/* * DataStructures.h * * Created on: 21 Dec 2013 * Author: jowr */ #ifndef DATASTRUCTURES_H_ #define DATASTRUCTURES_H_ #include "CoolPropTools.h" #include "Exceptions.h" #include namespace CoolProp { struct SimpleState { double rhomolar, T, p, hmolar, smolar, umolar; SimpleState(){rhomolar = _HUGE; T = _HUGE; p = _HUGE; hmolar = _HUGE; smolar = _HUGE, umolar = _HUGE;} }; /// -------------------------------------------------- /// Define some constants that will be used throughout /// -------------------------------------------------- /// These are constants for the input and output parameters /// The structure is taken directly from the AbstractState class. // // !! If you add a parameter, update the map in the corresponding CPP file !! enum parameters{ // General parameters imolar_mass, irhomolar_reducing, irhomolar_critical, iT_reducing, iT_critical, irhomass_reducing, irhomass_critical, iP_critical, iT_triple, iP_triple, iT_min, iT_max,iP_max, iP_min, // Bulk properties iT, iP, iQ, iTau, iDelta, // Molar specific thermodynamic properties iDmolar, iHmolar, iSmolar, iCpmolar, iCp0molar, iCvmolar, iUmolar, iGmolar, // Mass specific thermodynamic properties iDmass, iHmass, iSmass, iCpmass, iCp0mass, iCvmass, iUmass, iGmass, // Smoothing functions for density //idrhodh_constp_smoothed, idrhodp_consth_smoothed, irho_smoothed, // Transport properties iviscosity, iconductivity, isurface_tension, iPrandtl, // Derivative-based terms ispeed_sound, iisothermal_compressibility, iisobaric_expansion_coefficient, // Fundamental derivative of gas dynamics ifundamental_derivative_of_gas_dynamics, // Derivatives of the residual non-dimensionalized Helmholtz energy with respect to the EOS variables ialphar, idalphar_dtau_constdelta, idalphar_ddelta_consttau, // Derivatives of the ideal-gas non-dimensionalized Helmholtz energy with respect to the EOS variables ialpha0, idalpha0_dtau_constdelta, idalpha0_ddelta_consttau, // Other functions and derivatives iBvirial, iCvirial, idBvirial_dT, idCvirial_dT, iZ, // Environmental parameters iGWP20, iGWP100, iGWP500, iFH, iHH, iPH, iODP, // The last parameter, so we can check that all parameters are described in DataStructures.cpp iundefined_parameter }; // !! If you add a parameter, update the map in the corresponding CPP file !! /// Return information about the parameter /// @param key The key, one of iT, iP, etc. /// @param info The thing you want, one of "IO" ("IO" if input/output, "O" if output only), "short" (very short description), "long" (a longer description), "units" std::string get_parameter_information(int key, std::string info); /// Return the integer key corresponding to the parameter name ("Dmolar" for instance) int get_parameter_index(const std::string ¶m_name); /// Returns true if the input is trivial (constants, critical parameters, etc.) bool is_trivial_parameter(int key); std::string get_csv_parameter_list(); /// These are constants for the compositions enum composition_types{IFRAC_MASS, IFRAC_MOLE, IFRAC_VOLUME, IFRAC_UNDEFINED, IFRAC_PURE}; /// These are constants for the phases of the fluid enum phases{iphase_liquid, ///< Subcritical liquid iphase_supercritical, ///< Supercritical (p > pc, T > Tc) iphase_supercritical_gas, ///< Supercritical gas (p < pc, T > Tc) iphase_supercritical_liquid, ///< Supercritical liquid (p > pc, T < Tc) iphase_gas, ///< Subcritical gas iphase_twophase, ///< Twophase iphase_unknown, ///< Unknown phase iphase_not_imposed}; ///< Phase is not imposed /// These are unit types for the fluid enum fluid_types{FLUID_TYPE_PURE, FLUID_TYPE_PSEUDOPURE, FLUID_TYPE_REFPROP, FLUID_TYPE_INCOMPRESSIBLE_LIQUID, FLUID_TYPE_INCOMPRESSIBLE_SOLUTION, FLUID_TYPE_UNDEFINED}; // !! If you add a parameter, update the map in the corresponding CPP file !! /// These are input pairs that can be used (in each pair, input keys are sorted alphabetically) enum input_pairs{ QT_INPUTS, ///< Molar quality, Temperature in K PQ_INPUTS, ///< Pressure in Pa, Molar quality PT_INPUTS, ///< Pressure in Pa, Temperature in K DmassT_INPUTS, ///< Mass density in kg/m^3, Temperature in K DmolarT_INPUTS, ///< Molar density in mol/m^3, Temperature in K HmolarT_INPUTS, ///< Enthalpy in J/mol, Temperature in K HmassT_INPUTS, ///< Enthalpy in J/kg, Temperature in K SmolarT_INPUTS, ///< Entropy in J/mol/K, Temperature in K SmassT_INPUTS, ///< Entropy in J/kg/K, Temperature in K TUmolar_INPUTS, ///< Temperature in K, Internal energy in J/mol TUmass_INPUTS, ///< Temperature in K, Internal energy in J/kg DmassP_INPUTS, ///< Mass density in kg/m^3, Pressure in Pa DmolarP_INPUTS, ///< Molar density in mol/m^3, Pressure in Pa HmassP_INPUTS, ///< Enthalpy in J/kg, Pressure in Pa HmolarP_INPUTS, ///< Enthalpy in J/mol, Pressure in Pa PSmass_INPUTS, ///< Pressure in Pa, Entropy in J/kg/K PSmolar_INPUTS, ///< Pressure in Pa, Entropy in J/mol/K PUmass_INPUTS, ///< Pressure in Pa, Internal energy in J/kg PUmolar_INPUTS, ///< Pressure in Pa, Internal energy in J/mol HmassSmass_INPUTS, ///< Enthalpy in J/kg, Entropy in J/kg/K HmolarSmolar_INPUTS, ///< Enthalpy in J/mol, Entropy in J/mol/K SmassUmass_INPUTS, ///< Entropy in J/kg/K, Internal energy in J/kg SmolarUmolar_INPUTS, ///< Entropy in J/mol/K, Internal energy in J/mol DmassHmass_INPUTS, ///< Mass density in kg/m^3, Enthalpy in J/kg DmolarHmolar_INPUTS, ///< Molar density in mol/m^3, Enthalpy in J/mol DmassSmass_INPUTS, ///< Mass density in kg/m^3, Entropy in J/kg/K DmolarSmolar_INPUTS, ///< Molar density in mol/m^3, Entropy in J/mol/K DmassUmass_INPUTS, ///< Mass density in kg/m^3, Internal energy in J/kg DmolarUmolar_INPUTS, ///< Molar density in mol/m^3, Internal energy in J/mol }; // !! If you add or remove a parameter, update the map in the corresponding CPP file !! inline bool match_pair(long key1, long key2, long x1, long x2, bool &swap) { swap = !(key1 == x1); return ((key1 == x1 && key2 == x2) || (key2 == x1 && key1 == x2)); }; template long generate_update_pair(long key1, T value1, long key2, T value2, T &out1, T&out2) { long pair; bool swap; if (match_pair(key1, key2, iQ, iT, swap)){ pair = QT_INPUTS; ///< Molar quality, Temperature in K } else if (match_pair(key1, key2, iP, iQ, swap)){ pair = PQ_INPUTS; ///< Pressure in Pa, Molar quality } else if (match_pair(key1, key2, iP, iT, swap)){ pair = PT_INPUTS; ///< Pressure in Pa, Temperature in K } else if (match_pair(key1, key2, iDmolar, iT, swap)){ pair = DmolarT_INPUTS; // Molar density in mol/m^3, Temperature in K } else if (match_pair(key1, key2, iDmass, iT, swap)){ pair = DmassT_INPUTS; // Mass density in kg/m^3, Temperature in K } else if (match_pair(key1, key2, iHmolar, iT, swap)){ pair = HmolarT_INPUTS; // Enthalpy in J/mol, Temperature in K } else if (match_pair(key1, key2, iHmass, iT, swap)){ pair = HmassT_INPUTS; // Enthalpy in J/kg, Temperature in K } else if (match_pair(key1, key2, iSmolar, iT, swap)){ pair = SmolarT_INPUTS; // Entropy in J/mol/K, Temperature in K } else if (match_pair(key1, key2, iSmass, iT, swap)){ pair = SmassT_INPUTS; // Entropy in J/kg/K, Temperature in K } else if (match_pair(key1, key2, iT, iUmolar, swap)){ pair = TUmolar_INPUTS; // Temperature in K, Internal energy in J/mol } else if (match_pair(key1, key2, iT, iUmass, swap)){ pair = TUmass_INPUTS; // Temperature in K, Internal energy in J/kg } else if (match_pair(key1, key2, iDmass, iHmass, swap)){ pair = DmassHmass_INPUTS; // Mass density in kg/m^3, Enthalpy in J/kg } else if (match_pair(key1, key2, iDmolar, iHmolar, swap)){ pair = DmolarHmolar_INPUTS; // Molar density in mol/m^3, Enthalpy in J/mol } else if (match_pair(key1, key2, iDmass, iSmass, swap)){ pair = DmassSmass_INPUTS; // Mass density in kg/m^3, Entropy in J/kg/K } else if (match_pair(key1, key2, iDmolar, iSmolar, swap)){ pair = DmolarSmolar_INPUTS; // Molar density in mol/m^3, Entropy in J/mol/K } else if (match_pair(key1, key2, iDmass, iUmass, swap)){ pair = DmassUmass_INPUTS; // Mass density in kg/m^3, Internal energy in J/kg } else if (match_pair(key1, key2, iDmolar, iUmolar, swap)){ pair = DmolarUmolar_INPUTS; // Molar density in mol/m^3, Internal energy in J/mol } else if (match_pair(key1, key2, iDmass, iP, swap)){ pair = DmassP_INPUTS; // Mass density in kg/m^3, Pressure in Pa } else if (match_pair(key1, key2, iDmolar, iP, swap)){ pair = DmolarP_INPUTS; // Molar density in mol/m^3, Pressure in Pa } else if (match_pair(key1, key2, iHmass, iP, swap)){ pair = HmassP_INPUTS; // Enthalpy in J/kg, Pressure in Pa } else if (match_pair(key1, key2, iHmolar, iP, swap)){ pair = HmolarP_INPUTS; // Enthalpy in J/mol, Pressure in Pa } else if (match_pair(key1, key2, iP, iSmass, swap)){ pair = PSmass_INPUTS; // Pressure in Pa, Entropy in J/kg/K } else if (match_pair(key1, key2, iP, iSmolar, swap)){ pair = PSmolar_INPUTS; // Pressure in Pa, Entropy in J/mol/K } else if (match_pair(key1, key2, iP, iUmass, swap)){ pair = PUmass_INPUTS; // Pressure in Pa, Internal energy in J/kg } else if (match_pair(key1, key2, iP, iUmolar, swap)){ pair = PUmolar_INPUTS; // Pressure in Pa, Internal energy in J/mol } else throw ValueError("Invalid set of inputs to generate_update_pair"); /* HmassSmass_INPUTS, ///< Enthalpy in J/kg, Entropy in J/kg/K HmolarSmolar_INPUTS, ///< Enthalpy in J/mol, Entropy in J/mol/K SmassUmass_INPUTS, ///< Entropy in J/kg/K, Internal energy in J/kg SmolarUmolar_INPUTS, ///< Entropy in J/mol/K, Internal energy in J/mol */ if (!swap) { out1 = value1; out2 = value2; } else { out1 = value2; out2 = value1; } return pair; }; /// Return the short description of an input pair key ("DmolarT_INPUTS" for instance) std::string get_input_pair_short_desc(int pair); /// Return the long description of an input pair key ("Molar density in mol/m^3, Temperature in K" for instance) std::string get_input_pair_long_desc(int pair); } /* namespace CoolProp */ #endif /* DATASTRUCTURES_H_ */