Files
CoolProp/Web/coolprop/HighLevelAPI.rst
2014-12-06 11:49:54 -05:00

208 lines
6.2 KiB
ReStructuredText

.. _high_level_api:
********************
High-Level Interface
********************
PropsSI function
----------------
For many users, all that is needed is a simple call to the ``PropsSI`` function for pure fluids, pseudo-pure fluids and mixtures. For humid air properties, see :ref:`Humid air properties <Humid-Air>`. An example using ``PropsSI``:
.. ipython::
# Import the PropsSI function
In [1]: from CoolProp.CoolProp import PropsSI
# Saturation temperature of Water at 1 atm in K
In [2]: PropsSI('T','P',101325,'Q',0,'Water')
More information:
* :ref:`Table of inputs to PropsSI function <parameter_table>`
* :ref:`More examples of the high-level API <Props_Sample>`
* :cpapi:`Documentation for all high-level functions exposed <CoolPropLib.h>`
All :ref:`the wrappers <wrappers>` wrap this function in exactly the same way.
For pure and pseudo-pure fluids, two state points are required to fix the state. The equations of state are based on :math:`T` and :math:`\rho` as state variables, so :math:`T, \rho` will always be the fastest inputs. :math:`P,T` will be a bit slower (3-10 times), and then comes inputs where neither :math:`T` nor :math:`\rho` are given, like :math:`p,h`. They will be much slower. If speed is an issue, you can look into table-based interpolation methods using TTSE or bicubic interpolation.
PhaseSI function
----------------
It can be useful to know what the phase of a given state point is. A high-level function called ``PhaseSI`` has been implemented to allow for access to the phase.
.. ipython::
In [1]: import CoolProp
In [5]: CoolProp.CoolProp.PhaseSI('P',101325,'Q',0,'Water')
The phase index (as floating point number) can also be obtained using the PropsSI function. In python you would do:
.. ipython::
In [1]: import CoolProp
In [5]: CoolProp.CoolProp.PropsSI('Phase','P',101325,'Q',0,'Water')
where you can obtain the integer indices corresponding to the phase flags using the ``get_phase_index`` function:
.. ipython::
In [1]: import CoolProp
In [6]: CoolProp.CoolProp.get_phase_index('phase_twophase')
# Or for liquid
In [6]: CoolProp.CoolProp.get_phase_index('phase_liquid')
For a given fluid, the phase can be plotted in T-p coordinates:
.. plot::
import matplotlib
import numpy as np
import CoolProp as CP
import matplotlib.pyplot as plt
import scipy.interpolate
Water = CP.AbstractState("HEOS", "Water")
pc = Water.keyed_output(CP.iP_critical)
Tc = Water.keyed_output(CP.iT_critical)
Tmin = 200
Tmax = 1000
pmax = Water.keyed_output(CP.iP_max)
pt = 611.657
Tt = 273.16
fillcolor = 'g'
fig = plt.figure(figsize = (6,6))
ax = fig.add_subplot(111)
lw = 3
# --------------
# Melting curve
# --------------
melt_args = dict(lw = lw, solid_capstyle = 'round')
TT = []
PP = list(np.logspace(np.log10(pt), np.log10(pmax),1000))
for p in PP:
TT.append(Water.melting_line(CP.iT, CP.iP, p))
#Zone VI
for T in np.linspace(max(TT), 355):
TT.append(T)
theta = T/273.31
pi = 1-1.07476*(1-theta**4.6)
p = pi*632.4e6
PP.append(p)
plt.plot(TT,PP,'darkblue',**melt_args)
# ----------------
# Saturation curve
# ----------------
Ts = np.linspace(273.16, Tc, 1000)
ps = CP.CoolProp.PropsSI('P','T',Ts,'Q',[0]*len(Ts),'Water',[1])
# ------
# Labels
# ------
plt.plot(Ts,ps,'orange',lw = lw, solid_capstyle = 'round')
# Critical lines
plt.axvline(Tc, dashes = [2, 2])
plt.axhline(pc, dashes = [2, 2])
# Labels
plt.text(850, 1e8, 'supercritical',ha= 'center')
plt.text(850, 1e5, 'supercritical_gas', rotation = 90)
plt.text(450, 1e8, 'supercritical_liquid', rotation = 0, ha = 'center')
plt.text(350, 3e6, 'liquid', rotation = 45)
plt.text(450, 5e4, 'gas', rotation = 45)
plt.ylim(611,1e9)
plt.gca().set_yscale('log')
plt.gca().set_xlim(240, 1000)
plt.ylabel('Pressure [Pa]')
plt.xlabel('Temperature [K]')
plt.tight_layout()
.. _predefined_mixtures:
Predefined Mixtures
-------------------
A number of predefined mixtures are included in CoolProp. You can retrieve the list of predefined mixtures by calling ``get_global_param_string("predefined_mixtures")`` which will return a comma-separated list of predefined mixtures. In Python, to get the first 5 mixtures, you would do
.. ipython::
In [1]: import CoolProp as CP
In [1]: CoolProp.CoolProp.get_global_param_string('predefined_mixtures').split(',')[0:6]
and then to calculate the density of air using the mixture model at 1 atmosphere (=101325 Pa) and 300 K, you could do
.. ipython::
In [1]: import CoolProp as CP
In [1]: CoolProp.CoolProp.PropsSI('D','P',101325,'T',300,'Air.mix')
Exactly the methodology can be used from other wrappers.
C++ Sample Code
---------------
.. literalinclude:: snippets/propssi.cxx
:language: c++
C++ Sample Code Output
----------------------
.. literalinclude:: snippets/propssi.cxx.output
.. _Props_Sample:
Sample Code
-----------
.. ipython::
In [1]: import CoolProp as CP
In [1]: print CP.__version__
In [1]: print CP.__gitrevision__
#Import the things you need
In [1]: from CoolProp.CoolProp import PropsSI
# Specific heat (J/kg/K) of 20% ethylene glycol as a function of T
In [2]: PropsSI('C','T',298.15,'P',101325,'INCOMP::MEG-20%')
# Density of Air at standard atmosphere in kg/m^3
In [2]: PropsSI('D','T',298.15,'P',101325,'Air')
# Saturation temperature of Water at 1 atm
In [2]: PropsSI('T','P',101325,'Q',0,'Water')
# Saturated vapor density of R134a at 0C
In [2]: PropsSI('H','T',273.15,'Q',1,'R134a')
# Using properties from CoolProp to get R410A density
In [2]: PropsSI('D','T',300,'P',101325,'HEOS::R32[0.697615]&R125[0.302385]')
# Using properties from REFPROP to get R410A density
In [2]: PropsSI('D','T',300,'P',101325,'REFPROP::R32[0.697615]&R125[0.302385]')
# Check that the same as using pseudo-pure
In [2]: PropsSI('D','T',300,'P',101325,'R410A')
.. _parameter_table:
Table of string inputs to PropsSI function
------------------------------------------
.. include:: parameter_table.rst.in