mirror of
https://github.com/CoolProp/CoolProp.git
synced 2026-01-11 15:08:03 -05:00
* Add initial clang tidy / clang format config files * Clang format the entire codebase ``` find ./src -regextype posix-extended -regex '.*\.(cpp|hpp|c|h|cxx|hxx)$' | xargs clang-format-12 -style=file -i -fallback-style=none find ./include -regextype posix-extended -regex '.*\.(cpp|hpp|c|h|cxx|hxx)$' | xargs clang-format-12 -style=file -i -fallback-style=none find ./Web -regextype posix-extended -regex '.*\.(cpp|hpp|c|h|cxx|hxx)$' | xargs clang-format-12 -style=file -i -fallback-style=none find ./dev -regextype posix-extended -regex '.*\.(cpp|hpp|c|h|cxx|hxx)$' | xargs clang-format-12 -style=file -i -fallback-style=none find ./wrappers -regextype posix-extended -regex '.*\.(cpp|hpp|c|h|cxx|hxx)$' | xargs clang-format-12 -style=file -i -fallback-style=none ``` * Add a .cmake-format file and reformat CmakeLists.txt with it https://github.com/cheshirekow/cmake_format * Add a clang-format workflow only runs on PRs, only on touched files
989 lines
55 KiB
C++
989 lines
55 KiB
C++
#ifndef POLYMATH_H
|
|
#define POLYMATH_H
|
|
|
|
#include "CoolProp.h"
|
|
#include "CoolPropTools.h"
|
|
#include "Exceptions.h"
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
#include "Solvers.h"
|
|
#include "MatrixMath.h"
|
|
#include "unsupported/Eigen/Polynomials"
|
|
|
|
namespace CoolProp {
|
|
|
|
// Just a forward declaration
|
|
class Poly2DResidual;
|
|
class Poly2DFracResidual;
|
|
|
|
/// The base class for all Polynomials
|
|
/** A clear and straight forward implementation of polynomial operations. Still
|
|
* very basic, but serves its purpose.
|
|
*/
|
|
class Polynomial2D
|
|
{
|
|
|
|
public:
|
|
/// Constructors
|
|
Polynomial2D(){};
|
|
|
|
/// Destructor. No implementation
|
|
virtual ~Polynomial2D(){};
|
|
|
|
public:
|
|
/// Convert the coefficient vector.
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
Eigen::MatrixXd convertCoefficients(const std::vector<double>& coefficients) {
|
|
return vec_to_eigen(coefficients);
|
|
}
|
|
/// Convert the coefficient matrix.
|
|
/// @param coefficients matrix containing the ordered coefficients
|
|
Eigen::MatrixXd convertCoefficients(const std::vector<std::vector<double>>& coefficients) {
|
|
return vec_to_eigen(coefficients);
|
|
}
|
|
|
|
/// Basic checks for coefficient vectors.
|
|
/** Starts with only the first coefficient dimension
|
|
* and checks the matrix size against the parameters rows and columns. */
|
|
/// @param coefficients matrix containing the ordered coefficients
|
|
/// @param rows unsigned integer value that represents the desired degree of the polynomial in the 1st dimension
|
|
/// @param columns unsigned integer value that represents the desired degree of the polynomial in the 2nd dimension
|
|
bool checkCoefficients(const Eigen::MatrixXd& coefficients, const unsigned int rows, const unsigned int columns);
|
|
|
|
public:
|
|
/// Integration functions
|
|
/** Integrating coefficients for polynomials is done by dividing the
|
|
* original coefficients by (i+1) and elevating the order by 1
|
|
* through adding a zero as first coefficient.
|
|
* Some reslicing needs to be applied to integrate along the x-axis.
|
|
* In the brine/solution equations, reordering of the parameters
|
|
* avoids this expensive operation. However, it is included for the
|
|
* sake of completeness.
|
|
*/
|
|
/// @param coefficients matrix containing the ordered coefficients
|
|
/// @param axis unsigned integer value that represents the desired direction of integration
|
|
/// @param times integer value that represents the desired order of integration
|
|
Eigen::MatrixXd integrateCoeffs(const Eigen::MatrixXd& coefficients, const int& axis, const int& times);
|
|
|
|
/// Derivative coefficients calculation
|
|
/** Deriving coefficients for polynomials is done by multiplying the
|
|
* original coefficients with i and lowering the order by 1.
|
|
*/
|
|
/// @param coefficients matrix containing the ordered coefficients
|
|
/// @param axis unsigned integer value that represents the desired direction of derivation
|
|
/// @param times integer value that represents the desired order of derivation
|
|
Eigen::MatrixXd deriveCoeffs(const Eigen::MatrixXd& coefficients, const int& axis = -1, const int& times = 1);
|
|
|
|
public:
|
|
/// The core functions to evaluate the polynomial
|
|
/** It is here we implement the different special
|
|
* functions that allow us to specify certain
|
|
* types of polynomials.
|
|
*
|
|
* Try to avoid many calls to the derivative and integral functions.
|
|
* Both of them have to calculate the new coefficients internally,
|
|
* which slows things down. Instead, you should use the deriveCoeffs
|
|
* and integrateCoeffs functions and store the coefficient matrix
|
|
* you need for future calls to evaluate derivative and integral.
|
|
*/
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input in the 1st dimension
|
|
double evaluate(const Eigen::MatrixXd& coefficients, const double& x_in);
|
|
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input in the 1st dimension
|
|
/// @param y_in double value that represents the current input in the 2nd dimension
|
|
double evaluate(const Eigen::MatrixXd& coefficients, const double& x_in, const double& y_in);
|
|
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input in the 1st dimension
|
|
/// @param y_in double value that represents the current input in the 2nd dimension
|
|
/// @param axis unsigned integer value that represents the axis to derive for (0=x, 1=y)
|
|
double derivative(const Eigen::MatrixXd& coefficients, const double& x_in, const double& y_in, const int& axis);
|
|
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input in the 1st dimension
|
|
/// @param y_in double value that represents the current input in the 2nd dimension
|
|
/// @param axis unsigned integer value that represents the axis to integrate for (0=x, 1=y)
|
|
double integral(const Eigen::MatrixXd& coefficients, const double& x_in, const double& y_in, const int& axis);
|
|
|
|
protected:
|
|
// TODO: Why doe these base definitions not work with derived classes?
|
|
/// Uses the Brent solver to find the roots of p(x_in,y_in)-z_in
|
|
/// @param res Poly2DResidual object to calculate residuals and derivatives
|
|
/// @param min double value that represents the minimum value
|
|
/// @param max double value that represents the maximum value
|
|
double solve_limits(Poly2DResidual* res, const double& min, const double& max);
|
|
|
|
// TODO: Why doe these base definitions not work with derived classes?
|
|
/// Uses the Newton solver to find the roots of p(x_in,y_in)-z_in
|
|
/// @param res Poly2DResidual object to calculate residuals and derivatives
|
|
/// @param guess double value that represents the start value
|
|
double solve_guess(Poly2DResidual* res, const double& guess);
|
|
|
|
public:
|
|
/// Returns a vector with ALL the real roots of p(x_in,y_in)-z_in
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
|
|
Eigen::VectorXd solve(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const int& axis);
|
|
|
|
/// Uses the Brent solver to find the roots of p(x_in,y_in)-z_in
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param min double value that represents the minimum value
|
|
/// @param max double value that represents the maximum value
|
|
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
|
|
double solve_limits(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const double& min, const double& max,
|
|
const int& axis);
|
|
|
|
/// Uses the Newton solver to find the roots of p(x_in,y_in)-z_in
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param guess double value that represents the start value
|
|
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
|
|
double solve_guess(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const double& guess, const int& axis);
|
|
|
|
protected:
|
|
/// Simple polynomial function generator. <- Deprecated due to poor performance, use Horner-scheme instead
|
|
/** Base function to produce n-th order polynomials
|
|
* based on the length of the coefficient vector.
|
|
* Starts with only the first coefficient at x^0. */
|
|
double simplePolynomial(const std::vector<double>& coefficients, double x);
|
|
DEPRECATED(double simplePolynomial(const std::vector<std::vector<double>>& coefficients, double x, double y));
|
|
/// Horner function generator implementations
|
|
/** Represent polynomials according to Horner's scheme.
|
|
* This avoids unnecessary multiplication and thus
|
|
* speeds up calculation.
|
|
* Deprecated since we moved everything to the Eigen framework.
|
|
*/
|
|
double baseHorner(const std::vector<double>& coefficients, double x);
|
|
DEPRECATED(double baseHorner(const std::vector<std::vector<double>>& coefficients, double x, double y));
|
|
|
|
bool do_debug(void) {
|
|
return get_debug_level() >= 500;
|
|
}
|
|
};
|
|
|
|
class Poly2DResidual : public FuncWrapper1DWithDeriv
|
|
{
|
|
protected:
|
|
enum dims
|
|
{
|
|
iX,
|
|
iY
|
|
};
|
|
Eigen::MatrixXd coefficients;
|
|
bool derIsSet;
|
|
Eigen::MatrixXd coefficientsDer;
|
|
int axis;
|
|
/// the fixed input != targetDim
|
|
double in;
|
|
/// Object that evaluates the equation
|
|
Polynomial2D poly;
|
|
/// Current output value
|
|
double z_in;
|
|
|
|
protected:
|
|
Poly2DResidual();
|
|
|
|
public:
|
|
/// Residual of a polynomial
|
|
/// @param poly polynomial object used to evaluate the calls
|
|
/// @param coefficients
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
|
|
Poly2DResidual(Polynomial2D& poly, const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const int& axis);
|
|
virtual ~Poly2DResidual(){};
|
|
|
|
double call(double target);
|
|
double deriv(double target);
|
|
};
|
|
|
|
/// A class for polynomials starting at an arbitrary degree.
|
|
/** It is implemented for the incompressibles and is a little messy, but seems to
|
|
* work fine for now. Besides handling arbitrary starting exponents for the
|
|
* polynomials, it can also calculate polynomials with a base value. This means
|
|
* that the independent variable no longer is x, but (x-x_base). For fitted
|
|
* functions, we often see such a design to enhance the fit quality/stability.
|
|
*/
|
|
class Polynomial2DFrac : public Polynomial2D
|
|
{
|
|
|
|
public:
|
|
/// Constructors
|
|
Polynomial2DFrac(){};
|
|
|
|
/// Destructor. No implementation
|
|
virtual ~Polynomial2DFrac(){};
|
|
|
|
public:
|
|
// /// Integration functions
|
|
// /** Integrating coefficients for polynomials is done by dividing the
|
|
// * original coefficients by (i+1) and elevating the order by 1
|
|
// * through adding a zero as first coefficient.
|
|
// * Some reslicing needs to be applied to integrate along the x-axis.
|
|
// * In the brine/solution equations, reordering of the parameters
|
|
// * avoids this expensive operation. However, it is included for the
|
|
// * sake of completeness.
|
|
// */
|
|
// /// @param coefficients matrix containing the ordered coefficients
|
|
// /// @param axis unsigned integer value that represents the desired direction of integration
|
|
// /// @param times integer value that represents the desired order of integration
|
|
// /// @param firstExponent integer value that represents the first exponent of the polynomial in axis direction
|
|
// Eigen::MatrixXd integrateCoeffs(const Eigen::MatrixXd &coefficients, const int &axis, const int ×, const int &firstExponent);
|
|
//
|
|
/// Derivative coefficients calculation
|
|
/** Deriving coefficients for polynomials is done by multiplying the
|
|
* original coefficients with i and lowering the order by 1.
|
|
*
|
|
* Remember that the first exponent might need to be adjusted after derivation.
|
|
* It has to be lowered by times:
|
|
* derCoeffs = deriveCoeffs(coefficients, axis, times, firstExponent);
|
|
* firstExponent -= times;
|
|
*/
|
|
/// @param coefficients matrix containing the ordered coefficients
|
|
/// @param axis unsigned integer value that represents the desired direction of derivation
|
|
/// @param times integer value that represents the desired order of derivation
|
|
/// @param firstExponent integer value that represents the lowest exponent of the polynomial in axis direction
|
|
Eigen::MatrixXd deriveCoeffs(const Eigen::MatrixXd& coefficients, const int& axis, const int& times, const int& firstExponent);
|
|
|
|
public:
|
|
/// The core functions to evaluate the polynomial
|
|
/** It is here we implement the different special
|
|
* functions that allow us to specify certain
|
|
* types of polynomials.
|
|
*
|
|
* Try to avoid many calls to the derivative and integral functions.
|
|
* Both of them have to calculate the new coefficients internally,
|
|
* which slows things down. Instead, you should use the deriveCoeffs
|
|
* and integrateCoeffs functions and store the coefficient matrix
|
|
* you need for future calls to evaluate derivative and integral.
|
|
*/
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input in the 1st dimension
|
|
/// @param firstExponent integer value that represents the lowest exponent of the polynomial
|
|
/// @param x_base double value that represents the base value for a centered fit in the 1st dimension
|
|
double evaluate(const Eigen::MatrixXd& coefficients, const double& x_in, const int& firstExponent = 0, const double& x_base = 0.0);
|
|
|
|
/// @param coefficients matrix containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input in the 1st dimension
|
|
/// @param y_in double value that represents the current input in the 2nd dimension
|
|
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
|
|
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
|
|
/// @param x_base double value that represents the base value for a centered fit in the 1st dimension
|
|
/// @param y_base double value that represents the base value for a centered fit in the 2nd dimension
|
|
double evaluate(const Eigen::MatrixXd& coefficients, const double& x_in, const double& y_in, const int& x_exp, const int& y_exp,
|
|
const double& x_base = 0.0, const double& y_base = 0.0);
|
|
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input in the 1st dimension
|
|
/// @param y_in double value that represents the current input in the 2nd dimension
|
|
/// @param axis unsigned integer value that represents the axis to derive for (0=x, 1=y)
|
|
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
|
|
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
|
|
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
|
|
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
|
|
double derivative(const Eigen::MatrixXd& coefficients, const double& x_in, const double& y_in, const int& axis, const int& x_exp,
|
|
const int& y_exp, const double& x_base = 0.0, const double& y_base = 0.0);
|
|
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input in the 1st dimension
|
|
/// @param y_in double value that represents the current input in the 2nd dimension
|
|
/// @param axis unsigned integer value that represents the axis to integrate for (0=x, 1=y)
|
|
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
|
|
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
|
|
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
|
|
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
|
|
/// @param ax_val double value that represents the base value for the definite integral on the chosen axis.
|
|
double integral(const Eigen::MatrixXd& coefficients, const double& x_in, const double& y_in, const int& axis, const int& x_exp, const int& y_exp,
|
|
const double& x_base = 0.0, const double& y_base = 0.0, const double& ax_val = 0.0);
|
|
|
|
public:
|
|
/// Returns a vector with ALL the real roots of p(x_in,y_in)-z_in
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
|
|
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
|
|
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
|
|
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
|
|
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
|
|
Eigen::VectorXd solve(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const int& axis, const int& x_exp,
|
|
const int& y_exp, const double& x_base = 0.0, const double& y_base = 0.0);
|
|
|
|
/// Uses the Brent solver to find the roots of p(x_in,y_in)-z_in
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param min double value that represents the minimum value
|
|
/// @param max double value that represents the maximum value
|
|
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
|
|
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
|
|
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
|
|
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
|
|
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
|
|
double solve_limits(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const double& min, const double& max,
|
|
const int& axis, const int& x_exp, const int& y_exp, const double& x_base = 0.0, const double& y_base = 0.0);
|
|
|
|
/// Uses the Newton solver to find the roots of p(x_in,y_in)-z_in
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param guess double value that represents the start value
|
|
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
|
|
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
|
|
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
|
|
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
|
|
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
|
|
double solve_guess(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const double& guess, const int& axis,
|
|
const int& x_exp, const int& y_exp, const double& x_base = 0.0, const double& y_base = 0.0);
|
|
|
|
/// Uses the Brent solver to find the roots of Int(p(x_in,y_in))-z_in
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param min double value that represents the minimum value
|
|
/// @param max double value that represents the maximum value
|
|
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
|
|
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
|
|
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
|
|
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
|
|
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
|
|
/// @param int_axis axis for the integration (0=x, 1=y)
|
|
double solve_limitsInt(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const double& min, const double& max,
|
|
const int& axis, const int& x_exp, const int& y_exp, const double& x_base = 0.0, const double& y_base = 0.0,
|
|
const int& int_axis = 0);
|
|
|
|
/// Uses the Newton solver to find the roots of Int(p(x_in,y_in))-z_in
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param guess double value that represents the start value
|
|
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
|
|
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
|
|
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
|
|
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
|
|
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
|
|
/// @param int_axis axis for the integration (0=x, 1=y)
|
|
double solve_guessInt(const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const double& guess, const int& axis,
|
|
const int& x_exp, const int& y_exp, const double& x_base = 0.0, const double& y_base = 0.0, const int& int_axis = 0);
|
|
|
|
protected:
|
|
/// @param nValue integer value that represents the order of the factorial
|
|
double factorial(const int& nValue);
|
|
|
|
/// @param nValue integer value that represents the upper part of the factorial
|
|
/// @param nValue2 integer value that represents the lower part of the factorial
|
|
double binom(const int& nValue, const int& nValue2);
|
|
|
|
///Helper function to calculate the D vector:
|
|
/// @param m integer value that represents order
|
|
/// @param x_in double value that represents the current input
|
|
/// @param x_base double value that represents the basis for the fit
|
|
Eigen::MatrixXd fracIntCentralDvector(const int& m, const double& x_in, const double& x_base);
|
|
|
|
///Indefinite integral of a centred polynomial divided by its independent variable
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input
|
|
/// @param x_base double value that represents the basis for the fit
|
|
double fracIntCentral(const Eigen::MatrixXd& coefficients, const double& x_in, const double& x_base);
|
|
};
|
|
|
|
class Poly2DFracResidual : public Poly2DResidual
|
|
{
|
|
protected:
|
|
int x_exp, y_exp;
|
|
double x_base, y_base;
|
|
/// Object that evaluates the equation
|
|
Polynomial2DFrac poly;
|
|
|
|
protected:
|
|
Poly2DFracResidual();
|
|
|
|
public:
|
|
/// Residual of a polynomial divided by the independent variable
|
|
/// @param poly polynomial object used to evaluate the calls
|
|
/// @param coefficients
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
|
|
/// @param x_exp first exponent in x-direction
|
|
/// @param y_exp first exponent in y-direction
|
|
/// @param x_base base value for x (x = x_in - x_base)
|
|
/// @param y_base base value for y (y = y_in - y_base)
|
|
Poly2DFracResidual(Polynomial2DFrac& poly, const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const int& axis,
|
|
const int& x_exp, const int& y_exp, const double& x_base, const double& y_base);
|
|
virtual ~Poly2DFracResidual(){};
|
|
double call(double target);
|
|
double deriv(double target);
|
|
};
|
|
|
|
class Poly2DFracIntResidual : public Poly2DFracResidual
|
|
{
|
|
|
|
protected:
|
|
int int_axis;
|
|
Poly2DFracIntResidual();
|
|
|
|
public:
|
|
/// Residual of an integrated polynomial divided by the independent variable
|
|
/// @param poly polynomial object used to evaluate the calls
|
|
/// @param coefficients vector of coefficients
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
|
|
/// @param x_exp first exponent in x-direction
|
|
/// @param y_exp first exponent in y-direction
|
|
/// @param x_base base value for x (x = x_in - x_base)
|
|
/// @param y_base base value for y (y = y_in - y_base)
|
|
/// @param int_axis axis for the integration (0=x, 1=y)
|
|
Poly2DFracIntResidual(Polynomial2DFrac& poly, const Eigen::MatrixXd& coefficients, const double& in, const double& z_in, const int& axis,
|
|
const int& x_exp, const int& y_exp, const double& x_base, const double& y_base, const int& int_axis);
|
|
virtual ~Poly2DFracIntResidual(){};
|
|
double call(double target);
|
|
double deriv(double target);
|
|
};
|
|
|
|
//
|
|
//
|
|
//
|
|
//
|
|
//
|
|
//
|
|
//
|
|
//
|
|
//
|
|
///// The base class for Polynomials
|
|
//class BasePolynomial{
|
|
//
|
|
//public:
|
|
// // Constructor
|
|
// BasePolynomial();
|
|
// // Destructor. No implementation
|
|
// virtual ~BasePolynomial(){};
|
|
//
|
|
//public:
|
|
// /// Basic checks for coefficient vectors.
|
|
// /** Starts with only the first coefficient dimension
|
|
// * and checks the vector length against parameter n. */
|
|
// bool checkCoefficients(const Eigen::VectorXd &coefficients, const unsigned int n);
|
|
// bool checkCoefficients(const Eigen::MatrixXd &coefficients, const unsigned int rows, const unsigned int columns);
|
|
// bool checkCoefficients(const std::vector<double> &coefficients, const unsigned int n);
|
|
// bool checkCoefficients(const std::vector< std::vector<double> > &coefficients, const unsigned int rows, const unsigned int columns);
|
|
//
|
|
// /** Integrating coefficients for polynomials is done by dividing the
|
|
// * original coefficients by (i+1) and elevating the order by 1
|
|
// * through adding a zero as first coefficient.
|
|
// * Some reslicing needs to be applied to integrate along the x-axis.
|
|
// * In the brine/solution equations, reordering of the parameters
|
|
// * avoids this expensive operation. However, it is included for the
|
|
// * sake of completeness.
|
|
// */
|
|
// std::vector<double> integrateCoeffs(const std::vector<double> &coefficients);
|
|
// std::vector< std::vector<double> > integrateCoeffs(const std::vector< std::vector<double> > &coefficients, bool axis);
|
|
//
|
|
// /** Deriving coefficients for polynomials is done by multiplying the
|
|
// * original coefficients with i and lowering the order by 1.
|
|
// *
|
|
// * It is not really deprecated, but untested and therefore a warning
|
|
// * is issued. Please check this method before you use it.
|
|
// */
|
|
// std::vector<double> deriveCoeffs(const std::vector<double> &coefficients);
|
|
// std::vector< std::vector<double> > deriveCoeffs(const std::vector< std::vector<double> > &coefficients, unsigned int axis);
|
|
//
|
|
//private:
|
|
// /** The core of the polynomial wrappers are the different
|
|
// * implementations that follow below. In case there are
|
|
// * new calculation schemes available, please do not delete
|
|
// * the implementations, but mark them as deprecated.
|
|
// * The old functions are good for debugging since the
|
|
// * structure is easier to read than the backward Horner-scheme
|
|
// * or the recursive Horner-scheme.
|
|
// */
|
|
//
|
|
// /// Simple polynomial function generator. <- Deprecated due to poor performance, use Horner-scheme instead
|
|
// /** Base function to produce n-th order polynomials
|
|
// * based on the length of the coefficient vector.
|
|
// * Starts with only the first coefficient at x^0. */
|
|
// DEPRECATED(double simplePolynomial(const std::vector<double> &coefficients, double x));
|
|
// DEPRECATED(double simplePolynomial(const std::vector<std::vector<double> > &coefficients, double x, double y));
|
|
//
|
|
// /// Simple integrated polynomial function generator.
|
|
// /** Base function to produce integrals of n-th order polynomials based on
|
|
// * the length of the coefficient vector.
|
|
// * Starts with only the first coefficient at x^0 */
|
|
// ///Indefinite integral in x-direction
|
|
// double simplePolynomialInt(const std::vector<double> &coefficients, double x);
|
|
// ///Indefinite integral in y-direction only
|
|
// double simplePolynomialInt(const std::vector<std::vector<double> > &coefficients, double x, double y);
|
|
//
|
|
// /// Simple integrated polynomial function generator divided by independent variable.
|
|
// /** Base function to produce integrals of n-th order
|
|
// * polynomials based on the length of the coefficient
|
|
// * vector. Starts with only the first coefficient at x^0 */
|
|
// ///Indefinite integral of a polynomial divided by its independent variable
|
|
// double simpleFracInt(const std::vector<double> &coefficients, double x);
|
|
// ///Indefinite integral of a polynomial divided by its 2nd independent variable
|
|
// double simpleFracInt(const std::vector<std::vector<double> > &coefficients, double x, double y);
|
|
//
|
|
// /** Simple integrated centred(!) polynomial function generator divided by independent variable.
|
|
// * We need to rewrite some of the functions in order to
|
|
// * use central fit. Having a central temperature xbase
|
|
// * allows for a better fit, but requires a different
|
|
// * formulation of the fracInt function group. Other
|
|
// * functions are not affected.
|
|
// * Starts with only the first coefficient at x^0 */
|
|
// ///Helper function to calculate the D vector:
|
|
// double factorial(double nValue);
|
|
// double binom(double nValue, double nValue2);
|
|
// std::vector<double> fracIntCentralDvector(int m, double x, double xbase);
|
|
// ///Indefinite integral of a centred polynomial divided by its independent variable
|
|
// double fracIntCentral(const std::vector<double> &coefficients, double x, double xbase);
|
|
//
|
|
// /// Horner function generator implementations
|
|
// /** Represent polynomials according to Horner's scheme.
|
|
// * This avoids unnecessary multiplication and thus
|
|
// * speeds up calculation.
|
|
// */
|
|
// double baseHorner(const std::vector<double> &coefficients, double x);
|
|
// double baseHorner(const std::vector< std::vector<double> > &coefficients, double x, double y);
|
|
// ///Indefinite integral in x-direction
|
|
// double baseHornerInt(const std::vector<double> &coefficients, double x);
|
|
// ///Indefinite integral in y-direction only
|
|
// double baseHornerInt(const std::vector<std::vector<double> > &coefficients, double x, double y);
|
|
// ///Indefinite integral of a polynomial divided by its independent variable
|
|
// double baseHornerFracInt(const std::vector<double> &coefficients, double x);
|
|
// ///Indefinite integral of a polynomial divided by its 2nd independent variable
|
|
// double baseHornerFracInt(const std::vector<std::vector<double> > &coefficients, double x, double y);
|
|
//
|
|
// /** Alternatives
|
|
// * Simple functions that heavily rely on other parts of this file.
|
|
// * We still need to check which combinations yield the best
|
|
// * performance.
|
|
// */
|
|
// ///Derivative in x-direction
|
|
// double deriveIn2Steps(const std::vector<double> &coefficients, double x); // TODO: Check results!
|
|
// ///Derivative in terms of x(axis=true) or y(axis=false).
|
|
// double deriveIn2Steps(const std::vector< std::vector<double> > &coefficients, double x, double y, bool axis); // TODO: Check results!
|
|
// ///Indefinite integral in x-direction
|
|
// double integrateIn2Steps(const std::vector<double> &coefficients, double x);
|
|
// ///Indefinite integral in terms of x(axis=true) or y(axis=false).
|
|
// double integrateIn2Steps(const std::vector< std::vector<double> > &coefficients, double x, double y, bool axis);
|
|
// ///Indefinite integral in x-direction of a polynomial divided by its independent variable
|
|
// double fracIntIn2Steps(const std::vector<double> &coefficients, double x);
|
|
// ///Indefinite integral in y-direction of a polynomial divided by its 2nd independent variable
|
|
// double fracIntIn2Steps(const std::vector<std::vector<double> > &coefficients, double x, double y);
|
|
// ///Indefinite integral of a centred polynomial divided by its 2nd independent variable
|
|
// double fracIntCentral2Steps(const std::vector<std::vector<double> > &coefficients, double x, double y, double ybase);
|
|
//
|
|
//public:
|
|
// /** Here we define the functions that should be used by the
|
|
// * respective implementations. Please do no use any other
|
|
// * method since this would break the purpose of this interface.
|
|
// * Note that the functions below are supposed to be aliases
|
|
// * to implementations declared elsewhere in this file.
|
|
// */
|
|
//
|
|
// /** Everything related to the normal polynomials goes in this
|
|
// * section, holds all the functions for evaluating polynomials.
|
|
// */
|
|
// /// Evaluates a one-dimensional polynomial for the given coefficients
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input
|
|
// virtual inline double polyval(const std::vector<double> &coefficients, double x){
|
|
// return baseHorner(coefficients,x);
|
|
// }
|
|
//
|
|
// /// Evaluates a two-dimensional polynomial for the given coefficients
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param y double value that represents the current input in the 2nd dimension
|
|
// virtual inline double polyval(const std::vector< std::vector<double> > &coefficients, double x, double y){
|
|
// return baseHorner(coefficients,x,y);
|
|
// }
|
|
//
|
|
//
|
|
// /** Everything related to the integrated polynomials goes in this
|
|
// * section, holds all the functions for evaluating polynomials.
|
|
// */
|
|
// /// Evaluates the indefinite integral of a one-dimensional polynomial
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input
|
|
// virtual inline double polyint(const std::vector<double> &coefficients, double x){
|
|
// return baseHornerInt(coefficients,x);
|
|
// }
|
|
//
|
|
// /// Evaluates the indefinite integral of a two-dimensional polynomial along the 2nd axis (y)
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param y double value that represents the current input in the 2nd dimension
|
|
// virtual inline double polyint(const std::vector< std::vector<double> > &coefficients, double x, double y){
|
|
// return baseHornerInt(coefficients,x,y);
|
|
// }
|
|
//
|
|
//
|
|
// /** Everything related to the derived polynomials goes in this
|
|
// * section, holds all the functions for evaluating polynomials.
|
|
// */
|
|
// /// Evaluates the derivative of a one-dimensional polynomial
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input
|
|
// virtual inline double polyder(const std::vector<double> &coefficients, double x){
|
|
// return deriveIn2Steps(coefficients,x);
|
|
// }
|
|
//
|
|
// /// Evaluates the derivative of a two-dimensional polynomial along the 2nd axis (y)
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param y double value that represents the current input in the 2nd dimension
|
|
// virtual inline double polyder(const std::vector< std::vector<double> > &coefficients, double x, double y){
|
|
// return deriveIn2Steps(coefficients,x,y,false);
|
|
// }
|
|
//
|
|
//
|
|
// /** Everything related to the polynomials divided by one variable goes in this
|
|
// * section, holds all the functions for evaluating polynomials.
|
|
// */
|
|
// /// Evaluates the indefinite integral of a one-dimensional polynomial divided by its independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current position
|
|
// virtual inline double polyfracval(const std::vector<double> &coefficients, double x){
|
|
// return baseHorner(coefficients,x)/x;
|
|
// }
|
|
//
|
|
// /// Evaluates the indefinite integral of a two-dimensional polynomial divided by its 2nd independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param y double value that represents the current input in the 2nd dimension
|
|
// virtual inline double polyfracval(const std::vector< std::vector<double> > &coefficients, double x, double y){
|
|
// return baseHorner(coefficients,x,y)/y;
|
|
// }
|
|
//
|
|
//
|
|
// /** Everything related to the integrated polynomials divided by one variable goes in this
|
|
// * section, holds all the functions for solving polynomials.
|
|
// */
|
|
// /// Evaluates the indefinite integral of a one-dimensional polynomial divided by its independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current position
|
|
// virtual inline double polyfracint(const std::vector<double> &coefficients, double x){
|
|
// return baseHornerFracInt(coefficients,x);
|
|
// }
|
|
//
|
|
// /// Evaluates the indefinite integral of a two-dimensional polynomial divided by its 2nd independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param y double value that represents the current input in the 2nd dimension
|
|
// virtual inline double polyfracint(const std::vector< std::vector<double> > &coefficients, double x, double y){
|
|
// return baseHornerFracInt(coefficients,x,y);
|
|
// }
|
|
//
|
|
// /// Evaluates the indefinite integral of a centred one-dimensional polynomial divided by its independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current position
|
|
// /// @param xbase central temperature for fitted function
|
|
// virtual inline double polyfracintcentral(const std::vector<double> &coefficients, double x, double xbase){
|
|
// return fracIntCentral(coefficients,x,xbase);
|
|
// }
|
|
//
|
|
// /// Evaluates the indefinite integral of a centred two-dimensional polynomial divided by its 2nd independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param y double value that represents the current input in the 2nd dimension
|
|
// /// @param ybase central temperature for fitted function
|
|
// virtual inline double polyfracintcentral(const std::vector< std::vector<double> > &coefficients, double x, double y, double ybase){
|
|
// return fracIntCentral2Steps(coefficients,x,y,ybase);
|
|
// }
|
|
//
|
|
//
|
|
// /** Everything related to the derived polynomials divided by one variable goes in this
|
|
// * section, holds all the functions for solving polynomials.
|
|
// */
|
|
// /// Evaluates the derivative of a one-dimensional polynomial divided by its independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current position
|
|
// virtual inline double polyfracder(const std::vector<double> &coefficients, double x){
|
|
// throw CoolProp::NotImplementedError("Derivatives of polynomials divided by their independent variable have not been implemented."); // TODO: Implement polyfracder1D
|
|
// }
|
|
//
|
|
// /// Evaluates the derivative of a two-dimensional polynomial divided by its 2nd independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param y double value that represents the current input in the 2nd dimension
|
|
// virtual inline double polyfracder(const std::vector< std::vector<double> > &coefficients, double x, double y){
|
|
// throw CoolProp::NotImplementedError("Derivatives of polynomials divided by their independent variable have not been implemented."); // TODO: Implement polyfracder2D
|
|
// }
|
|
//
|
|
// /// Evaluates the derivative of a centred one-dimensional polynomial divided by its independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current position
|
|
// /// @param xbase central temperature for fitted function
|
|
// virtual inline double polyfracdercentral(const std::vector<double> &coefficients, double x, double xbase){
|
|
// throw CoolProp::NotImplementedError("Derivatives of polynomials divided by their independent variable have not been implemented."); // TODO: Implement polyfracdercentral1D
|
|
// }
|
|
//
|
|
// /// Evaluates the derivative of a centred two-dimensional polynomial divided by its 2nd independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param y double value that represents the current input in the 2nd dimension
|
|
// /// @param ybase central temperature for fitted function
|
|
// virtual inline double polyfracdercentral(const std::vector< std::vector<double> > &coefficients, double x, double y, double ybase){
|
|
// throw CoolProp::NotImplementedError("Derivatives of polynomials divided by their independent variable have not been implemented."); // TODO: Implement polyfracdercentral2D
|
|
// }
|
|
//};
|
|
//
|
|
//
|
|
//
|
|
//
|
|
///** Implements the function wrapper interface and can be
|
|
// * used by the solvers.
|
|
// * TODO: Make multidimensional
|
|
// */
|
|
//class PolyResidual : public FuncWrapper1D {
|
|
//protected:
|
|
// enum dims {i1D, i2D};
|
|
// /// Object that evaluates the equation
|
|
// BasePolynomial poly;
|
|
// /// Current output value
|
|
// double output, firstDim;
|
|
// int dim;
|
|
// std::vector< std::vector<double> > coefficients;
|
|
//private:
|
|
// PolyResidual();
|
|
//public:
|
|
// PolyResidual(const std::vector<double> &coefficients, double y);
|
|
// PolyResidual(const std::vector< std::vector<double> > &coefficients, double x, double z);
|
|
// virtual ~PolyResidual(){};
|
|
// bool is2D(){return (this->dim==i2D);};
|
|
// virtual double call(double x);
|
|
// virtual double deriv(double x);
|
|
//};
|
|
//class PolyIntResidual : public PolyResidual {
|
|
//public:
|
|
// PolyIntResidual(const std::vector<double> &coefficients, double y):PolyResidual(coefficients, y){};
|
|
// PolyIntResidual(const std::vector< std::vector<double> > &coefficients, double x, double z):PolyResidual(coefficients, x, z){};
|
|
// virtual double call(double x);
|
|
// virtual double deriv(double x);
|
|
//};
|
|
//class PolyFracIntResidual : public PolyResidual {
|
|
//public:
|
|
// PolyFracIntResidual(const std::vector<double> &coefficients, double y):PolyResidual(coefficients, y){};
|
|
// PolyFracIntResidual(const std::vector< std::vector<double> > &coefficients, double x, double z):PolyResidual(coefficients, x, z){};
|
|
// virtual double call(double x);
|
|
// virtual double deriv(double x);
|
|
//};
|
|
//class PolyFracIntCentralResidual : public PolyResidual {
|
|
//protected:
|
|
// double baseVal;
|
|
//public:
|
|
// PolyFracIntCentralResidual(const std::vector<double> &coefficients, double y, double xBase):PolyResidual(coefficients, y){this->baseVal = xBase;};
|
|
// PolyFracIntCentralResidual(const std::vector< std::vector<double> > &coefficients, double x, double z, double yBase): PolyResidual(coefficients, x, z){this->baseVal = yBase;};
|
|
// virtual double call(double x);
|
|
// virtual double deriv(double x);
|
|
//};
|
|
//class PolyDerResidual : public PolyResidual {
|
|
//public:
|
|
// PolyDerResidual(const std::vector<double> &coefficients, double y):PolyResidual(coefficients, y){};
|
|
// PolyDerResidual(const std::vector< std::vector<double> > &coefficients, double x, double z):PolyResidual(coefficients, x, z){};
|
|
// virtual double call(double x);
|
|
// virtual double deriv(double x);
|
|
//};
|
|
//
|
|
//
|
|
//
|
|
//
|
|
///** Implements the same public functions as the
|
|
// * but solves the polynomial for the given value
|
|
// * instead of evaluating it.
|
|
// * TODO: This class does not check for bijective
|
|
// * polynomials and is therefore a little
|
|
// * fragile.
|
|
// */
|
|
//class PolynomialSolver : public BasePolynomial{
|
|
//private:
|
|
// enum solvers {iNewton, iBrent};
|
|
// int uses;
|
|
// double guess, min, max;
|
|
// double macheps, tol;
|
|
// int maxiter;
|
|
//
|
|
//public:
|
|
// // Constructor
|
|
// PolynomialSolver();
|
|
// // Destructor. No implementation
|
|
// virtual ~PolynomialSolver(){};
|
|
//
|
|
//public:
|
|
// /** Here we redefine the functions that solve the polynomials.
|
|
// * These implementations all use the base class to evaluate
|
|
// * the polynomial during the solution process.
|
|
// */
|
|
//
|
|
// /** Everything related to the normal polynomials goes in this
|
|
// * section, holds all the functions for solving polynomials.
|
|
// */
|
|
// /// Solves a one-dimensional polynomial for the given coefficients
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param y double value that represents the current input
|
|
// virtual double polyval(const std::vector<double> &coefficients, double y);
|
|
//
|
|
// /// Solves a two-dimensional polynomial for the given coefficients
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param z double value that represents the current output
|
|
// virtual double polyval(const std::vector< std::vector<double> > &coefficients, double x, double z);
|
|
//
|
|
//
|
|
// /** Everything related to the integrated polynomials goes in this
|
|
// * section, holds all the functions for solving polynomials.
|
|
// */
|
|
// /// Solves the indefinite integral of a one-dimensional polynomial
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param y double value that represents the current output
|
|
// virtual double polyint(const std::vector<double> &coefficients, double y);
|
|
//
|
|
// /// Solves the indefinite integral of a two-dimensional polynomial along the 2nd axis (y)
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param z double value that represents the current output
|
|
// virtual double polyint(const std::vector< std::vector<double> > &coefficients, double x, double z);
|
|
//
|
|
//
|
|
// /** Everything related to the derived polynomials goes in this
|
|
// * section, holds all the functions for solving polynomials.
|
|
// */
|
|
// /// Solves the derivative of a one-dimensional polynomial
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param y double value that represents the current output
|
|
// virtual double polyder(const std::vector<double> &coefficients, double y);
|
|
//
|
|
// /// Solves the derivative of a two-dimensional polynomial along the 2nd axis (y)
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param z double value that represents the current output
|
|
// virtual double polyder(const std::vector< std::vector<double> > &coefficients, double x, double z);
|
|
//
|
|
//
|
|
// /** Everything related to the polynomials divided by one variable goes in this
|
|
// * section, holds all the functions for solving polynomials.
|
|
// */
|
|
// /// Solves the indefinite integral of a one-dimensional polynomial divided by its independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param y double value that represents the current output
|
|
// virtual double polyfracval(const std::vector<double> &coefficients, double y);
|
|
//
|
|
// /// Solves the indefinite integral of a two-dimensional polynomial divided by its 2nd independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param z double value that represents the current output
|
|
// virtual double polyfracval(const std::vector< std::vector<double> > &coefficients, double x, double z);
|
|
//
|
|
//
|
|
// /** Everything related to the integrated polynomials divided by one variable goes in this
|
|
// * section, holds all the functions for solving polynomials.
|
|
// */
|
|
// /// Solves the indefinite integral of a one-dimensional polynomial divided by its independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param y double value that represents the current output
|
|
// virtual double polyfracint(const std::vector<double> &coefficients, double y);
|
|
//
|
|
// /// Solves the indefinite integral of a two-dimensional polynomial divided by its 2nd independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param z double value that represents the current output
|
|
// virtual double polyfracint(const std::vector< std::vector<double> > &coefficients, double x, double z);
|
|
//
|
|
// /// Solves the indefinite integral of a centred one-dimensional polynomial divided by its independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param y double value that represents the current output
|
|
// /// @param xbase central x-value for fitted function
|
|
// virtual double polyfracintcentral(const std::vector<double> &coefficients, double y, double xbase);
|
|
//
|
|
// /// Solves the indefinite integral of a centred two-dimensional polynomial divided by its 2nd independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param z double value that represents the current output
|
|
// /// @param ybase central y-value for fitted function
|
|
// virtual double polyfracintcentral(const std::vector< std::vector<double> > &coefficients, double x, double z, double ybase);
|
|
//
|
|
//
|
|
// /** Everything related to the derived polynomials divided by one variable goes in this
|
|
// * section, holds all the functions for solving polynomials.
|
|
// */
|
|
// /// Solves the derivative of a one-dimensional polynomial divided by its independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param y double value that represents the current output
|
|
// virtual double polyfracder(const std::vector<double> &coefficients, double y);
|
|
//
|
|
// /// Solves the derivative of a two-dimensional polynomial divided by its 2nd independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param z double value that represents the current output
|
|
// virtual double polyfracder(const std::vector< std::vector<double> > &coefficients, double x, double z);
|
|
//
|
|
// /// Solves the derivative of a centred one-dimensional polynomial divided by its independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param y double value that represents the current output
|
|
// /// @param xbase central x-value for fitted function
|
|
// virtual double polyfracdercentral(const std::vector<double> &coefficients, double y, double xbase);
|
|
//
|
|
// /// Solves the derivative of a centred two-dimensional polynomial divided by its 2nd independent variable
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param z double value that represents the current output
|
|
// /// @param ybase central y-value for fitted function
|
|
// virtual double polyfracdercentral(const std::vector< std::vector<double> > &coefficients, double x, double z, double ybase);
|
|
//
|
|
//
|
|
// /** Set the solvers and updates either the guess values or the
|
|
// * boundaries for the variable to solve for.
|
|
// */
|
|
// /// Sets the guess value for the Newton solver and enables it.
|
|
// /// @param guess double value that represents the guess value
|
|
// virtual void setGuess(double guess);
|
|
// /// Sets the limits for the Brent solver and enables it.
|
|
// /// @param min double value that represents the lower boundary
|
|
// /// @param max double value that represents the upper boundary
|
|
// virtual void setLimits(double min, double max);
|
|
// /// Solves the equations based on previously defined parameters.
|
|
// /// @param min double value that represents the lower boundary
|
|
// /// @param max double value that represents the upper boundary
|
|
// virtual double solve(PolyResidual &res);
|
|
//};
|
|
//
|
|
//
|
|
///// The base class for exponential functions
|
|
//class BaseExponential{
|
|
//
|
|
//protected:
|
|
// BasePolynomial poly;
|
|
// bool POLYMATH_DEBUG;
|
|
//
|
|
//public:
|
|
// BaseExponential();
|
|
// virtual ~BaseExponential(){};
|
|
//
|
|
//public:
|
|
// /// Evaluates an exponential function for the given coefficients
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input
|
|
// /// @param n int value that determines the kind of exponential function
|
|
// double expval(const std::vector<double> &coefficients, double x, int n);
|
|
//
|
|
// /// Evaluates an exponential function for the given coefficients
|
|
// /// @param coefficients vector containing the ordered coefficients
|
|
// /// @param x double value that represents the current input in the 1st dimension
|
|
// /// @param y double value that represents the current input in the 2nd dimension
|
|
// /// @param n int value that determines the kind of exponential function
|
|
// double expval(const std::vector< std::vector<double> > &coefficients, double x, double y, int n);
|
|
//};
|
|
|
|
}; /* namespace CoolProp */
|
|
#endif
|