDbTNKeWxABdIXkFXxWPaZr0nduXXSm7OPh/B6leobrdQyo9TBO2brVW9efPtyb8zZtb23vGjLHurHsJaWnWw2fMgNhY8Pe39uyPHw89e5bdVX2llFLK3dy5gn8UCAYwTfO4aZpjgPuLOT7lopiYGLuH4NUMw+CNgW9wKusU/15n72UzS11Lw4CoKJg+3Toxd+5ca4/+s89aN9G6/npYtAhycgo9rVo1ePBBiImxfo0bB198Ab17W5fkf/ll+Plne15SSSl1LZXLtKUc2lIG7eiaoqzgtwEWArG//moI9CrKuwe76Aq+upL7vriP2dtns/vB3bSs2dLu4ZRu8fEwZ471KykJAgPhzjutmXxo6CWfkplp7f6ZMcPaylOunHWz3fHjYeBAa4eQUkoppa6O21bwTdPcC0QAnwAVgZ+BIcUeoXKJvpN1j3/3+TcVfCrw15V/5Upvcj3Fa1o2awb//rd1OZ0VK6BfP3j3XQgLs+6e+9571j6d3wkIsN4DfP+9tV//b3+z7rV1443WtfUnTrQOJ4XXtFRXpC3l0JYyaEfXXHEF3xvpCr4qitc2vsaEbyewdORSBrccbPdwvMvJkzBvHsycad0G198fhg2z7prbuzc4Ll47OH8eli+3VvVXrLA+NmAA3H+/NfH39S3Zl6CUUkp5G3fuwVelyI4dO+weghiPdn6UtrXa8ujXj5KZm1niX9+rWwYGwqOPwvbt1sb7e+6xLpbfr5+14v/CC5CYWOgp5ctb7wG++gp++gmee866idawYdYW/2ef9d5Vfa9uqQrRlnJoSxm0o2t0Bd/L5OXl4aMbmN3m+4Tv6f1hb57t8Swv9n2xRL+2uJbZ2dbdcWfOhNWrrY9de621V3/oUGuV/w/y8qzV/Pfftyb+pmmt6t93n7Vn31tW9cW1LMO0pRzaUgbtWJiu4At16NAhu4cgSq+gXowOG82rG1/lwMmSvdauuJb+/jByJHz7LRw+DP/8p3U3rNtvh/r14f/+D7ZtK/QUHx9re84XX1ir9//8J+zZA7fc8tuq/pEj9rycqyGuZRmmLeXQljJoR9foCr6XycjIoFKlSnYPQ5SfM36m5dst6dygM9+M/gajhC7cXiZaOp2wZo11bf3Fi61LbIaHW6v6d9xhbfX5gwur+h98AF9+aa3q9+9v7dUvrav6ZaJlGaEt5dCWMmjHwnQFX6jU1FS7hyBO3Up1ebHPi3x7+Fs+2f1JiX3dMtHS4bD25c+bZ11b/513rGtmPvqotao/ciSsXAn5+QVPubCqv2zZb6v6e/daq/qNGsEzz5S+Vf0y0bKM0JZyaEsZtKNrdILvZfRdrGc81OkhohpE8eiKR/nl3C8l8jXLXMvq1eGhhyA62jo598EHre08AwdCcLB11u3hw4We0qiRNcFPSLC28URFWTfOatrUetrixZCba8/L+b0y11IwbSmHtpRBO7pGJ/heJrc0zGYEKucox6zBsziTfYbHVjxWIl+zTLds3x6mToXjx+HTT6FtW3jxResKPBdW/LOyCh5ertxvq/o//QTPP2+t6t9662+r+n94b1CiynRLYbSlHNpSBu3oGp3gexmn02n3EMRqW7st/+j5D+bvns8X+7/w+NfTloCfHwwfDl9/bc3cX3zRWq4fPRrq1bNW+bdutTbi/6phw99W9Zcvh86drVX9Zs2sK/DYsaqvLeXQlnJoSxm0o2v0JFsvc/r0aapXr273MMQ6n3+eyA8iOZl1kl0P7qJGhRoe+1qSWzpNJ5m5mZw7f45zuefId+ZjGAYOw4HDcODv408VvypU8Klw8UnNTiesX29dbnPRImslv10768Tc0aOhVq2Lvl5SknUe74wZcPQo1KkDd98N995rbefxNMktyxptKYe2lEE7FlbUk2x1gu9l4uPjadasmd3DEC02OZbOMzoztNVQPr31U49dVcebW6ZmpnLg5IGCX0fSjvBzxs8Fv9Ky04p0nHJGOar4VaFGhRrUr1yfBlUaUL+S9d9GVRoRUr4uLb7bQcDs/8HmzdYldAYPtib7AwZYZ+T+Tn7+b1fgWb7ceq/Qv791Xf0hQzx3BR5vbqkK05ZyaEsZtGNhOsEXOsHPysqiQoUKdno9nCkAACAASURBVA9DvJc3vMxTq59i5uCZjOswziNfw1tanjt/jo1HN7L52GZikmOIPh5NUnpSwed9HD40qdqEepXrUbdSXepVqkeNCjWo6FuRiuUrUtG3Ij4OH5ymE6fpxMQkKzeL9Jz0gl+pWakcP3ucY+nHOHb2GNl52YXG0KhKI1r5N6RlUhZhPxwi4kAG7crVw+/OsdZSfUjIReNOSoLZs+G//y28qj9+vLWdx528paW6Mm0ph7aUQTsWphN8oRP8vXv30qZNG7uHIZ7TdHLt3GvZcmwLsffH0iKwhdu/RmltmefMY9PRTaw+sprvjnzHj0k/kuu0NrW3DGxJx/odiagbQetarWkR2IKgakH4ONx3l0HTNEnLTiPxTCIHTh5g/8n9xKXGsf/kfvan7ufs+bMA+DoN2qWYRCRDZEBzuvcdQ9vbH8NRqXKh4+XnwzffWHfL/eOq/uDBUL588cdcWluqq6ct5dCWMmjHwnSCL3SC73Q6cTj03OiSkJSeRPvp7WlQuQGb7tlExfIV3Xr80tQyKzeLbw9/y5K4JXyx/wtOZp3EwKBj/Y70DepL3+C+dG3UlSp+VWwdp2maHD59mNjkWGKTY4lJ2EjssWhOkglA1WzoZjbkmtAbuKb77UQ17Iy/j3/B848d+22vfmKitap/zz3WXv2gINfHVZpaquLRlnJoSxm0Y2E6wRc6wY+NjSUiIsLuYZQZ3xz6hkHzBjGi3Qg+HvaxW/fj293SaTpZc2QNH+74kM/2fca53HNU9avKjS1uZGirofQL7kf1CqX/xCbTNDl8Kp4fvpvDhi0L2ZB9kH01rX/X/PHhmgbd6N/6Bvo37U/7uu1xGI6LVvVNEwYNggcegOuvty7LeTXsbqncR1vKoS1l0I6F6QRf6ARflbyX1r/EM989w5T+U/hbt7/ZPZxiO3jyIB/u+JC5O+ZyNP0oVf2qclvb27i1za30DupN+XJu2LNip7NnOfnJbH746j3WZMWxsjns/fXCO7UCatGvaT/6N+3PwGYDaVClAYmJ1or+jBnWzXYbNbK279xzj3WlTqWUUqq00Am+0Al+TEwMHTt2tHsYZYppmgxfOJwlcUv47LbPGNJqiFuOW5It8535fHnwS97e8jbfHv4Wh+FgQLMBjG0/lsEtB1PBV+gJTPv3w+zZHFs0i9WVfuHbNv58G+IgxWFt6YmoF8HgFoO5qeVNtAvswPLlBtOnWzfY9fGxrrzz4IPQpw/82U+I9ftSDm0ph7aUQTsWphN8oRN8ZY+M8xn0/bAvu07sYvVdq+nWqJvdQyqS1MxUZsbO5L3o9/jpzE80qNyAByIfYFyHcdSvXN/u4ZWcvDzrZlqzZmEu/4Jdgfl81a8xX7TzZdP5w5iYNKzSkBtDbmRwy8E0yuvLh7P8mD0bTp60LtJz//0wdiwEBtr9YpRSSpVVOsEXOsHXvWj2+eXcL3Sb1Y1TWadYfddqwuuGF+t4nmy5M2Unb/74JvN2zSMnP4c+QX14uNPDDGk1xK1XvPFKKSnwv/9ZN9Lat48TNSvw1cgIlrV2sDItlnO556joW5GBzQdyU9Ph5O0ewoczK7Bhw2833n3wQejaFS6ckqHfl3JoSzm0pQzasTCd4Aud4OvZ5PY6cvoIveb0IuN8BivvXElk/St+j12Wu1vmO/NZtn8Zb25+k+9/+p4A3wDuCruLR6IeoW3ttm77OmKYpnXzrFmz4JNP4OxZsls2Y82d1/BFiMnSpFUcP3scv3J+XNf8Ojr7jufIqgF8Mq88Z89CaKh1Uu7o0VCpkn5fSqH/xsqhLWXQjoXpBF/oBF+vB2u/hLQE+nzYh1NZp1g2chm9gnq5dBx3tUzLTmNm7Eze3vo2CWkJNK7amEc6PcL4iPFecRWcUuHcOVi82Jrsf/89OBw4B13HphHdWVgjmUX7l3Ds7DHKlytPvwZDqHvkL8R80Ymd232oWBEGDTrNM89Up0MHu1+IKi79N1YObSmDdixMJ/hCJ/h6R7fS4eiZowz43wAOnTrEO9e/w30d77vqYxS35f7U/UzbPI0Pd3zIudxz9Gjcg8c6P6bbcIrr0CHrFrhz5sDx41CzJs47R/PjkI4syo5l0d5FHE0/io/hSxfHI/jEPsLmFcFkZRlERVmr+iNGQECA3S9EuUL/jZVDW8qgHQvTCb7QCX58fDzNmjWzexgKOJN9hpGLR7Li0ArGdxjPG9e9QaXylYr8fFdaOk0nK+NX8ubmN1lxaAXly5XnjtA7eDTqUTrU0+Vjt8rPh5UrrVX9pUshNxeionDePZYtvUNY+NPXfLr3U5LSkwjIrU/bnyeTsvZmEuMrUa0ajBljnZjburXdL0RdDf03Vg5tKYN2LEwn+EIn+KdPn6Z6dd12UVrkO/OZuGYikzdMJrh6MO/d8B4Dmg0o0nOvpmXG+Qzm7pjLW1veIi41jrqV6vJQ5EPcH3k/tSvWLs5LUEWRmgrz5lkn5u7aBf7+cOutOO8ey7ogg1mxc/gi/gvSstKodmIwtfc+x+GNHcjLddCrl7Wqf/PN1km6qnTTf2Pl0JYyaMfCdIIvdIJ/7NgxGjRoYPcw1B+s/2k9dy+9m/jT8dwQcgP/7PVPOjXo9KfPuVLLPGcea46sYcGeBSzau4gzOWfoVL8Tj3V+jOFth3v/Dam8kWlCTIy1qv/xx3DmDAQHk37LLfg9fD9fZe1i3q55LD+wnJwzVQg8MAFn9HhOH69BrVrWzbPuuw+Cg+1+Iepy9N9YObSlDNqxMJ3gC53gJycnU09vr1kq5eTlMG3zNCatn8SZnDNc0/gaRoeO5ubWN19ylf1SLZPPJrP6yGpWHV7Flwe/JDUzlcrlKzO01VAejHyQLg27YFy4NqOyV1YWLFliTfZXr7aumTlgAIwbx5mBvVl8eDnzds3ju/i1cPhaqu1+mjM7e4JpMHCgwYMPwvXXWzfUUqWH/hsrh7aUQTsWphN8oRP81NRUatasafcw1J9Iz0lnZuxMpsdM58DJAwC0qtmKyPqRBFcLpm6lupQvV570s+lkO7I5ce4E+0/uZ8fPO0jOSAYgsEIgA5oN4La2t3Fd8+vw9/G38yWpKzgVE0ONZcusk3OPHoUaNWDUKBg3jmNNa/HJ7k+Yt2se2/afwLHtfsrv+H/27js6qmrvw/hzUiCNDiIdpEhPQpMqVcEGCKigKNVyrXjt1wLqtaJe7Fjo2FEUEVTACqhAAiECoURi6BAghJBCktnvHwFeopQwTnIym+9nrSwkmUx+k4eDO5szZ24la38latY03Hijw6hRoA2qkkF/x9pDLe2gjgVpgW/pAj8pKYm6deu6PYYUgjGG1btW89XGr/hl6y+s2rmK7Qe34zGeAreLKBVBg4oNaFm1JZFVI+lWtxtR50YR4Oi6v/7i2HGZlwfffZe/qz97NmRnQ3R0/rk5117L6sNbmLZqGjNWfcCele0otfJODm/oQWCgoW/f/F39nj1Bl3x2j/6OtYda2kEdC9IC39IFfnp6OhERhb9Si5QsOXk57M3cS05eDpkZmdSuUlu78xY44XG5bx988EH+Yj82Nv8ZtldeCSNHktPtQr7+41umxk1lzi9ryF0+gqC4m8hNr0C98/L41y2BDB8OVaq48nDOavo71h5qaQd1LKiwC3ztE/mZrVu3uj2C/APBgcGcG3EutcrVwnPAo8W9JU54XFasCLfdlv+k3JUr859d+803cPHFBDdoxBXvr+DTdi+y46nFvPxiKM2e6QMDh5CUt4T774fqNfIYcq2HxYvzn9srxUN/x9pDLe2gjt7RDr6fyc3NJUjPyrOCWtqj0C2zsmDOnPxd/W+/zV+59+wJI0fClVcSd2AD0+KmMfXb5exffBXO6mGYrHI0aJzFXbeFcP31UK5c0T+es5mOS3uopR3UsSDt4FtqzZo1bo8gPqKW9ih0y5AQuPpq+PprSEqCJ5+EP/7If0JutWpEPvEWL1W6ll3PLeKL6XW5fOItBPS/kU1p8dxxB5xzbg4jRuUQE1OkD+espuPSHmppB3X0jis7+I7jjAeuAA4DicAIY0zqCW7XB3gZCATeNcY8W5j7t3kHX0Qs4/HAjz/m7+rPmpW/y9+yZf6u/nXXsSfUMGP1DF6ZvZQ/F/WG+GshJ5wmkYf49+1hDBniEB7u9oMQEZHiUNJ38BcAzY0xLYENwEN/vYHjOIHA68AlQFNgiOM4TYt1yhIoRlt31lBLe/yjlgEB0L07zJgBO3bAxIn5T8gdMwaqV6fK8Fv5d2oTNj/9IYtnN+XaqfcRfMXdrNu+mRtvdKhybjY33ZqFNrl8Q8elPdTSDuroHdfPwXcc50pgkDHmur+8vwMwzhjT+8jvHwIwxjxzuvvUDr6I+L34+Pzr6s+YASkp+RfKHz4chg/nQM0qfBD/IS9/soKEr7vC2qsgrzQt2qbywJiyDBoYQOnSbj8AERHxtZK+g3+8kcD8E7y/BrDluN9vPfK+E3Ic5ybHcVY4jrNix44dpKSksGPHDrZt28b+/ftJTEwkMzOTtWvX4vF4iI2NBf7/J8PY2Fg8Hg9r164lMzOTxMRE9u/fz7Zt2zh6f0lJSaSnp5OQkEBubi5xcXEF7uPor/Hx8WRnZ7Nx40bS0tJITk5m9+7d7N69m+TkZNLS0ti4cSPZ2dnEx8ef8D7i4uLIzc0lISGB9PR0kpKSSElJYfHixdY9Jhs7FeYxLViwwLrHZGOnwjymxYsX+/4xhYSQ/cwz/P7NN/Dpp6TWqwfPPAMNG1KuTz8u/WYP8Q+/wOy3Ihg29WFKX/II8ZtSGHpdABXOSWfUv1L47rs/1ekMH9PRN5sek42dCvOYlixZYt1jsrHT6R7T8cekLY/pn3QqrCLbwXccZyFw7gk+9LAx5osjt3kYaAMMMH8ZxHGcq4DexpjRR35/PdDOGHPH6b62dvBFxErbtsH06fnn62/aBGXKwJAhMHIkmdEtmLV2Ni+8t5LVX3WA9f3AE0RUp9088u9K9OsbiC5EISLi31zfwTfG9DLGND/B29HF/TDgcuC6vy7uj9gK1Dru9zWB7UU1r784+hOg+D+1tEextaxRAx56CDZsgJ9+goEDYeZMaN+e0Oi2XL9oJ3H33seGn1ty23vPE3Hx86yKz2bQwEAqnHuAOx/Yhy4pfWo6Lu2hlnZQR++4dRWdPsBLQFdjzJ6T3CaI/Cfg9gS2AcuBa40xp30qmc07+NnZ2ZTWybVWUEt7uNry4EH4+GOYNAl++QWCguDyy/NfMffiXszdtJCnp6xixZw2sLE3OIY23Xcy9p5zuLRPMAEl4UTNEkTHpT3U0g7qWJDrO/in8RpQBljgOM4qx3EmAjiOU91xnHkAxphc4HbgG2Ad8HFhFve2S05OdnsE8RG1tIerLcuUgVGjYOlSWLsW7r47f6Hfty/Bdc/jyhlLWH7j1Wxd0ZJ/f/AmZXu8xYpfg7nismAq1dzL/WP3sueE2yxnJx2X9lBLO6ijd1y/ik5RsHkHPy0tjbJly7o9hviAWtqjxLXMyYH58/PP1Z87F/LyoFMnGDmSvIED+Grrrzz5djwr5rSFpG44gTl06r2Dx++tTvduQTiO2w/APSWupXhNLe2gjgWV9B188VJq6t9eD0z8lFrao8S1DA6Gvn3h889h61Z4/nnYuxdGjSKwRk36vvgxy6/uyNZVDbh92huEd5zO4u/K0LNHEFXq7mbsc3spaQ+puJS4luI1tbSDOnpHC3w/ExIS4vYI4iNqaY8S3fLcc+G++/JP31m6NP+qO598Ap07U6NdT17dcZDUD3rzya+/EHnzBPbmbeaJBytRqWoWvQb+ya/Lct1+BMWqRLeUM6KWdlBH72iBLyJyNnAc6NAB3nkHdu6EqVPzF/8PPkhgnboMeuRNVvWuQ/Kqytw4cSIhrWax6MtKdLggiOrnb+O5V/dy6JDbD0JERApDC3w/k5WV5fYI4iNqaQ+/axkeDsOGwY8/5l9y8/77ISYGBgygVtMOvL1xEwfeacl7S36k6bDX2ZG6jwfvrET5Koe4fOhmVsfnuf0IiozftZSTUks7qKN3tMD3M+XLl3d7BPERtbSHX7ds2BCefhqSk+Grr+DCC+GVVwhqEcm1dzzJmo7B/LHMcMPLbxPUZD5ffVidyJaB1In8k1cn7SU72+0H4Ft+3VIKUEs7qKN3tMD3M7t27XJ7BPERtbSHFS2DguDSS2HWrPxXzH3pJUhPh5tvpl6T9kxbsZi0Fyow5cdvaTT4HZK35HDn6EqUrXKAQTclsmGjHbv6VrQUQC1toY7e0WUy/Yxe8MEeamkPa1saAytW5F9u8/33IS0N6teHESPY1K8bj3yVwOczq5K9pg+YIBq0TeShuytww1UVCQpye3jvWNvyLKSWdlDHgnSZTEtt2LDB7RHER9TSHta2dBxo2xbefBN27IAZM6B2bXjkERpEXsiHP8wi7dGDTPz6S+pdOZVNCaUZdW1FylTdy/V3bWLLVo/bj+CMWdvyLKSWdlBH72gHX0REzswff+RfhWfqVNiyBSpVgqFDWTegF//5PoWvPqhFzvruEOChaadEHrvnHK66ogIB2lISEflHtINvqZiYGLdHEB9RS3ucdS3POw+eeAI2b4ZvvoGePeHNN2nS9Qpmf/kaB+/4nQmffkKtPh+zNqYCg/tXoGz1ndz4wEZ27S7Zu/pnXUuLqaUd1NE72sEXEZF/bu/e/PP0J02CuDgICYEBA4gf2JsHlzl8+/F55G7uBIGHieqxiSfurc7lF5XHcdweXETEf2gH31L6SdYeamkPtST/NJ077oBVqyA2FkaPhvnzaTFwGF99+CgHh83nuUkzqN5tDqt+qk7f3uUpX2cLdz6+gdTUkrPRpJb2UEs7qKN3tIMvIiJFIysLPv88/yo8Cxfmv69nT1YMuoyH1lbm+8+akre1FU6pDNr1TuSpB2rRs5OueS0icjLawbdUXFyc2yOIj6ilPdTyJEJCYPBg+Pbb/PP1x42DTZtoc8vdLJh+Bwf7vc24F96hygUL+e3r8+jVuTyVGyby4PgNHDrkzuaTWtpDLe2gjt7RDr6fyc3NJchfLzAtBailPdTyDHg88MMP+bv6n36av8sfGcmSq/vznz8asfjLaDy7mxAQmkbnKxJ59oHz6NCqXLGNp5b2UEs7qGNB2sG31KZNm9weQXxELe2hlmcgIAB69ICZM/Ovrf/GGxAcTKeHH+fHGSM40O0RHnz4NSq0WMpPnzalY+tynNt8HU+8vp6srKLfkFJLe6ilHdTRO9rB9zPp6elERES4PYb4gFraQy19YPVqmDIl/8W09u6FmjX57qpBPLyzHb990x6zrx6BEXvpMSCJ8Q81JLJx2SIZQy3toZZ2UMeCtINvqZSUFLdHEB9RS3uopQ+0bAn/+x9s2wazZkGLFvR4+RV++eBaUqOGcddt/6NM/dUsmBFFVNMIarZezfjJ68nJ8e0mlVraQy3toI7e0QLfz+inWHuopT3U0odKl4aBA2HePPjzT3jqKcr+uZ0Jr/+b/Zv7M++GW2h1xcds31iZ+0edT3jVXVxxyzLWbz7oky+vlvZQSzuoo3e0wPczOTk5bo8gPqKW9lDLIlKzJvznP7BxI/z4I/TvzyUfv0fMnCHsrXcxNw8dT0jVROa+1Y7GDUKp1zGG1z9cj+cfvFiuWtpDLe2gjt7RAt/PeP7J/7mkRFFLe6hlEXMcuPBCmDYNdu6Et9+mQlgZJs68nwObujKr73W06PEZSXF1uH3I+YRVS2bQmF9J2n7mu/pqaQ+1tIM6ekcLfD8TFhbm9gjiI2ppD7UsRmXLwo03wi+/wJo1OGPuZuCvC1m98Bp2Vm7NsH7PEhixm09fbk+9OsE06v4rU77YQGGvJ6GW9lBLO6ijd7TA9zP79u1zewTxEbW0h1q6pGlTGD8etm6F2bOpGhnJ1LmPkP5HW2ZeOJDG7b5i4y9NGdm/EeG1NjL0waXsSDl0yrtUS3uopR3U0Tta4PuZ6tWruz2C+Iha2kMtXRYcDP37w5w5sGULznPPcd3O31m3dBDJ4Q0Z3PNpDFm891xHqleHpr2X8ME3G094V2ppD7W0gzp6Rwt8P7N582a3RxAfUUt7qGUJUq0a3H8/JCTA4sXU6n85H/z6NIe2teTtyCuo33IB676P4to+DYmok8DwR5eya1/GsU9XS3uopR3U0Tt6oSs/4/F4CAjQz2U2UEt7qGUJl54On3wCkyfD4sVsDi/PvZH3MPePgRze2QRKHaR5zzjG3lONAd3rqaUldFzaQR0L0gtdWWrVqlVujyA+opb2UMsSLiICRoyAn3+G9eupd8ctfLr5DTJ3NuX1hhdTr/FCfl/Qmqt61afMeWsY/fhSUlIz3Z5a/iEdl3ZQR+9oB19ERM4+ubnw9df5u/pffsmm4AjubXIX87cM4fCe86F0GpEXx/HEvTXpe2E9t6cVEQG0g2+tmJgYt0cQH1FLe6ilHwoKgssvh88+g23baPDfR/k86xMy9zTmf7V7Uvu874ib35Z+XetRrsHv3PLfX0g9mO321HIGdFzaQR29ox18ERERAGNg2bL8Xf0PPiAhL5h7693KtzuHkbO3AU5oKtG94/nv/bW4pENdt6cVkbOQdvAtFRsb6/YI4iNqaQ+1tITjEBscDG+9BTt30njiBOZWWUzm3oaMr96dGjV/IHbOBVzasS7lz1/NHc/9Stqhw25PLSeh49IO6ugd7eD7GT2b3B5qaQ+1tMcJWyYmwtSpMHUq8fuyua/mTSzaM5Lc/efhhO2lzSVreeq+Olx0QW1XZpYT03FpB3UsSDv4lkpISHB7BPERtbSHWtrjhC3r14cnn4SkJFp8Op2vIzeQkd6Yp6v3otq5P7N8dnsubl+bik1X8e8Xf+NQZk7xDy5/o+PSDuroHe3g+5nMzExCQ0PdHkN8QC3toZb2KHTLlBR4/32YNImVibu479zR/JAymrwDdQkIT6Hd5Wt59oHz6Bpds+iHlhPScWkHdSxIO/iW2r59u9sjiI+opT3U0h6Fblm5Mtx5J6xaRfSPX7Gw934ynWjG1ehDlcpL+fXjjnRrVZPKLWK5/+VlZGbnFu3g8jc6Lu2gjt7RAt/PVKxY0e0RxEfU0h5qaY8zbuk40Lo1vP46wdu3M3b8MHY2fJVl4XXoVu9RUpOrMH5MOyKq7KXz0B9Zsnpb0Qwuf6Pj0g7q6B0t8P1MRkaG2yOIj6ilPdTSHv+oZWgoDBkCCxbQNn4J398QyKHyXXi4xuVUKrecJe93pnNkNc6JXMHDry8n+3Ce7waXv9FxaQd19I4W+H5GzyS3h1raQy3t4bOWdevCuHGU3vwH/506ht1d3mdxxfPpXPdJ9v5Rjadvb0tYld10veFHfluzwzdfUwrQcWkHdfSOvmt+Jjg42O0RxEfU0h5qaQ+ftwwIgF694P336bRxOT/fV4X0Rv15oGY/KkSs4qcZXWjf4hzObbWMcW+v4HCOdvV9RcelHdTRO1rg+5n09HS3RxAfUUt7qKU9irRlhQpw662Exizn2S8fJ2XQ1/xYI4oOdZ5lz4ZaPH5zG8LO2UmPET+yfO3OopvjLKHj0g7q6B0t8P1M5cqV3R5BfEQt7aGW9ii2llFR8PLLXJi4nKXPNyKt8yj+XWsg5ULX8P3UrrRrXoWq0ct49M3lZB3WFXi8oePSDuroHS3w/czWrVvdHkF8RC3toZb2KPaWpUvDVVcR/vU8Xlwygb23LuO78zvToc6zpGysxX9vbUt4lT1ceP0PugLPGdJxaQd19I5e6MrP5ObmEhQU5PYY4gNqaQ+1tEeJaOnxwE8/kfHuFJ5YnMHknOHs2X4JAJWbxzDyRg9jb2pFWIjOTT6VEtFS/jF1LEgvdGWpNWvWuD2C+Iha2kMt7VEiWgYEQLduhM2cxrNx77J77DZ+bn85Xeo+yb6kajx/1wWUqbKPjkN+4IfYLW5PW2KViJbyj6mjd7SDLyIi4g9+/52sSVN4+qstvJ1xHbu2Xw4mkIqNV3DD6ByevLU1EaGl3J5SRIqQdvAtFRMT4/YI4iNqaQ+1tEeJbtm8OSH/e5Enfp/Jzlc9LOt9LT3qPsqB7ZWZcG8HylY5QLuB3/Htb0luT1oilOiWUmjq6B3t4IuIiPir7ds5PGUaz330O2/uH8CO7X3BE0z5BjFcNyqLp25vQ7mI0m5PKSI+oh18S+knWXuopT3U0h5+17J6dUo9/BCPxs1k+wdVWTX4di4+72HS95Tn9Yc6UeGcdFpdsYgvFye6PWmx87uWckLq6B3t4IuIiNjk4EFyP/yIFyf9wmvbLmbr9ivBU4qydWMZPPIQz9zVhoplQ92eUkS8oB18S8XHx7s9gviIWtpDLe1hRcsyZQi6cTQP/DqJLQsiif/XY1za6GEyUyN4+7EuVK6aRWTvb/n0hw1uT1qkrGgp6ugl7eD7mezsbEqX1vmUNlBLe6ilPaxtmZND3rx5vPLaQl7e0J4/tw2CvNJE1FrJVden8uy97TinQrjbU/qUtS3PMupYkHbwLZWcnOz2COIjamkPtbSHtS2Dgwns14+7F7xK0rJerH/kZfo1f5TD6aWZ8nR3qp6bR7NuX/PBt+vcntRnrG15llFH72iB72eqVq3q9gjiI2ppD7W0x1nRsmpVGo27n89XP0Hm3AO8duUDnFftC9Yu6cq1vZsQXiOOoXd/w/aUg25P+o+cFS3PAuroHS3w/UxqaqrbI4iPqKU91NIeZ1VLxyGgYwdu++w5EtcMIPF/7zOw9ePkZTm8N6E3Nao7NO44j2lfrMbj8b/Tec+qlhZTR+9oge9nQkJC3B5BfEQt7aGW9jhrW4aHc97to5i1YiwZS0N4e/gTNKz1KetXdGV4/5aEV1/DVTd9yebt/rPYOmtbWkYdvaMFvoiIiBwTcH4jbpzyGBs2DOXP6Qu4pvPTBORlMeudKzivdgj1oufz0uSl5OZ5Y3FsTAAAIABJREFU3B5VRE5CC3w/k5WV5fYI4iNqaQ+1tIdaHicwkNqD+/Phz//h0Lq6vHf3SzSvP5OkdR24Z1RHQqsk0fuqz1i1fofbk56QWtpBHb2jBb6fKV++vNsjiI+opT3U0h5qeRKVK3PtS/8mPmEUKd+s5eY+zxBeegvfzhpAdJMqVGu8iEefW0DW4Vy3Jz1GLe2gjt7RAt/P7Nq1y+0RxEfU0h5qaQ+1PA3HoVLXjkyc/xCpf7Tjm2cm0b7F2+ze0oz/PngR4ZV206n3LL77daPbk6qlJdTRO3qhKz+jF3ywh1raQy3toZbeyUjYwJPjvmDy0qbs3toHTCAV6i5myMC9PDWuN+Ujiv+JkmppB3UsSC90ZakNG+x+afGziVraQy3toZbeCWvciGc+vI9dm/uwfMqX9LrgVQ7uq84bL/ajYpUMIjt9yqwvY4t1JrW0gzp6Rzv4IiIi4nO5e1KYMPYDXv22GslJV0BeacKrxdK/zyaefeZialbVudUiZ0o7+JaKiYlxewTxEbW0h1raQy19J6hKZe594w7+3DSIDfOWMaDHK+RmB/PelKupVSuYhtFf8OY73xfZi2ippR3U0TvawRcREZFi4cnIZNqzH/L8rFIkJPaFw2UoVTGBi7vG8PwzXWlyfk23RxQp0bSDbyn9JGsPtbSHWtpDLYtWQFgoI54Ywbq117Fj+TZG9HuF0qX2M3f2dTRteg41G8/jv098wWEfXG5TLe2gjt7RDr6IiIi4x+NhzsTPeeLdNGITLsNkViGwTDKd2/3EU2Oj6NSludsTipQY2sG3VFxcnNsjiI+opT3U0h5q6YKAAPreOoAVscNJ3WS4e/hblC+/kR8XXUvnC5tSud533HPn+6QfzDiju1VLO6ijd7SD72dyc3MJCgpyewzxAbW0h1raQy1LjiVf/MzDL2xgcdxF5B2sjRO6h1Ytv+Wxf9em79VdTvv5amkHdSxIO/iW2rRpk9sjiI+opT3U0h5qWXJ06teFH34eRcaOKjx5z3Sq1/iNmOVX0++aLkRUW87QwVNI3rz9pJ+vlnZQR+9oB9/PpKenExER4fYY4gNqaQ+1tIdalmzrlq/joXFL+Pq3DmTvbQZBGZzX6BvuuM5w+/39CAoKPHZbtbSDOhakHXxLpaSkuD2C+Iha2kMt7aGWJVuTtk34/KvRZOxqwtQJX9C02Rz+SOzB3Q8PILRyEr16TWX5z6sBtbSFOnpHC3w/o59i7aGW9lBLe6ilfwgIDGDYXf1Ys2owexKzueWGSUSU2caiRcNpd2FzqtRbxPj/LiRt/0G3R5V/SMekd1xZ4DuOM95xnATHcVY7jjPbcZy/vV614zi1HMf53nGcdY7jrHEc5y43Zi1pcnJy3B5BfEQt7aGW9lBL/1O5xjm8OW0U+7dcyPdzltClyzT2723IG5NGU776YaLavs/HUxe6PaZ4Scekd9zawV8ANDfGtAQ2AA+d4Da5wD3GmCZAe+A2x3GaFuOMJZLH43F7BPERtbSHWtpDLf1btys68dNPI8jYVZWH73yHmrWXELdyINeM6EVY1ZVcPWAymxOS3R5TzoCOSe+4ssA3xnxrjDn6MnW/An97bWpjzA5jTOyR/z4IrANqFN+UJVNYWJjbI4iPqKU91NIeammHUqGluWfcIJLX92XTyq0M6vcuGIdPZo/kvObnULfJFzw/9mNyc/75K+ZK0dIx6Z2ScA7+SGD+qW7gOE5dIBr4rRjmKdH27dvn9gjiI2ppD7W0h1ra42jL+i3q88nno8nYFcn7E+fRIvIzkpO68MATVxNSaRvduk1l8TfLXZ5WTkbHpHeKbIHvOM5Cx3F+P8Fbv+Nu8zD5p+K8d4r7iQA+BcYYY9JOcbubHMdZ4TjOih07dpCSksKOHTvYtm0b+/fvJzExkczMTNauXYvH4yE2NhaAmJgYAGJjY/F4PKxdu5bMzEwSExPZv38/27Zt4+j9JSUlkZ6eTkJCArm5ucdeXe3ofRz9NT4+nuzsbDZu3EhaWhrJycns3r2b3bt3k5ycTFpaGhs3biQ7O5v4+PgT3kdcXBy5ubkkJCSQnp5OUlISKSkpBAUFWfeYbOxUmMe0d+9e6x6TjZ0K85iCgoKse0w2dirMY6pevbp1j8nGToV5TKVKlSr4mA4fpnnHWqyOuZbv5qzmztFTKFd+Ez/+eANd+rSlYu0fGT74dZI3by2xj8nGTqd7TMcfk7Y8pn/SqbBcuw6+4zjDgFuAnsaYE77+tOM4wcBc4BtjzEuFvW+br4O/du1amjY965+KYAW1tIda2kMt7VHYlr8sWM4jz8TzU0x3ctPqQelUmjX5mvtvLMPQmy8hILAknOxw9tIxWVBhr4PvygLfcZw+wEtAV2PMnpPcxgGmAfuMMWPO5P5tXuB7PB4CAvSXjQ3U0h5qaQ+1tMeZtszNyeWVpz/j1Q9LkbSpN+SGElJ5NZd0WM4zT3bl/MgGRTitnIyOyYJK+gtdvQaUARY4jrPKcZyJAI7jVHccZ96R23QCrgd6HLnNKsdxLnVp3hJj1apVbo8gPqKW9lBLe6ilPc60ZVBwEP8eezWb1/Unac0ehgycRGDgYWZ/OYrGrWpTs9FcnnjgfQ5nHS6iieVEdEx6x7VTdIqSzTv4IiIiUnw+nbaAp1/fxcrfe2MyqxAQsY22LRbx2Jg6XHp1V7fHk7NMSd/BFy8dfVKG+D+1tIda2kMt7eGrlgOHXUTMsqGk7QjlvtumU+Wc3/nt12u57JqulKm2jOuumsSfG3Rt/aKiY9I72sEXEREROQO/L1vHQ+OWsmBZe7L3NoPALGo3+IabBmRw32MDKRVSyu0RxVLawbfU0cs9if9TS3uopT3U0h5F2bJ5uyZ8OW8UGbuaMOON/Gvrb/mzM488M4TQKrvp2Gka82f9VGRf/2yiY9I72sH3M3o2uT3U0h5qaQ+1tEdxt0zbl8bjD89m5jfV2Z3UHUwQEdV+o1/n33n66Yup3aBWsc1iEx2TBWkH31IJCQlujyA+opb2UEt7qKU9irtl2YplefHNYez64yJWLkngsksmkZNdhvc+GUWdJpWp2+Rznn30Q12F5wzpmPSOdvD9TGZmJqGhoW6PIT6glvZQS3uopT1KQktPnocZb87jhcnprFnbG5NdgcAyW7ig5XeMu6cBF13ZydX5/EFJ6FiSaAffUtu3b3d7BPERtbSHWtpDLe1REloGBAYw7PbLiY8dzL6tDnffMo2KldazdOlQLh7QibLVf2HY4Mls/WOb26OWWCWhoz/SAt/PVKxY0e0RxEfU0h5qaQ+1tEdJa1m+cnleenMYuzf3IuantVzSezLZ2RWY/tFIap1fgfOazmb82I/Izcl1e9QSpaR19Bda4PuZjIwMt0cQH1FLe6ilPdTSHiW5ZavOLZj39Ugydzfi3QlzaNp8Dpv/6M79T1xDSKVtdLlwKt99+YvbY5YIJbljSaYFvp/RM8ntoZb2UEt7qKU9/KFlQGAAo+7qy5qVg9m/Fe68cSoVKm5i8eLr6dm3A+VqLGHEtZPZnrTD7VFd4w8dSyJ91/xMcHCw2yOIj6ilPdTSHmppD39rWb5yeV5+ezh7knqy/Mff6X3RZLIyKzP1g5HUaFSW+s1m89ITn5x1p/D4W8eSQgt8P5Oenu72COIjamkPtbSHWtrDn1u26RLJ19+OJHNPQ9556QuaNJ3LH4nduWfsVYRU2kbnLtP45tOf3R6zWPhzRzdpge9nKleu7PYI4iNqaQ+1tIda2sOGlgGBAYy+ux9rV13D3j893D5qKhUqbmTJkqH0GdSFMtWWMWTgJBLXbHZ71CJjQ0c3aIHvZ7Zu3er2COIjamkPtbSHWtrDtpYVq1bk1XeHsycp/yo8l10yiZycMD78bBQNIqtTs+FXPHz3DDIO2vWkVNs6Fhe90JWfyc3NJSgoyO0xxAfU0h5qaQ+1tMfZ0NKT5+Gjyd8y/u29rFp7ESbjHJzQPbRsuoB7R5Xn2pv6EBDo33u5Z0PHM6EXurLUmjVr3B5BfEQt7aGW9lBLe5wNLQMCAxhyYx9il19H+s4IHv33TGrU/JW4VQO5/tZLCau6jkv7TCZ2cbzbo3rtbOhYFLSDLyIiImKRzev+5NGxC5izuDkHd7QHJ49KtX7k6p5/Mu6Jyzin5jlujyhe0g6+pWJiYtweQXxELe2hlvZQS3uczS3rNanDzI9Hk7a9PQtmL6ZLl+mkptbjzSkjqFo/lEYtZjHhv7P84pKbZ3PHf0I7+CIiIiKWy83J5Y3xs3n9Q9iwvjccLktg2SQ6RP7AI3fVp/fALm6PKIWgHXxL6SdZe6ilPdTSHmppD7UsKCg4iDv/cxXrV1/FnqTD3DZyMhUq5L9qbkm+5KY6ekc7+CIiIiJnqZVLVvPoU8tZuOwCsvc2h8BsatRbyLDL9/HwEwMJKxPm9ohyHO3gWyo+3n+fCS8FqaU91NIeamkPtSyc6E4tmTtvFBm7mvLBO/OJjp7F9u1teHrC9URUPURUm/eZ+eY8PHkeV+ZTR+9oB9/PZGdnU7p0abfHEB9QS3uopT3U0h5q6b2Mgxk89/hnTP6yLFsTL4a8EEpXWkOPNr/xxMOtadMlsthmUceCtINvqeTkZLdHEB9RS3uopT3U0h5q6b2wMmE8/sJQtqzvyx/xu7juqncpVSqN+d+MpO2FLahY+wduvH4y25N2FPks6ugdLfD9TNWqVd0eQXxELe2hlvZQS3uopW/8/yU3O7Bg9mK6dp3KwYM1eXfmSGo0LEedxnN4/P73yDiYUSRfXx29owW+n0lNTXV7BPERtbSHWtpDLe2hlr7Xq39nfvhhJNkp5/H2S5/TrMUXbEnuyLjx1xFxbjpRbd5n2utf+fR8fXX0jhb4fiYkJMTtEcRH1NIeamkPtbSHWhadgMAAbry7P7/HDiFtRwj/uWs6NWr8RtyqAQy//TJCq2ykV88p/Pz18n/8tdTRO1rgi4iIiIhXIspF8NSEG9iy4QqS1u7mhsGTCA3fzaLvRnDhJW0pV2MpQ6+ezB9r/3R71LOKFvh+Jisry+0RxEfU0h5qaQ+1tIdaFr86jWoz7YNRpG7pwpIFy+l90SSyssrz3icjqd/yXGo0nMcDt08nbV9aoe9THb2jBb6fKV++vNsjiI+opT3U0h5qaQ+1dFfHXm35+ttRZO5uzHsT5xHd6hN27mjF86/fQPnqeTSN/JjXn5tNXu6pz9dXR+9oge9ndu3a5fYI4iNqaQ+1tIda2kMtS4aAwACuvflSYpcN5dDu8vz3ofepc94PrFt3Gbc/eCUhlf6kc5dpzP/kpxN+vjp6Ry905Wf0gg/2UEt7qKU91NIealmy7UzexbjHvmLW93XZu6UrmEDCqsbQ54I4Hn+kI83bNgbU8a/0QleW2rBhg9sjiI+opT3U0h5qaQ+1LNnOrV2ViVNHkvJnD2J/XkPfyyZhPIF8NmckLS5owDn1FnLH6GksW/rPr8RzNtIOvoiIiIiUCJ/PWMhzE7ezPL4beQdrQ6mD1G+wgJsG5jLmP/0pFVLK7RFdpR18S8XExLg9gviIWtpDLe2hlvZQS//U//pe/LLkBrL2VuelJz6mfoOvSEzsyQNPXk1o5b20bvc+M9+c79MX07KRdvBFREREpMTat2sfT46dw4cLq7IzqQfklSa4wgY6Ry7l4THn07NfB7dHLDbawbeUdiTsoZb2UEt7qKU91NIOMTExVKxakf9NHM6OTZeQuHo7118zifDwnXz/ww306t+BiHNjGHDFZFb/luD2uCWGdvBFRERExO8s+34lT4yP4bsVbcjcEwVOHhVr/syVFyYx9vGLqFW/htsj+px28C0VFxfn9gjiI2ppD7W0h1raQy3tcKqO7bpHM3feaDJ2RzHng+/o3Hk6aWm1mPTecGqfX4laDefx4J3vkbY/vRgnLhm0g+9ncnNzCQoKcnsM8QG1tIda2kMt7aGWdjjTjp48D5Nf+YJX3svg93W9MBlVcUqn0rDRIm4e5HDHg30JLuW/fy60g2+pTZs2uT2C+Iha2kMt7aGW9lBLO5xpx4DAAEbffSWrV1zHoV1l+O+DM6lXfxEb1l/MPWMHEFJxN20ueJ/33/7W6ivxaAffz6SnpxMREeH2GOIDamkPtbSHWtpDLe3gq44p23fz5Ni5fPRdNXYl9QRPKUpVWE/nqF95+O4m9LiinQ+mLXrawbdUSkqK2yOIj6ilPdTSHmppD7W0g686Vq5+Di+/M5KdiZewcdWfXHfVO4SG7+K776+nZ992RJy7gkH9pvD7CjteAVkLfD+j3Qh7qKU91NIeamkPtbRDUXRs0KIhMz++kdQtF/LLwhgu6f0OeSaQT+eMoEW7+lSu8wM33TCNbUm7fP61i4sW+H4mJyfH7RHER9TSHmppD7W0h1raoag7tu/Zlnlf30jmrmg+n/EtHTtN58CBWrwzYxg1G5SjdqOveHjMBxxM9a8r8WiB72c8HnufEHK2UUt7qKU91NIeammH4uzYb+jFLPl5BFkpdZg4/lOaR85i67Y2PP3yEMqdm0uTlrN4+anZ5BzOLbaZvKUFvp8JCwtzewTxEbW0h1raQy3toZZ2cKNjYFAQN987kPiYoaTvDOfx+6ZTp/4iEtb3ZswjVzL/k5+KfaYzpQW+n9m3b5/bI4iPqKU91NIeamkPtbSD2x3DykTw2PM3sHnNQHYlHuLhMVPpe10PV2cqDF0m089kZmYSGhrq9hjiA2ppD7W0h1raQy3toI4F6TKZltq8ebPbI4iPqKU91NIeamkPtbSDOnpHO/h+xuPxEBCgn8tsoJb2UEt7qKU91NIO6liQdvAttWrVKrdHEB9RS3uopT3U0h5qaQd19I528EVERERE/IB28C0VExPj9gjiI2ppD7W0h1raQy3toI7e0Q6+iIiIiIgf0A6+pWJjY90eQXxELe2hlvZQS3uopR3U0Tvawfczeja5PdTSHmppD7W0h1raQR0L0g6+pRISEtweQXxELe2hlvZQS3uopR3U0Tta4PuZevXquT2C+Iha2kMt7aGW9lBLO6ijd7TA9zPbt293ewTxEbW0h1raQy3toZZ2UEfvaIHvZypWrOj2COIjamkPtbSHWtpDLe2gjt7RAt/PZGRkuD2C+Iha2kMt7aGW9lBLO6ijd7TA9zN6Jrk91NIeamkPtbSHWtpBHb2j75qfCQ4OdnsE8RG1tIda2kMt7aGWdlBH71h5HXzHcfYAf7o9RxGpDKS4PYT4hFraQy3toZb2UEs7qGNBdYwxVU53IysX+DZzHGdFYV7gQEo+tbSHWtpDLe2hlnZQR+/oFB0REREREYtogS8iIiIiYhEt8P3P224PID6jlvZQS3uopT3U0g7q6AWdgy8iIiIiYhHt4IuIiIiIWEQL/BLKcZw+juOsdxxnk+M4D57g48Mdx9njOM6qI2+j3ZhTTs1xnMmO4+x2HOf3k3zccRznlSOdVzuO06q4Z5TCKUTLbo7jHDjumHysuGeU03Mcp5bjON87jrPOcZw1juPcdYLb6Lj0A4VsqePSDziOE+I4zjLHceKOtHz8BLcp7TjOR0eOy98cx6lb/JP6jyC3B5C/cxwnEHgduAjYCix3HGeOMWbtX276kTHm9mIfUM7EVOA1YPpJPn4J0PDI2wXAm0d+lZJnKqduCfCzMeby4hlHvJQL3GOMiXUcpwwQ4zjOgr/8/arj0j8UpiXouPQH2UAPY0y64zjBwGLHceYbY3497jajgP3GmAaO4wwGngOucWNYf6Ad/JKpHbDJGPOHMeYw8CHQz+WZxAvGmJ+Afae4ST9gusn3K1DecZxqxTOdnIlCtBQ/YIzZYYyJPfLfB4F1QI2/3EzHpR8oZEvxA0eOtfQjvw0+8vbXJ4n2A6Yd+e9ZQE/HcZxiGtHvaIFfMtUAthz3+62c+C+tgUf++XiW4zi1imc08bHCthb/0OHIPzHPdxynmdvDyKkd+Sf+aOC3v3xIx6WfOUVL0HHpFxzHCXQcZxWwG1hgjDnpcWmMyQUOAJWKd0r/oQV+yXSin0j/+pPsl0BdY0xLYCH//1Ot+JfCtBb/EEv+S4hHAq8Cn7s8j5yC4zgRwKfAGGNM2l8/fIJP0XFZQp2mpY5LP2GMyTPGRAE1gXaO4zT/y010XJ4BLfBLpq3A8TvyNYHtx9/AGLPXGJN95LfvAK2LaTbxrdO2Fv9gjEk7+k/Mxph5QLDjOJVdHktO4Mg5vp8C7xljPjvBTXRc+onTtdRx6X+MManAD0Cfv3zo2HHpOE4QUA6dNnlSWuCXTMuBho7j1HMcpxQwGJhz/A3+cj5oX/LPPRT/Mwe44chVO9oDB4wxO9weSs6c4zjnHj0f1HGcduT//brX3ankr440mgSsM8a8dJKb6bj0A4VpqePSPziOU8VxnPJH/jsU6AUk/OVmc4BhR/57EPCd0Ys5nZSuolMCGWNyHce5HfgGCAQmG2PWOI7zBLDCGDMHuNNxnL7kX0VgHzDctYHlpBzH+QDoBlR2HGcrMJb8Jw9hjJkIzAMuBTYBGcAIdyaV0ylEy0HAvxzHyQUygcH6n0+J1Am4Hog/cr4vwH+A2qDj0s8UpqWOS/9QDZh25CqCAcDHxpi5f1n3TAJmOI6zifx1z2D3xi359Eq2IiIiIiIW0Sk6IiIiIiIW0QJfRERERMQiWuCLiIiIiFhEC3wREREREYtogS8iIiIiYhEt8EVERERELKIFvoiIiIiIRbTAFxERERGxiBb4IiIiIiIW0QJfRERERMQiWuCLiIiIiFhEC3wREREREYtogS8iIiIiYhEt8EVERERELKIFvoiIiIiIRbTAFxERERGxiBb4IiIiIiIW0QJfRERERMQiWuCLiIiIiFhEC3wREREREYtogS8iIiIiYhEt8EVERERELKIFvoiIiIiIRbTAFxERERGxiBb4IiIiIiIW0QJfRERERMQiWuCLiIiIiFhEC3wREREREYtogS8iIiIiYhEt8EVERERELKIFvoiIiIiIRbTAFxERERGxiBb4IiIiIiIW0QJfRERERMQiWuCLiIiIiFhEC3wREREREYtogS8iIiIiYhEt8EVERERELKIFvoiIiIiIRbTAFxERERGxiBb4IiIiIiIW0QJfRERERMQiWuCLiIiIiFhEC3wREREREYtogS8iIiIiYhEt8EVERERELKIFvoiIiIiIRbTAFxERERGxiBb4IiIiIiIW0QJfRERERMQiWuCLiIiIiFhEC3wREREREYtogS8iIiIiYhEt8EVERERELKIFvoiIiIiIRbTAFxERERGxiBb4IiIiIiIW0QJfRERERMQiWuCLiIiIiFhEC3wREREREYsEuT1AUahcubKpW7eu22Oc0u9bYwkzwezf3YJq1aB69cJ9Xk5ODsHBwUU7nBQLtbSHWtpDLe2hlnZQx4JiYmJSjDFVTnc7Kxf4devWZcWKFW6PcUpRd4dSh/IsfHsF110H48e7PZGIiIiIlGSO4/xZmNvpFB2XhJtgDnGY0FDIyCj858XGxhbdUFKs1NIeamkPtbSHWtpBHb2jBb5Lwslf4IeFndkCPyoqquiGkmKllvZQS3uopT3U0g7q6B0t8F0S5pQig1zCwiAzs/Cfl5CQUHRDSbFSS3uopT3U0h5qaQd19I6V5+D7g/CA0hwilzJneIpOvXr1im4oKVZqaQ+1tIda2sMXLXNycti6dStZWVk+mEi8tW7dOrdHKHYhISHUrFnT6ycYa4HvkvDAUA7hoeoZnqKzfft26tevX3SDSbFRS3uopT3U0h6+aLl161bKlClD3bp1cRzHR5PJmcjKyiIkJMTtMYqVMYa9e/eydetWr39Q1Sk6LgkPCuVQkOeMT9GpWLFi0Q0lxUot7aGW9lBLe/iiZVZWFpUqVdLi3kVBQWffXrTjOFSqVOkf/cuRFvguCQsOIyMYQkPMGe3gZ5zJjaVEU0t7qKU91NIevmqpxb27PB6P2yO44p/+udMC3yXhweHkBUBIqZwzWuAHBCiZLdTSHmppD7W0h1rK2Ux/+l0SXjoCgOCgzDM6RUev5mYPtbSHWtpDLe1hc8sJEyYU6l8o6tatS0pKyt/eP27cOF544YWiGO20Jk6cyPTp0wEYPnw4s2bNAmD06NGsXbsWgIiIiGO3P9VO9vH3JQWdfSc2lRDhpctABgQFZJKRUa7Qn5eenk7lypWLcDIpLmppD7W0h1raw+aWEyZMYOjQoYSFhbk9yhm75ZZbTvj+d99994TvP9kpOrm5uSe9L9EOvmvCQsoAEBRw6IxO0bH1L6uzkVraQy3toZb2sKHloUOHuOyyy4iMjKR58+Z89NFHvPLKK2zfvp3u3bvTvXt3AP71r3/Rpk0bmjVrxtixYwvcx/jx42nXrh3t2rVj06ZNf/saiYmJ9OnTh9atW9OlS5cTXnf+0KFDjBw5krZt2xIdHc0XX3wBQGZmJoMHD6Zly5Zcc801XHDBBaxYsQIouAs/a9Yshg8fDpz8Xw+6det27HMB7rnnHlq1asUll1zCnj17jt3mP//5D127duXll18ucF/Hf35KSgp169YFYOrUqfTv358rrriCevXq8dprr/HSSy8RHR1N+/bt2bdv3+lD+CHt4LskPCx/1z7ASSczE4yBwjyfYuvWrTRu3LiIp5PioJb2UEt7qKU9fN5yzBhYtcp39wcQFQUTJpz0w19//TXVq1fnq6++AuDAgQOUK1eOl156ie+///7YDzFPPfUUFStWJC8vj549e7J69WpatmwJQNmyZVm2bBnTp09nzJgxzJ07t8DXuOmmm5g4cSINGzbkt99+49Zbb+W7774rcJunnnqKHj16MHnyZFJTU2nXrh29evXirbfeIiwsjNWrV7N69WpatWrlk2/LoUOHaNWqFS+++CKPPvoojz/+OK+99hoAqamp/Pjjj0D+DwuF8fvvv7Ny5UqysrJo0KABzz0+3VUHAAAgAElEQVT3HCtXruTuu+8+9n2xjXbwXRIeXgHIX+ADFPZKSA0aNCiqkaSYqaU91NIeamkPG1q2aNGChQsX8sADD/Dzzz9TrtyJT+n9+OOPadWqFdHR0axZs+bYuewAQ4YMOfbrL7/8UuDz0tPTWbp0KVdddRVRUVHcfPPN7Nix42/3/+233/Lss88SFRVFt27dyMrKIjk5mZ9++omhQ4cC0LJly2M/VPxTAQEBXHPNNUD+efqLFy8+9rGj7z8T3bt3p0yZMlSpUoVy5cpxxRVXAPnf36SkJJ/MXNJoB98l4eHlAQhw0oD8F7sKDT39561Zs4bIyMiiHE2KiVraQy3toZb28HnLU+y0F5VGjRoRExPDvHnzeOihh7j44ot57LHHCtxm8+bNvPDCCyxfvpwKFSowfPjwAtdPP/5Jqn99wqrH46F8+fKsOs2/TBhj+PTTTzn//PP/9rGTPQn2+Pf/k+u5Z2VlFbiv8PDwE94uKCjo2Pn6f/16pUuXPvbfAQEBx34fEBBAbm6u17OVZNrBd0lYRP4OvuEgUPgXu9L/eOyhlvZQS3uopT1saLl9+3bCwsIYOnQo9957L7GxsQCUKVOGgwfz1w9paWmEh4dTrlw5du3axfz58wvcx0cffXTs1w4dOhT4WNmyZalXrx6ffPIJkL+Qj4uL+9scvXv35tVXX8UYA8DKlSsBuPDCC3nvvfeA/NNgVq9efexzqlatyrp16/B4PMyePfuMHrfH4zl2dZ3Zs2fTuXPn035O3bp1iYmJATj2uWczLfBdEl6mEgAOBwAK/UTbo394xf+ppT3U0h5qaQ8bWsbHx9OuXTuioqJ46qmneOSRR4D88+YvueQSunfvTmRkJNHR0TRr1oyRI0fSqVOnAveRnZ3NBRdcwMsvv8z//ve/v32N9957j0mTJhEZGUmzZs2OPYH2eI8++ig5OTm0bNmS5s2b8+ijjwL5T+5NT0+nZcuWPP/887Rr1+7Y5zz77LNcfvnl9OjRg2rVqp3R4w4PD2fNmjW0bt2aBQsW/O1fLU7k3nvv5c0336Rjx44nvDTo2cY5+tOYTdq0aWOOfyZ2SbTjz9+pPrUFN/8xnrem30tsLERHuz2ViIiIHLVu3TqaNGni9hh+o1u3brzwwgu0adPG7VGscKI/f47jxBhjTvsN1g6+S8LLVQEgz9kPaAf/bKSW9lBLe6ilPdTSDocOHXJ7BL+kJ9m65OgpOkcX+Onphfu81q1bF9VIUszU0h5qaQ+1tIdaFr8ffvjB5/d5sifVyqlpB98lgYFBhOVA7pEFfmF/QI2Pjy/CqaQ4qaU91NIeamkPtbRDxpm8GqgcowW+iyJyAsgJPLMFfqNGjYpwIilOamkPtbSHWtpDLe0QEhLi9gh+SQt8F5XJDSArIP8lkgu7wE9OTi7CiaQ4qaU91NIeamkPtbTD4cOH3R7BL2mB76IITxDZgalA4Rf4VatWLcKJpDippT3U0h5qaQ+1tENwcLDbI/glLfBdFGGCyQw+s1N0UlNTi3AiKU5qaQ+1tIda2sOWloGBgURFRR17e/bZZ095+7lz5xIdHU1kZCRNmzblrbfeKqZJi4atrzRb1HQVHReVMaXYG5BJ6dKFX+DrXDR7qKU91NIeamkPW1qGhoayatWqQt02JyeHm266iWXLllGzZk2ys7NJSkoq2gGLWECA9qK9oe+aiyKc0qQH5BIeXvgFvoiIiMiiRYuIjo6mRYsWjBw5kuzsbA4ePEhubi6VKuVfirt06dKcf/75Lk8qbtAOvosiAkPOeIGflZVVtENJsVFLe6ilPdTSHr5uOebrMazaWbid9MKKOjeKCX0mnPI2mZmZREVFHfv9Qw89RL9+/Rg+fDiLFi2iUaNG3HDDDbz55puMGTOGvn37UqdOHXr27Mnll1/OkCFD/HoX3OPxuD2CX/Lf4hYoExjGwSAP4eGFf6Gr8uXLF+1QUmzU0h5qaQ+1tIctLY+eonP07ZprrmH9+vXUq1fv2KVAhw0bxk8//QTAu+++y6JFi2jXrh0vvPACI0eOdHP8fywoSHvR3tB3zUURweGkBxrCww2HDjmF+pxdu3ZRtmzZIp5MioNa2kMt7aGW9vB1y9PttBcnY8wpP96iRQtatGjB9ddfT7169Zg6dWrxDFYEcnJyCAwMdHsMv6MdfBdFlI4gNxBCQz2FPkWndu3aRTuUFBu1tIda2kMt7WFzy8aNG5OUlMSmTZsAmDFjBl27diU9PZ0ffvjh2O1WrVpFnTp1XJrSN0qVKuX2CH5JC3wXlSmdv7MQUiqr0Av8DRs2FOFEUpzU0h5qaQ+1tIctLY+eg3/07cEHHyQkJIQpU6Zw1VVX0aJFCwICArjlllswxvD8889z/vnnExUVxdixY/169x70vBhv6RQdF0WElIMsKBWcyaFD4YX6nBYtWhTxVFJc1NIeamkPtbSHLS3z8vJO+P6ePXuycuXKAu8rXbo08+bNK46xik1YWJjbI/gl7eC7KCIs/wlAwYEZhd7Bj4mJKcKJpDippT3U0h5qaQ+1tMMhXUfcK1rgu6hMRAUAggLTC73Ab926dRFOJMVJLe2hlvZQS3uopR3Cwwt3hoMUpAW+iyIi8l+IIjAgTTv4ZyG1tIda2kMt7aGWdtAOvne0wHdRRJn8BX6Ak0Z2NuTmnv5ztCNhD7W0h1raQy3toZZ20A6+d7TAd1GZclUAcJw0oHCvZhsXF1eUI0kxUkt7qKU91NIeammHjIwMt0fwS36xwHccp7zjOLMcx0lwHGed4zgd3J7JFyLKVwXAOKlA4Rb4zZo1K8qRpBippT3U0h5qaQ+1tENoaKjbI/glv1jgAy8DXxtjGgORwDqX5/GJiApnvsA/+qIW4v/U0h5qaQ+1tIda5r/QlbeXzUxNTeWNN9447e2SkpJo3rz5CT/WrVs3VqxYUeivOXz4cMLCwjh48OCx991+++04jkNKSkqh78cXjp+9bt26J/z6J3t/SVDiF/iO45QFLgQmARhjDhtjUt2dyjfCylbCMZDn7AcKt8CvWbNmEU8lxUUt7aGW9lBLe6hl8Szwfa1BgwZ88cUXAHg8Hn7++Wdq1KhR7HP4uxK/wAfOA/YAUxzHWek4zruO4/ztGReO49zkOM4Kx3FW7Nixg5SUFHbs2MG2bdvYv38/iYmJZGZmsnbtWjweD7GxscD/P8s+NjYWj8fD2rVryczMJDExkf3797Nt2zaO3l9SUhLp6ekkJCSQm5t77Py+o/dx9Nf4+Hiys7PZuHEjaWlpJCcns3v3bnbv3k1ycjJpaWls3LiRwzk5RByGvMB9QP4C/+h9xMXFkZubS0JCAunp6SQlJZGSkkJiYmKJfkzZ2dnEx8ef8D5O9phKeqeiekzH/2rLY7KxU2EeU2JionWPycZOhXlMKSkp1j0mGzsV5jFt3rz5Hz+mvLw8Dh8+TG5uLllZWXg8HjIzMzHGHLu6y/G/GmPIzMzE4/GQlZVFbm4uhw8f5vDhw+Tk5JCdnU1eXt6x+zh6fvlf7ysjIwOPx8P69etp3LgxI0aMoFmzZgwZMoR58+bRsWNHGjRowK+//kpGRgaHDh3ihhtuoG3btkRGRvLFF1+QmprKY489xkcffURUVBQzZ85k6dKldOjQgaioKDp06MDq1avxeDzExMTQrl07WrZsScuWLYmLi+PBBx8kMTGRqKgo7r77btLS0ujevTvR0dE0b96cWbNmHXtMubm5DB06lJYtW3LllVcemwnyX4kXYM6cOXTo0IHo6GgGDRrE3r17ycnJKfB9ycvLY/Dgwbz//vsAzJ8/n/bt2xMYGHjs+9K/f3+io6Np1qwZr7/+Ojk5OWzcuJEGDRqwc+dOMjIy6NKlC19++SXPPfcc48ePB/L/JaBHjx4cOnSIhQsXMmTIEDweD3PnzqV9+/ZER0czcOBA9u/fT3Z2NsYYsrKyMMZgjDlhJ2PMsdYvvPACzZo1o1mzZrz44ovHHtNzzz1H8+bNadq0KRMmTODQoUMkJSXRqFEjhg0bRvPmzY99P/Ly8sjOziYnJ+fYn7u/Hk+FdnTwkvoGtAFygQuO/P5l4MlTfU7r1q2Nv6h2X4C5fMhgA8Z8883pb79nz56iH0qKhVraQy3toZb28EXLtWvXHvvvu+4ypmtX377dddepv/7mzZtNYGCgWb16tcnLyzOtWrUyI0aMMB6Px3z++eemX79+xhhjHnroITNjxgxjjDH79+83DRs2NOnp6WbKlCnmtttuO3Z/Bw4cMDk5OcYYYxYsWGAGDBhgjDHm9ttvNzNnzjTGGJOdnW0yMjLM5s2bTbNmzY59bk5Ojjlw4IAxJv97W79+fePxeMzmzZsNYBYvXmyMMWbEiBFm/PjxxhhjunbtapYvX2727NljunTpYtLT040xxjz77LPm8ccf/9vjHTZsmPnkk0/MBRdcYPbt22dGjx5tFi5caOrUqXOs5969e40xxmRkZJhmzZqZlJQUY4wx77zzjhk4cKB5/vnnzU033WSMMeaXX34xgwYNMsYY07lzZ9O2bVtz+PBhM27cODNx4sRTznV0dmNMga9/vKPvX7FihWnevLlJT083Bw8eNE2bNjWxsbEnff+pvmfHO/7P31HAClOI9XPQ/7F37/FxlnX+/9/XPcccm6RJk6bpudBzkyYpbSktJzlLBdQVRDkoq+th1d2vK7j+UNddd9VlPaCrrOIKfL8IonIQEUSQQik9pjQtLaFN2jTNoWnTpDnOTGbmvn5/TJImbY53Zuae+fT9fDzmkclkcveavhr4zJ177hn/UwHb1AOo11pv7/v8dwDus3E9UZURdiJojP8QnWAwGOMVUbywpRxsKQdbyiGl5dy5c7F8+XIAkRcOX3nllVBKYfny5aitrQUAvPzyy/jDH/6ABx54AADg9/tRV1d3zrba29tx55134tChQ1BKDfwdrV27Ft/+9rdRX1+PW265BRdccME536u1xj//8z/jjTfegGEYaGhoQHNzMwBg5syZWLduHQDgYx/7GB588EF8+ctfHvjebdu24cCBAwP36e3txdq1I58v5ZZbbsGTTz6J7du348c//vGQrz344IN45plnAADHjh3DoUOHMHXqVNxzzz347W9/i4ceegh79uwBEDlVakVFBTo7O+HxeFBaWopdu3Zh8+bNePDBBye8rpG8+eabuPnmmwdO6XnLLbdg8+bN0FoPe/vGjRvH/DubrIQf8LXWx5VSx5RSC7XW7wG4EsAEfkeR2NK1EwFHZMDv6hr7/qZpxnhFFC9sKQdbysGWckS75Q9/GNXNjZvH4xm4bhjGwOeGYSDU9wY6Wmv8/ve/x8KFC4d87/bt24d8fv/99+Pyyy/HM888g9raWlx22WUAgI9+9KNYvXo1XnjhBVxzzTV4+OGHMW/evCHf+/jjj+PkyZOoqKiAy+XCnDlz4Pf7AQBKqSH3PftzrTWuuuoqPPHEE+N6zLfeeitKS0tx5513wjDOHE2+adMmvPLKK9i6dStSU1Nx2WWXDayhp6cH9fX1AICuri5kZGQMrPNXv/oVLr74YqxYsQKvvfYaampqsHjxYtTU1ExoXSPRfYfwjPd2YOy/s8lKhmPwAeDvATyulNoLoATAv9u8nqhJ1y74XeM/i05qamqMV0TxwpZysKUcbCnH+dTymmuuwY9//OOBgfLtt98GAGRkZAw5I017e/vAC1YfeeSRgdsPHz6MefPm4Qtf+AI2btyIvXv3Dvu906ZNg8vlwmuvvYajR48OfK2urg5bt24FADzxxBO45JJLhqxvzZo12LJly8CZjXp6enDw4MERH8+sWbPw7W9/G5/97GeHDPjt7e3Izs5GamoqqqqqsG3btoGv3Xvvvbj99tvxrW99C3/7t387cPuGDRvwwAMPYMOGDVi/fj0eeughlJSUQCk14XWNZMOGDXj22WcHXnvwzDPPYP369SPePp6/s8lKigFfa71Ha12utV6htb5Ja91m95qiJUN54Xe1AxjfgN/a2hrjFVG8sKUcbCkHW8pxPrW8//77EQwGsWLFCixbtgz3338/AODyyy/HgQMHUFJSgt/85jf4yle+gq9+9atYt24dwuHwwPf/5je/wbJly1BSUoKqqirccccdmDp1KtatW4dly5bhn/7pn3D77bdj165dKC8vx+OPP45FixYNfP/ixYvx6KOPYsWKFWhtbcVnPvOZIevLy8vDI488gttuuw0rVqzAmjVrUFVVNepj+vSnP4358+cP/JYCAK699lqEQiGsWLEC999/P9asWQMAeP3117Fz586BId/tduNXv/oVAGD9+vVoamrC2rVrkZ+fD6/XOzBkW1nXcEpLS3HXXXfhoosuwurVq3HPPfdg5cqVI94+nr+zyVKj/fogWZWXl+uJnHfVTrd+eQ7eDjXj4I98+Jd/Ab7+9dHv7/P5+KYPQrClHGwpB1vKEY2W7777LhYvXhylFZEVpmkO2YsvQW1tLd7//vfjnXfeGfV+w/37U0pVaK3Lx/ozZP2NJaF0Rwq6XL1wu8e3B//IkSOxXxTFBVvKwZZysKUcbClDIBCwewlJKeFfZCtdhjMNndpEevr4BvzBvxKj5MaWcrClHGwpB1vK4PV67V5C1M2ZM2fMvfeTxT34Nstwp6PLDaSl6XEN+P2nfqLkx5ZysKUcbClHtFpKPJQ5mfS/Gdj5ZrL/7jjg2yzTkwmtgBRvaFynySwtLY39oigu2FIOtpSDLeWIRkuv14tTp05xyLdR/znkzydaa5w6dWpSv73gITo2y0zJAgJAqjeAri7XmPevqKhAWVlZHFZGscaWcrClHGwpRzRaFhUVob6+HidPnozSqmiient74Xa77V5G3Hm9XhQVFVn+fg74NstMyQJOAx6PH52d6WPen//jkYMt5WBLOdhSjmi0dLlcmDt3bhRWQxRfPETHZplpOQAAt7Mbg95PYkS7d++O8YooXthSDraUgy3lYEsZ2NEaDvg2y8zIBQC4XF3jGvBLSkpivCKKF7aUgy3lYEs52FIGdrSGA77NpkyZBgBwOjvGNeBbeYc1SkxsKQdbysGWcrClDOxoDQd8m2VOyQcAGI72cQ34PBZQDraUgy3lYEs52FIGdrSGA77NMnMKAADKOI1AAAgGR79/Y2NjHFZF8cCWcrClHGwpB1vKwI7WcMC3WUbuDACAdrQCwJjnws/JyYn1kihO2FIOtpSDLeVgSxnY0RoO+DZzpqYjtRfQRmTAH+swnfP1Hd0kYks52FIOtpSDLWVgR2s44CeAzKBCyGgDMPaAbxhMJgVbysGWcrClHGwpAztaw7+1BJAZciLoOAVg7AHf5Rr73W4pObClHGwpB1vKwZYysKM1HPATQKbpQsA1vgG/a6yD9ClpsKUcbCkHW8rBljKwozUc8BNAJtzwuyKH6Iz17zg3NzcOK6J4YEs52FIOtpSDLWVgR2s44CeATOWFzzO+F9nW19fHYUUUD2wpB1vKwZZysKUM7GgNB/wEMMVIRY93fC+yXbBgQRxWRPHAlnKwpRxsKQdbysCO1nDATwCZrnR0pbYDGHvA379/fxxWRPHAlnKwpRxsKQdbysCO1jjtXgABme50dLh9MAyNzk416n2Li4vjtCqKNbaUgy3lYEs52FIGdrSGe/ATQKZnCkwHkJGux9yDX1FREZ9FUcyxpRxsKQdbysGWMrCjNRzwE0BmajYAIC01NOZZdMrKyuKwIooHtpSDLeVgSznYUgZ2tIYDfgLoH/BTUnq5B/88wpZysKUcbCkHW8rAjtZwwE8AmRmRc7x63b4xB3w+k5WDLeVgSznYUg62lIEdreGAnwD6B3y3u3vMAX/fvn1xWBHFA1vKwZZysKUcbCkDO1rDAT8BZGblAwBczq4xB/wLL7wwDiuieGBLOdhSDraUgy1lYEdrOOAngMyc6QAAh6NjzAG/rq4uDiuieGBLOdhSDraUgy1lYEdrOOAngCk5hQAAh7NjzLPo5Ofnx2FFFA9sKQdbysGWcrClDOxoDQf8BJAxNbIHXxltY+7BP336dBxWRPHAlnKwpRxsKQdbysCO1nDATwBudwq8QUA7TyMQAILBke/r9XrjtzCKKbaUgy3lYEs52FIGdrSGA36CmBI0EHa0AsCYe/GJiIiIiEbCAT9BZIWcCDrbAIw+4Pv9/jitiGKNLeVgSznYUg62lIEdreGAnyCyTTd6XWPvwc/KyorTiijW2FIOtpSDLeVgSxnY0RoO+AkiS3vhd58CAHR0jHy/5ubmOK2IYo0t5WBLOdhSDraUgR2t4YCfILKMFPi8kT347e0j32/WrFlxWhHFGlvKwZZysKUcbCkDO1rDAT9BZDnS0JUWOQZ/tD34Bw8ejNOKKNbYUg62lIMt5WBLGdjRGg74CSLLlYnO9MiAP9oe/OXLl8dpRRRrbCkHW8rBlnKwpQzsaA0H/ASR5Z2CUGpksh9twK+oqIjTiijW2FIOtpSDLeVgSxnY0Rqn3QugiKzUHMDshsOh0d6uRrxfWVlZHFdFscSWcrClHGwpB1vKwI7WcA9+gshOzwMUkJYW5B788wRbysGWcrClHGwpAztawwE/QWRlTgMApKUERh3w+UxWDraUgy3lYEs52FIGdrSGA36CyMqeDgDwenpGHfArKyvjtCKKNbaUgy3lYEs52FIGdrSGA36CyJo6AwDgdneOeprMpUuXxmlFFGtsKQdbysGWcrClDOxoDQf8BJGVWwQAcLnaR92DX11dHacVUayxpRxsKQdbysGWMrCjNRzwE8SUaZF3anO4To864BcVFcVpRRRrbCkHW8rBlnKwpQzsaA0H/AThSZ+ClCCgnK2jDvgtLS3xWxTFFFvKwZZysKUcbCkDO1rDAT+BZPca0K7IgK/18PdJT0+P76IoZthSDraUgy3lYEsZ2NEaDvgJJCvkRNjZilAI8PmGv08wGIzvoihm2FIOtpSDLeVgSxnY0RoO+Akky/Qg6I78KmqkM+mYphnHFVEssaUcbCkHW8rBljKwozUc8BNIlvKi19MKACMeh5+amhrHFVEssaUcbCkHW8rBljKwozUc8BNIlpEGn/cUgJEH/NbW1jiuiGKJLeVgSznYUg62lIEdreGAn0CyXBnoSWsDMPKAX1hYGMcVUSyxpRxsKQdbysGWMrCjNRzwE0iWJxNd6acBjDzgHzlyJI4rolhiSznYUg62lIMtZWBHazjgJ5DslGyYKZFX14404C9atCiOK6JYYks52FIOtpSDLWVgR2s44CeQrLRcwBOZ7Ec6i86ePXviuCKKJbaUgy3lYEs52FIGdrSGA34CycrIAzydAEbeg19aWhrHFVEssaUcbCkHW8rBljKwozUc8BNIzpQCwDCRmhIYccCvqKiI76IoZthSDraUgy3lYEsZ2NEaDvgJJCdnBgAgxesbccAvKyuL44oolthSDraUgy3lYEsZ2NEaDvgJZGrebACA19uJ06eHv8/u3bvjuCKKJbaUgy3lYEs52FIGdrSGA34CycmPDPguTzva2oa/T0lJSRxXRLHElnKwpRxsKQdbysCO1nDATyCp2fnwhACnu3XEAb+qqiq+i6KYYUs52FIOtpSDLWVgR2s44CcQZRjICRhQ7lMjDvhz586N76IoZthSDraUgy3lYEsZ2NEaDvgJZmrQBdPVMuKA39jYGN8FUcywpRxsKQdbysGWMrCjNRzwE0yO9iDkOYnOTiAYHObrOTnxXxTFBFvKwZZysKUcbCkDO1rDAT/BTFWp6PW2AMCwZ9Lp6emJ84ooVthSDraUgy3lYEsZ2NEaDvgJJseRgZ7UyIA/3GE6hsFkUrClHGwpB1vKwZYysKM1/FtLMFM9WejOOAVg+AHf5XLFeUUUK2wpB1vKwZZysKUM7GgNB/wEk5MyFaG0yGQ/3IDf1dUV5xVRrLClHGwpB1vKwZYysKM1HPATzNT0PCBl5AE/Nzc3ziuiWGFLOdhSDraUgy1lYEdrOOAnmJwpBYB35AG/vr4+ziuiWGFLOdhSDraUgy1lYEdrOOAnmKk5M0bdg79gwYI4r4hihS3lYEs52FIOtpSBHa3hgJ9gcnJnAs5eeNyBYQf8/fv3x39RFBNsKQdbysGWcrClDOxoDQf8BDM1P/KWzCkpXcMO+MXFxXFeEcUKW8rBlnKwpRxsKQM7WpM0A75SyqGUelsp9Ue71xJLOYXzAQAeT8ewA35FRUWcV0SxwpZysKUcbCkHW8rAjtYkzYAP4IsA3rV7EbHmTc1EahBwutvQ2nru18vKyuK/KIoJtpSDLeVgSznYUgZ2tCYpBnylVBGAGwA8bPda4iGn1wHDc4p78IVjSznYUg62lIMtZWBHa5JiwAfwQwBfAWDavZB4mBpyA+7hB3w+k5WDLeVgSznYUg62lIEdrUn4AV8p9X4AJ7TWoz6FU0p9Sim1Sym1q6mpCS0tLWhqakJDQwPa2tpQU1MDn8+HAwcOwDRN7N69G8CZZ4a7d++GaZo4cOAAfD4fampq0NbWhoaGBvRvr7a2Fl1dXaiqqkIoFEJlZeWQbfR/3LdvHwKBAA4dOoSOjg7U1dXhxIkTOHHiBOrq6tDR0YFDhw4hEAhg375952wjB14E3S1oa9OoqqpCV1cXamtr0dLSgm3btiXlYwKAyspKhEKhcx5Tsnaa7GN69dVXxT0miZ3G85i2bdsm7jFJ7DSex7Rv3z5xj0lip/E8pu3bt4t7TBI7jfWYBv9MSnlMk+k0XkprPe4720Ep9R8APg4gBMALIBPA01rrj430PeXl5XrXrl1xWmH0feT/zMarWz+BU1u/gd5ewOU687VAIACPx2Pf4ihq2FIOtpSDLeVgSxnYcSilVIXWunys+yX8Hnyt9Ve11kVa6zkAbgXw19GGewnyXFPQk3YKAHD69NCv1dXV2bAiigW2lIMt5WBLOdhSBna0JuEH/PPRNO9U+DIjA/7ZZ9LJz8+3YewnXs8AACAASURBVEUUC2wpB1vKwZZysKUM7GhNUg34WutNWuv3272OWMtLywNSWwAAp04N/drps3fpU9JiSznYUg62lIMtZWBHa5JqwD9f5GXNAFIik31Ly9Cveb1eG1ZEscCWcrClHGwpB1vKwI7WcMBPQHlTZw3swT97wCciIiIiGg0H/ASUVzBvxEN0/H6/DSuiWGBLOdhSDraUgy1lYEdrOOAnoLwZFwDubjidvefswc/KyrJnURR1bCkHW8rBlnKwpQzsaA0H/ASUU7gAhgZSUtrPGfCbm5vtWRRFHVvKwZZysKUcbCkDO1rDAT8BOVxuTPUruLyt5wz4s2bNsmdRFHVsKQdbysGWcrClDOxoDQf8BJUXdMPhPXnOMfgHDx60Z0EUdWwpB1vKwZZysKUM7GgNB/wElae90N4T5+zBX758uT0LoqhjSznYUg62lIMtZWBHazjgJ6g8IwOh1JPnDPgVFRX2LIiiji3lYEs52FIOtpSBHa1x2r0AGl6eKwv+tBMItALhMOBwRG4vKyuzd2EUNWwpB1vKwZZysKUM7GgN9+AnqGkpufBnnoTWQFvbmdv5TFYOtpSDLeVgSznYUgZ2tIYDfoLKy8gf9s2u+ExWDraUgy3lYEs52FIGdrSGA36CysuaMTDgDz4Ov7Ky0qYVUbSxpRxsKQdbysGWMrCjNRzwE1Re7mwgNbLrfvCAv3TpUptWRNHGlnKwpRxsKQdbysCO1nDAT1B5BfOG3YNfXV1t04oo2thSDraUgy3lYEsZ2NEaDvgJKn/GwmGPwS8qKrJpRRRtbCkHW8rBlnKwpQzsaA0H/AQ1dfo8OIweOJ2BIXvwW84+MT6NaV/zPtz17F249JFL8eWXv4zmrma7lwSALSVhSznYUg62lIEdreGAn6AMw4ECvwG3t23IgJ+enm7fopLQ7w78DuW/KMczVc+gN9yLH23/EYofKsa7J9+1e2lsKQhbysGWcrClDOxoDQf8BFYQ9MCRchInT565LRgM2regJLOjYQc+9vTHsKpwFQ5/4TC2fnIr3v702wCA6x6/Die6T9i6PraUgy3lYEs52FIGdrSGA34CK0A6kNqM5kFHlJimad+Ckog/5MftT9+O6RnT8eytz2Jq6lQAwLJpy/DCR19AU1cT/vHP/2jrGtlSDraUgy3lYEsZ2NEaDvgJrMCZhWB6E04M2tGcmppq34KSyPe3fh/VrdX4+ft/jtzU3CFfKyssw33r7sPj+x7Ha0des2mFbCkJW8rBlnKwpQzsaA0H/ARWkJIHf+ZxNDdraB25rbW11d5FJYF2fzu+t+V7+MDCD+Cq+VcNe5+vrv8qijKL8I1N34jz6s5gSznYUg62lIMtZWBHazjgJ7DpmYVAejP8foXOzshthYWF9i4qCfx050/RHmjH1y/9+oj38Tq9+KeL/wmb6zZj89HNcVzdGWwpB1vKwZZysKUM7GgNB/wEVjB1NpAWOT6n/zj8I0eO2LiixBcyQ/jxjh/j6vlXo3R66aj3vaf0HuSm5uIH234Qp9UNxZZysKUcbCkHW8rAjtZwwE9gBfnzgfTIZN8/4C9atMjGFSW+Fw+9iKauJnym/DNj3jfVlYq7iu/C8weft+Xc+GwpB1vKwZZysKUM7GgNB/wEVlC0CEiLDJ79L7Tds2ePjStKfA+//TAK0gtwwwU3jOv+95Teg5AZwiN7HontwobBlnKwpRxsKQdbysCO1nDAT2AFs5edswe/tHT0w07OZ8e7juOFgy/gruK74HK4xvU9C3MX4pJZl+D/7v2/MV7dudhSDraUgy3lYEsZ2NEaDvgJLC0rD+nOkwDMgQG/oqLC1jUlsqfffRphHcbHVnxsQt/3kaUfwf6T+1HVUhWjlQ2PLeVgSznYUg62lIEdreGAn+CmBw14UtoGBvyysjJ7F5TAfnfgd1icuxhLpy2d0PfdsviWge+PJ7aUgy3lYEs52FIGdrSGA36CKzBT4Ug5MTDg7969294FJagT3Sfw+tHX8eElH57w9xZmFGLdzHVxH/DZUg62lIMt5WBLGdjRGg74Ca7AyATSjg+8yLakpMTeBSWoZ6uehalNfGjJhyx9/4eWfAiVzZU4dOpQlFc2MraUgy3lYEs52FIGdrSGA36Cm+7JRW965N1sAaCqKr7HiSeLPx78I+ZmzcWyacssff/Ni24GALxw6IVoLmtUbCkHW8rBlnKwpQzsaA0H/ARXlF6IUGYzmo9HBvy5c+favKLEEwgF8Ncjf8V1C66DUsrSNmZnzcbCqQvx55o/R3l1I2NLOdhSDraUgy1lYEdrOOAnuBk5s4H0ZnR2GfD5gMbGRruXlHA2121Gd7Ab111w3aS2c+2Ca7GpdhN8QV+UVjY6tpSDLeVgSznYUgZ2tIYDfoIryr9g4M2umpuBnJwcm1eUeF489CLcDjcun3P5pLZzzfxr4A/5sbluc5RWNjq2lIMt5WBLOdhSBna0hgN+gpsxcymQ0QQAaGoCenp6bF5R4nmx+kVcOvtSpLnTJrWdS+dcCo/Dg5eqX4rSykbHlnKwpRxsKQdbysCO1nDAT3AzLigFMhoAAA0NgGEw2WB17XV4t+VdXLvg2klvK9WVig2zN8TtOHy2lIMt5WBLOdhSBna0hn9rCc47ZSpynJE9+I2NgMvlsnlFiWVT7SYAwPvmvS8q27ti7hU4cPIATnafjMr2RsOWcrClHGwpB1vKwI7WcMBPAkWOLhiOABobga6uLruXk1A21W5CTkqO5dNjnm3D7A0AEJfj8NlSDraUgy3lYEsZ2NEaDvhJYKbKgDOtCY2NQG5urt3LSSibajfh0tmXwlDR+adcXlgOr9OLN46+EZXtjYYt5WBLOdhSDraUgR2t4YCfBIpcuTAzGtDQANTX19u9nIRx9PRRHDl9BJfNuSxq23Q73FhbtDYuAz5bysGWcrClHGwpAztawwE/CcxIn47QlEY01IexYMECu5eTMPqPv4/mgA9EDtPZc3wP2v3tUd3u2dhSDraUgy3lYEsZ2NEaDvhJoChnLpDRiIZGjf3799u9nISx6Wh0j7/vt2H2BmhobDm2JarbPRtbysGWcrClHGwpAztawwE/CcwouADIaEBXlxPz5xfbvZyEEe3j7/utKVoDp+GM+WE6xcVsKQVbysGWcrClDOxoDQf8JFA0ezmQEXmr5pdffsfm1SSGY+3HUHu6FpfOvjTq2051pWJV4Sq8fvT1qG97sIqKiphun+KHLeVgSznYUgZ2tIYDfhIoWlA6MODn5ET3cJRk9daxtwAAl8y6JCbbv2TWJdjdtBuBUCAm2weAsrKymG2b4ost5WBLOdhSBna0hgN+EsjMLkCaNzLgb9ly2ObVJIa3jr2FVFcqVuSviMn2V89Yjd5wL/Yc3xOT7QPcKyEJW8rBlnKwpQzsaA0H/CQxx3kKAOB2z7N5JYnhrfq3sKpwFVyO2LzD3UUzLgIA7GjYEZPtA9wrIQlbysGWcrClDOxoDQf8JDHPZcBwdWLv3ha7l2K7nmAP9hzfg4tnXhyzP6MoswjT06dje8P2mP0Z+/bti9m2Kb7YUg62lIMtZWBHazjgJ4k5nnwgsx7d3dl2L8V2uxp3IWSGYjrgK6Wwumh1TAf8Cy+8MGbbpvhiSznYUg62lIEdreGAnyTmZM6CmVWHg+91270U2/W/wHZN0ZqY/jmrZ6xGdWs1Wn2tMdl+XV1dTLZL8ceWcrClHGwpAztaE9UBXyn1+UHXs6K57fPd7IKFwJQ6HG9y2r0U222t34qFUxciNzU3pn/O6hmrAcTuOPz8/PyYbJfijy3lYEs52FIGdrQm2nvwZw+6/tUob/u8Nmd2MTClDqfaUuH3270a+2it8daxt7B25tqY/1llhWVQUNheH5vDdE6fPh2T7VL8saUcbCkHW8rAjtZEe8A3lFLrlVIGgKlR3vZ5bc6iNcCUowCA+nqbF2Oj6tZqtPS04OKi2B1/3y/Tk4kleUuwozE2e/C9Xm9Mtkvxx5ZysKUcbCkDO1oT7QH/KwCKAfwCwHNR3vZ5LadwAbxpkePQjh61eTE26j/+PpYvsB1s9YzV2F6/HVrruPx5RERERJMV1QFfax3WWv9Ea/1JrfXz0dz2+U4ZBma6mwEA5/PrTbbWb8UUzxQszlsclz9vddFqnPKdwpHTR6K+bf/5fKyVMGwpB1vKwZYysKM1kx7wlVLXKaW2K6XeU0o9pZSK7alNzmML0jsBmOf1HvwdDTtw0YyLYKj4nAAqlm94lZXF16FLwZZysKUcbCkDO1oTjSnppwD+EcAaAD8H8IBS6rYobJfOMjctByq9CXVHz8/DRXxBH/Y27x0YuuNhSd4SuB1u7Dm+J+rbbm5ujvo2yR5sKQdbysGWMrCjNdEY8Ju11lu01m1a61cAXAPga1HYLp1lTtYc6KyjqDl0fv666u3jbyOsw3Ed8N0ON5bkLYnJgD9r1qyob5PswZZysKUcbCkDO1oTjQG/Vin1b0opd9/nQQCdUdgunWVuwWJgSh2O1AbtXoot+g+TWVW4Kq5/bnF+MSqbK6O+3YMHD0Z9m2QPtpSDLeVgSxnY0ZpoDPgawC0Ajiml3gRQDWCTUuqCKGybBlkwpzTyZlfNKTBNu1cTfzsadmBm5kxMz5ge1z+3pKAEx7uOo7krur8mXL58eVS3R/ZhSznYUg62lIEdrbE84Cul1iqllNb6Nq31EkTe5OpLAP4FQBqAh5VSx6K0TgIwf+klQNZRBEMunDhh92rir/8FtvFWnF8MAFHfi19RURHV7ZF92FIOtpSDLWVgR2smswf/TgAVSqknlVJ3AcjSWu/SWv9Sa/0FrfWlWuuZ0VkmAUBG7gxkeSPnyDwS/bM2JrRTPadQ01Zjz4Bf0DfgH4/ugF9WVhbV7ZF92FIOtpSDLWVgR2ssD/ha67/TWpcC+CaAbACPKKW2KqX+XSm1QSnliNYi6YzZ3gYAwOHDNi8kznY27gQAWwb8nJQczMycyT34NCK2lIMt5WBLGdjRmkkfg6+1rtJa/0BrfS2AKwC8CeDDALZPdtt0ruV5fgAmamrsXkl87WjYAQWFsun2PJMvLiiO+pl0uFdCDraUgy3lYEsZ2NGaqL7RFYBHAbRprf9ea10++eXR2Wa4M4HMBrz37vl1qswdDTuwJG8JMjwZtvz5xfnFqGqpgj8Uvb/3ysron5mH7MGWcrClHGwpAztaE4s3uvpPvtFV7JQsWA1k1+DA/i67lxI3Wmtsb9huy+E5/UoKShDWYRw4eSBq21y6dGnUtkX2Yks52FIOtpSBHa3hG10lmbS0mUBODWrr3GPfWYja07Vo6WmxdcDvP5NONA/Tqa6ujtq2yF5sKQdbysGWMrCjNXyjqyRTtv4DQHYNTrdnorvb7tXER/8bXNk54M/PmY80V1pUz6RTVFQUtW2RvdhSDraUgy1lYEdr+EZXSabXdCEzLXKOzPPlTDo7GnbA4/Bg+TT73uzCUAZW5K+I6pl0WlpaorYtshdbysGWcrClDOxoTTTOosM3uoqj9PR0zElvAoDz5kw6Oxp3oHR6KVwOl63rKM4vRmVzJbTWUdleenp6VLZD9mNLOdhSDraUgR2ticYefACA1trPN7qKvWAwiOKpPQDOjwE/ZIZQ0Vhh6+E5/YoLinHafxp17XVR2V4wGIzKdsh+bCkHW8rBljKwozVRG/ApPkzTxMrp+YC3Ffsq2+1eTsztP7EfvpAPq2estnspKCkoAYCoHaZjmmZUtkP2Y0s52FIOtpSBHa3hgJ9kUlNTsXh2OTD1IPZVyn8tcyK8wLbf8mnLoaCi9kLb1NTUqGyH7MeWcrClHGwpAztawwE/ybS2tmLJiiuBvHdRU5tm93JibkfDDuSk5GBe9jy7l4I0dxoW5CzAnubonCqztbU1Ktsh+7GlHGwpB1vKwI7WOO1eAE1MYWEhvO45cGc/j/aObLS3A1Om2L2q2NnRuAMXzbgISim7lwIgchz+201vR2VbhYWFUdkO2Y8t5WBLOdhSBna0JuH34CulZiqlXlNKvauU2q+U+qLda7LTkSNHoBwOzEyPnCrzvfdsXlAMdfd2450T7+CiQvsPz+lXkl+CmrYadAYmf3jUkSNHorAiSgRsKQdbysGWMrCjNQk/4AMIAfg/WuvFANYA+JxSaonNa7LNokWLAADLcyO/snr3XTtXE1u7m3bD1GZCHH/fr7gg8o62e5v3Tnpb/S0p+bGlHGwpB1vKwI7WJPyAr7Vu0lrv7rveCeBdADPsXZV99uyJHP9dPtcLGL2o3CX3TDr9L7BdNWOVzSs5ozg/MuBH40w6/S0p+bGlHGwpB1vKwI7WJPyAP5hSag6AlQC2D/O1TymldimldjU1NaGlpQVNTU1oaGhAW1sbampq4PP5cODAAZimid27dwMAKioqAAC7d++GaZo4cOAAfD4fampq0NbWhoaGBvRvr7a2Fl1dXaiqqkIoFEJlZeWQbfR/3LdvHwKBAA4dOoSOjg7U1dXhxIkTOHHiBOrq6tDR0YFDhw4hEAhg3759w26jsrISoVAIVVVV6OrqQm1tLVpaWjB9+nQ0NDRgQeESYOoh7NrZkvSPaaROW+u3YkbqDExLm5Ywj6n5UDNyUnLwyjuvWHpMgzv1v2GW3Y9psp0k/tub6GOaPn26uMcksdN4HlNpaam4xySx03geU1FRkbjHJLHTWI9p8M+klMc0mU7jpaL1rpyxppRKB/A6gG9rrZ8e7b7l5eV6165d8VlYnFVUVKCsrAw1+97Ago+cRMGptWhqlvkClJk/mIn1s9bj1x/8td1LGeKKR69Ad7Ab2+8553nmhPS3pOTHlnKwpRxsKQM7DqWUqtBal491v6TYg6+UcgH4PYDHxxrupev/Rz536Tq4s6twoiUPEt/krb6jHvUd9VhbtNbupZyjOL8Y+5r3IWyGJ7Ud/gdLDraUgy3lYEsZ2NGahB/wVeT8iL8E8K7W+vt2r8du/b9qMgwH5qQfgWm6RJ5JZ1v9NgDAmqI1Nq/kXCUFJfCFfKhurZ7UdvpbUvJjSznYUg62lIEdrUn4AR/AOgAfB3CFUmpP3+V6uxdll5KSkoHrpYUtAIA9e+S9jfO2+m3wODwDZ61JJP1r2nN8ci/8GdySkhtbysGWcrClDOxoTcIP+FrrN7XWSmu9Qmtd0nf5k93rsktVVdXA9UuXZQOOADa/Wm/jimJjW/02lBWWwe1w272UcyzOXQyn4Zz0mXQGt6TkxpZysKUcbCkDO1qT8AM+DTV37tyB6+UrLgPyDmDnrh77FhQDveFeVDRVYM2MxDs8BwA8Tg+W5C2Z9IA/uCUlN7aUgy3lYEsZ2NEaDvhJprGxceD60jUbgWl7cag218YVRd/e5r3wh/wJefx9v+L84kkfojO4JSU3tpSDLeVgSxnY0RoO+EkmJydn4HpKRjbys/ejqysXJ0/auKgo23psKwBg7czEO4NOv+L8YjR2NqKlp8XyNga3pOTGlnKwpRxsKQM7WsMBP8n09Aw9HGfptCYAwN69dqwmNrY1bMOMjBkoyiyyeykjKimIvOin8rj1w3TObknJiy3lYEs52FIGdrSGA36SMYyhyS5dqAAAb74q51dY2+q3JfThOUB0zqRzdktKXmwpB1vKwZYysKM1/FtLMi6Xa8jnV65aDaQ3YtPmEzatKLpOdJ/A4bbDCT/g56bmojCjcFIvtD27JSUvtpSDLeVgSxnY0RoO+Emmq6tryOel6/8GKNyFfVVZNq0ourbXbweQmG9wdbaSgpJJDfhnt6TkxZZysKUcbCkDO1rDAT/J5OYOPWNOSnYepk99G6da5qC93aZFRdHW+q1wGk6UTU/8t6Yuzi/GgZMHEAgFLH3/2S0pebGlHGwpB1vKwI7WcMBPMvX1576pVWlR5LYd28PxXk7UbTm2BSsLViLFlWL3UsZUnF+MkBnCuy3vWvr+4VpScmJLOdhSDraUgR2t4YCfZBYsWHDObdeWpwIA/vT0e/FeTlQFQgFsr9+O9bPW272UcZnsmXSGa0nJiS3lYEs52FIGdrSGA36S2b9//zm3XXn5tUDOQbzxls+GFUXPzsadCIQD2DB7g91LGZcFOQuQ4kyxfCad4VpScmJLOdhSDraUgR2t4YCfZIqLi8+5bWHZ1XBP34GqI4l73vjxeOPoGwCAS2ZdYvNKxsdhOLA8f7nlF9oO15KSE1vKwZZysKUM7GgNB/wkU1FRcc5thuHAhbnvoqcrH8l8qNrmus1YmrcUU1On2r2UcSvOL0ZlcyW01hP+3uFaUnJiSznYUg62lIEdreGAn2TKyoY/u8yViyPv9Pb874/GczlREzJD2FK3JWkOz+lXUlCCVl8r6jsm/sxqpJaUfNhSDraUgy1lYEdrOOAnmZGeyd72gZWAuwNPP3MsziuKjsrjlejs7UyaF9j2K86P/OrQymE63CshB1vKwZZysKUM7GgNB/wkM9Iz2bIr/gaOoi2oeKcgziuKjs11mwEA62cn14C/In8FAGtn0uFeCTnYUg62lIMtZWBHazjgJ5l9+/YNe7vT7cX86RVoO7UAJ0/GeVFR8MbRNzAvex6KMpPrhcIZngzMz56PPc0TP5POSC0p+bClHGwpB1vKwI7WcMBPMhdeeOGIX7ty2WkAwB9+UxOv5USFqU28cfSNpDs8p19xQbGlPfijtaTkwpZysKUcbCkDO1rDAT/J1NXVjfi1uz+0GnD24Mnf18ZvQVGw5/genPKdwvvmvc/upVhSnF+M6tZqdPd2T+j7RmtJyYUt5WBLOdhSBna0hgN+ksnPzx/xa+WX3wJP0Wbs2DsrjiuavL/U/AUAknbALykogYbGvhMT+zXiaC0pubClHGwpB1vKwI7WcMBPMqdPnx7xa8rhQPGcnehovQA11YE4rmpyXjnyCpZNW4aC9OR8gXD/mXQm+o62o7Wk5MKWcrClHGwpAztawwE/yXi93lG/fusVDgDAz3+4PR7LmTRf0IfNRzfjqnlX2b0Uy2ZNmYUsb9aEj8MfqyUlD7aUgy3lYEsZ2NEaDvjC3Pm3HwWm1OK5Vyb+zqp22HJsCwLhQFIP+EqpgXe0JSIiIrIbB/wk4/f7R/16TsFsFMz6Kw4dLkVvb5wWNQl/qfkLXIYr6d7B9mzF+cXY27wXpjbH/T1jtaTkwZZysKUcbCkDO1rDAT/JZGVljXmfG0oaYQYz8PgvJ35u9nh7+fDLuHjmxUhzp9m9lEkpLihGd7AbNa3jP0XpeFpScmBLOdhSDraUgR2t4YCfZJqbm8e8z1e+cDng7sRD/9sYhxVZd6z9GPYc34MbLrjB7qVMWklBCYCJvdB2PC0pObClHGwpB1vKwI7WcMBPMrNmjX0KzAvL1yFnzkvYvX8VQqE4LMqi5w8+DwC4ceGNNq9k8pbkLYHTcE7oOPzxtKTkwJZysKUcbCkDO1rDAT/JHDx4cFz3u2FVNUK+PDz1q7djvCLrnj/4PC7IuQALpy60eymT5nV6sTh38YT24I+3JSU+tpSDLeVgSxnY0RoO+Elm+fLl47rf1/7xSsDVjR/8/FiMV2RNZ6ATfz3yV2xcuBFKKbuXExUlBSV4+/j4n1CNtyUlPraUgy3lYEsZ2NEaDvhJpqKiYlz3W1h6EfLnvojd71yCnp5wjFc1cS/XvIzecC9uvDD5D8/pV1JQgsbORpzoPjGu+4+3JSU+tpSDLeVgSxnY0RoO+EmmrKxs3Pe96+oGmP4cfPfrf47hiqx57r3nkO3NxrpZ6+xeStT0v9B2vG94NZGWlNjYUg62lIMtZWBHazjgJ5mJPJP92rc+BpV5FA//LrFOQekL+vBs1bO4edHNcBpOu5cTNRM9kw73SsjBlnKwpRxsKQM7WsMBP8lM5JlsRvZUlC77ExqPrsfb28d/fvZYe+HQC+js7cRHl3/U7qVEVU5KDmZNmTXu4/C5V0IOtpSDLeVgSxnY0RoO+EmmsnL8p2EEgO/843xAaXzhy7titKKJ+/W+X6MgvQCXzbnM7qVEXUlBybj34E+0JSUutpSDLeVgSxnY0RoO+Elm6dKlE7r/+z54NQoWPI8tO6/BqebOGK1q/E77T+OFQy/g1qW3wmE47F5O1JXkl+C9U++hJ9gz5n0n2pISF1vKwZZysKUM7GgNB/wkU11dPeHvufeuduhAFr7w2edjsKKJ+f2B36M33Cvu8Jx+JQUlMLWJd068M+Z9rbSkxMSWcrClHGwpAztawwE/yRQVFU34e75438eRVvgWnvrLOnR1+GKwqvH7+e6fY1HuIpQXltu6jlhZOX0lgPG90NZKS0pMbCkHW8rBljKwozUc8JNMS0vLhL9HGQbuvf0QQp2z8am7fzvsfb75zUkubBx2N+3GjoYd+Ez5Z8S8udXZZk+ZjSmeKXi7aewX2lppSYmJLeVgSzmGbRmP/9lRVPFn0hoO+EkmPT3d0vd97T8+jowZm/Gbl65GS1PrOV//l3+Z7MrG9rOdP0OqKxV3FN8R+z/MJkqpyAttm8feg2+1JSUetpSDLeUYtmU8/mdHUcWfSWs44CeZYDBo6fsMh4F///tmmD0FuOW2P0Z5VWM71XMKv37n17ht2W3I8mbF/c+Pp5KCEuxt3ouwOfo7CFttSYmHLeVgSznYUgZ2tIYDfpIxTdPy937+3g9h9qKnsfnNj+DV596K4qrG9qPtP0JPsAf/sOYf4vrn2qGkoAQ9wR5Ut47+wqDJtKTEwpZysKUcbCkDO1rDAT/JpKamTur7n/3lAsDpx4f/PoRQMBSlVY2u3d+OB7c/iFsW34Kl0+Sf7mplQeSFtmO94dVkW1LiYEs52FIOtpSBHa3hgJ9kWlvPPX5+IkouXoHbb/wt2o5twIdu/r9RWtXofrjth2gPtONr678Wlz/PbovzFsNluMY8k85kW1LiYEs52FIOtpSBHa1x2r0AmpjCwsJJb+OxJz+BVy58Ec+99FE8wH8SiwAAIABJREFU9tMXcMdnb4jCyoZX31GP7731Pdyy+BaUTi+N2Z+TSNwON5ZOW4rdTbtHvV80WlL8aA2EQpFLOBy5mGbk4nIVork5cl3rM7effbHytdFun8jaJ/pYJ0opwDDG/3Ei943GtgwDcDiGXoY7mRd/LuVgSxnY0RoO+EnmyJEjWLJkyaS2YTgMbHrmAiy75DjuvrcES5fvBbAiOgs8y1f+8hWEzTAeuOqBmGw/UZVPL8fTVU9Daz3iKUGj0TKR9Q/Evb2xvwSDZ4bvsy/hcHS+NvphoCnx+mulaDNCgApDGSZghAFlQhkBKCNyW+R2E0qZA58PvWgow4RhmFAODaX6PnfoyG1G5KPh0H3XNQyHCWUgct3QMBwaDoeGwzHMExEn4DAUHA7A6QRczshHp1PB5QKcjshHl1PB6VJwORXcLgWnU8HtMuB2GXC5Bl3vu93jcsDtVvC4HZHrfbd53JHrXrdz4GtetxNetxMOw0iqUxxL/2/s+YIdreGAn2QWLVoUne2sWIAnf/QyPvx3a7H+g33nmK2sjMq2+/2haROeeOcJ3L/wU5hb1wHURXf7iazcLMDDvlbUbn0Rc9NmDHufRaYZ9b/zkWgN9PgNdPvOXHp8Cr6AAX+vAZ9fDfnoD/R/TcEfMCLXAwr+3r7b+77m8w++z1nfG4jNEYBKaXjcGm5X38Wp4XRquJwaTkf/BXAMuu50argdGqkOwOnVQ7/miHx//3XH4NtH+ZphaDj69x7DhMOhInuLlR7YY3zmuoYCxrhdw1Bnvg6l0R3uxulQO9pDHegMd6Lb7EZXuBvd4R50hbvQEepGV7gHnaEedIW60RXyoSfshz/ci7A+6zU2avy75V2GCy7DAZfq/+iEy+i79N3mUA4YMGBAwVAOKBhwwAGlI7cDfV/XTiiogY8KTigYMLQD6LuvggPQgNYGoAFTK0Ar6P6LqaABwDSggTO3D9wv8r1aA+j7qM/+fm1Am5GLaSqYpgFTA2ZYnfncVAib6sx9wpGPWp+5T//XIh+NYT4q6OCZP0trB0zTAExH3+cGtOmIrNt0RB6TjnwNpiPyd2BG/m5g9l20AegE+N+1CkeeEPVdlBH5XDnCUEYIMMIwjHDf55GPhhHue0IThsMRue5wmH1PaiLXHYaGw2nCaWg4zvo5dvZ97nL0PblxaLic6PvZR+TiAtxOBY9Twe0CvK7IdZdT481X6uF1O+BNccHrdWMjgM2v7IM3xY2UVC9S07xISfPCm5aCFK8LbreCwYOXE0q05p7zjdJWfheb4MrLy/WuXbvsXkZM7N69G6Wl0TvU5V/vewJff+AWIOzBYU825gZOR2W7TenAis8AMzuArQ8DntHPGClOxXSg/NPAU08BHz4w/u/TAPzwogOZ51w6kYFupKEbaehB6sD18Vx6kGbpcSiY8MIPL/xIgW9C173ww4MA3OiN6sWB5D6jggZwKhU4OgWomwIczQIaM4DmNKA5/czHk6lAyDH8NgwTyPJHLtn+M9czA0B6L5DWC6QFz3xMDQ5/W0oQcIfPXDxhwGECybOPVj4NIGwAIQPohYGA4YDfcKLXcMJvOBFQTvSqyMdA/+dG5LZe5UQvzlwPKicCyoWgciKIM7cFceZjCH0fVeR6/+dhnPk8DCdCOvIxrM/cZg66zdROhLQLpnbCHHTb4IvWTmhz6HWtnYAZuY7Blyg9wdFQ6Hu6ODIVBowg4AhCGYMvIRhGEEb/dUcIDiMIwwjBYYQHPjocYTiMEJyOMJyOMBwOE05HGC6HCafThMuh4XKacDoiOylcfU9UXE4FtxtwuyK/hfG4FTxuI/JbFY8Br9sBj9cBr9cFr9cZ+ZjiijxZSfHAm+pBSv8lzYvU9FSkpHpgGMn9Ex3tuSfZKaUqtNblY90vAXYJ0ERE+x/5/d+5DcGMP+Ff/7/rsShzB/70zztw5ezJvWK92/TjAzVfR7e/Do+vfACea86Pt5nWGvD1OtDW5QI6DDjf+S6euOQqdF1+NTp8LnT0OAd9dKKjxzXsx1B4fLuP3M4w0rxhpHlCAx9TPWFke8Io8oaQ5gkjzduFNE870gY+H/oxxR25eN0mvK6h171uE26nOexxyudyAkjvu1BYh1HbexJVgXq8F2jEwUAjantP4GjwJOp6W9CjA0Pu71Eu5DunIN+ZhRnOKSh1ZkU+d2Uh35mFac4pyHVkINuRjixHGtINb1IdKkHWKUR+upwAvDavZeKCfRfrtNYIw0SvGUIgrNETMuELavhCJnxhDV8I8Ac1/CENf1jDHwL8IY1ACAiEVeRj0ESgVyPQawIPA5/46EPoDWr0BoHekEIwBARDCsGwQjCkEAobCIYNhEIGQqYDobCBUNiBkOlAOOxE2HQiPOi6aToRCrlgmqkwTQdM0xV54mK6oPsu6P8YjlyH6YrOX/F4qBDgCAL9T1Qc5z5piXwM9T1JOfPR4ej/GIbDiDxhcRphOJ3mwEeXQ5954uLQcA367YrLHfnocSu43QY8LqPv0DADXo8DHo+z78mKE263E94UF1JSXJEnLCkepKS6kZWaiaaj9UhNT0FKWipcbg8Uf80yJu7BTzIVFRUoKyuL+naVAlRq5JXq//BvVfivf7jY0na6e7vxwac+iL8c/gue+cgz2LhwYzSXGTe9vcDJk8CJE5HLqVNAayvQ1jb049m3BQKjbzc1FcjMjFyczm4UFKQNfD7WJT0dSEs7c3Hy6bnttNZo7GzE7978HTrTO7Hn+B682/Iuqlur0RvuHbhftjcb87LnYXbWbMyeMhuzpszC7CmzBz7PScnhwJ4gYvXfWIq/YVsqZe1V5FGkw2GEe3vh6+5BT5cPvp4Aerr98PkCCPh64fMF4PeF4PcHIxdfEIFAGP7eMAKBMAK9YQR6TQQCZuRJSlAj0PeEJRjSkScrof4nLwZCIYWg2feEJexAMGwg3PeEJRR2nPVkxTHwpMXse5JiDjxZcUKHzzxp6X/igrArvoeQGcEhv2HBOb9lGfykJRh5wuIY+sTFec5vWsy+jxpOhwmXw4Sr/0lL3xMWl1MPHBL27X+/CdNnT4/fYx5kvHvwOeATgMh/817ddRQ3frAHPUcXo+jiN/Hrh4qwfvmccW/j6Omj+NBvP4TdTbvx8I0P4+6Vd8duwROkdWRIb2qKDOyDh/fhrre3j7yt9HQgJydyyc4e+nHw9Uff+yE2NT+Nyi+9jqwshYwMwBXHnTYUfW2+Nmyt34otdVuws3En9hzfg5M9Jwe+Pj97PpZOW4pFUxdhYe5CLJy6EAtzFyI3NdfGVRPRgAQY8CXSpoa/pxc9XT3w9fjg6/bD39MLX08AvoEnLYOerPiD8PtDkesBE4HecOS3Kr0meoNm5AlLb+TJSuSJS/8TFnXmtyvh/usOhMzIk5dw/xOWs37bYppOmGHXkCcuuu/Jy5DfsoRd4zok7K2/VGDt++zZEcBDdISK5bFoV5TNxsmqIG787Ov462NrsKFUY8n1L+Hf7svHTWtKRtzD2BHowM92/gz/tvnfAADPfuRZ3Ljwxpis8Wz9g3tjY2R4b2wcen3wx+He7dowgLy8yGXaNKCs7Mz1/o/TpgFTp54Z3sc7pLfvzsAfn98MM6sGOTkLzvk6jytMfE2dTXjl8Ct4s+5NbDm2BftP7gcAOJQDK/JX4MYLb0RJQQlSO1Lx4Q0fRqYn0+YV02Tx51IOtowfZSikpHuQku4BkB3VbdvR0TQjZ0+LPGnxwdftg6+nF76+37SUrE38N+3kHvwkY5omjBgce3b2To2d+0/g4188gvf+GnmS6Fm0CaVXHMEV13RjXlEGFBQaOhuws3EnXjn8CnqCPbhuwXX46Q0/xZysOZNeTzgc2Zve1DTyZbTBPTsbKCwEpk+PfOy/Pn36maE9Ly8ytMfqUL7K45Uo+Z8SPPHBJ3DrslvP+XqsWpJ1veFebKnbgj/X/BkvVb+EyubIWY6meKZg7cy1WDdzHdbNXIeLZlyENPeZFy6zpRxsKcewLbkHP+nwZ3IoHqIjdMA/cOBATM4HO9J/8/Yf6sS93zmM156bgZ5TuQBMILcKmLEDmP42phX14LLiOfjE+utx6cKV8HiGf/OYUChy2MvgS1vb8IP78eMYeNOgs2Vnnzu0n329oABISYDTkgfDQWR+JxOfW/U5PHD1ue8DEKuWNDFdvV3406E/4bcHfouXql9CV28XXIYL62atw7Xzr8U1C67BivwVMNTI/4NhSznYUo5hW3LATzr8mRyKA77QAd/n8yElBtPrWP/N0xrYswd4+jk/3tqmsWeXG62nzj2Hn8sVeQGo1mfe6TMcHv3Fp4YR2aPev4f97EtBwZmP3iQ7jcSah9fA6/Ri012bzvlarFrS2AKhAP7w3h/w5P4n8eKhF+EL+ZCflo+bFt2E6y+4HpfPuRwZnoxxb48t5WBLOYZtyQE/6fBncigegy9UY2Mj5s+fH/c/Vylg5Upg5crIhK010NICHDkSubS0AB0dkUt399C3hjeMyNA/ZcrQS3Z2ZGifNi1yP4nKC8vxaOWjMLV5zh5gu1qez95uehu/2vMrPL7vcbT6WjE9fTo+ufKT+PDSD2PdzHVwGNb+IbKlHGwpB1vKwI7WcMBPMjk5OXYvAUBk4O9/cepFF9m9msRVXliO/9753zh46iAW5Q59N75EaSldIBTAU/ufwo+2/wgVTRXwODy4efHNuLvkblw590rLQ/1gbCkHW8rBljKwozUc8JNMT08PsrOj+wp1ip3ywshv0SoaK84Z8Nkytk50n8BDux7CT3f+FM3dzVicuxg/ue4n+OjyjyI7Jbp/72wpB1vKwZYysKM1HPCTTKxeSf6Nb8Rks+e9RbmLkOpKxY6GHbh9xe1DvsazAsTG8a7j+M8t/4mf7foZfCEfrr/genxp9Zfwvnnvi9mbSbGlHGwpx7At+T+7pMOfSWs44CcZV4zeKemb34zJZs97TsOJVYWrsK1h2zlfi1XL89XxruP4zpvfwf9U/A+C4SBuX3E7vnrJV8/5zUkssKUcbCnHsC35P7ukw59Ja/i0KMl0dXXZvQSaoLVFa/F209vwh/xDbmfL6Oju7ca3Xv8WFjy4AD/Z8RPctuw2VH2+Co/e9GhchnuALSVhSznYUgZ2tIZ78JNMbi7f8j7ZrClag6AZREVjBdbNWjdwO1tOjqlNPFb5GL7216+hsbMRH1z8QXznfd/BgmHeNTjW2FIOtpSDLWVgR2u4Bz/J1NfX270EmqC1M9cCALbWbx1yO1tat695H9b97zrc/dzdmJk5E2/e/SZ+9ze/s2W4B9hSEraUgy1lYEdruAc/ySxYYM8AQ9ZNS5uGednzzhnw2XLi+g/H+a+t/4XslGw8etOj+PiKj8fsxbPjxZZysKUcbCkDO1rDPfhJZv/+/XYvgSxYW7QWW49txeB3jmbLidl8dDOW/2w5vvfW93Bn8Z2o+lwV7ii+w/bhHmBLSdhSDraUgR2t4YCfZIqLi+1eAlmwtmgtmrqacKzj2MBtbDk+gVAA971yHy595FIopbDpzk345Qd+iampU+1e2gC2lIMt5WBLGdjRGg74SaaiosLuJZAFa4rWAAC2HjtzmA5bju3AyQNY/fBqfHfLd3FP6T3Y8+k9uHTOpXYv6xxsKQdbysGWMrCjNWrwIQNSlJeX6127dtm9DKIBwXAQU74zBZ8q+xR+eO0P7V5OUvh/e/8fPv3HTyPNlYZfbvwlblx4o91LIiIispVSqkJrXT7W/bgHP8nwmWxycjlcWDVj1ZAX2rLl8PwhP/7uj3+Hjz/zcZQXlqPy7yoTfrhnSznYUg62lIEdreEefKI4ue+V+/D9rd9H+33tSHGl2L2chFTfUY+bnrwJFU0V+MrFX8G3r/w2nAZP9kVERARwD75Y+/bts3sJZNH6WesRNIPYVr8NAFuebWfDTqz6xSocPHUQz3zkGXz3qu8mzXDPlnKwpRxsKQM7WsMBP8lceOGFdi+BLFo3ax0UFN44+gYAthzsqf1PYcMjG+BxePDWJ9/CTYtusntJE8KWcrClHGwpAztawwE/ydTV1dm9BLIoy5uFkoISvFEXGfDZEtBa47tvfhcf+d1HUDq9FDv+dgeWTVtm97ImjC3lYEs52FIGdrSGA36Syc/Pt3sJNAkbZm/A1mNb0RvuPe9bmtrEl1/+Mu579T7cuuxWvHrHq5iWNs3uZVlyvreUhC3lYEsZ2NEaDvhJ5vTp03YvgSZhw+wN8IV82NW467xuGTJD+MRzn8D3t30fn1/1eTx+y+PwOr12L8uy87mlNGwpB1vKwI7WcMBPMl5v8g5BFHmhLQC8cfSN87alL+jDB5/6IB6tfBTfvPSbePC6B2Go5P5P0fnaUiK2lIMtZWBHa5Li/6pKqWuVUu8ppaqVUvfZvR4iq/LS8rAkbwleP/q63UuxRU+wBzf8+gY8/97z+Ml1P8E3LvsGlFJ2L4uIiEiUhB/wlVIOAP8N4DoASwDcppRaYu+q7OP3++1eAk3ShlkbsKVuC7p6uuxeSlz1BHtw4xM34vWjr+Oxmx/D5y76nN1Lihr+XMrBlnKwpQzsaE3CD/gALgJQrbU+rLXuBfAkgA/YvCbbZGVl2b0EmqQr5l6Bzt5O1Phr7F5K3PQEe7DxiY147chrePSmR/GxFR+ze0lRxZ9LOdhSDraUgR2tSYYBfwaAY4M+r++7bQil1KeUUruUUruamprQ0tKCpqYmNDQ0oK2tDTU1NfD5fDhw4ABM08Tu3bsBnHkL5N27d8M0TRw4cAA+nw81NTVoa2tDQ0MD+rdXW1uLrq4uVFVVIRQKobKycsg2+j/u27cPgUAAhw4dQkdHB+rq6nDixAmcOHECdXV16OjowKFDhxAIBAbewOHsbVRWViIUCqGqqgpdXV2ora1FS0sLqqurxT0miZ1Ge0xTO6dCQeHX234t5jGN1qm1oxVX/+/V+OuRv+IHl/4AV+ZdmfSP6exO1dXV4h6ThH97Vh5Tc3OzuMcksdN4HlNNTY24xySx01iPafDPpJTHNJlO46W01uO+sx2UUh8GcI3W+p6+zz8O4CKt9d+P9D3l5eV6165d8VpiXAUCAXg8HruXQZO06her4DJceOuTb9m9lJjqDfdi4xMb8XLNy/jVB36FO0vutHtJMcGfSznYUg62lIEdh1JKVWity8e6XzLswa8HMHPQ50UAGm1ai+0OHjxo9xIoCq6adxV2NOxAR6DD7qXETNgM445n7sCfa/6MX9z4C7HDPcCfS0nYUg62lIEdrUmGAX8ngAuUUnOVUm4AtwL4g81rss3y5cvtXgJFwdXzr0ZYh7GpdpPdS4kJrTU+/6fP4zf7f4P/vOo/8cnST9q9pJjiz6UcbCkHW8rAjtYk/ICvtQ4B+DyAPwN4F8BTWuv99q7KPv3HbFFyW1u0Fl6HF3+p+YvdS4mJr7/2dTxU8RDuXXcvvnzxl+1eTszx51IOtpSDLWVgR2sS/hh8KyQfg09yXP/49TjcdhhVn6+yeylR9eD2B/HFl76Ie1beg5/f+HOe556IiChKJB2DT4Pwmawci92L8d6p93C47bDdS4ma3x/4Pb700pdwy+Jb8ND7Hzpvhnv+XMrBlnKwpQzsaA334BPZpKa1Bgt+vAA/vOaH+OKaL9q9nEnbemwrrnjsCqwsWIlX73gVKa4Uu5dEREQkCvfgC9V/LlZKfl3HurAkbwn+cDD5XzNe3VqNjU9uxIyMGXju1ufOu+GeP5dysKUcbCkDO1rDAT/JLF261O4lUJQsXboUGy/ciNdrX0ebr83u5VjW0tOC6x+/HlprvHj7i8hLy7N7SXHHn0s52FIOtpSBHa3hgJ9kqqur7V4CRUl1dTU2LtyIsA7jpeqX7F6OJf6QHzc9eRPq2uvw3K3P4YKpF9i9JFvw51IOtpSDLWVgR2s44CeZoqIiu5dAUVJUVISLZlyEaWnTkvIwHVObuPu5u7Hl2BY8dvNjWDdrnd1Lsg1/LuVgSznYUgZ2tIYDfpJpaWmxewkUJS0tLXAYDrz/gvfjxUMvojfca/eSJuSbm76JJ995Ev9x5X/gb5b+jd3LsRV/LuVgSznYUgZ2tIYDfpJJT0+3ewkUJf0tb1p0E9oD7Xj18Ks2r2j8Hqt8DP/6xr/ikys/iXvX3Wv3cmzHn0s52FIOtpSBHa3hgJ9kgsGg3UugKOlvefX8qzHFMwVP7n/S5hWNzxtH38A9f7gHV8y9Aj+94afnzbnuR8OfSznYUg62/P/bu/cgq+vzjuOfZ1lEiUQkqBERBbU2Kmp06yWJ0XoZtURpjI1gYtBqEs1k2s4kM0mrtdHEZKyT1NhGba1GTcWaKAYvsUYSI1SKye6WdQNuBeQil0JW7gFWDufpHxzT3c1ezv78sd/ze3i/ZhhZ9sfuc3j7hWd/7B5ioGM2LPgFUy6XU4+AnLzTclj9MF32gcv05GtPakdpR+Kp+rborUX6+GMf11GjjtLjf/a49hmyT+qRagLnMg5axkHLGOiYDQt+wQwfPjz1CMhJ55ZTTpiiLW9v0XOLnks4Ud/e2vaWJk2fpDqr0zNTn9GB+x2YeqSawbmMg5Zx0DIGOmbDgl8w69evTz0CctK55bnjz9VBww/S9F9PTzhR7zpKHbrsh5dp+abl+vEVP9ZRo45KPVJN4VzGQcs4aBkDHbNhwS+YMWPGpB4BOencsr6uXldOvFIz22aqfVttPWOAu+tzz3xOs5fP1oOTH9yrnw6zN5zLOGgZBy1joGM2LPgFs3Tp0tQjICfdW177wWu1s7xTj7z6SKKJenbbnNv0cMvDuuWcWzR14tTU49QkzmUctIyDljHQMRtz99Qz5K6hocEbGxtTj7FHlMtl1dXxcVkEPbU87b7TtKO0Qy3Xt9TEs9M82vqorpxxpa468So99KcP1cRMtYhzGQct46BlDHTsysya3L2hv+v4FSuY+fPnpx4BOemp5bUfvFat61r1y1W/TDBRV3PfnKtrZl6js8adpfsuuY/lvg+cyzhoGQctY6BjNtzBB2rIlo4tGvsPYzXpmEma/ol0X3D7xoY3dPq/nq6R+47UvGvn6X3D35dsFgAAsBt38INqampKPQJy0lPLEcNG6LOnfFY/WvgjvbnpzQRTSRt3bNSk6ZO0q7xLz175LMt9FTiXcdAyDlrGQMdsuIMP1JjlG5drwl0T9OUzv6zbL7h9UN/3zl07dfEjF2v28tl64aoXdPaRZw/q+wcAAL3jDn5Qzc3NqUdATnprecTII3T5cZfr3qZ7tX774D3/r7vrhmdv0M+W/kz3XXIfy/0AcC7joGUctIyBjtmw4BfMySefnHoE5KSvljeddZO2dGzRt+d+e9DmuWPuHbr/v+/XjWfdqGknTxu09xsB5zIOWsZByxjomA0LfsG0tbWlHgE56avlxEMm6ooTrtB3X/mu1v123R6fZcZrM/SVWV/RFcdfoVv/+NY9/v6i4VzGQcs4aBkDHbNhwS+Y8ePHpx4BOemv5dfO/pq2l7br1pf27ML98oqX9ekZn9YZY8/Q9yd/X3XGbwsDxbmMg5Zx0DIGOmbDn+QFs3r16tQjICf9tTx29LH6QsMXdE/jPWpcvWe+aHzum3N10SMXaex7x2rmlJnab+h+e+T9RMe5jIOWcdAyBjpmw4JfMKNGjUo9AnJSTctvnPsNHfyeg3X9M9drV3lXru9/7ptzdeG/XahD9z9Uv7j6Fzr4PQfn+vb3JpzLOGgZBy1joGM2LPgFs23bttQjICfVtDxg3wN054V3qmlNk74+++u5ve/nFz/fZbkfM2JMbm97b8S5jIOWcdAyBjpmw4JfMHV1JIui2pafPP6TmnbSNN360q366ZKfvuv3e3/z/Zo0fZKOHnW0Xrr6JZb7HHAu46BlHLSMgY7Z8KtWMEOHDk09AnJSbUsz092T7tbxBx+vqU9M1YJ1CzK9v1K5pK/O+qque/o6nT/hfM2+erYOHXFopreFrjiXcdAyDlrGQMdsWPALZuvWralHQE4G0nL40OGaOWWmhg0Zpgt+cIFeXfvqgN7Xso3LdM6D5+j2l2/X50/9vJ6e+rRGDBsx0JHRC85lHLSMg5Yx0DEbFvyCGT16dOoRkJOBtpxw4ATN+sws1VmdPvLARzS9dbrcvc+fs33ndn1zzjd13PeOU8vaFk2/bLru/di9GjqEOyJ54lzGQcs4aBkDHbNhwS+YlStXph4BOcnS8riDjtO86+Zp4iET9akZn9K5D5+rZ19/Vm/vevt315S9rPn/O183v3izxt05Tjf+/EZN+oNJWvCFBZo6cWqeDwEVnMs4aBkHLWOgYzbW3x3AImpoaPDGxj3zvOGplUol1dfXpx4DOXg3LUvlku751T26bc5tWvvbtdpnyD6acOAE1dfVa+Xmldq4Y6NMpkuOvURfOvNL+ugRH815enTGuYyDlnHQMgY6dmVmTe7e0O91LPjF0tLSopNOOin1GMhBHi3f3vW2nl/8vOasmKM3NryhUrmk9+//fn3o8A/pvPHn6bD3HpbTtOgL5zIOWsZByxjo2BULftAFHwAAAHunahd8Pge/YJqamlKPgJzQMg5axkHLOGgZAx2z4Q4+AAAAUADcwQ+Kj2TjoGUctIyDlnHQMgY6ZsMdfAAAAKAAuIMfVGtra+oRkBNaxkHLOGgZBy1joGM23MEvmI6ODg0bNiz1GMgBLeOgZRy0jIOWMdCxK+7gB7VixYrUIyAntIyDlnHQMg5axkDHbFjwC+aQQw5JPQJyQss4aBkHLeOgZQx0zIYFv2A2btyYegTkhJZx0DIOWsZByxjomA0LfsHsu+++qUdATmgZBy3joGUctIyBjtmw4AMAAACBsOAXzI4dO1KPgJzQMg5axkHLOGgZAx2zYcEvmJEjR6YeATmhZRy0jIOWcdAyBjpmw4JfMGvXrk09AnJCyzhoGQct46BlDHTMhgW/YMaNG5euwjArAAAJ2klEQVR6BOSElnHQMg5axkHLGOiYDQt+wbz++uupR0BOaBkHLeOgZRy0jIGO2Zi7p54hdw0NDd7Y2Jh6DAAAACA3Ztbk7g39Xccd/IJpampKPQJyQss4aBkHLeOgZQx0zIY7+AAAAEABcAc/KD6SjYOWcdAyDlrGQcsY6JgNd/ABAACAAuAOflAtLS2pR0BOaBkHLeOgZRy0jIGO2XAHv2BKpZLq6+tTj4Ec0DIOWsZByzhoGQMdu+IOflCLFy9OPQJyQss4aBkHLeOgZQx0zIYFv2DGjh2begTkhJZx0DIOWsZByxjomA0LfsG0t7enHgE5oWUctIyDlnHQMgY6ZsOCXzD7779/6hGQE1rGQcs4aBkHLWOgYzYs+AWzc+fO1CMgJ7SMg5Zx0DIOWsZAx2xY8AumXC6nHgE5oWUctIyDlnHQMgY6ZsOCXzDDhw9PPQJyQss4aBkHLeOgZQx0zIYFv2DWr1+fegTkhJZx0DIOWsZByxjomA0LfsGMGTMm9QjICS3joGUctIyDljHQMRsW/IJZunRp6hGQE1rGQcs4aBkHLWOgYzbm7qlnyF1DQ4M3NjamHmOPKJfLqqvj47IIaBkHLeOgZRy0jIGOXZlZk7s39Hcdv2IFM3/+/NQjICe0jIOWcdAyDlrGQMdsuIMPAAAAFAB38INqampKPQJyQss4aBkHLeOgZQx0zIY7+AAAAEABcAc/qObm5tQjICe0jIOWcdAyDlrGQMdsuINfMHw1eRy0jIOWcdAyDlrGQMeuuIMfVFtbW+oRkBNaxkHLOGgZBy1joGM2Nb3gm9kdZtZmZq+a2ZNmNjL1TKmNHz8+9QjICS3joGUctIyDljHQMZuaXvAlvSDpBHc/UdLrkv468TzJrV69OvUIyAkt46BlHLSMg5Yx0DGbml7w3f2n7l6qvDhP0tiU89SCUaNGpR4BOaFlHLSMg5Zx0DIGOmZT0wt+N38u6bnUQ6S2bdu21CMgJ7SMg5Zx0DIOWsZAx2ySL/hmNsvMft3Dt8mdrrlRUknSI328nc+ZWaOZNa5Zs0bt7e1as2aNVq1apQ0bNmjJkiXavn27Fi5cqHK5/LunXXrnH1Bobm5WuVzWwoULtX37di1ZskQbNmzQqlWr9M7bW7ZsmbZu3aq2tjaVSiW1tLR0eRvv/Le1tVUdHR1atGiRNm/erBUrVmjdunVat26dVqxYoc2bN2vRokXq6OhQa2trj2+jpaVFpVJJbW1t2rp1q5YtW6b29nZt2rQp3GOK2Kmax7R06dJwjylip2oe06ZNm8I9poidqnlMdXV14R5TxE7VPKYtW7aEe0wRO/X3mDqfySiP6d10qlbNP02mmU2TdL2k89y9qg/jIj9NZnt7u0aPHp16DOSAlnHQMg5axkHLGOjYVbVPk1nTC76ZXSTpO5LOdvffDODn/UbS8j02WFqjJbWnHgK5oGUctIyDlnHQMgY6dnWEux/U30W1vuAvljRM0luVH5rn7tcnHCk5M2us5iM31D5axkHLOGgZBy1joGM29akH6Iu7H516BgAAAKBIkn+RLQAAAID8sOAXz7+kHgC5oWUctIyDlnHQMgY6ZlDTn4MPAAAAYGC4gw8AAAAEwoIPAAAABMKCX6PM7CIz+x8zW2xmX+3h9Veb2W/MbH7l23Up5kTfzOwBM1tnZr/u5fVmZndVOr9qZqcM9oyoThUtzzGzTZ3O5M2DPSP6Z2aHm9mLZvaamS0ws7/s4RrOZQFU2ZJzWQBmtq+Z/dLMWiotb+nhmmFm9ljlXL5iZkcO/qTFUdNPk7m3MrMhkr4n6QJJKyX9ysyecvfu/0bxY+7+xUEfEAPxoKR/kvRwL6+/WNIxlW+nS7qn8l/UngfVd0tJmuPuHxuccZBRSdKX3L3ZzEZIajKzF7r9/sq5LIZqWkqcyyLokHSuu281s6GS/tPMnnP3eZ2uuVbSBnc/2symSLpd0hUphi0C7uDXptMkLXb3N9z9bUn/Lmly4pmQgbvPlrS+j0smS3rYd5snaaSZHTo402EgqmiJAnD3Ne7eXPn+FkmvSTqs22WcywKosiUKoHLWtlZeHFr51v1ZYCZLeqjy/cclnWdmNkgjFg4Lfm06TNKbnV5eqZ5/0/pE5a+PHzezwwdnNOSs2tYohjMrf8X8nJkdn3oY9K3yV/wflPRKt1dxLgumj5YS57IQzGyImc2XtE7SC+7e67l095KkTZLeN7hTFgcLfm3q6SPS7h/JPi3pSHc/UdIs/f9HtSiWalqjGJolHeHuJ0n6R0k/TjwP+mBm+0t6QtJfufvm7q/u4adwLmtUPy05lwXh7rvc/WRJYyWdZmYndLuEczkALPi1aaWkznfkx0pa3fkCd3/L3TsqL94n6dRBmg356rc1isHdN7/zV8zu/hNJQ81sdOKx0IPK5/g+IekRd5/RwyWcy4LoryXnsnjcfaOkX0i6qNurfncuzaxe0gHi0yZ7xYJfm34l6RgzG29m+0iaIumpzhd0+3zQS7X7cw9RPE9J+kzlWTvOkLTJ3dekHgoDZ2bvf+fzQc3sNO3+/fWttFOhu0qj+yW95u7f6eUyzmUBVNOSc1kMZnaQmY2sfH8/SedLaut22VOSplW+f7mknzv/WmuveBadGuTuJTP7oqTnJQ2R9IC7LzCzWyU1uvtTkv7CzC7V7mcRWC/p6mQDo1dm9qikcySNNrOVkv5Ou794SO5+r6SfSPoTSYslbZN0TZpJ0Z8qWl4u6QYzK0naLmkKf/jUpA9LukpSa+XzfSXpbySNkziXBVNNS85lMRwq6aHKswjWSfqhuz/Tbe+5X9IPzGyxdu89U9KNW/uM/88BAACAOPgUHQAAACAQFnwAAAAgEBZ8AAAAIBAWfAAAACAQFnwAAAAgEBZ8AAAAIBAWfADAgJnZP5vZh1PPAQD4fTwPPgBgwCr/sNCp7r4r9SwAgK64gw8A6JGZnWpmL3Z6+QQz+y8z+4Ck1919V2/XJBkYACCJO/gAgF6Y2XBJi9z9sMrLMyTdLelESRvd/YHernH3WanmBoC9HXfwAQA9cvdtknaY2UgzO0XSgZXF/UJJ/9HPNQCAROpTDwAAqGkLJf2hpL+VdFPljv1Id1/d2zWSZGb1kv5ekkta7u53DerUALAXY8EHAPRlgaRrtPtTOl82s0mSXuzrmsqP3SBppru/NHijAgAkFnwAQN8WSHpI0h9VXr5Y0uP9XCNJp0i6Z49PBwD4PXyRLQCgambWLOl0d9/Zz3WTJV0qab2kb7n7+sGYDwDAgg8AAACEwrPoAAAAAIGw4AMAAACBsOADAAAAgbDgAwAAAIGw4AMAAACBsOADAAAAgbDgAwAAAIGw4AMAAACBsOADAAAAgfwfrbxx1nv2OvcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# This cell is for plotting the Maxwell loops along one specified isotherm (chosen with myIdx)\n", + "T_iso = T_sat[myIdx]\n", + "tau_iso = T_crt/T_iso\n", + "p_iso = p_vap[myIdx]\n", + "print(\"tau_iso = \" + str(tau_iso))\n", + "print(\"T_iso = \" + str(T_iso))\n", + "print(\"p_sat(T_iso) = \" + str(p_iso))\n", + "print(\"d_vap(T_iso) = \" + str(d_vap[myIdx]))\n", + "print(\"d_liq(T_iso) = \" + str(d_liq[myIdx]))\n", + "\n", + "# copy coeffs of that single point\n", + "c = x[myIdx,:]\n", + "print(\"coeffs = \" + str(c))\n", + " \n", + "# get a density range\n", + "d_min = 0.8*d_vap[myIdx] \n", + "#d_min = d_trp_vap\n", + "# d_max = 1.9*d_liq[myIdx]\n", + "d_max = PropsSI('D','T',T_iso,'P',p_max,FluidName)\n", + "d_max = d_trp_liq\n", + "rhos = np.linspace(d_min, d_max, num=nPoints)\n", + "deltas = rhos/d_crt\n", + "# for plotting, we will use volume (d_min is high v, d_max is low v)\n", + "vs = 1/rhos\n", + "\n", + "# calculate Helmholtz energy and pressure for that density range, at T_iso\n", + "# stable\n", + "fs = np.ones(nPoints)\n", + "ps = np.ones(nPoints)\n", + "# equation of state, without chacking phase\n", + "fes = np.ones(nPoints)\n", + "pes = np.ones(nPoints)\n", + "# meta-stable\n", + "fms = np.ones(nPoints)\n", + "pms = np.ones(nPoints)\n", + "for idx in range(0,nPoints):\n", + " # stable\n", + " HEOS.unspecify_phase()\n", + " HEOS.update(CP.DmassT_INPUTS, rhos[idx], T_iso) \n", + " #fs[idx] = Rs*T_iso*(HEOS.alpha0() + HEOS.alphar())\n", + " fs[idx] = HEOS.umass() - T_iso*HEOS.smass()\n", + " ps[idx] = HEOS.p()\n", + " # eos\n", + " HEOS.specify_phase(CP.iphase_liquid)\n", + " HEOS.update(CP.DmassT_INPUTS, rhos[idx], T_iso)\n", + " fes[idx] = HEOS.umass() - T_iso*HEOS.smass()\n", + " pes[idx] = HEOS.p()\n", + " # meta stable interpolation\n", + " # p = -(df/dv)_T\n", + " # s = -(df/dT)_v\n", + " # cv = T*(ds/dT)_v = -T*(dsf/dT2)_v\n", + " fms[idx] = Rs*T_crt*( +c[0]/tau_iso -c[1]/tau_iso/deltas[idx] +c[2]*log(deltas[idx]) +c[3]*deltas[idx] +c[4]*deltas[idx]**2/2 +c[5]*deltas[idx]**3/3 +c[6]*deltas[idx]**4/4 +c[7]*deltas[idx]**5/5 )\n", + " pms[idx] = Rs*T_crt*d_crt*( 0 +c[1]/tau_iso +c[2]*deltas[idx] +c[3]*deltas[idx]**2 +c[4]*deltas[idx]**3 +c[5]*deltas[idx]**4 +c[6]*deltas[idx]**5 +c[7]*deltas[idx]**6 )\n", + "\n", + "# now plot \n", + "plt.figure(figsize=(width,width*2/1/golden))\n", + "\n", + "plt.subplot(2,1,1)\n", + "plt.plot(vs/v_crt, fs/Rs/T_iso, color='red', label='stable equilibrium')\n", + "plt.plot(vs/v_crt, fes/Rs/T_iso, color='green', label='EoS')\n", + "plt.plot(vs/v_crt, fms/Rs/T_iso, color='blue', label='metastable Maxwell loop')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.legend(loc='upper right')\n", + "plt.ylabel(r'$\\alpha$')\n", + "\n", + "plt.subplot(2,1,2)\n", + "plt.plot(vs/v_crt, ps/p_crt, color='red', label='stable equilibrium')\n", + "plt.plot(vs/v_crt, pes/p_crt, color='green', label='EoS')\n", + "plt.plot(vs/v_crt, pms/p_crt, color='blue', label='metastable Maxwell loop')\n", + "plt.plot(d_crt/d_liq[myIdx], p_iso/p_crt, 'b|', markersize=20)\n", + "plt.plot(d_crt/d_vap[myIdx], p_iso/p_crt, 'r|', markersize=20)\n", + "plt.ylim(top=7)\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.legend(loc='upper right')\n", + "plt.ylabel(r'$p/p_c$')\n", + "plt.xlabel(r'$v/v_c$')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# copy coeffs for all points\n", + "c0 = x[:,0]\n", + "c1 = x[:,1]\n", + "c2 = x[:,2]\n", + "c3 = x[:,3]\n", + "c4 = x[:,4]\n", + "c5 = x[:,5]\n", + "c6 = x[:,6]\n", + "c7 = x[:,7]\n", + "\n", + "# plot the values of all 8 coeffs over T_sat\n", + "plt.figure(figsize=(width,width*4/2/golden))\n", + "\n", + "plt.subplot(4,2,1)\n", + "plt.plot(T_sat, c0, label='c0')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.legend(loc='upper center')\n", + "\n", + "plt.subplot(4,2,2)\n", + "plt.plot(T_sat, c1, label='c1')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.legend(loc='upper center')\n", + "\n", + "plt.subplot(4,2,3)\n", + "plt.plot(T_sat, c2, label='c2')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.legend(loc='upper center')\n", + "\n", + "plt.subplot(4,2,4)\n", + "plt.plot(T_sat, c3, label='c3')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.legend(loc='upper center')\n", + "\n", + "plt.subplot(4,2,5)\n", + "plt.plot(T_sat, c4, label='c4')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.legend(loc='upper center')\n", + "\n", + "plt.subplot(4,2,6)\n", + "plt.plot(T_sat, c5, label='c5')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.legend(loc='upper center')\n", + "\n", + "plt.subplot(4,2,7)\n", + "plt.plot(T_sat, c6, label='c6')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.legend(loc='upper center')\n", + "\n", + "plt.subplot(4,2,8)\n", + "plt.plot(T_sat, c7, label='c7')\n", + "plt.grid(b=True, linestyle=':')\n", + "plt.minorticks_on()\n", + "plt.legend(loc='upper center')" + ] } - ] -} \ No newline at end of file + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +}