#ifndef HELMHOLTZ_H #define HELMHOLTZ_H #include #include "rapidjson_include.h" //#include "Eigen/Core" #include "time.h" #include "CachedElement.h" #include "Backends/Cubics/GeneralizedCubic.h" #include "crossplatform_shared_ptr.h" namespace CoolProp{ // ############################################################################# // ############################################################################# // ############################################################################# // RESIDUAL TERMS // ############################################################################# // ############################################################################# // ############################################################################# #define LIST_OF_DERIVATIVE_VARIABLES \ X(alphar) \ X(dalphar_ddelta) \ X(dalphar_dtau) \ X(d2alphar_ddelta2) \ X(d2alphar_dtau2) \ X(d2alphar_ddelta_dtau) \ X(d3alphar_ddelta3) \ X(d3alphar_ddelta_dtau2) \ X(d3alphar_ddelta2_dtau) \ X(d3alphar_dtau3) \ X(d4alphar_ddelta4) \ X(d4alphar_ddelta3_dtau) \ X(d4alphar_ddelta2_dtau2) \ X(d4alphar_ddelta_dtau3) \ X(d4alphar_dtau4) \ X(delta_x_dalphar_ddelta) \ X(tau_x_dalphar_dtau) \ X(delta2_x_d2alphar_ddelta2) \ X(deltatau_x_d2alphar_ddelta_dtau) \ X(tau2_x_d2alphar_dtau2) \ struct HelmholtzDerivatives { #define X(name) CoolPropDbl name; LIST_OF_DERIVATIVE_VARIABLES #undef X void reset(CoolPropDbl v){ #define X(name) name = v; LIST_OF_DERIVATIVE_VARIABLES #undef X } HelmholtzDerivatives operator+(const HelmholtzDerivatives &other) const { HelmholtzDerivatives _new; #define X(name) _new.name = name + other.name; LIST_OF_DERIVATIVE_VARIABLES #undef X return _new; } HelmholtzDerivatives operator*(const CoolPropDbl &other) const { HelmholtzDerivatives _new; #define X(name) _new.name = name*other; LIST_OF_DERIVATIVE_VARIABLES #undef X return _new; } HelmholtzDerivatives(){reset(0.0);}; /// Retrieve a single value based on the number of derivatives with respect to tau and delta double get(std::size_t itau, std::size_t idelta){ if (itau == 0){ if (idelta == 0){ return alphar; } else if (idelta == 1){ return dalphar_ddelta; } else if (idelta == 2){ return d2alphar_ddelta2; } else if (idelta == 3){ return d3alphar_ddelta3; } else if (idelta == 4){ return d4alphar_ddelta4; } else { throw ValueError(); } } else if (itau == 1){ if (idelta == 0){ return dalphar_dtau; } else if (idelta == 1){ return d2alphar_ddelta_dtau; } else if (idelta == 2){ return d3alphar_ddelta2_dtau; } else if (idelta == 3){ return d4alphar_ddelta3_dtau; } else { throw ValueError(); } } else if (itau == 2){ if (idelta == 0){ return d2alphar_dtau2; } else if (idelta == 1){ return d3alphar_ddelta_dtau2; } else if (idelta == 2){ return d4alphar_ddelta2_dtau2; } else { throw ValueError(); } } else if (itau == 3){ if (idelta == 0){ return d3alphar_dtau3; } else if (idelta == 1){ return d4alphar_ddelta_dtau3; } else { throw ValueError(); } } else if (itau == 4){ if (idelta == 0){ return d4alphar_dtau4; } else { throw ValueError(); } } else { throw ValueError(); } } }; #undef LIST_OF_DERIVATIVE_VARIABLES /// The base class class for the Helmholtz energy terms /** Residual Helmholtz Energy Terms: Term | Helmholtz Energy Contribution ---------- | ------------------------------ ResidualHelmholtzPower | \f$ \alpha^r=\left\lbrace\begin{array}{cc}\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} & l_i=0\\ \displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\delta^{l_i}) & l_i\neq 0\end{array}\right.\f$ ResidualHelmholtzExponential | \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\gamma_i\delta^{l_i}) \f$ ResidualHelmholtzLemmon2005 | \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\delta^{l_i}-\tau^{m_i})\f$ ResidualHelmholtzGaussian | \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\eta_i(\delta-\epsilon_i)^2-\beta_i(\tau-\gamma_i)^2)\f$ ResidualHelmholtzGERG2008Gaussian | \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\eta_i(\delta-\epsilon_i)^2-\beta_i(\delta-\gamma_i))\f$ ResidualHelmholtzNonAnalytic | \f$ \begin{array}{c}\alpha^r&=&\displaystyle\sum_i n_i \Delta^{b_i}\delta\psi \\ \Delta & = & \theta^2+B_i[(\delta-1)^2]^{a_i}\\ \theta & = & (1-\tau)+A_i[(\delta-1)^2]^{1/(2\beta_i)}\\ \psi & = & \exp(-C_i(\delta-1)^2-D_i(\tau-1)^2) \end{array}\f$ ResidualHelmholtzSAFTAssociating | \f$ \alpha^r = am\left(\ln X-\frac{X}{2}+\frac{1}{2}\right); \f$ Ideal-Gas Helmholtz Energy Terms: Term | Helmholtz Energy Contribution ---------- | ------------------------------ IdealHelmholtzLead | \f$ \alpha^0 = n_1 + n_2\tau + \ln\delta \f$ IdealHelmholtzEnthalpyEntropyOffset | \f$ \alpha^0 = \displaystyle\frac{\Delta s}{R_u/M}+\frac{\Delta h}{(R_u/M)T}\tau \f$ IdealHelmholtzLogTau | \f$ \alpha^0 = n_1\log\tau \f$ IdealHelmholtzPower | \f$ \alpha^0 = \displaystyle\sum_i n_i\tau^{t_i} \f$ IdealHelmholtzPlanckEinsteinGeneralized | \f$ \alpha^0 = \displaystyle\sum_i n_i\log[c_i+d_i\exp(\theta_i\tau)] \f$ */ class BaseHelmholtzTerm{ public: BaseHelmholtzTerm(){}; virtual ~BaseHelmholtzTerm(){}; /// Returns the base, non-dimensional, Helmholtz energy term (no derivatives) [-] /** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$ * @param delta Reduced density where \f$\delta = \rho / \rho_c \f$ */ virtual CoolPropDbl base(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.alphar;}; /// Returns the first partial derivative of Helmholtz energy term with respect to tau [-] /** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$ * @param delta Reduced density where \f$\delta = \rho / \rho_c \f$ */ virtual CoolPropDbl dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.dalphar_dtau;}; /// Returns the second partial derivative of Helmholtz energy term with respect to tau [-] /** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$ * @param delta Reduced density where \f$\delta = \rho / \rho_c \f$ */ virtual CoolPropDbl dTau2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d2alphar_dtau2;}; /// Returns the second mixed partial derivative (delta1,dtau1) of Helmholtz energy term with respect to delta and tau [-] /** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$ * @param delta Reduced density where \f$\delta = \rho / \rho_c \f$ */ virtual CoolPropDbl dDelta_dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d2alphar_ddelta_dtau;}; /// Returns the first partial derivative of Helmholtz energy term with respect to delta [-] /** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$ * @param delta Reduced density where \f$\delta = \rho / \rho_c \f$ */ virtual CoolPropDbl dDelta(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.dalphar_ddelta;}; /// Returns the second partial derivative of Helmholtz energy term with respect to delta [-] /** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$ * @param delta Reduced density where \f$\delta = \rho / \rho_c \f$ */ virtual CoolPropDbl dDelta2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d2alphar_ddelta2;}; /// Returns the third mixed partial derivative (delta2,dtau1) of Helmholtz energy term with respect to delta and tau [-] /** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$ * @param delta Reduced density where \f$\delta = \rho / \rho_c \f$ */ virtual CoolPropDbl dDelta2_dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d3alphar_ddelta2_dtau;}; /// Returns the third mixed partial derivative (delta1,dtau2) of Helmholtz energy term with respect to delta and tau [-] /** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$ * @param delta Reduced density where \f$\delta = \rho / \rho_c \f$ */ virtual CoolPropDbl dDelta_dTau2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d3alphar_ddelta_dtau2;}; /// Returns the third partial derivative of Helmholtz energy term with respect to tau [-] /** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$ * @param delta Reduced density where \f$\delta = \rho / \rho_c \f$ */ virtual CoolPropDbl dTau3(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d3alphar_dtau3;}; /// Returns the third partial derivative of Helmholtz energy term with respect to delta [-] /** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$ * @param delta Reduced density where \f$\delta = \rho / \rho_c \f$ */ virtual CoolPropDbl dDelta3(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d3alphar_ddelta3;}; /// Returns the fourth partial derivative of Helmholtz energy term with respect to tau [-] /** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$ * @param delta Reduced density where \f$\delta = \rho / \rho_c \f$ */ virtual CoolPropDbl dTau4(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d4alphar_dtau4;}; virtual CoolPropDbl dDelta_dTau3(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d4alphar_ddelta_dtau3;}; virtual CoolPropDbl dDelta2_dTau2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d4alphar_ddelta2_dtau2;}; virtual CoolPropDbl dDelta3_dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d4alphar_ddelta3_dtau;}; virtual CoolPropDbl dDelta4(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d4alphar_ddelta4;}; virtual void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw() = 0; }; struct ResidualHelmholtzGeneralizedExponentialElement { /// These variables are for the n*delta^d_i*tau^t_i part CoolPropDbl n,d,t; /// These variables are for the exp(u) part /// u is given by -c*delta^l_i-omega*tau^m_i-eta1*(delta-epsilon1)-eta2*(delta-epsilon2)^2-beta1*(tau-gamma1)-beta2*(tau-gamma2)^2 CoolPropDbl c, l_double, omega, m_double, eta1, epsilon1, eta2, epsilon2, beta1, gamma1, beta2, gamma2; /// If l_i or m_i are integers, we will store them as integers in order to call pow(double, int) rather than pow(double, double) int l_int, m_int; /// If l is an integer, store a boolean flag so we can evaluate the correct pow() function bool l_is_int, m_is_int; ResidualHelmholtzGeneralizedExponentialElement() { n = 0; d = 0; t = 0; c = 0; l_double = 0; omega = 0; m_double = 0; eta1 = 0; epsilon1 = 0; eta2 = 0; epsilon2 = 0; beta1 = 0; gamma1 = 0; beta2 = 0; gamma2 = 0; l_int = 0; m_int = 0; l_is_int = false; m_is_int = true; }; }; /** \brief A generalized residual helmholtz energy container that can deal with a wide range of terms which can be converted to this general form * * \f$ \alpha^r=\sum_i n_i \delta^{d_i} \tau^{t_i}\exp(u_i) \f$ * * where \f$ u_i \f$ is given by * * \f$ u_i = -c_i\delta^{l_i}-\omega_i\tau^{m_i}-\eta_{1,i}(\delta-\epsilon_{1,i})-\eta_{2,i}(\delta-\epsilon_{2,i})^2-\beta_{1,i}(\tau-\gamma_{1,i})-\beta_{2,i}(\tau-\gamma_{2,i})^2 \f$ */ class ResidualHelmholtzGeneralizedExponential : public BaseHelmholtzTerm{ public: bool delta_li_in_u, tau_mi_in_u, eta1_in_u, eta2_in_u, beta1_in_u, beta2_in_u, finished; std::vector s; std::size_t N; // These variables are for the exp(u) part // u is given by -c*delta^l_i-omega*tau^m_i-eta1*(delta-epsilon1)-eta2*(delta-epsilon2)^2-beta1*(tau-gamma1)-beta2*(tau-gamma2)^2 std::vector n,d,t,c, l_double, omega, m_double, eta1, epsilon1, eta2, epsilon2, beta1, gamma1, beta2, gamma2; // If l_i or m_i are integers, we will store them as integers in order to call pow(double, int) rather than pow(double, double) std::vector l_int, m_int; //Eigen::ArrayXd uE, du_ddeltaE, du_dtauE, d2u_ddelta2E, d2u_dtau2E, d3u_ddelta3E, d3u_dtau3E; std::vector elements; // Default Constructor ResidualHelmholtzGeneralizedExponential() : delta_li_in_u(false),tau_mi_in_u(false),eta1_in_u(false), eta2_in_u(false),beta1_in_u(false),beta2_in_u(false),finished(false), N(0) {}; /** \brief Add and convert an old-style power (polynomial) term to generalized form * * Term of the format * \f$ \alpha^r=\left\lbrace\begin{array}{cc}\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} & l_i=0\\ \displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\delta^{l_i}) & l_i\neq 0\end{array}\right.\f$ */ void add_Power(const std::vector &n, const std::vector &d, const std::vector &t, const std::vector &l) { for (std::size_t i = 0; i < n.size(); ++i) { ResidualHelmholtzGeneralizedExponentialElement el; el.n = n[i]; el.d = d[i]; el.t = t[i]; el.l_double = l[i]; el.l_int = (int)el.l_double; if (el.l_double > 0) el.c = 1.0; else el.c = 0.0; elements.push_back(el); } delta_li_in_u = true; }; /** \brief Add and convert an old-style exponential term to generalized form * * Term of the format * \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-g_i\delta^{l_i}) \f$ */ void add_Exponential(const std::vector &n, const std::vector &d, const std::vector &t, const std::vector &g, const std::vector &l) { for (std::size_t i = 0; i < n.size(); ++i) { ResidualHelmholtzGeneralizedExponentialElement el; el.n = n[i]; el.d = d[i]; el.t = t[i]; el.c = g[i]; el.l_double = l[i]; el.l_int = (int)el.l_double; elements.push_back(el); } delta_li_in_u = true; } /** \brief Add and convert an old-style Gaussian term to generalized form * * Term of the format * \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\eta_i(\delta-\epsilon_i)^2-\beta_i(\tau-\gamma_i)^2)\f$ */ void add_Gaussian(const std::vector &n, const std::vector &d, const std::vector &t, const std::vector &eta, const std::vector &epsilon, const std::vector &beta, const std::vector &gamma ) { for (std::size_t i = 0; i < n.size(); ++i) { ResidualHelmholtzGeneralizedExponentialElement el; el.n = n[i]; el.d = d[i]; el.t = t[i]; el.eta2 = eta[i]; el.epsilon2 = epsilon[i]; el.beta2 = beta[i]; el.gamma2 = gamma[i]; elements.push_back(el); } eta2_in_u = true; beta2_in_u = true; }; /** \brief Add and convert an old-style Gaussian term from GERG 2008 natural gas model to generalized form * * Term of the format * \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\eta_i(\delta-\epsilon_i)^2-\beta_i(\delta-\gamma_i))\f$ */ void add_GERG2008Gaussian(const std::vector &n, const std::vector &d, const std::vector &t, const std::vector &eta, const std::vector &epsilon, const std::vector &beta, const std::vector &gamma) { for (std::size_t i = 0; i < n.size(); ++i) { ResidualHelmholtzGeneralizedExponentialElement el; el.n = n[i]; el.d = d[i]; el.t = t[i]; el.eta2 = eta[i]; el.epsilon2 = epsilon[i]; el.eta1 = beta[i]; el.epsilon1 = gamma[i]; elements.push_back(el); } eta2_in_u = true; eta1_in_u = true; }; /** \brief Add and convert a term from Lemmon and Jacobsen (2005) used for R125 * * Term of the format * \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\delta^{l_i}-\tau^{m_i})\f$ */ void add_Lemmon2005(const std::vector &n, const std::vector &d, const std::vector &t, const std::vector &l, const std::vector &m) { for (std::size_t i = 0; i < n.size(); ++i) { ResidualHelmholtzGeneralizedExponentialElement el; el.n = n[i]; el.d = d[i]; el.t = t[i]; el.c = 1.0; el.omega = 1.0; el.l_double = l[i]; el.m_double = m[i]; el.l_int = (int)el.l_double; el.m_int = (int)el.m_double; elements.push_back(el); } delta_li_in_u = true; tau_mi_in_u = true; }; void finish(){ n.resize(elements.size()); d.resize(elements.size()); t.resize(elements.size()); c.resize(elements.size()); omega.resize(elements.size()); l_double.resize(elements.size()); l_int.resize(elements.size()); m_double.resize(elements.size()); m_int.resize(elements.size()); epsilon2.resize(elements.size()); eta2.resize(elements.size()); gamma2.resize(elements.size()); beta2.resize(elements.size()); for (std::size_t i = 0; i < elements.size(); ++i){ n[i] = elements[i].n; d[i] = elements[i].d; t[i] = elements[i].t; c[i] = elements[i].c; omega[i] = elements[i].omega; l_double[i] = elements[i].l_double; l_int[i] = elements[i].l_int; m_double[i] = elements[i].m_double; m_int[i] = elements[i].m_int; epsilon2[i] = elements[i].epsilon2; eta2[i] = elements[i].eta2; gamma2[i] = elements[i].gamma2; beta2[i] = elements[i].beta2; // See if l is an integer, and store a flag if it is elements[i].l_is_int = ( std::abs(static_cast(elements[i].l_double) - elements[i].l_double) < 1e-14 ); } // uE.resize(elements.size()); // du_ddeltaE.resize(elements.size()); // du_dtauE.resize(elements.size()); // d2u_ddelta2E.resize(elements.size()); // d2u_dtau2E.resize(elements.size()); // d3u_ddelta3E.resize(elements.size()); // d3u_dtau3E.resize(elements.size()); finished = true; }; void to_json(rapidjson::Value &el, rapidjson::Document &doc); void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw(); //void allEigen(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw(); }; struct ResidualHelmholtzNonAnalyticElement { CoolPropDbl n, a, b, beta, A, B, C, D; }; class ResidualHelmholtzNonAnalytic : public BaseHelmholtzTerm{ public: std::size_t N; std::vector s; std::vector elements; /// Default Constructor ResidualHelmholtzNonAnalytic(){N = 0;}; /// Destructor. No implementation ~ResidualHelmholtzNonAnalytic(){}; /// Constructor ResidualHelmholtzNonAnalytic(const std::vector &n, const std::vector &a, const std::vector &b, const std::vector &beta, const std::vector &A, const std::vector &B, const std::vector &C, const std::vector &D ) { N = n.size(); s.resize(N); for (std::size_t i = 0; i < n.size(); ++i) { ResidualHelmholtzNonAnalyticElement el; el.n = n[i]; el.a = a[i]; el.b = b[i]; el.beta = beta[i]; el.A = A[i]; el.B = B[i]; el.C = C[i]; el.D = D[i]; elements.push_back(el); } }; void to_json(rapidjson::Value &el, rapidjson::Document &doc); void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw(); }; class ResidualHelmholtzGeneralizedCubic : public BaseHelmholtzTerm{ protected: shared_ptr m_abstractcubic; std::vector z; /// Vector of mole fractions, will be initialized to [1.0] since this is a pure fluid public: bool enabled; /// Default Constructor ResidualHelmholtzGeneralizedCubic() { enabled = false; }; /// Constructor given an abstract cubic instance ResidualHelmholtzGeneralizedCubic(shared_ptr & ac) : m_abstractcubic(ac){ enabled = true; z = std::vector(1,1); // Init the vector to [1.0] }; void to_json(rapidjson::Value &el, rapidjson::Document &doc); void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw(); }; class ResidualHelmholtzGaoB : public BaseHelmholtzTerm{ protected: std::vector n,t,d,eta,beta,gamma,epsilon,b; public: bool enabled; /// Default Constructor ResidualHelmholtzGaoB() { enabled = false; }; /// Constructor given coefficients ResidualHelmholtzGaoB( const std::vector &n, const std::vector &t, const std::vector &d, const std::vector &eta, const std::vector &beta, const std::vector &gamma, const std::vector &epsilon, const std::vector &b) :n(n),t(t),d(d),eta(eta),beta(beta),gamma(gamma),epsilon(epsilon),b(b) { enabled = true; }; void to_json(rapidjson::Value &el, rapidjson::Document &doc); void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw(); }; /// The generalized Lee-Kesler formulation of Xiang & Deiters: doi:10.1016/j.ces.2007.11.029 class ResidualHelmholtzXiangDeiters : public BaseHelmholtzTerm{ public: bool enabled; ResidualHelmholtzGeneralizedExponential phi0, phi1, phi2; CoolPropDbl Tc, pc, rhomolarc, acentric, R, theta; /// Default Constructor ResidualHelmholtzXiangDeiters() : Tc(_HUGE), pc(_HUGE), rhomolarc(_HUGE), acentric(_HUGE), R(_HUGE), theta(_HUGE) { enabled = false; }; /// Constructor ResidualHelmholtzXiangDeiters( const CoolPropDbl Tc, const CoolPropDbl pc, const CoolPropDbl rhomolarc, const CoolPropDbl acentric, const CoolPropDbl R ); void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw(); }; class ResidualHelmholtzSAFTAssociating : public BaseHelmholtzTerm{ protected: double a, m,epsilonbar, vbarn, kappabar; CoolPropDbl Deltabar(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl dDeltabar_ddelta__consttau(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl d2Deltabar_ddelta2__consttau(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl dDeltabar_dtau__constdelta(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl d2Deltabar_dtau2__constdelta(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl d2Deltabar_ddelta_dtau(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl d3Deltabar_dtau3__constdelta(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl d3Deltabar_ddelta_dtau2(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl d3Deltabar_ddelta3__consttau(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl d3Deltabar_ddelta2_dtau(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl X(const CoolPropDbl &delta, const CoolPropDbl &Deltabar) const; CoolPropDbl dX_dDeltabar__constdelta(const CoolPropDbl &delta, const CoolPropDbl &Deltabar) const; CoolPropDbl dX_ddelta__constDeltabar(const CoolPropDbl &delta, const CoolPropDbl &Deltabar) const; CoolPropDbl dX_dtau(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl dX_ddelta(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl d2X_dtau2(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl d2X_ddeltadtau(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl d2X_ddelta2(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl d3X_dtau3(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl d3X_ddelta3(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl d3X_ddeltadtau2(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl d3X_ddelta2dtau(const CoolPropDbl &tau, const CoolPropDbl &delta) const; CoolPropDbl g(const CoolPropDbl &eta) const; CoolPropDbl dg_deta(const CoolPropDbl &eta) const; CoolPropDbl d2g_deta2(const CoolPropDbl &eta) const; CoolPropDbl d3g_deta3(const CoolPropDbl &eta) const; CoolPropDbl eta(const CoolPropDbl &delta) const; public: /// Default constructor ResidualHelmholtzSAFTAssociating() : a(_HUGE), m(_HUGE), epsilonbar(_HUGE), vbarn(_HUGE), kappabar(_HUGE) { disabled = true; }; // Constructor ResidualHelmholtzSAFTAssociating(double a, double m, double epsilonbar, double vbarn, double kappabar) : a(a), m(m), epsilonbar(epsilonbar), vbarn(vbarn), kappabar(kappabar) { disabled = false; }; bool disabled; //Destructor. No Implementation ~ResidualHelmholtzSAFTAssociating(){}; void to_json(rapidjson::Value &el, rapidjson::Document &doc); CoolPropDbl dTau4(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 1e99;}; CoolPropDbl dDelta_dTau3(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 1e99;}; CoolPropDbl dDelta2_dTau2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 1e99;}; CoolPropDbl dDelta3_dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 1e99;}; CoolPropDbl dDelta4(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 1e99;}; void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &deriv) throw(); }; class BaseHelmholtzContainer{ protected: CachedElement _base, _dDelta, _dTau, _dDelta2, _dTau2, _dDelta_dTau, _dDelta3, _dDelta2_dTau, _dDelta_dTau2, _dTau3; CachedElement _dDelta4, _dDelta3_dTau, _dDelta2_dTau2, _dDelta_dTau3, _dTau4; public: void clear(){ _base.clear(); _dDelta.clear(); _dTau.clear(); _dDelta2.clear(); _dTau2.clear(); _dDelta_dTau.clear(); _dDelta3.clear(); _dTau3.clear(); _dDelta2_dTau.clear(); _dDelta_dTau2.clear(); _dDelta4.clear(); _dDelta3_dTau.clear(); _dDelta2_dTau2.clear(); _dDelta_dTau3.clear(); _dTau4.clear(); }; virtual void empty_the_EOS() = 0; virtual HelmholtzDerivatives all(const CoolPropDbl tau, const CoolPropDbl delta, bool cache_values) = 0; CoolPropDbl base(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { if (!_base || dont_use_cache) return all(tau, delta, false).alphar; else return _base; }; CoolPropDbl dDelta(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { if (!_dDelta || dont_use_cache) return all(tau, delta, false).dalphar_ddelta; else return _dDelta; }; CoolPropDbl dTau(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { if (!_dTau || dont_use_cache) return all(tau, delta, false).dalphar_dtau; else return _dTau; }; CoolPropDbl dDelta2(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { if (!_dDelta2 || dont_use_cache) return all(tau, delta, false).d2alphar_ddelta2; else return _dDelta2; }; CoolPropDbl dDelta_dTau(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { if (!_dDelta_dTau || dont_use_cache) return all(tau, delta, false).d2alphar_ddelta_dtau; else return _dDelta_dTau; }; CoolPropDbl dTau2(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { if (!_dTau2 || dont_use_cache) return all(tau, delta, false).d2alphar_dtau2; else return _dTau2; }; CoolPropDbl dDelta3(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { if (!_dDelta3 || dont_use_cache) return all(tau, delta, false).d3alphar_ddelta3; else return _dDelta3; }; CoolPropDbl dDelta2_dTau(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { if (!_dDelta2_dTau || dont_use_cache) return all(tau, delta, false).d3alphar_ddelta2_dtau; else return _dDelta2_dTau; }; CoolPropDbl dDelta_dTau2(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { if (!_dDelta_dTau2 || dont_use_cache) return all(tau, delta, false).d3alphar_ddelta_dtau2; else return _dDelta_dTau2; }; CoolPropDbl dTau3(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { if (!_dTau3 || dont_use_cache) return all(tau, delta, false).d3alphar_dtau3; else return _dTau3; }; CoolPropDbl dDelta4(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { return all(tau, delta, false).d4alphar_ddelta4; }; CoolPropDbl dDelta3_dTau(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { return all(tau, delta, false).d4alphar_ddelta3_dtau; }; CoolPropDbl dDelta2_dTau2(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { return all(tau, delta, false).d4alphar_ddelta2_dtau2; }; CoolPropDbl dDelta_dTau3(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { return all(tau, delta, false).d4alphar_ddelta_dtau3; }; CoolPropDbl dTau4(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { return all(tau, delta, false).d4alphar_dtau4; }; }; class ResidualHelmholtzContainer : public BaseHelmholtzContainer { public: ResidualHelmholtzNonAnalytic NonAnalytic; ResidualHelmholtzSAFTAssociating SAFT; ResidualHelmholtzGeneralizedExponential GenExp; ResidualHelmholtzGeneralizedCubic cubic; ResidualHelmholtzXiangDeiters XiangDeiters; ResidualHelmholtzGaoB GaoB; void empty_the_EOS(){ NonAnalytic = ResidualHelmholtzNonAnalytic(); SAFT = ResidualHelmholtzSAFTAssociating(); GenExp = ResidualHelmholtzGeneralizedExponential(); cubic = ResidualHelmholtzGeneralizedCubic(); XiangDeiters = ResidualHelmholtzXiangDeiters(); GaoB = ResidualHelmholtzGaoB(); }; HelmholtzDerivatives all(const CoolPropDbl tau, const CoolPropDbl delta, bool cache_values = false) { HelmholtzDerivatives derivs; // zeros out the elements GenExp.all(tau, delta, derivs); NonAnalytic.all(tau, delta, derivs); SAFT.all(tau, delta, derivs); cubic.all(tau, delta, derivs); XiangDeiters.all(tau, delta, derivs); GaoB.all(tau, delta, derivs); if (cache_values){ _base = derivs.alphar; _dDelta = derivs.dalphar_ddelta; _dTau = derivs.dalphar_dtau; _dDelta2 = derivs.d2alphar_ddelta2; _dTau2 = derivs.d2alphar_dtau2; _dDelta_dTau = derivs.d2alphar_ddelta_dtau; _dDelta3 = derivs.d3alphar_ddelta3; _dTau3 = derivs.d3alphar_dtau3; _dDelta2_dTau = derivs.d3alphar_ddelta2_dtau; _dDelta_dTau2 = derivs.d3alphar_ddelta_dtau2; } return derivs; }; }; // ############################################################################# // ############################################################################# // ############################################################################# // IDEAL GAS TERMS // ############################################################################# // ############################################################################# // ############################################################################# /// The leading term in the EOS used to set the desired reference state /** \f[ \alpha^0 = \log(\delta)+a_1+a_2\tau \f] */ class IdealHelmholtzLead : public BaseHelmholtzTerm{ private: CoolPropDbl a1, a2; bool enabled; public: // Default constructor IdealHelmholtzLead() :a1(_HUGE), a2(_HUGE), enabled(false) {} // Constructor IdealHelmholtzLead(CoolPropDbl a1, CoolPropDbl a2) :a1(a1), a2(a2), enabled(true) {} bool is_enabled() const {return enabled;} void to_json(rapidjson::Value &el, rapidjson::Document &doc){ el.AddMember("type","IdealHelmholtzLead",doc.GetAllocator()); el.AddMember("a1", static_cast(a1), doc.GetAllocator()); el.AddMember("a2", static_cast(a2), doc.GetAllocator()); }; void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw(); }; /// The term in the EOS used to shift the reference state of the fluid /** \f[ \alpha^0 = a_1+a_2\tau \f] */ class IdealHelmholtzEnthalpyEntropyOffset : public BaseHelmholtzTerm{ private: CoolPropDbl a1,a2; // Use these variables internally std::string reference; bool enabled; public: IdealHelmholtzEnthalpyEntropyOffset():a1(_HUGE),a2(_HUGE),enabled(false){} // Constructor IdealHelmholtzEnthalpyEntropyOffset(CoolPropDbl a1, CoolPropDbl a2, const std::string &ref):a1(a1),a2(a2),reference(ref),enabled(true) {} // Set the values in the class void set(CoolPropDbl a1, CoolPropDbl a2, const std::string &ref){ // If it doesn't already exist, just set the values if (enabled == false){ this->a1 = a1; this->a2 = a2; enabled = true; } else if(ref == "DEF"){ this->a1 = 0.0; this->a2 = 0.0; enabled = false; } else{ // Otherwise, increment the values this->a1 += a1; this->a2 += a2; enabled = true; } this->reference = ref; } bool is_enabled() const {return enabled;}; void to_json(rapidjson::Value &el, rapidjson::Document &doc){ el.AddMember("type","IdealHelmholtzEnthalpyEntropyOffset",doc.GetAllocator()); el.AddMember("a1", static_cast(a1), doc.GetAllocator()); el.AddMember("a2", static_cast(a2), doc.GetAllocator()); }; void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw(); }; /** \f[ \alpha^0 = a_1\ln\tau \f] */ class IdealHelmholtzLogTau : public BaseHelmholtzTerm { private: CoolPropDbl a1; bool enabled; public: /// Default constructor IdealHelmholtzLogTau():a1(_HUGE),enabled(false){} // Constructor IdealHelmholtzLogTau(CoolPropDbl a1):a1(a1),enabled(true){} bool is_enabled() const {return enabled;}; void to_json(rapidjson::Value &el, rapidjson::Document &doc){ el.AddMember("type", "IdealHelmholtzLogTau", doc.GetAllocator()); el.AddMember("a1", static_cast(a1), doc.GetAllocator()); }; void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw(); }; /** \f[ \alpha^0 = \displaystyle\sum_i n_i\tau^{t_i} \f] */ class IdealHelmholtzPower : public BaseHelmholtzTerm{ private: std::vector n, t; // Use these variables internally std::size_t N; bool enabled; public: IdealHelmholtzPower():N(0),enabled(false){}; // Constructor IdealHelmholtzPower(const std::vector &n, const std::vector &t) :n(n), t(t), N(n.size()), enabled(true) {}; bool is_enabled() const {return enabled;}; void to_json(rapidjson::Value &el, rapidjson::Document &doc) { el.AddMember("type","IdealHelmholtzPower",doc.GetAllocator()); cpjson::set_long_double_array("n",n,el,doc); cpjson::set_long_double_array("t",t,el,doc); }; void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw(); }; /** \f[ \alpha^0 = \displaystyle\sum_i n_i\log[c_i+d_i\exp(\theta_i\tau)] \f] To convert conventional Plank-Einstein forms, given by \f$ \frac{c_p^0}{R} = a_k\displaystyle\frac{\left( b_k/T \right)^2\exp \left( b_k/T \right)}{\left(\exp \left(b_k/T\right) - 1 \right)^2} \f$ and \f$ \alpha^0 = a_k\ln \left[1 - \exp \left( \frac{-b_k\tau}{T_c} \right) \right] \f$ use \f$c = 1\f$, \f$d = -1\f$, \f$n = a\f$, \f$\theta = -\displaystyle\frac{b_k}{T_c}\f$ To convert the second form of Plank-Einstein terms, given by \f$ \frac{c_p^0}{R} = a_k\displaystyle\frac{\left( -b_k/T \right)^2\exp \left( b_k/T \right)}{c\left(\exp \left(-b_k/T\right) + 1 \right)^2} \f$ and \f$ \alpha^0 = a_k\ln \left[c + \exp \left( \frac{b_k\tau}{T_c} \right) \right] \f$ use \f$c = 1\f$, \f$d = 1\f$, \f$n = -a\f$, \f$\theta = \displaystyle\frac{b_k}{T_c}\f$ Converting Aly-Lee tems is a bit more complex Aly-Lee starts as \f[\frac{c_p^0}{R_u} = A + B\left(\frac{C/T}{\sinh(C/T)}\right)^2 + D\left(\frac{E/T}{\cosh(E/T)}\right)^2\f] Constant is separated out, and handled separately. sinh part can be expanded as \f[B\left(\frac{C/T}{\sinh(C/T)}\right)^2 = \frac{B(-2C/T)^2\exp(-2C/T)}{(1-\exp(-2C/T))^2}\f] where \f[n_k = B\f] \f[\theta_k = -\frac{2C}{T_c}\f] \f[c_k = 1\f] \f[d_k = -1\f] cosh part can be expanded as \f[D\left(\frac{E/T}{\cosh(E/T)}\right)^2 = \frac{D(-2E/T)^2\exp(-2E/T)}{(1+\exp(-2E/T))^2}\f] where \f[n_k = -D\f] \f[\theta_k = -\frac{2E}{T_c}\f] \f[c_k = 1\f] \f[d_k = 1\f] */ class IdealHelmholtzPlanckEinsteinGeneralized : public BaseHelmholtzTerm{ private: std::vector n,theta,c,d; // Use these variables internally std::size_t N; bool enabled; public: IdealHelmholtzPlanckEinsteinGeneralized():N(0),enabled(false){} // Constructor with std::vector instances IdealHelmholtzPlanckEinsteinGeneralized(const std::vector &n, const std::vector &theta, const std::vector &c, const std::vector &d) :n(n), theta(theta), c(c), d(d), N(n.size()), enabled(true) {} // Extend the vectors to allow for multiple instances feeding values to this function void extend(const std::vector &n, const std::vector &theta, const std::vector &c, const std::vector &d) { this->n.insert(this->n.end(), n.begin(), n.end()); this->theta.insert(this->theta.end(), theta.begin(), theta.end()); this->c.insert(this->c.end(), c.begin(), c.end()); this->d.insert(this->d.end(), d.begin(), d.end()); N += n.size(); } bool is_enabled() const {return enabled;}; void to_json(rapidjson::Value &el, rapidjson::Document &doc) { el.AddMember("type","IdealHelmholtzPlanckEinsteinGeneralized",doc.GetAllocator()); cpjson::set_long_double_array("n",n,el,doc); cpjson::set_long_double_array("theta",theta,el,doc); }; void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw(); }; class IdealHelmholtzCP0Constant : public BaseHelmholtzTerm{ private: double cp_over_R,Tc,T0,tau0; // Use these variables internally bool enabled; public: /// Default constructor IdealHelmholtzCP0Constant() : cp_over_R(_HUGE), Tc(_HUGE), T0(_HUGE), tau0(_HUGE) {enabled = false;}; /// Constructor with just a single double value IdealHelmholtzCP0Constant(CoolPropDbl cp_over_R, CoolPropDbl Tc, CoolPropDbl T0) : cp_over_R(cp_over_R), Tc(Tc), T0(T0) { enabled = true; tau0 = Tc/T0; }; /// Destructor ~IdealHelmholtzCP0Constant(){}; bool is_enabled() const {return enabled;}; void to_json(rapidjson::Value &el, rapidjson::Document &doc) { el.AddMember("type","IdealGasHelmholtzCP0Constant", doc.GetAllocator()); el.AddMember("cp_over_R", cp_over_R, doc.GetAllocator()); el.AddMember("Tc", Tc, doc.GetAllocator()); el.AddMember("T0", T0, doc.GetAllocator()); }; void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw(); }; class IdealHelmholtzCP0PolyT : public BaseHelmholtzTerm{ private: std::vector c, t; CoolPropDbl Tc, T0, tau0; // Use these variables internally std::size_t N; bool enabled; public: IdealHelmholtzCP0PolyT() : Tc(_HUGE), T0(_HUGE), tau0(_HUGE), N(0), enabled(false) {} /// Constructor with std::vectors IdealHelmholtzCP0PolyT(const std::vector &c, const std::vector &t, double Tc, double T0) : c(c), t(t), Tc(Tc), T0(T0), tau0(Tc/T0), N(c.size()), enabled(true) { assert(c.size() == t.size()); } void extend(const std::vector &c, const std::vector &t) { this->c.insert(this->c.end(), c.begin(), c.end()); this->t.insert(this->t.end(), t.begin(), t.end()); N += c.size(); } bool is_enabled() const {return enabled;}; void to_json(rapidjson::Value &el, rapidjson::Document &doc); void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw(); }; ///// Term in the ideal-gas specific heat equation that is based on Aly-Lee formulation ///** Specific heat is of the form: //\f[ //\frac{c_p^0}{R_u} = A + B\left(\frac{C/T}{\sinh(C/T)}\right)^2 + D\left(\frac{E/T}{\cosh(E/T)}\right)^2 //\f] //Second partial of ideal-gas Helmholtz energy given directly by specific heat (\f$\displaystyle\alpha_{\tau\tau}^0=-\frac{1}{\tau^2}\frac{c_p^0}{R_u} \f$) - this is obtained by real gas \f$c_p\f$ relationship, and killing off residual Helmholtz terms //\f[ //\alpha^0_{\tau\tau} = -\frac{A}{\tau^2} - \frac{B}{\tau^2}\left(\frac{C/T}{\sinh(C/T)}\right)^2 - \frac{D}{\tau^2}\left(\frac{E/T}{\cosh(E/T)}\right)^2 //\f] //or in terms of \f$ \tau \f$: //\f[ //\alpha^0_{\tau\tau} = -\frac{A}{\tau^2} - \frac{BC^2}{T_c^2}\left(\frac{1}{\sinh(C\tau/T_c)}\right)^2 - \frac{DE^2}{T_c^2}\left(\frac{1}{\cosh(E\tau/T_c)}\right)^2 //\f] //Third partial: //\f[ //\alpha^0_{\tau\tau\tau} = 2\frac{A}{\tau^3} + 2\frac{BC^3}{T_c^3}\frac{\cosh(C\tau/T_c)}{\sinh^3(C\tau/T_c)} +2 \frac{DE^3}{T_c^3}\frac{\sinh(E\tau/T_c)}{\cosh^3(E\tau/T_c)} //\f] //Now coming back to the ideal gas Helmholtz energy definition: //\f[ //\alpha^0 = -\tau\displaystyle\int_{\tau_0}^{\tau} \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau+\displaystyle\int_{\tau_0}^{\tau} \frac{1}{\tau}\frac{c_p^0}{R_u}d\tau //\f] //Applying derivative //\f[ //\alpha^0_{\tau} = -\displaystyle\int_{\tau_0}^{\tau} \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau-\tau\frac{\partial}{\partial \tau}\left[\displaystyle\int_{\tau_0}^{\tau} \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau \right]+\frac{\partial}{\partial \tau}\left[\displaystyle\int_{\tau_0}^{\tau} \frac{1}{\tau}\frac{c_p^0}{R_u}d\tau \right] //\f] //Fundamental theorem of calculus //\f[ //\alpha^0_{\tau} = -\int_{\tau_0}^{\tau} \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau-\tau \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau+\frac{1}{\tau}\frac{c_p^0}{R_u} //\f] //Last two terms cancel, leaving //\f[ //\alpha^0_{\tau} = -\int_{\tau_0}^{\tau} \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau //\f] //Another derivative yields (from fundamental theorem of calculus) //\f[ //\alpha^0_{\tau\tau} = - \frac{1}{\tau^2}\frac{c_p^0}{R_u} //\f] // //see also Jaeschke and Schley, 1995, (http://link.springer.com/article/10.1007%2FBF02083547#page-1) //*/ ///* //class IdealHelmholtzCP0AlyLee : public BaseHelmholtzTerm{ //private: // std::vector c; // CoolPropDbl Tc, tau0, T0; // Use these variables internally // bool enabled; //public: // IdealHelmholtzCP0AlyLee(){enabled = false;}; // // /// Constructor with std::vectors // IdealHelmholtzCP0AlyLee(const std::vector &c, double Tc, double T0) // :c(c), Tc(Tc), T0(T0) // { // tau0=Tc/T0; // enabled = true; // }; // // /// Destructor // ~IdealHelmholtzCP0AlyLee(){}; // // bool is_enabled() const {return enabled;}; // // void to_json(rapidjson::Value &el, rapidjson::Document &doc); // // // /// The antiderivative given by \f$ \displaystyle\int \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau \f$ // /** // sympy code for this derivative: // // from sympy import * // a1,a2,a3,a4,a5,Tc,tau = symbols('a1,a2,a3,a4,a5,Tc,tau', real = True) // integrand = a1 + a2*(a3/Tc/sinh(a3*tau/Tc))**2 + a4*(a5/Tc/cosh(a5*tau/Tc))**2 // integrand = integrand.rewrite(exp) // antideriv = trigsimp(integrate(integrand,tau)) // display(antideriv) // print latex(antideriv) // print ccode(antideriv) // // \f[ // \displaystyle\int \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau = -\frac{a_0}{\tau}+\frac{2a_1a_2}{T_c\left[\exp\left(-\frac{2a_2\tau}{T_c}\right)-1\right]}+\frac{2a_3a_4}{T_c\left[\exp\left(-\frac{2a_4\tau}{T_c}\right)+1\right]} // \f] // */ // CoolPropDbl anti_deriv_cp0_tau2(const CoolPropDbl &tau); // // /// The antiderivative given by \f$ \displaystyle\int \frac{1}{\tau}\frac{c_p^0}{R_u}d\tau \f$ // /** // sympy code for this derivative: // // a_0,a_1,a_2,a_3,a_4,Tc,tau = symbols('a_0,a_1,a_2,a_3,a_4,Tc,tau', real = True) // integrand = a_0/tau + a_1/tau*(a_2*tau/Tc/sinh(a_2*tau/Tc))**2 + a_3/tau*(a_4*tau/Tc/cosh(a_4*tau/Tc))**2 // // term2 = a_1/tau*(a_2*tau/Tc/sinh(a_2*tau/Tc))**2 // term2 = term2.rewrite(exp) # Unpack the sinh to exp functions // antideriv2 = trigsimp(integrate(term2,tau)) // display(antideriv2) // print latex(antideriv2) // print ccode(antideriv2) // // term3 = a_3/tau*(a_4*tau/Tc/cosh(a_4*tau/Tc))**2 // term3 = term3.rewrite(exp) # Unpack the cosh to exp functions // antideriv3 = factor(trigsimp(integrate(term3,tau).rewrite(exp))) // display(antideriv3) // print latex(antideriv3) // print ccode(antideriv3) // // Can be broken into three parts (trick is to express \f$sinh\f$ and \f$cosh\f$ in terms of \f$exp\f$ function) // // Term 2: // \f[ // \displaystyle\int \frac{a_1a_2^2}{T_c^2}\frac{\tau}{\sinh\left(\displaystyle\frac{a_2\tau}{T_c}\right)^2} d\tau = \frac{2 a_{1} a_{2} \tau}{- Tc + Tc e^{- \frac{2 a_{2}}{Tc} \tau}} + a_{1} \log{\left (-1 + e^{- \frac{2 a_{2}}{Tc} \tau} \right )} + \frac{2 a_{1}}{Tc} a_{2} \tau // \f] // // Term 3: // \f[ // \displaystyle\int \frac{a_1a_2^2}{T_c^2}\frac{\tau}{\cosh\left(\displaystyle\frac{a_2\tau}{T_c}\right)^2} d\tau = - \frac{a_{3}}{Tc \left(e^{\frac{2 a_{4}}{Tc} \tau} + 1\right)} \left(Tc e^{\frac{2 a_{4}}{Tc} \tau} \log{\left (e^{\frac{2 a_{4}}{Tc} \tau} + 1 \right )} + Tc \log{\left (e^{\frac{2 a_{4}}{Tc} \tau} + 1 \right )} - 2 a_{4} \tau e^{\frac{2 a_{4}}{Tc} \tau}\right) // \f] // */ // CoolPropDbl anti_deriv_cp0_tau(const CoolPropDbl &tau); // // CoolPropDbl base(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(); // CoolPropDbl dDelta(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;}; // CoolPropDbl dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(); // CoolPropDbl dDelta2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;}; // CoolPropDbl dDelta_dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;}; // CoolPropDbl dTau2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(); // CoolPropDbl dDelta3(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;}; // CoolPropDbl dDelta2_dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;}; // CoolPropDbl dDelta_dTau2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;}; // CoolPropDbl dTau3(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(); // CoolPropDbl dTau4(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(); // //}; class IdealHelmholtzContainer : public BaseHelmholtzContainer { public: IdealHelmholtzLead Lead; IdealHelmholtzEnthalpyEntropyOffset EnthalpyEntropyOffsetCore, EnthalpyEntropyOffset; IdealHelmholtzLogTau LogTau; IdealHelmholtzPower Power; IdealHelmholtzPlanckEinsteinGeneralized PlanckEinstein; IdealHelmholtzCP0Constant CP0Constant; IdealHelmholtzCP0PolyT CP0PolyT; void empty_the_EOS(){ Lead = IdealHelmholtzLead(); EnthalpyEntropyOffsetCore = IdealHelmholtzEnthalpyEntropyOffset(); EnthalpyEntropyOffset = IdealHelmholtzEnthalpyEntropyOffset(); LogTau = IdealHelmholtzLogTau(); Power = IdealHelmholtzPower(); PlanckEinstein = IdealHelmholtzPlanckEinsteinGeneralized(); CP0Constant = IdealHelmholtzCP0Constant(); CP0PolyT = IdealHelmholtzCP0PolyT(); }; HelmholtzDerivatives all(const CoolPropDbl tau, const CoolPropDbl delta, bool cache_values = false) { HelmholtzDerivatives derivs; // zeros out the elements Lead.all(tau, delta, derivs); EnthalpyEntropyOffsetCore.all(tau, delta, derivs); EnthalpyEntropyOffset.all(tau, delta, derivs); LogTau.all(tau, delta, derivs); Power.all(tau, delta, derivs); PlanckEinstein.all(tau, delta, derivs); CP0Constant.all(tau, delta, derivs); CP0PolyT.all(tau, delta, derivs); if (cache_values){ _base = derivs.alphar; _dDelta = derivs.dalphar_ddelta; _dTau = derivs.dalphar_dtau; _dDelta2 = derivs.d2alphar_ddelta2; _dTau2 = derivs.d2alphar_dtau2; _dDelta_dTau = derivs.d2alphar_ddelta_dtau; _dDelta3 = derivs.d3alphar_ddelta3; _dTau3 = derivs.d3alphar_dtau3; _dDelta2_dTau = derivs.d3alphar_ddelta2_dtau; _dDelta_dTau2 = derivs.d3alphar_ddelta_dtau2; } return derivs; }; }; }; /* namespace CoolProp */ #endif