/* * AbstractState.cpp * * Created on: 21 Dec 2013 * Author: jowr */ #include #include "math.h" #include "AbstractState.h" #include "Backends/REFPROP/REFPROPBackend.h" #include "Backends/Helmholtz/HelmholtzEOSBackend.h" #include "Backends/Incompressible/IncompressibleBackend.h" #include "Backends/Helmholtz/Fluids/FluidLibrary.h" namespace CoolProp { AbstractState * AbstractState::factory(const std::string &backend, const std::string &fluid_string) { static std::string HEOS_string = "HEOS"; if (!backend.compare("HEOS")) { if (fluid_string.find('&') == std::string::npos){ return new HelmholtzEOSBackend(&get_fluid(fluid_string)); } else{ // Split at the '&' std::vector components = strsplit(fluid_string,'&'); return new HelmholtzEOSMixtureBackend(components); } } else if (!backend.compare("REFPROP")) { if (fluid_string.find('&') == std::string::npos){ return new REFPROPBackend(fluid_string); } else{ // Split at the '&' std::vector components = strsplit(fluid_string,'&'); return new REFPROPMixtureBackend(components); } } else if (!backend.compare("INCOMP")) { return new IncompressibleBackend(fluid_string); } else if (!backend.compare("BRINE")) { throw ValueError("BRINE backend not yet implemented"); } else if (!backend.compare("TREND")) { throw ValueError("TREND backend not yet implemented"); } else if (!backend.compare("?")) { std::size_t idel = fluid_string.find("::"); // Backend has not been specified, and we have to figure out what the backend is by parsing the string if (idel == std::string::npos) // No '::' found, no backend specified, try HEOS, otherwise a failure { // Figure out what backend to use return factory(HEOS_string, fluid_string); } else { // Split string at the '::' into two std::string, call again return factory(std::string(fluid_string.begin(), fluid_string.begin() + idel), std::string(fluid_string.begin()+idel+2, fluid_string.end())); } } else { throw ValueError(format("Invalid backend name [%s] to factory function",backend.c_str())); } } bool AbstractState::clear() { // Reset all instances of CachedElement and overwrite // the internal double values with -_HUGE this->_R = _HUGE; /// Ancillary curve values this->_rhoLanc.clear(); this->_rhoVanc.clear(); this->_pVanc.clear(); this->_pLanc.clear(); this->_TVanc.clear(); this->_TLanc.clear(); this->_critical.T = -_HUGE; this->_critical.hmolar = -_HUGE; this->_critical.p = -_HUGE; this->_critical.rhomolar = -_HUGE; this->_critical.smolar = -_HUGE; this->_reducing.T = -_HUGE; this->_reducing.hmolar = -_HUGE; this->_reducing.p = -_HUGE; this->_reducing.rhomolar = -_HUGE; this->_reducing.smolar = -_HUGE; /// Bulk values this->_rhomolar = -_HUGE; this->_T = -_HUGE; this->_p = -_HUGE; this->_Q = -_HUGE; this->_tau.clear(); this->_delta.clear(); this->_umolar.clear(); this->_cpmolar.clear(); this->_cvmolar.clear(); this->_speed_sound.clear(); this->_hmolar.clear(); this->_smolar.clear(); this->_logp.clear(); this->_logrhomolar.clear(); ///// Smoothing values //this->rhospline = -_HUGE; //this->dsplinedp = -_HUGE; //this->dsplinedh = -_HUGE; /// Cached low-level elements for in-place calculation of other properties this->_alpha0.clear(); this->_dalpha0_dTau.clear(); this->_dalpha0_dDelta.clear(); this->_d2alpha0_dTau2.clear(); this->_d2alpha0_dDelta_dTau.clear(); this->_d2alpha0_dDelta2.clear(); this->_d3alpha0_dTau3.clear(); this->_d3alpha0_dDelta_dTau2.clear(); this->_d3alpha0_dDelta2_dTau.clear(); this->_d3alpha0_dDelta3.clear(); this->_alphar.clear(); this->_dalphar_dTau.clear(); this->_dalphar_dDelta.clear(); this->_d2alphar_dTau2.clear(); this->_d2alphar_dDelta_dTau.clear(); this->_d2alphar_dDelta2.clear(); this->_d3alphar_dTau3.clear(); this->_d3alphar_dDelta_dTau2.clear(); this->_d3alphar_dDelta2_dTau.clear(); this->_d3alphar_dDelta3.clear(); this->_dalphar_dDelta_lim.clear(); this->_d2alphar_dDelta2_lim.clear(); this->_d2alphar_dDelta_dTau_lim.clear(); this->_d3alphar_dDelta2_dTau_lim.clear(); return true; } double AbstractState::trivial_keyed_output(int key) { if (get_debug_level()>=50) std::cout << format("AbstractState: keyed_output called for %s ",get_parameter_information(key,"short").c_str()) << std::endl; switch (key) { case imolar_mass: return molar_mass(); case iT_min: return Tmin(); case iT_triple: return Ttriple(); case iT_max: return Tmax(); case iP_max: return pmax(); case iT_reducing: return get_reducing().T; case irhomolar_reducing: return get_reducing().rhomolar; case iP_critical: return this->p_critical(); case iT_critical: return this->T_critical(); case irhomolar_critical: return this->rhomolar_critical(); case irhomass_critical: return this->rhomolar_critical()*molar_mass(); default: throw ValueError(format("This input [%d: \"%s\"] is not valid for trivial_keyed_output",key,get_parameter_information(key,"short").c_str())); } } double AbstractState::keyed_output(int key) { if (get_debug_level()>=50) std::cout << format("AbstractState: keyed_output called for %s ",get_parameter_information(key,"short").c_str()) << std::endl; switch (key) { case iQ: return Q(); case iT: return T(); case iP: return p(); case iDmolar: return rhomolar(); case iDmass: return rhomass(); case iHmolar: return hmolar(); case iHmass: return hmass(); case iSmolar: return smolar(); case iSmass: return smass(); case iUmolar: return umolar(); case iUmass: return umass(); case iCvmolar: return cvmolar(); case iCvmass: return cvmass(); case iCpmolar: return cpmolar(); case iCpmass: return cpmass(); case imolar_mass: return molar_mass(); case iT_reducing: return get_reducing().T; case irhomolar_reducing: return get_reducing().rhomolar; case ispeed_sound: return speed_sound(); case ialpha0: return alpha0(); case idalpha0_ddelta_consttau: return dalpha0_dDelta(); case idalpha0_dtau_constdelta: return dalpha0_dTau(); case iBvirial: return Bvirial(); case idBvirial_dT: return dBvirial_dT(); case iCvirial: return Cvirial(); case idCvirial_dT: return dCvirial_dT(); case iisothermal_compressibility: return isothermal_compressibility(); case iviscosity: return viscosity(); case iconductivity: return conductivity(); default: throw ValueError(format("This input [%d: \"%s\"] is not valid for keyed_output",key,get_parameter_information(key,"short").c_str())); } } double AbstractState::tau(void){ if (!_tau) _tau = calc_reciprocal_reduced_temperature(); return _tau; } double AbstractState::delta(void){ if (!_delta) _delta = calc_reduced_density(); return _delta; } double AbstractState::Tmin(void){ return calc_Tmin(); } double AbstractState::Tmax(void){ return calc_Tmax(); } double AbstractState::Ttriple(void){ return calc_Ttriple(); } double AbstractState::pmax(void){ return calc_pmax(); } double AbstractState::T_critical(void){ return calc_T_critical(); } double AbstractState::p_critical(void){ return calc_p_critical(); } double AbstractState::rhomolar_critical(void){ return calc_rhomolar_critical(); } double AbstractState::hmolar(void){ if (!_hmolar) _hmolar = calc_hmolar(); return _hmolar; } double AbstractState::smolar(void){ if (!_smolar) _smolar = calc_smolar(); return _smolar; } double AbstractState::umolar(void){ if (!_umolar) _umolar = calc_umolar(); return _umolar; } double AbstractState::cpmolar(void){ if (!_cpmolar) _cpmolar = calc_cpmolar(); return _cpmolar; } double AbstractState::cvmolar(void){ if (!_cvmolar) _cvmolar = calc_cvmolar(); return _cvmolar; } double AbstractState::speed_sound(void){ if (!_speed_sound) _speed_sound = calc_speed_sound(); return _speed_sound; } double AbstractState::viscosity(void){ if (!_viscosity) _viscosity = calc_viscosity(); return _viscosity; } double AbstractState::conductivity(void){ if (!_conductivity) _conductivity = calc_conductivity(); return _conductivity; } double AbstractState::surface_tension(void){ if (!_surface_tension) _surface_tension = calc_surface_tension(); return _surface_tension; } double AbstractState::molar_mass(void){ if (!_molar_mass) _molar_mass = calc_molar_mass(); return _molar_mass; } double AbstractState::gas_constant(void){ if (!_gas_constant) _gas_constant = calc_gas_constant(); return _gas_constant; } double AbstractState::fugacity_coefficient(int i){ // TODO: Cache the fug. coeff for each component return calc_fugacity_coefficient(i); } void AbstractState::build_phase_envelope(const std::string &type) { calc_phase_envelope(type); } double AbstractState::isothermal_compressibility(void){ return 1.0/_rhomolar*first_partial_deriv(iDmolar, iP, iT); } double AbstractState::isobaric_expansion_coefficient(void){ return -1.0/pow(_rhomolar,2)*first_partial_deriv(iDmolar, iT, iP); } double AbstractState::Bvirial(void){ return calc_Bvirial(); } double AbstractState::Cvirial(void){ return calc_Cvirial(); } double AbstractState::dBvirial_dT(void){ return calc_dBvirial_dT(); } double AbstractState::dCvirial_dT(void){ return calc_dCvirial_dT(); } // // ---------------------------------------- // // Smoothing functions for density // // ---------------------------------------- // /// A smoothed version of the derivative using a spline curve in the region of x=0 to x=xend // virtual double AbstractState::drhodh_constp_smoothed(double xend); // /// A smoothed version of the derivative using a spline curve in the region of x=0 to x=xend // virtual double AbstractState::drhodp_consth_smoothed(double xend); // /// Density corresponding to the smoothed derivatives in the region of x=0 to x=xend // virtual void AbstractState::rho_smoothed(double xend, double *rho_spline, double *dsplinedh, double *dsplinedp); } /* namespace CoolProp */ #ifdef ENABLE_CATCH #include "catch.hpp" TEST_CASE("Check AbstractState","[AbstractState]") { SECTION("bad backend") { CHECK_THROWS(shared_ptr Water(CoolProp::AbstractState::factory("DEFINITELY_A_BAD_BACKEND", "Water"))); } SECTION("good backend - bad fluid") { CHECK_THROWS(shared_ptr Water(CoolProp::AbstractState::factory("HEOS", "DEFINITELY_A_BAD_FLUID"))); } SECTION("good backend - helmholtz") { CHECK_NOTHROW(shared_ptr Water(CoolProp::AbstractState::factory("HEOS", "Water"))); } SECTION("good backend - incomp") { CHECK_NOTHROW(shared_ptr Water(CoolProp::AbstractState::factory("INCOMP", "DEB"))); } SECTION("good backend - REFPROP") { CHECK_NOTHROW(shared_ptr Water(CoolProp::AbstractState::factory("REFPROP", "Water"))); } } #endif