#include #include "Eigen/Dense" #include "time.h" #include "Helmholtz.h" #include "CoolProp.h" class EOSFitter; #include "Fitter.h" #include "DataTypes.h" int main() { double n[]={0.0, 0.5586817e-3, 0.4982230e0, 0.2458698e-0, 0.8570145e-3, 0.4788584e-3, -0.1800808e-1, 0.2671641e0, -0.4781652e1, 0.1423987e1, 0.3324062e0, -0.7485907e-2, 0.1017263e-3, -0.5184567e+0, -0.8692288e-1, 0.2057144e+0, -0.5000457e-2, 0.4603262e-3, -0.3497836e-2, 0.6995038e-2, -0.1452184e-1, -0.1285458e-3}; double d[]={0,2,1,3,6,6,1,1,2,5,2,2,4,1,4,1,2,4,1,5,3,10}; double t[]={0.0,-1.0/2.0,0.0,0.0,0.0,3.0/2.0,3.0/2.0,2.0,2.0,1.0,3.0,5.0,1.0,5.0,5.0,6.0,10.0,10.0,10.0,18.0,22.0,50.0}; double c[]={0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,2.0,2.0,2.0,2.0,2.0,2.0,3.0,3.0,3.0,4.0}; std::vector nv(n,n+sizeof(n)/sizeof(double)); double mm = Props1SI("R134a","molemass"); double rhoL, rhoV; bool supercritical_T; double Tr = Props1SI("R134a","Treduce"); EOSFitter* pEOS = new EOSFitterFixedForm(Props1SI("R134a","Treduce"),Props1SI("R134a","rhoreduce")/mm*1000,8.314471); EOSFitter &EOS = *pEOS; // ---------------------------- // Generate "experimental" data // ---------------------------- for (double T = 250; T < 500; T+=10) { if (T < Tr) { rhoL = PropsSI("D","T",T,"Q",0,"R134a"); rhoV = PropsSI("D","T",T,"Q",1,"R134a"); supercritical_T = false; } else { rhoL = -1; rhoV = -1; supercritical_T = true; } for (double rho = 1e-10; rho < 1200; rho *= 1.5) { if (!supercritical_T && (rho < rhoL && rho > rhoV)){ continue; } double p = PropsSI("P","T",T,"D",rho,"R134a"); double rhobar = rho/mm*1000; double cp = PropsSI("C","T",T,"D",rho,"R134a"); // [J/kg/K]; convert to J/mol/K by *mm/1000 double variance = 1; // TODO; change this EOS.linear_data_points.push_back(new PressureDataPoint(pEOS,T,rho/mm*1000,p,variance)); EOS.nonlinear_data_points.push_back(new SpecificHeatCPDataPoint(pEOS,T,rho/mm*1000,cp*mm/1000,variance*100)); } } // Setup the EOS EOS.alphar = phir_power(n,d,t,c,1,21,22); static const double a0[]={ 0.0, //[0] -1.019535, //[1] 9.047135, //[2] -1.629789, //[3] -9.723916, //[4] -3.927170 //[5] }; static const double t0[]={ 0.0, //[0] 0.0, //[1] 0.0, //[2] 0.0, //[3] -1.0/2.0, //[4] -3.0/4.0 //[5] }; // phi0=log(delta)+a0[1]+a0[2]*tau+a0[3]*log(tau)+a0[4]*pow(tau,-1.0/2.0)+a0[5]*pow(tau,-3.0/4.0); EOS.alpha0.push_back(new phi0_lead(a0[1],a0[2])); EOS.alpha0.push_back(new phi0_logtau(a0[3])); EOS.alpha0.push_back(new phi0_power(a0,t0,4,5,6)); /*for (unsigned int i = 0; i < EOS.nonlinear_data_points.size();i++) { std::cout << EOS.nonlinear_data_points[i]->residual(nv) << std::endl; }*/ // Set the coefficients in the preliminary EOS EOS.set_n(nv); std::cout << format("before fit x2 %g\n",EOS.sum_squares(nv,false)); // Solve for n without nonlinear terms to get an approximate solution EOS.solve_for_n(nv, false); std::cout << format("solved for n x2 %g\n",EOS.sum_squares(nv,false)); EOS.set_n(nv); std::cout << format("applied n x2 %g\n",EOS.sum_squares(nv,true)); for (int iter = 0; iter < 5; iter++) { EOS.set_n(nv); // Turn on the nonlinear terms and try again EOS.solve_for_n(nv, true); std::cout << nv[1] << " " << nv[2] << std::endl; std::cout << format("iter: %d x2 %g\n",iter, EOS.sum_squares(nv,true)); } double rr = 0; }