mirror of
https://github.com/CoolProp/CoolProp.git
synced 2026-01-23 04:47:57 -05:00
84 lines
11 KiB
Plaintext
84 lines
11 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import matplotlib.pyplot as plt, CoolProp, numpy as np\n",
|
|
"%matplotlib inline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.text.Text at 0x106abfd50>"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEPCAYAAAC6Kkg/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGq9JREFUeJzt3X2UZHV95/H3Z4BhRpQQddcAAxE3cLJjDvERDXG1fWIN\nQYib3cDRxRg3mg17IsdVdkGjjJscxPi0xqPZJEiWuAc8nKzJQowIqI1xs4IPgw9MiJCIcRTB+IjM\n4Dx994+63VM03T11q/pWdU+9X+fUmVu3bt3+9u2a+6nf7/7uvakqJElqY92kC5AkrT2GhySpNcND\nktSa4SFJas3wkCS1ZnhIklrrPDySHJJka5Jrm+enJLmlmffpJE/tW/aiJHckuT3JaV3XJkkazjha\nHucD24C5E0p+D3hDVT0ReGPznCSbgbOBzcALgPcmsWUkSatQpzvnJJuA04HLgDSz7wZ+rJk+Cvh6\nM30WcFVV7a6qu4A7gVO6rE+SNJxDO17/O4ELgCP75l0IfDLJ2+iF1881848BPtW33Hbg2I7rkyQN\nobOWR5IzgHuraiv7Wx0A7wNeVVXHA68GLl9mNV47RZJWoS5bHqcCZyY5HdgAHJnk/cApVfW8Zpk/\no9elBb3uq+P63r+J/V1a85IYKJI0hKrKgZcaTGctj6p6XVUdV1UnAOcAH6uqc4E7kzyrWew5wJeb\n6WuAc5KsT3ICcCJwyxLrXvWPiy++eOI1WKd1rtUarXPlHyut62Me/eaqfyXwniSHAzub51TVtiRX\n0xuZtQc4r7r4jSVJIxtLeFTVTcBNzfRngKctsdwlwCXjqEmSNDzPo+jIzMzMpEsYiHWurLVQ51qo\nEaxztcta6xlKYm+WJLWUhFoLB8wlSQcvw0OS1JrhIUlqzfCQJLVmeEiSWjM8JEmtGR6SpNYMD0lS\na4aHJKk1w0OS1JrhIUlqzfCQJLVmeEiSWjM8JEmtGR6SpNbGeRtaSdISdu+GHTtg584HPx544KHz\nFj4We9/Cdaw0bwYlSQtU7d9pL9wxD7IzH+Z9CWzcCBs29P5d6cfJJ6/szaAMD0mr3t697b5pj/r4\n0Y9g/fqH7oAf9rDBd9b9ITDI+w7tuB9ope8kaHhIam337vZdJ8N2uezcCXv2LL/jbbNTH3THv+4g\nOyK80uHhMQ9pjatafGfeZoe+2HLLvReG35kfdVT7961f3+vW0ephy0PqQP/OfJAd8yA7+eXWs27d\nYN+ol9upL/XaYvMPO2zSW1ht2W1leGgIe/a0/6Y9yk5/7uBnmx31IF0vC5eZe951f7nWPsPD8Dgo\n7Nu3MjvvQd+3d+/gO+JRl/GbuVYjw8Pw6NTevXDPPcPv0AeZ3rmzN5pllG/jc/MX/rvUcocdZp+5\nppvhYXh06o1vhHe9Cx71qMV34EtNt3lt48beaBZ35tL4ONpKnfrWt+DNb4bzzpt0JZJWs85HMic5\nJMnWJNf2zfutJH+b5EtJ3tI3/6IkdyS5PclpXdemh9qxo9dKkKTljKPlcT6wDXgEQJJnA2cCJ1fV\n7iT/rJm/GTgb2AwcC9yY5KSq2jeGGtW4/3444ohJVyFpteu05ZFkE3A6cBkw19f2m8Cbq2o3QFV9\nq5l/FnBVVe2uqruAO4FTuqxPD2V4SBpE191W7wQuAPpbDycCz0zyqSSzSZ7SzD8G2N633HZ6LRCN\nkd1WkgbRWXgkOQO4t6q2sr/VAb2ush+vqqfTC5arl1mNw6rGzJaHpEF0eczjVODMJKcDG4Ajk7yf\nXovigwBV9ekk+5I8Gvg6cFzf+zc18x5iy5Yt89MzMzPMzMx0Uf9UMjykg8Ps7Cyzs7OdrX8s53kk\neRbw2qp6YZLfAI6pqouTnATcWFXHNwfMr6R3nONY4Ebgpxae1OF5Ht06/nj4xCfgsY+ddCWSVtJa\nPs9jbo9/OXB5ki8Cu4CXAlTVtiRX0xuZtQc4z5QYvx07bHlIOjDPMNeDbNwI3/62B82lg81KtzwO\nstudaBR79+6/5pQkLcfw0LydO3vB4TWnJB2I4aF5jrSSNCjDQ/MMD0mDMjw07/77PVAuaTCGh+Y5\nTFfSoAwPzbPbStKgDA/NMzwkDcrw0DyvqCtpUIaH5tnykDQow0PzDA9JgzI8NM+hupIGZXhonkN1\nJQ3K8NA8u60kDcrw0DzDQ9KgDA/Nc6iupEEZHppny0PSoAwPzTM8JA3K8NA8h+pKGpThoXkO1ZU0\nKMND8+y2kjQow0PzDA9JgzI8NM+hupIGZXhoni0PSYMyPATA3r2waxds2DDpSiStBYaHgP3DdJNJ\nVyJpLTA8BDhMV1I7hocAj3dIasfwEGB4SGqn8/BIckiSrUmuXTD/NUn2JXlk37yLktyR5PYkp3Vd\nm/ZzmK6kNg4dw884H9gGPGJuRpLjgOcDX+2btxk4G9gMHAvcmOSkqto3hhqnni0PSW102vJIsgk4\nHbgM6B/H8w7gvyxY/CzgqqraXVV3AXcCp3RZn/YzPCS10XW31TuBC4D51kOSs4DtVfWFBcseA2zv\ne76dXgtEY2C3laQ2Ouu2SnIGcG9VbU0y08x7GPA6el1W84sus5pabOaWLVvmp2dmZpiZmRmxWtny\nkA4us7OzzM7Odrb+VC26fx59xcklwLnAHmADcCTwYeBfATuaxTYBXweeBvwaQFVd2rz/OuDiqrp5\nwXqrq5qn2e//PtxxB7z73ZOuRFIXklBVK3YacGfdVlX1uqo6rqpOAM4BPlZV/7aqHlNVJzTztwNP\nqqp7gGuAc5KsT3ICcCJwS1f16cFseUhqYxyjreYs1lyYn1dV25JcTW9k1h7gPJsY4+MxD0ltjCU8\nquom4KZF5j9uwfNLgEvGUZMe7P774ViHJ0gakGeYC7DbSlI7hocAu60ktWN4CLDlIakdw0OA4SGp\nHcNDwP6bQUnSIAwPAd4MSlI7hocAu60ktWN4CDA8JLVjeAhwqK6kdgwPAbY8JLVjeIg9e3qPww+f\ndCWS1grDQ/PDdLNiF2uWdLAzPOQwXUmtLXtV3SSHAacBzwQeS+8S6l8FPgF8pKr2dF2guufxDklt\nLdnySPIG4NPAGcDtwOXAFcDfAS8EPpPkt8dRpLpleEhqa7mWx+eB313ihkyXJ1lHL1i0xjlMV1Jb\nS4ZHVV2z3Burah+9W8dqjbPlIamtA95JMMm19I519I/F+T69Lq0/rKoHOqpNY2J4SGprkNFWXwF+\nCPwR8MfAD4D7gJOa51rjvKKupLYGuYf5qVX1lL7n1yT5TFU9JcltXRWm8XGorqS2Bml5HJHkJ+ee\nNNNzu5pdnVSlsbLbSlJbg7Q8XgP8dZJ/aJ4/DjgvyRH0hu5qjTM8JLU1SHhcR+/4xk/TO3D+ZaCa\nA+X/vcPaNCYO1ZXU1iDdVu+rqgeq6taq+jxwCPBXHdelMbLlIamtQcJje5L3AiT5ceB64P2dVqWx\nMjwktXXA8KiqNwD3J/lD4AbgHVX1J51XprFxqK6ktpY85pHkl5vJAj4FzF3rqpL8m6r64Bjq0xg4\nVFdSW8sdMF943apbm+Xn5hseBwm7rSS1tVx43ABcX1X/NMoPSHII8Blge1W9MMlb6QXQLuDvgV+r\nqu83y14EvBzYC7yqqq4f5WdrMIaHpLaWO+ZxPHB1kk8m2ZLkaclQ95o7H9hGr/sLegfcH19VP0tv\n2O9FAEk2A2cDm4EXAO9trtyrjjlUV1JbS+6cq+rSqnoOcDrwBXotgs8luSrJS5M85kArT7Kpef9l\nNBdWrKobmivyAtwMbGqmzwKuqqrdVXUXcCdwynC/ltqw5SGprUFGW/2gqj5YVb9RVU8Efhf45ww2\nXPedwAXAviVefzn7zxk5Btje99p24NgBfoZGZHhIamu50VZPZn9X00LX0bvK7pKSnAHcW1Vbk8ws\n8vrrgV1VdeUyq1n052/ZsmV+emZmhpmZh6xeLThUVzr4zM7OMjs729n6s/iNAiHJLEuHx6HATwLv\nqaq3LPH+S4BzgT3ABuBI4H9X1UuTvAx4BfDcufuBJLkQet1lzfPrgIur6uYF613i5oYa1vr1cN99\ncPjhk65EUleSUFXDHLdefH0H2hEnWdd3jGJu3gZ6wbK1qjYf8IckzwJe24y2egHwduBZ/SO5mgPm\nV9I7znEscCPwUwuTwvBYWbt3w8aNvX+HGg4haU1Y6fAYZDTTZQsKeDjwoar6EfDSAX9O2N+KeTfw\ncOCGJFvnLn1SVduAq+mNzPowcJ4p0b254x0Gh6Q2Bml5/A7wqKo6r7m21YeAP57UJUpseaysb3wD\nnvxkuPvuSVciqUtjb3l4bauDmyOtJA3Da1tNOcND0jCWuzzJC3nwaCuvbXUQcpiupGEsGR5V9bIx\n1qEJ8Yq6koax5DGP5npWS16CJMnRSd7UTVkaF7utJA1juW6rzwAfSLIe+BxwN70htz8BPAn4EfC2\nzitUpwwPScNYrtvqL4G/THIc8PP0rrIL8EngLVW1fan3au3wirqShrFcywOAqvoa8IEx1KIJsOUh\naRjeL2PKGR6ShmF4TDm7rSQNw/CYcrY8JA1juTPM3933tGjuBDj3vKpe1VlVGhvDQ9Iwljtg/ln2\nh8abgDeyP0C8MuFBwvCQNIzlhur+z7npJOdX1RVjqUhj5TEPScPwmMeUs+UhaRiGx5QzPCQNY7kD\n5j9k/7GNjUnu63u5qurITivTWNhtJWkYyx3zePg4C9Fk2PKQNAy7raac4SFpGIbHlPNmUJKGYXhM\nOW8GJWkYhscU27Wr9+/69ZOtQ9LaY3hMMY93SBqW4THFHKYraViGxxSz5SFpWIbHFDM8JA3L8Jhi\nDtOVNCzDY4o5TFfSsDoPjySHJNma5Nrm+SOT3JDky0muT3JU37IXJbkjye1JTuu6tmlnt5WkYY2j\n5XE+sI39F1m8ELihqk4CPto8J8lm4GxgM/AC4L1JbBl1yPCQNKxOd85JNgGnA5ex/y6EZwJzN5a6\nAvilZvos4Kqq2l1VdwF3Aqd0Wd+0c6iupGF1/c3+ncAFwL6+eY+pqnua6XuAxzTTxwDb+5bbDhzb\ncX1TzZaHpGEtdw/zkSQ5A7i3qrYmmVlsmaqqJMvdD33R17Zs2TI/PTMzw8zMoqvXARge0sFrdnaW\n2dnZztafquX23SOsOLkEOBfYA2wAjgQ+CDwVmKmqbyY5Gvh4Vf10kgsBqurS5v3XARdX1c0L1ltd\n1TxtLroIHv5weP3rJ12JpK4loapy4CUH01m3VVW9rqqOq6oTgHOAj1XVucA1wK82i/0q8BfN9DXA\nOUnWJzkBOBG4pav65FBdScPrrNtqEXPNhUuBq5P8B+Au4FcAqmpbkqvpjczaA5xnE6NbdltJGtZY\nwqOqbgJuaqa/AzxvieUuAS4ZR00yPCQNz/MopphDdSUNy/CYYrY8JA3L8JhihoekYRkeU8yr6koa\nluExxRyqK2lYhscUs9tK0rAMjylmeEgaluExpaocqitpeIbHlNq1C9atg8MOm3QlktYiw2NK2WUl\naRSGx5RymK6kURgeU8phupJGYXhMKbutJI3C8JhShoekURgeU8phupJGYXhMKVsekkZheEwpw0PS\nKAyPKeVQXUmjMDymlEN1JY3C8JhSdltJGoXhMaUMD0mjMDymlEN1JY3C8JhStjwkjcLwmFKGh6RR\nGB5Tym4rSaMwPKaULQ9JozA8ppThIWkUhseUMjwkjaKz8EiyIcnNSW5Nsi3Jm5v5pyS5JcnWJJ9O\n8tS+91yU5I4ktyc5rava5DEPSaM5tKsVV9UDSZ5dVTuSHAp8MskzgN8B3lBVH0nyC8DvAc9Oshk4\nG9gMHAvcmOSkqtrXVY3TzJaHpFF02m1VVTuayfXAIcB3gW8CP9bMPwr4ejN9FnBVVe2uqruAO4FT\nuqxvmhkekkbRWcsDIMk64HPAvwD+oKpuS3IhvVbI2+iF1881ix8DfKrv7dvptUC0wqrstpI0mq5b\nHvuq6gnAJuCZSWaA9wGvqqrjgVcDly+3ii7rm1Y/+hEcemjvIUnDGMvuo6q+n+RDwFOAU6rqec1L\nfwZc1kx/HTiu722b2N+l9SBbtmyZn56ZmWFmZmaFKz642WUlHfxmZ2eZnZ3tbP2p6ubLfZJHA3uq\n6ntJNgIfAf4bvQPkr66qm5I8F7i0qp7aHDC/kt5xjmOBG4GfqgUFJlk4Sy394z/CqafC9u2TrkTS\nuCShqrJS6+uy5XE0cEVz3GMd8P6qujHJK4H3JDkc2Am8EqCqtiW5GtgG7AHOMyW64Y2gJI2qs5ZH\nV2x5jO6zn4VXvAI+97lJVyJpXFa65eEZ5lPIYx6SRmV4TCGH6UoaleExhWx5SBqVI/3XgKreuRk7\ndgz2uP/+5V//2td6o60kaViGx4j27h18pz7Mjn7nzt6/hx3W62pa+Ni4sdeKWOy1Rz+699pir590\n0qS3nKS17KAdbVUFDzww2o59kMeePYPv0Jfb0fe/tnCZjRvhkEPGsHElHbRWerTVmgyPF7+4DrhT\n37kTDj+83U57mNfWr4es2J9Dkrqxlk4S7Mzppx94R79xI6xzOIAkdWJNtjzWWs2SNGmeJChJmjjD\nQ5LUmuEhSWrN8JAktWZ4SJJaMzwkSa0ZHpKk1gwPSVJrhockqTXDQ5LUmuEhSWrN8JAktWZ4SJJa\nMzwkSa0ZHpKk1gwPSVJrhockqTXDQ5LUmuEhSWqts/BIsiHJzUluTbItyZv7XvutJH+b5EtJ3tI3\n/6IkdyS5PclpXdUmSRpNZ+FRVQ8Az66qJwAnA89O8owkzwbOBE6uqp8B3gaQZDNwNrAZeAHw3iRr\ntmU0Ozs76RIGYp0ray3UuRZqBOtc7TrdOVfVjmZyPXAI8F3gPwJvrqrdzTLfapY5C7iqqnZX1V3A\nncApXdbXpbXygbLOlbUW6lwLNYJ1rnadhkeSdUluBe4BPl5VtwEnAc9M8qkks0me0ix+DLC97+3b\ngWO7rE+SNJxDu1x5Ve0DnpDkx4CPJJlpfuaPV9XTkzwVuBp43FKr6LI+SdJwUjWe/XOSNwA7gecC\nl1bVTc38O4GnA78OUFWXNvOvAy6uqpsXrMdAkaQhVFVWal2dtTySPBrYU1XfS7IReD7wJuA+4DnA\nTUlOAtZX1T8luQa4Msk76HVXnQjcsnC9K/nLS5KG02W31dHAFc2IqXXA+6vqo0k+AVye5IvALuCl\nAFW1LcnVwDZgD3BejatZJElqZWzdVpKkg8fEz6NIckiSrUmubZ7/uyS3Jdmb5EkLlj05yf9rTi78\nQpLDF1nfI5PckOTLSa5PctQqrXNLku3NOrcmecEY6nxy33Iv7vvZW5vXT15kfZPYnsPUOYnt+aS+\n5TYkuar5e29LcuES65vo57NFnSu+PVvUuD7JnzQ13prkWUusb9LbctA6x/XZfGt6J19/PskH0xuo\nNLfsAU/Abrs9Jx4ewPn0uqrmmkBfBF4EfKJ/oSSHAu8HXtmcXPgsYPci67sQuKGqTgI+2jxfjXUW\n8I6qemLzuG4Mdc43M6vqyrmfDZwL/ENVfWGR9U1iew5T5yS2Z79zmnpPBp4M/EaS4xdZ30Q/ny3q\n7GJ7DlrjK4B9TY3PB96eZLFjnZPeloPWOa7P5vXA46vqZ4EvAxdBqxOwW23PiYZHkk3A6cBlQACq\n6vaq+vIii58GfKGqvtgs991mKPBCZwJXNNNXAL+0Sutkbl0rpWWd/V4MfGCJ1ya9PQetEya7Pe8G\njkhyCHAEveN5P1hkuUlvz0HrhBXcni1r/JfAx5tlvgV8D3jKIstNelsOWieM57N5Q9++5mZgUzM9\n6AnYrbbnpFse7wQuAJbaufY7Eagk1yX5bJILlljuMVV1TzN9D/CYVVonwG81Tcz3rVCTu02d/X4F\nuGqJ1ya9PfstVydMcHtW1Ufo7YTvBu4C3lpV31tk0YluzxZ1wspuzzZ/888DZzbdMifQayFtWmS5\nSX82B60Txv/ZfDnwV830oCdgt9qeEwuPJGcA91bVVgZL5cOAZ9D79vkM4EVJnrPcG5rRWiONCOiw\nzj8ATgCeQO8/8tvHXOfc+54G7KiqbQdadkLbc+59B6pzotszyb8HNtIbZXgC8Npmh7KkSWzPFnWu\n2PYc4m9+Ob0d3Gfo7ST/Bti73Bsm9NkctM6xfjaTvB7YVVVXLrOaZbfVINtzki2PU+ml9lfofZt8\nTpI/XWb5rwGfqKrvVNVOeqn6pEWWuyfJTwAkORq4dzXWWVX3VoNe03PU63i1rXPOOcByH7JJb8+B\n6lwF2/NU4M+ram/ThfF/WbwLY9Lbc6A6V3h7tqqxqe0/N8cHfgk4il4f/kIT3ZaD1jnOz2aSl9Hr\nznpJ3/JfB47re76pmbdQu+1ZVRN/0DuofO2CeR8Hntz3/Cjgs/S+NR0K3AD8wiLr+j3gvzbTF9I7\nm3011nl03/SrgSvHWWczbx29b06PXWZdE92eLeqc6PYEXgVc3kwfAdwG/Mxq254t6uxkew5Y40bg\niGb6+cDsavxstqhzLJ9NegfDbwMevWCZzcCt9C5QewLw9zSnaYyyPVfkF1ihDXBNM/0iet/edwLf\nBD7ct9xLgC/RG/1wad/8P577owKPBG6k9w3geuCoVVbnk5rpPwW+QK/f9C/o9TeOu84Z4G8Wef9q\n257L1bkqtidwOPC/mr/5bcBrVuP2HKDOTrfngDU+Frid3kii64HjVum2PFCd4/hszvTVeQfwVWBr\n83hv33Kvo3eg/HbgX6/E9vQkQUlSa5MebSVJWoMMD0lSa4aHJKk1w0OS1JrhIUlqzfCQJLVmeEjL\nSPKovktp3913ae3PJTlswbI3JnlEM/3DvvmnJ/m7JMcneVWSc8f9e0grzfM8pAEluRi4r6reschr\nzwF+uar+U/P8vqp6RJLnAv8DOK2qvtKEy0eratRLVEgTZctDamepC+a9GPg/D1oweSbwR8AvVtVX\nAKrqPuDbSR7faZVSxwwPaWX8PL2rq87ZAPw5cFY99F4QtwDPHFdhUhcMD2llHFNV3+l7voveFWt/\nfZFlv0HvukjSmmV4SN3YR+/mVackuWjBa2HEe09Ik2Z4SCvjG0ke1T+jqh4AfhF4SZKX9710NL27\n+ElrluEhtbNUi+GTPPimSgW9e9jTu8/Cbzd3gIPezYD+urMKpTFwqK60ApLMAGdX1W8eYLkj6Q3V\nfepYCpM6YstDWgFVNQucOHeS4DJeBryr84KkjtnykCS1ZstDktSa4SFJas3wkCS1ZnhIklozPCRJ\nrRkekqTW/j/xYRGhOwZPgQAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x1067f8b50>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"p = 1572358 #Pa\n",
|
|
"T = np.linspace(416, 420)\n",
|
|
"h = CoolProp.CoolProp.PropsSI('Hmass','T',T,'P',p,'SES36')/1000.0 #kK/kg\n",
|
|
"plt.plot(T,h)\n",
|
|
"plt.xlabel('T (K)')\n",
|
|
"plt.ylabel('H (kJ/kg)')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 2",
|
|
"language": "python",
|
|
"name": "python2"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 2
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython2",
|
|
"version": "2.7.10"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0
|
|
}
|