/* * CoolPropFluid.h * * Created on: 20 Dec 2013 * Author: jowr */ #ifndef COOLPROPFLUID_H_ #define COOLPROPFLUID_H_ #include "DataStructures.h" #include "Helmholtz.h" #include "Solvers.h" #include #include #include #include #include #include namespace CoolProp { struct BibTeXKeysStruct { std::string EOS, CP0, VISCOSITY, CONDUCTIVITY, ECS_LENNARD_JONES, ECS_FITS, SURFACE_TENSION; }; struct EnvironmentalFactorsStruct { double GWP20, GWP100, GWP500, ODP, HH, PH, FH; std::string ASHRAE34; }; /// A set of limits for the eos parameters struct EOSLimits { double Tmin, Tmax, rhomax, pmax; }; struct ConductivityECSVariables{ std::string reference_fluid; long double psi_rhomolar_reducing, f_int_T_reducing; std::vector psi_a, psi_t, f_int_a, f_int_t; }; struct ConductivityDiluteEta0AndPolyData{ std::vector A, t; }; struct ConductivityDiluteRatioPolynomialsData{ long double T_reducing, p_reducing; std::vector A, B, n, m; }; struct ConductivityDiluteVariables { enum ConductivityDiluteEnum {CONDUCTIVITY_DILUTE_RATIO_POLYNOMIALS, CONDUCTIVITY_DILUTE_ETA0_AND_POLY, CONDUCTIVITY_DILUTE_CO2, CONDUCTIVITY_DILUTE_ETHANE, CONDUCTIVITY_DILUTE_NONE, CONDUCTIVITY_DILUTE_NOT_SET }; int type; ConductivityDiluteRatioPolynomialsData ratio_polynomials; ConductivityDiluteEta0AndPolyData eta0_and_poly; ConductivityDiluteVariables(){type = CONDUCTIVITY_DILUTE_NOT_SET;} }; struct ConductivityResidualPolynomialAndExponentialData{ long double T_reducing, rhomass_reducing; std::vector A, t, d, gamma, l; }; struct ConductivityResidualPolynomialData{ long double T_reducing, rhomass_reducing; std::vector B, t, d; }; struct ConductivityResidualVariables { enum ConductivityResidualEnum {CONDUCTIVITY_RESIDUAL_POLYNOMIAL, CONDUCTIVITY_RESIDUAL_POLYNOMIAL_AND_EXPONENTIAL, CONDUCTIVITY_RESIDUAL_R123, CONDUCTIVITY_RESIDUAL_CO2, CONDUCTIVITY_RESIDUAL_NOT_SET }; int type; ConductivityResidualPolynomialData polynomials; ConductivityResidualPolynomialAndExponentialData polynomial_and_exponential; ConductivityResidualVariables(){type = CONDUCTIVITY_RESIDUAL_NOT_SET;} }; struct ConductivityCriticalSimplifiedOlchowySengersData{ long double T_reducing, p_reducing, k, R0, gamma, nu, qD, zeta0, GAMMA, T_ref; ConductivityCriticalSimplifiedOlchowySengersData(){ // Universal constants - can still be adjusted if need be k = 1.3806488e-23; //[J/K] R0 = 1.03; //[-] gamma = 1.239; //[-] nu = 0.63; //[-] // Suggested default values - can be over-written GAMMA = 0.0496; //[-] zeta0 = 1.94e-10; //[m] qD = 2e9; //[m] // Set to invalid number, can be provided in the JSON file // Default is 1.5*Tc T_ref = _HUGE; } }; struct ConductivityCriticalVariables { enum ConductivityResidualEnum {CONDUCTIVITY_CRITICAL_SIMPLIFIED_OLCHOWY_SENGERS, CONDUCTIVITY_CRITICAL_R123, CONDUCTIVITY_CRITICAL_AMMONIA, CONDUCTIVITY_CRITICAL_NONE, CONDUCTIVITY_CRITICAL_CARBONDIOXIDE_SCALABRIN_JPCRD_2006, CONDUCTIVITY_CRITICAL_NOT_SET }; int type; ConductivityCriticalSimplifiedOlchowySengersData Olchowy_Sengers; ConductivityCriticalVariables(){type = CONDUCTIVITY_CRITICAL_NOT_SET; } }; /// Variables for the dilute gas part struct ViscosityDiluteGasCollisionIntegralData { long double molar_mass, C; std::vector a, t; }; struct ViscosityDiluteCollisionIntegralPowersOfTstarData { long double T_reducing, C; std::vector a, t; }; struct ViscosityDiluteGasPowersOfT { std::vector a, t; }; struct ViscosityDiluteVariables { enum ViscosityDiluteEnum {VISCOSITY_DILUTE_COLLISION_INTEGRAL, VISCOSITY_DILUTE_COLLISION_INTEGRAL_POWERS_OF_TSTAR, VISCOSITY_DILUTE_KINETIC_THEORY, VISCOSITY_DILUTE_ETHANE, VISCOSITY_DILUTE_POWERS_OF_T, VISCOSITY_DILUTE_NOT_SET }; int type; ViscosityDiluteGasCollisionIntegralData collision_integral; ViscosityDiluteCollisionIntegralPowersOfTstarData collision_integral_powers_of_Tstar; ViscosityDiluteGasPowersOfT powers_of_T; ViscosityDiluteVariables(){type = VISCOSITY_DILUTE_NOT_SET;} }; struct ViscosityRainWaterFriendData { std::vector b, t; }; struct ViscosityInitialDensityVariables { ViscosityRainWaterFriendData rainwater_friend; }; struct ViscosityModifiedBatschinskiHildebrandData { std::vector a,d1,d2,t1,t2,f,g,h,p,q,gamma, l; long double T_reduce, rhomolar_reduce; }; struct ViscosityFrictionTheoryData { std::vector Aa, Aaa, Aaaa, Ar, Arr, Adrdr, Arrr, Ai, Aii, AdrAdr; int Na, Naa, Naaa, Nr, Nrr, Nrrr, Nii; long double c1, c2, T_reduce, rhomolar_reduce; }; struct ViscosityHigherOrderVariables { enum ViscosityDiluteEnum {VISCOSITY_HIGHER_ORDER_BATSCHINKI_HILDEBRAND, VISCOSITY_HIGHER_ORDER_HYDROGEN, VISCOSITY_HIGHER_ORDER_HEXANE, VISCOSITY_HIGHER_ORDER_HEPTANE, VISCOSITY_HIGHER_ORDER_ETHANE, VISCOSITY_HIGHER_ORDER_FRICTION_THEORY, VISCOSITY_HIGHER_ORDER_NOT_SET }; int type; ViscosityModifiedBatschinskiHildebrandData modified_Batschinski_Hildebrand; ViscosityFrictionTheoryData friction_theory; ViscosityHigherOrderVariables(){type = VISCOSITY_HIGHER_ORDER_NOT_SET;}; }; struct ViscosityECSVariables{ std::string reference_fluid; long double psi_rhomolar_reducing; std::vector psi_a, psi_t; }; class TransportPropertyData { public: enum ViscosityDiluteEnum {VISCOSITY_HARDCODED_WATER, VISCOSITY_HARDCODED_HELIUM, VISCOSITY_HARDCODED_R23, VISCOSITY_NOT_HARDCODED }; enum ConductivityDiluteEnum { CONDUCTIVITY_HARDCODED_WATER, CONDUCTIVITY_HARDCODED_R23, CONDUCTIVITY_HARDCODED_HELIUM, CONDUCTIVITY_NOT_HARDCODED }; ViscosityDiluteVariables viscosity_dilute; ViscosityInitialDensityVariables viscosity_initial; ViscosityHigherOrderVariables viscosity_higher_order; ViscosityECSVariables viscosity_ecs; ConductivityDiluteVariables conductivity_dilute; ConductivityResidualVariables conductivity_residual; ConductivityCriticalVariables conductivity_critical; ConductivityECSVariables conductivity_ecs; std::string BibTeX_viscosity, BibTeX_conductivity; bool viscosity_using_ECS; ///< A flag for whether to use extended corresponding states for viscosity. False for no bool conductivity_using_ECS; ///< A flag for whether to use extended corresponding states for conductivity. False for no long double sigma_eta, epsilon_over_k; int hardcoded_viscosity, hardcoded_conductivity; TransportPropertyData(){hardcoded_viscosity = VISCOSITY_NOT_HARDCODED; hardcoded_conductivity = CONDUCTIVITY_NOT_HARDCODED; viscosity_using_ECS = false; conductivity_using_ECS = false; }; }; /** The surface tension correlation class uses correlations for the surface tension that are all of the form \f[ \sigma = \sum_{i=0}^{k-1}a_i\left(1-\frac{T}{\tilde T_c}\right)^{n_i} \f] where \f$ \tilde T_c \f$ is the critical temperature used for the correlation which is almost always equal to the critical temperature of the equation of state. Result for surface tension is in N/m */ class SurfaceTensionCorrelation { public: std::vector a, n, s; long double Tc; std::size_t N; std::string BibTeX; SurfaceTensionCorrelation(){}; SurfaceTensionCorrelation(rapidjson::Value &json_code) { a = cpjson::get_long_double_array(json_code["a"]); n = cpjson::get_long_double_array(json_code["n"]); Tc = cpjson::get_double(json_code,"Tc"); BibTeX = cpjson::get_string(json_code,"BibTeX"); this->N = n.size(); s = n; }; long double evaluate(long double T) { if (a.empty()){ throw NotImplementedError(format("surface tension curve not provided"));} long double THETA = 1-T/Tc; for (std::size_t i = 0; i < N; ++i) { s[i] = a[i]*pow(THETA, n[i]); } return std::accumulate(s.begin(), s.end(), 0.0); } }; /** */ class SaturationAncillaryFunction { private: std::vector n, t, s; bool using_tau_r; double Tmax, Tmin, reducing_value, T_r; int type; enum ancillaryfunctiontypes{TYPE_NOT_EXPONENTIAL = 0, TYPE_EXPONENTIAL = 1}; std::size_t N; public: SaturationAncillaryFunction(){}; SaturationAncillaryFunction(rapidjson::Value &json_code) { n = cpjson::get_double_array(json_code["n"]); t = cpjson::get_double_array(json_code["t"]); Tmin = cpjson::get_double(json_code,"Tmin"); Tmax = cpjson::get_double(json_code,"Tmax"); reducing_value = cpjson::get_double(json_code,"reducing_value"); using_tau_r = cpjson::get_bool(json_code,"using_tau_r"); T_r = cpjson::get_double(json_code,"T_r"); std::string type = cpjson::get_string(json_code,"type"); if (!type.compare("rhoLnoexp")) this->type = TYPE_NOT_EXPONENTIAL; else this->type = TYPE_EXPONENTIAL; this->N = n.size(); s = n; }; double evaluate(double T) { double THETA = 1-T/T_r; for (std::size_t i = 0; i < N; ++i) { s[i] = n[i]*pow(THETA, t[i]); } double summer = std::accumulate(s.begin(), s.end(), 0.0); if (type == TYPE_NOT_EXPONENTIAL) { return reducing_value*(1+summer); } else { double tau_r_value; if (using_tau_r) tau_r_value = T_r/T; else tau_r_value = 1.0; return reducing_value*exp(tau_r_value*summer); } } double invert(double value) { // Invert the ancillary curve to get the temperature as a function of the output variable // Define the residual to be driven to zero class solver_resid : public FuncWrapper1D { public: int other; SaturationAncillaryFunction *anc; long double T, value, r, current_value; solver_resid(SaturationAncillaryFunction *anc, long double value) : anc(anc), value(value){}; double call(double T){ this->T = T; current_value = anc->evaluate(T); r = current_value - value; return r; }; }; solver_resid resid(this, value); std::string errstring; return Brent(resid,Tmin,Tmax,DBL_EPSILON,1e-12,100,errstring); } }; struct MeltingLinePiecewiseSimonSegment { long double T_0, a, c, p_0, T_max, T_min; }; struct MeltingLinePiecewiseSimonData { std::vector parts; }; struct MeltingLinePiecewisePolynomialInTrSegment { std::vector a, t; long double T_0, p_0, T_max, T_min; }; struct MeltingLinePiecewisePolynomialInTrData { std::vector parts; }; struct MeltingLinePiecewisePolynomialInThetaSegment { std::vector a, t; long double T_0, p_0, T_max, T_min; }; struct MeltingLinePiecewisePolynomialInThetaData { std::vector parts; }; class MeltingLineVariables { public: enum MeltingLineVariablesEnum{ MELTING_LINE_SIMON_TYPE, MELTING_LINE_POLYNOMIAL_IN_TR_TYPE, MELTING_LINE_POLYNOMIAL_IN_THETA_TYPE, MELTING_LINE_NOT_SET }; long double evaluate(int OF, int GIVEN, long double value) { if (type == MELTING_LINE_NOT_SET){throw ValueError("Melting line curve not set");} if (OF == iP && GIVEN == iT){ long double T = value; if (type == MELTING_LINE_SIMON_TYPE){ // Need to find the right segment for (std::size_t i = 0; i < simon.parts.size(); ++i){ MeltingLinePiecewiseSimonSegment &part = simon.parts[i]; if (T >= part.T_min && T <= part.T_max){ return part.p_0 + part.a*(pow(T/part.T_0,part.c)-1); } } throw ValueError("unable to calculate melting line (p,T) for Simon curve"); } else if (type == MELTING_LINE_POLYNOMIAL_IN_TR_TYPE){ // Need to find the right segment for (std::size_t i = 0; i < polynomial_in_Tr.parts.size(); ++i){ MeltingLinePiecewisePolynomialInTrSegment &part = polynomial_in_Tr.parts[i]; if (T >= part.T_min && T <= part.T_max){ long double summer = 0; for (std::size_t i =0; i < part.a.size(); ++i){ summer += part.a[i]*(pow(T/part.T_0,part.t[i])-1); } return part.p_0*(1+summer); } } throw ValueError("unable to calculate melting line (p,T) for polynomial_in_Tr curve"); } else if (type == MELTING_LINE_POLYNOMIAL_IN_THETA_TYPE){ // Need to find the right segment for (std::size_t i = 0; i < polynomial_in_Theta.parts.size(); ++i){ MeltingLinePiecewisePolynomialInThetaSegment &part = polynomial_in_Theta.parts[i]; if (T >= part.T_min && T <= part.T_max){ long double summer = 0; for (std::size_t i =0; i < part.a.size(); ++i){ summer += part.a[i]*pow(T/part.T_0-1,part.t[i]); } return part.p_0*(1+summer); } } throw ValueError("unable to calculate melting line (p,T) for polynomial_in_Theta curve"); } else{ throw ValueError("only Simon supported now"); } } else{ throw ValueError("only melt(P,T) supported now"); } } std::string BibTeX; long double T_m; ///< Melting temperature at 1 atmosphere MeltingLinePiecewiseSimonData simon; MeltingLinePiecewisePolynomialInTrData polynomial_in_Tr; MeltingLinePiecewisePolynomialInThetaData polynomial_in_Theta; int type; MeltingLineVariables(){type = MELTING_LINE_NOT_SET;}; }; struct Ancillaries { SaturationAncillaryFunction pL, pV, rhoL, rhoV; MeltingLineVariables melting_line; SurfaceTensionCorrelation surface_tension; }; /// The core class for an equation of state /** This class holds the absolute minimum information to evaluate the equation of state. This includes the reducing state, limits on the equation of state, the coefficients for the Helmholtz derivative terms. It does NOT include derived parameters like specific heat, enthalpy, etc. */ class EquationOfState{ public: EquationOfState(){}; ~EquationOfState(){}; SimpleState reduce, ///< Reducing state used for the EOS (usually, but not always, the critical point) sat_min_liquid, ///< The saturated liquid state at the minimum saturation temperature sat_min_vapor; ///< The saturated vapor state at the minimum saturation temperature EOSLimits limits; ///< Limits on the EOS double R_u, ///< The universal gas constant used for this EOS (usually, but not always, 8.314472 J/mol/K) molar_mass, ///< The molar mass in kg/mol (note NOT kg/kmol) accentric, ///< The accentric factor \f$ \omega = -log_{10}\left(\frac{p_s(T/T_c=0.7)}{p_c}\right)-1\f$ Ttriple, ///< Triple point temperature (K) ptriple; ///< Triple point pressure (Pa) bool pseudo_pure; ///< Is a pseudo-pure fluid (true) or pure fluid (false) ResidualHelmholtzContainer alphar; ///< The residual Helmholtz energy IdealHelmholtzContainer alpha0; ///< The ideal Helmholtz energy std::string BibTeX_EOS, ///< The bibtex key for the equation of state BibTeX_CP0; ///< The bibtex key for the ideal gas specific heat correlation /// Validate the EOS that was just constructed void validate() { assert(R_u < 9 && R_u > 8); assert(molar_mass > 0.001 && molar_mass < 1); }; long double baser(const long double &tau, const long double &delta) throw() { return alphar.base(tau, delta); }; // First partials long double dalphar_dDelta(const long double &tau, const long double &delta) throw() { return alphar.dDelta(tau, delta); }; long double dalphar_dTau(const long double &tau, const long double &delta) throw() { return alphar.dTau(tau, delta); }; // Second partials long double d2alphar_dDelta2(const long double &tau, const long double &delta) throw() { return alphar.dDelta2(tau, delta); }; long double d2alphar_dDelta_dTau(const long double &tau, const long double &delta) throw() { return alphar.dDelta_dTau(tau, delta); }; long double d2alphar_dTau2(const long double &tau, const long double &delta) throw() { return alphar.dTau2(tau, delta); }; // Third partials long double d3alphar_dDelta3(const long double &tau, const long double &delta) throw() { return alphar.dDelta3(tau, delta); }; long double d3alphar_dDelta2_dTau(const long double &tau, const long double &delta) throw() { return alphar.dDelta2_dTau(tau, delta); }; long double d3alphar_dDelta_dTau2(const long double &tau, const long double &delta) throw() { return alphar.dDelta_dTau2(tau, delta); }; long double d3alphar_dTau3(const long double &tau, const long double &delta) throw() { return alphar.dTau3(tau, delta); }; long double base0(const long double &tau, const long double &delta) throw() { return alpha0.base(tau, delta); }; // First partials long double dalpha0_dDelta(const long double &tau, const long double &delta) throw() { return alpha0.dDelta(tau, delta); }; long double dalpha0_dTau(const long double &tau, const long double &delta) throw() { return alpha0.dTau(tau, delta); }; // Second partials long double d2alpha0_dDelta2(const long double &tau, const long double &delta) throw() { return alpha0.dDelta2(tau, delta); }; long double d2alpha0_dDelta_dTau(const long double &tau, const long double &delta) throw() { return alpha0.dDelta_dTau(tau, delta); }; long double d2alpha0_dTau2(const long double &tau, const long double &delta) throw() { return alpha0.dTau2(tau, delta); }; // Third partials long double d3alpha0_dDelta3(const long double &tau, const long double &delta) throw() { return alpha0.dDelta3(tau, delta); }; long double d3alpha0_dDelta2_dTau(const long double &tau, const long double &delta) throw() { return alpha0.dDelta2_dTau(tau, delta); }; long double d3alpha0_dDelta_dTau2(const long double &tau, const long double &delta) throw() { return alpha0.dDelta_dTau2(tau, delta); }; long double d3alpha0_dTau3(const long double &tau, const long double &delta) throw() { return alpha0.dTau3(tau, delta); }; }; /// A thermophysical property provider for critical and reducing values as well as derivatives of Helmholtz energy /** This fluid instance is populated using an entry from a JSON file */ class CoolPropFluid { protected: // Transport property data std::string ECSReferenceFluid; ///< A string that gives the name of the fluids that should be used for the ECS method for transport properties double ECS_qd; ///< The critical qd parameter for the Olchowy-Sengers cross-over term public: CoolPropFluid(){}; ~CoolPropFluid(){}; EquationOfState *pEOS; ///< A pointer to the currently used EOS std::vector EOSVector; ///< The equations of state that could be used for this fluid std::string name; ///< The name of the fluid std::string REFPROPname; ///< The REFPROP-compliant name if REFPROP-"name" is not a compatible fluid name. If not included, "name" is assumed to be a valid name for REFPROP std::string CAS; ///< The CAS number of the fluid std::vector aliases; ///< A vector of aliases of names for the fluid BibTeXKeysStruct BibTeXKeys; EnvironmentalFactorsStruct environment; Ancillaries ancillaries; TransportPropertyData transport; SimpleState crit, ///< The state at the critical point triple_liquid, ///< The saturated liquid state at the triple point temperature triple_vapor; ///< The saturated vapor state at the triple point temperature double gas_constant(){ return pEOS->R_u; }; double molar_mass(){ return pEOS->molar_mass; }; }; } /* namespace CoolProp */ #endif /* COOLPROPFLUID_H_ */