from math import sqrt, exp from CoolProp.CoolProp import Props import numpy as np import matplotlib.pyplot as plt from scipy.odr import * from math import log E_K = {'REFPROP-Ammonia': 386, 'REFPROP-Argon': 143.2 } SIGMA = {'REFPROP-Ammonia': 0.2957, 'REFPROP-Argon': 0.335 } E_K['REFPROP-Propane'] = 263.88 SIGMA['REFPROP-Propane'] = 0.49748 E_K['REFPROP-R32'] = 289.65 SIGMA['REFPROP-R32'] = 0.4098 E_K['REFPROP-R245fa'] = 329.72 SIGMA['REFPROP-R245fa'] = 0.5529 def viscosity_dilute(fluid, T, e_k, sigma): """ T in [K], e_k in [K], sigma in [nm] viscosity returned is in [Pa-s] """ Tstar = T / e_k molemass = Props(fluid, 'molemass') if fluid == 'Propane' or fluid == 'REFPROP-Propane': a = [0.25104574, -0.47271238, 0, 0.060836515, 0] theta_star = exp(a[0] * pow(log(Tstar), 0) + a[1] * pow(log(Tstar), 1) + a[3] * pow(log(Tstar), 3)); eta_star = 0.021357 * sqrt(molemass * T) / (pow(sigma, 2) * theta_star) / 1e6; return eta_star # From Neufeld, 1972, Journal of Chemical Physics - checked coefficients OMEGA_2_2 = 1.16145 * pow(Tstar, -0.14874) + 0.52487 * exp(-0.77320 * Tstar) + 2.16178 * exp(-2.43787 * Tstar) # Using the leading constant from McLinden, 2000 since the leading term from Huber 2003 gives crazy values eta_star = 26.692e-3 * sqrt(molemass * T) / (pow(sigma, 2) * OMEGA_2_2) / 1e6 return eta_star def viscosity_linear(fluid, T, rho, e_k, sigma): """ Implements the method of Vogel 1998 (Propane) for the linear part """ N_A = 6.02214129e23 molemass = Props(fluid, 'molemass') Tstar = T / e_k b = [-19.572881, 219.73999, -1015.3226, 2471.01251, -3375.1717, 2491.6597, -787.26086, 14.085455, -0.34664158] s = sum([b[i] * pow(Tstar, -0.25 * i) for i in range(7)]) B_eta_star = s + b[7] * pow(Tstar, -2.5) + b[8] * pow(Tstar, -5.5) # //[no units] B_eta = N_A * pow(sigma / 1e9, 3) * B_eta_star # [m3/mol] return viscosity_dilute(fluid, T, e_k, sigma) * B_eta * rho / molemass * 1000 from PDSim.misc.datatypes import Collector RHO = Collector() TT = Collector() DELTA = Collector() TAU = Collector() VV = Collector() VV0 = Collector() VV1 = Collector() VVH = Collector() fluid = 'REFPROP-R32' Tc = Props(fluid, 'Tcrit') rhoc = Props(fluid, 'rhocrit') for T in np.linspace(290, Props(fluid, 'Tcrit') - 0.1, 100): rhoV = Props('D', 'T', T, 'Q', 1, fluid) rhoL = Props('D', 'T', T, 'Q', 0, fluid) rhomax = Props('D', 'T', Props(fluid, 'Tmin'), 'Q', 0, fluid) for rho in list(np.linspace(rhoL, rhomax, 100)): # +list(np.linspace(rhoV,0.0001,100)): # for rho in list(np.linspace(rhoV,0.0001,100)): mu_0 = viscosity_dilute(fluid, T, E_K[fluid], SIGMA[fluid]) mu_1 = viscosity_linear(fluid, T, rho, E_K[fluid], SIGMA[fluid]) mu = Props('V', 'T', T, 'D', rho, fluid) VV << mu VV0 << mu_0 VV1 << mu_1 VVH << mu - mu_0 - mu_1 TT << T RHO << rho DELTA << rho / rhoc TAU << Tc / T def f_RHS(E, DELTA_TAU, VV): k = 0 sum = 0 DELTA = DELTA_TAU[0, :] TAU = DELTA_TAU[1, :] for i in range(2, 5): for j in range(3): sum += E[k] * DELTA**i / TAU**j k += 1 # f1,f2,f3,g1,g2 = E[k],E[k+1],E[k+2],E[k+3],E[k+4] # DELTA0 = g1*(1+g2*np.sqrt(TAU)) # sum += (f1+f2/TAU+f3/TAU/TAU)*(DELTA/(DELTA0-DELTA)-DELTA/DELTA0) print('%s %%' % np.mean(np.abs(((sum / VV - 1) * 100)))) return sum log_muH = np.log(VVH.v().T) x = np.c_[DELTA.v().T, TAU.v().T].T y = VVH.v() linear = Model(f_RHS, extra_args=(y,)) mydata = Data(x, y) myodr = ODR(mydata, linear, beta0=np.array([0.1] * 17),) myoutput = myodr.run() E = myoutput.beta print(E) #plt.plot(TT.vec, y,'b.',TT.vec, f_RHS(E, x, y),'r.') # plt.show() # plt.plot() plt.plot(y.T, f_RHS(E, x, y)) plt.show()