mirror of
https://github.com/CoolProp/CoolProp.git
synced 2026-01-10 14:38:11 -05:00
``` find . -regextype posix-extended -regex '.*\.(cpp|hpp|c|h|cxx|hxx|py)$' | xargs -I@ sed -i 's/[ \t]*$//' "@" ```
942 lines
34 KiB
C++
942 lines
34 KiB
C++
#ifndef MATRIXMATH_H
|
|
#define MATRIXMATH_H
|
|
|
|
#include "CoolPropTools.h"
|
|
#include "Exceptions.h"
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
#include <numeric> // inner_product
|
|
#include <sstream>
|
|
#include "float.h"
|
|
|
|
#include "Eigen/Core"
|
|
|
|
/// A wrapper around std::vector
|
|
/** This wrapper makes the standard vector multi-dimensional.
|
|
* A useful thing even though we might not need it that
|
|
* much. However, it makes the code look better and the
|
|
* polynomial class really is a mess...
|
|
* Source: http://stackoverflow.com/questions/13105514/n-dimensional-vector
|
|
*/
|
|
template <size_t dimcount, typename T>
|
|
struct VectorNd
|
|
{
|
|
typedef std::vector<typename VectorNd<dimcount - 1, T>::type> type;
|
|
};
|
|
template <typename T>
|
|
struct VectorNd<0, T>
|
|
{
|
|
typedef T type;
|
|
};
|
|
|
|
namespace CoolProp {
|
|
|
|
/// Some shortcuts and regularly needed operations
|
|
template <class T>
|
|
std::size_t num_rows(std::vector<T> const& in) {
|
|
return in.size();
|
|
}
|
|
template <class T>
|
|
std::size_t num_rows(std::vector<std::vector<T>> const& in) {
|
|
return in.size();
|
|
}
|
|
|
|
template <class T>
|
|
std::size_t max_cols(std::vector<std::vector<T>> const& in) {
|
|
std::size_t cols = 0;
|
|
std::size_t col = 0;
|
|
for (std::size_t i = 0; i < in.size(); i++) {
|
|
col = in[i].size();
|
|
if (cols < col) {
|
|
cols = col;
|
|
}
|
|
}
|
|
return cols;
|
|
};
|
|
template <class T>
|
|
bool is_squared(std::vector<std::vector<T>> const& in) {
|
|
std::size_t cols = max_cols(in);
|
|
if (cols != num_rows(in)) {
|
|
return false;
|
|
} else {
|
|
for (std::size_t i = 0; i < in.size(); i++) {
|
|
if (cols != in[i].size()) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
|
|
template <class T>
|
|
std::size_t num_cols(std::vector<T> const& in) {
|
|
return 1;
|
|
}
|
|
template <class T>
|
|
std::size_t num_cols(std::vector<std::vector<T>> const& in) {
|
|
if (num_rows(in) > 0) {
|
|
if (is_squared(in)) {
|
|
return in[0].size();
|
|
} else {
|
|
return max_cols(in);
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
/// Convert vectors and matrices
|
|
/** Conversion functions for the different kinds of object-like
|
|
* parameters. This might be obsolete at a later stage, but now
|
|
* it is still needed.
|
|
* @param coefficients matrix containing the ordered coefficients
|
|
* @param axis axis along which to extract
|
|
*/
|
|
template <typename T>
|
|
std::vector<T> eigen_to_vec1D(const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& coefficients, int axis = 0) {
|
|
std::vector<T> result;
|
|
size_t r = coefficients.rows(), c = coefficients.cols();
|
|
if (axis == 0) {
|
|
if (c != 1) throw ValueError(format("Your matrix has the wrong dimensions: %d,%d", r, c));
|
|
result.resize(r);
|
|
for (size_t i = 0; i < r; ++i) {
|
|
result[i] = coefficients(i, 0);
|
|
}
|
|
} else if (axis == 1) {
|
|
if (r != 1) throw ValueError(format("Your matrix has the wrong dimensions: %d,%d", r, c));
|
|
result.resize(c);
|
|
for (size_t i = 0; i < c; ++i) {
|
|
result[i] = coefficients(0, i);
|
|
}
|
|
} else {
|
|
throw ValueError(format("You have to provide axis information: %d is not valid. ", axis));
|
|
}
|
|
return result;
|
|
}
|
|
/// @param coefficients matrix containing the ordered coefficients
|
|
template <class T>
|
|
std::vector<std::vector<T>> eigen_to_vec(const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& coefficients) {
|
|
// Eigen uses columns as major axis, this might be faster than the row iteration.
|
|
// However, the 2D vector stores things differently, no idea what is faster...
|
|
std::vector<std::vector<T>> result;
|
|
size_t r = coefficients.rows(), c = coefficients.cols();
|
|
result.resize(r, std::vector<T>(c, 0)); // extends vector if necessary
|
|
for (size_t i = 0; i < r; ++i) {
|
|
result[i].resize(c, 0);
|
|
for (size_t j = 0; j < c; ++j) {
|
|
result[i][j] = coefficients(i, j);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// @param coefficients matrix containing the ordered coefficients
|
|
template <class T>
|
|
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> vec_to_eigen(const std::vector<std::vector<T>>& coefficients) {
|
|
size_t nRows = num_rows(coefficients), nCols = num_cols(coefficients);
|
|
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> result(nRows, nCols);
|
|
for (size_t i = 0; i < nCols; ++i) {
|
|
for (size_t j = 0; j < nRows; ++j) {
|
|
result(j, i) = coefficients[j][i];
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
/**
|
|
* @param coefficients matrix containing the ordered coefficients
|
|
* @param axis axis along which to extract data
|
|
*/
|
|
template <class T>
|
|
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> vec_to_eigen(const std::vector<T>& coefficients, int axis = 0) {
|
|
size_t nRows = num_rows(coefficients);
|
|
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> result;
|
|
if (axis == 0)
|
|
result.resize(nRows, 1);
|
|
else if (axis == 1)
|
|
result.resize(1, nRows);
|
|
else
|
|
throw ValueError(format("You have to provide axis information: %d is not valid. ", axis));
|
|
for (size_t i = 0; i < nRows; ++i) {
|
|
if (axis == 0) result(i, 0) = coefficients[i];
|
|
if (axis == 1) result(0, i) = coefficients[i];
|
|
}
|
|
return result;
|
|
}
|
|
/// @param coefficient
|
|
template <class T>
|
|
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> vec_to_eigen(const T& coefficient) {
|
|
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> result = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>(1, 1);
|
|
result(0, 0) = coefficient;
|
|
return result;
|
|
}
|
|
|
|
/// Convert 1D matrix to vector
|
|
/** Returns either a row- or a column-based
|
|
* vector. By default, Eigen prefers column
|
|
* major ordering, just like Fortran.
|
|
*/
|
|
|
|
template <class T>
|
|
Eigen::Matrix<T, Eigen::Dynamic, 1> makeColVector(const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& matrix) {
|
|
std::size_t r = matrix.rows();
|
|
std::size_t c = matrix.cols();
|
|
Eigen::Matrix<T, Eigen::Dynamic, 1> vector;
|
|
if (r == 1 && c >= 1) { // Check passed, matrix can be transformed
|
|
vector = matrix.transpose().block(0, 0, c, r);
|
|
} else if (r >= 1 && c == 1) { // Check passed, matrix can be transformed
|
|
vector = matrix.block(0, 0, r, c);
|
|
} else { // Check failed, throw error
|
|
throw ValueError(format("Your matrix (%d,%d) cannot be converted into a vector (x,1).", r, c));
|
|
}
|
|
return vector;
|
|
}
|
|
template <class T>
|
|
Eigen::Matrix<T, Eigen::Dynamic, 1> makeVector(const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& matrix) {
|
|
return makeColVector(matrix);
|
|
}
|
|
template <class T>
|
|
Eigen::Matrix<T, 1, Eigen::Dynamic> makeRowVector(const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& matrix) {
|
|
std::size_t r = matrix.rows();
|
|
std::size_t c = matrix.cols();
|
|
Eigen::Matrix<T, 1, Eigen::Dynamic> vector;
|
|
if (r == 1 && c >= 1) { // Check passed, matrix can be transformed
|
|
vector = matrix.block(0, 0, r, c);
|
|
} else if (r >= 1 && c == 1) { // Check passed, matrix can be transformed
|
|
vector = matrix.transpose().block(0, 0, c, r);
|
|
} else { // Check failed, throw error
|
|
throw ValueError(format("Your matrix (%d,%d) cannot be converted into a vector (1,x).", r, c));
|
|
}
|
|
return vector;
|
|
}
|
|
|
|
/// Remove rows and columns from matrices
|
|
/** A set of convenience functions inspired by http://stackoverflow.com/questions/13290395/how-to-remove-a-certain-row-or-column-while-using-eigen-library-c
|
|
* but altered to respect templates.
|
|
*/
|
|
template <class T>
|
|
void removeRow(Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& matrix, std::size_t rowToRemove) {
|
|
//template<class T> void removeRow(Eigen::MatrixXd& matrix, std::size_t rowToRemove){
|
|
//void removeRow(Eigen::MatrixXd& matrix, unsigned int rowToRemove){
|
|
//template <typename Derived> void removeRow(Eigen::MatrixBase<Derived> &matrix, std::size_t rowToRemove){
|
|
std::size_t numRows = matrix.rows() - 1;
|
|
std::size_t numCols = matrix.cols();
|
|
if (rowToRemove < numRows) {
|
|
matrix.block(rowToRemove, 0, numRows - rowToRemove, numCols) = matrix.block(rowToRemove + 1, 0, numRows - rowToRemove, numCols);
|
|
} else {
|
|
if (rowToRemove > numRows) {
|
|
throw ValueError(format("Your matrix does not have enough rows, %d is not greater or equal to %d.", numRows, rowToRemove));
|
|
}
|
|
// Do nothing, resize removes the last row
|
|
}
|
|
matrix.conservativeResize(numRows, numCols);
|
|
}
|
|
|
|
template <class T>
|
|
void removeColumn(Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& matrix, std::size_t colToRemove) {
|
|
//template<class T> void removeColumn(Eigen::MatrixXd& matrix, std::size_t colToRemove){
|
|
//void removeColumn(Eigen::MatrixXd& matrix, unsigned int colToRemove){
|
|
//template <typename Derived> void removeColumn(Eigen::MatrixBase<Derived> &matrix, std::size_t colToRemove){
|
|
std::size_t numRows = matrix.rows();
|
|
std::size_t numCols = matrix.cols() - 1;
|
|
if (colToRemove < numCols) {
|
|
matrix.block(0, colToRemove, numRows, numCols - colToRemove) = matrix.block(0, colToRemove + 1, numRows, numCols - colToRemove);
|
|
} else {
|
|
if (colToRemove > numCols) {
|
|
throw ValueError(format("Your matrix does not have enough columns, %d is not greater or equal to %d.", numCols, colToRemove));
|
|
}
|
|
// Do nothing, resize removes the last column
|
|
}
|
|
matrix.conservativeResize(numRows, numCols);
|
|
}
|
|
|
|
///// @param coefficients matrix containing the ordered coefficients
|
|
//template <class T> Eigen::Matrix<T, Eigen::Dynamic,Eigen::Dynamic> convert(const std::vector<std::vector<T> > &coefficients){
|
|
// size_t nRows = num_rows(coefficients), nCols = num_cols(coefficients);
|
|
// Eigen::MatrixBase<T> result(nRows,nCols);
|
|
// for (size_t i = 0; i < nCols; ++i) {
|
|
// for (size_t j = 0; j < nRows; ++j) {
|
|
// result(j,i) = coefficients[j][i];
|
|
// }
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
///// @param coefficients matrix containing the ordered coefficients
|
|
//template <class T, int R, int C> void convert(const std::vector<std::vector<T> > &coefficients, Eigen::Matrix<T,R,C> &result){
|
|
// size_t nRows = num_rows(coefficients), nCols = num_cols(coefficients);
|
|
// //Eigen::MatrixBase<T> result(nRows,nCols);
|
|
// for (size_t i = 0; i < nCols; ++i) {
|
|
// for (size_t j = 0; j < nRows; ++j) {
|
|
// result(j,i) = coefficients[j][i];
|
|
// }
|
|
// }
|
|
// //return result;
|
|
//}
|
|
|
|
//
|
|
//template <class T> void convert(const std::vector<std::vector<T> > &coefficients, Eigen::MatrixBase<T> &result){
|
|
// size_t nRows = num_rows(coefficients), nCols = num_cols(coefficients);
|
|
// //Eigen::MatrixBase<T> result;
|
|
// //if ((R!=nRows) || (C!=nCols))
|
|
// result.resize(nRows,nCols);
|
|
// for (size_t i = 0; i < nCols; ++i) {
|
|
// for (size_t j = 0; j < nRows; ++j) {
|
|
// result(j,i) = coefficients[j][i];
|
|
// }
|
|
// }
|
|
// //return result;
|
|
//}
|
|
|
|
//template <class Derived>
|
|
//inline void func1(MatrixBase<Derived> &out_mat ){
|
|
// // Do something then return a matrix
|
|
// out_mat = ...
|
|
//}
|
|
|
|
//template <class Derived>
|
|
//Eigen::Matrix<class Derived::Scalar, Derived::RowsAtCompileTime, Derived::ColsAtCompileTime>
|
|
//Multiply(const Eigen::MatrixBase<DerivedA>& p1,
|
|
// const Eigen::MatrixBase<DerivedB>& p2)
|
|
//{
|
|
// return (p1 * p2);
|
|
//}
|
|
//
|
|
//
|
|
//template <typename DerivedA, typename DerivedB>
|
|
//Eigen::Matrix<typename DerivedA::Scalar, DerivedA::RowsAtCompileTime, DerivedB::ColsAtCompileTime>
|
|
//Multiply(const Eigen::MatrixBase<DerivedA>& p1,
|
|
// const Eigen::MatrixBase<DerivedB>& p2)
|
|
//{
|
|
// return (p1 * p2);
|
|
//}
|
|
|
|
/// Templates for printing numbers, vectors and matrices
|
|
static const char* stdFmt = "%8.3f";
|
|
|
|
///Templates for turning vectors (1D-matrices) into strings
|
|
template <class T>
|
|
std::string vec_to_string(const std::vector<T>& a, const char* fmt) {
|
|
if (a.size() < 1) return std::string("");
|
|
std::stringstream out;
|
|
out << "[ " << format(fmt, a[0]);
|
|
for (size_t j = 1; j < a.size(); j++) {
|
|
out << ", " << format(fmt, a[j]);
|
|
}
|
|
out << " ]";
|
|
return out.str();
|
|
};
|
|
template <class T>
|
|
std::string vec_to_string(const std::vector<T>& a) {
|
|
return vec_to_string(std::vector<double>(a.begin(), a.end()), stdFmt);
|
|
};
|
|
///Templates for turning vectors (1D-matrices) into strings
|
|
inline std::string stringvec_to_string(const std::vector<std::string>& a) {
|
|
if (a.size() < 1) return std::string("");
|
|
std::stringstream out;
|
|
out << "[ " << format("%s", a[0].c_str());
|
|
for (size_t j = 1; j < a.size(); j++) {
|
|
out << ", " << format("%s", a[j].c_str());
|
|
}
|
|
out << " ]";
|
|
return out.str();
|
|
};
|
|
|
|
/// Templates for turning numbers (0D-matrices) into strings
|
|
template <class T>
|
|
std::string vec_to_string(const T& a, const char* fmt) {
|
|
std::vector<T> vec;
|
|
vec.push_back(a);
|
|
return vec_to_string(vec, fmt);
|
|
};
|
|
template <class T>
|
|
std::string vec_to_string(const T& a) {
|
|
return vec_to_string((double)a, stdFmt);
|
|
};
|
|
|
|
///Templates for turning 2D-matrices into strings
|
|
template <class T>
|
|
std::string vec_to_string(const std::vector<std::vector<T>>& A, const char* fmt) {
|
|
if (A.size() < 1) return std::string("");
|
|
std::stringstream out;
|
|
out << "[ " << vec_to_string(A[0], fmt);
|
|
for (size_t j = 1; j < A.size(); j++) {
|
|
out << ", " << std::endl << " " << vec_to_string(A[j], fmt);
|
|
}
|
|
out << " ]";
|
|
return out.str();
|
|
};
|
|
template <class T>
|
|
std::string vec_to_string(const std::vector<std::vector<T>>& A) {
|
|
return vec_to_string(A, stdFmt);
|
|
};
|
|
|
|
///Templates for turning Eigen matrices into strings
|
|
template <class T>
|
|
std::string mat_to_string(const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& A, const char* fmt) {
|
|
//std::string mat_to_string(const Eigen::MatrixXd &A, const char *fmt) {
|
|
std::size_t r = A.rows();
|
|
std::size_t c = A.cols();
|
|
if ((r < 1) || (c < 1)) return std::string("");
|
|
std::stringstream out;
|
|
out << "[ ";
|
|
if (r == 1) {
|
|
out << format(fmt, A(0, 0));
|
|
for (size_t j = 1; j < c; j++) {
|
|
out << ", " << format(fmt, A(0, j));
|
|
}
|
|
} else {
|
|
out << mat_to_string(Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>(A.row(0)), fmt);
|
|
for (size_t i = 1; i < r; i++) {
|
|
out << ", " << std::endl << " " << mat_to_string(Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>(A.row(i)), fmt);
|
|
}
|
|
}
|
|
out << " ]";
|
|
return out.str();
|
|
};
|
|
template <class T>
|
|
std::string mat_to_string(const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& A) {
|
|
//std::string vec_to_string(const Eigen::MatrixXd &A) {
|
|
return mat_to_string(A, stdFmt);
|
|
};
|
|
|
|
///// Templates for printing numbers, vectors and matrices
|
|
//static const char* stdFmt = "%8.3f";
|
|
//
|
|
/////Templates for turning vectors (1D-matrices) into strings
|
|
//template<class T> std::string vec_to_string(const std::vector<T> &a, const char *fmt) {
|
|
// if (a.size()<1) return std::string("");
|
|
// std::stringstream out;
|
|
// out << "[ " << format(fmt,a[0]);
|
|
// for (size_t j = 1; j < a.size(); j++) {
|
|
// out << ", " << format(fmt, a[j]);
|
|
// }
|
|
// out << " ]";
|
|
// return out.str();
|
|
//};
|
|
//template<class T> std::string vec_to_string(const std::vector<T> &a) {
|
|
// return vec_to_string(a, stdFmt);
|
|
//};
|
|
//
|
|
///// Templates for turning numbers (0D-matrices) into strings
|
|
//template<class T> std::string vec_to_string(const T &a, const char *fmt) {
|
|
// std::vector<T> vec;
|
|
// vec.push_back(a);
|
|
// return vec_to_string(vec, fmt);
|
|
//};
|
|
//template<class T> std::string vec_to_string(const T &a) {
|
|
// return vec_to_string(a, stdFmt);
|
|
//};
|
|
//
|
|
/////Templates for turning 2D-matrices into strings
|
|
//template<class T> std::string vec_to_string(const std::vector<std::vector<T> > &A, const char *fmt) {
|
|
// if (A.size()<1) return std::string("");
|
|
// std::stringstream out;
|
|
// out << "[ " << vec_to_string(A[0], fmt);
|
|
// for (size_t j = 1; j < A.size(); j++) {
|
|
// out << ", " << std::endl << " " << vec_to_string(A[j], fmt);
|
|
// }
|
|
// out << " ]";
|
|
// return out.str();
|
|
//};
|
|
//template<class T> std::string vec_to_string(const std::vector<std::vector<T> > &A) {
|
|
// return vec_to_string(A, stdFmt);
|
|
//};
|
|
//
|
|
/////Templates for turning Eigen matrices into strings
|
|
//template <class T> std::string mat_to_string(const Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> &A, const char *fmt) {
|
|
////std::string mat_to_string(const Eigen::MatrixXd &A, const char *fmt) {
|
|
// std::size_t r = A.rows();
|
|
// std::size_t c = A.cols();
|
|
// if ((r<1)||(c<1)) return std::string("");
|
|
// std::stringstream out;
|
|
// out << "[ ";
|
|
// if (r==1) {
|
|
// out << format(fmt, A(0,0));
|
|
// for (size_t j = 1; j < c; j++) {
|
|
// out << ", " << format(fmt, A(0,j));
|
|
// }
|
|
// } else {
|
|
// out << mat_to_string(Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic>(A.row(0)), fmt);
|
|
// for (size_t i = 1; i < r; i++) {
|
|
// out << ", " << std::endl << " " << mat_to_string(Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic>(A.row(i)), fmt);
|
|
// }
|
|
// }
|
|
// out << " ]";
|
|
// return out.str();
|
|
//};
|
|
//template <class T> std::string mat_to_string(const Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic> &A) {
|
|
////std::string vec_to_string(const Eigen::MatrixXd &A) {
|
|
// return mat_to_string(A, stdFmt);
|
|
//};
|
|
|
|
/// Template class for turning numbers (0D-matrices) into strings
|
|
//template<class T> std::string vec_to_string(const T &a){
|
|
// return vec_to_string(a, stdFmt);
|
|
// std::stringstream out;
|
|
// out << format("[ %7.3f ]",a);
|
|
// return out.str();
|
|
//};
|
|
//template<class T> std::string vec_to_string(const VectorNd<0, T> &a){
|
|
// return vec_to_string(a, stdFmt);
|
|
//};
|
|
//template<class T> std::string vec_to_string(const VectorNd<0, T> &a, const char *fmt) {
|
|
// VectorNd<1, T> vec;
|
|
// vec.push_back(a);
|
|
// return vec_to_string(vec, fmt);
|
|
//};
|
|
//
|
|
/////Template classes for turning vectors (1D-matrices) into strings
|
|
//template<class T> std::string vec_to_string(const VectorNd<1, T> &a) {
|
|
// return vec_to_string(a, stdFmt);
|
|
//};
|
|
//template<class T> std::string vec_to_string(const VectorNd<1, T> &a, const char *fmt) {
|
|
// if (a.size()<1) {
|
|
// return std::string("");
|
|
// } else {
|
|
// std::stringstream out;
|
|
// out << "[ ";
|
|
// out << format(fmt,a[0]);
|
|
// for (size_t j = 1; j < a.size(); j++) {
|
|
// out << ", ";
|
|
// out << format(fmt,a[j]);
|
|
// }
|
|
// out << " ]";
|
|
// return out.str();
|
|
// }
|
|
//};
|
|
//
|
|
/////Template classes for turning 2D-matrices into strings
|
|
//template<class T> std::string vec_to_string(const VectorNd<2, T> &A) {
|
|
// return vec_to_string(A, stdFmt);
|
|
//}
|
|
//template<class T> std::string vec_to_string(const VectorNd<2, T> &A, const char *fmt) {
|
|
// if (A.size()<1) return std::string("");
|
|
// std::stringstream out;
|
|
// out << "[ " << format(fmt,A[0]);
|
|
// for (size_t j = 1; j < A.size(); j++) {
|
|
// out << ", " << std::endl << " " << vec_to_string(A[j], fmt);
|
|
// }
|
|
// out << " ]";
|
|
// return out.str();
|
|
//}
|
|
|
|
///// Publish the linear algebra solver
|
|
//template<class T> std::vector<T> linsolve(std::vector<std::vector<T> > const& A, std::vector<T> const& b);
|
|
//template<class T> std::vector<std::vector<T> > linsolve(std::vector<std::vector<T> > const& A, std::vector<std::vector<T> > const& B);
|
|
//
|
|
///// Some shortcuts and regularly needed operations
|
|
//template<class T> std::size_t num_rows (std::vector<std::vector<T> > const& in);
|
|
//template<class T> std::size_t num_cols (std::vector<std::vector<T> > const& in);
|
|
//template<class T> std::size_t max_cols (std::vector<std::vector<T> > const& in);
|
|
//template<class T> std::vector<T> get_row (std::vector<std::vector<T> > const& in, size_t row);
|
|
//template<class T> std::vector<T> get_col (std::vector<std::vector<T> > const& in, size_t col);
|
|
//template<class T> bool is_squared(std::vector<std::vector<T> > const& in);
|
|
//template<class T> std::vector<std::vector<T> > make_squared(std::vector<std::vector<T> > const& in);
|
|
//
|
|
///// Define some basic math operations for vectors
|
|
//template<class T> T multiply( std::vector<T> const& A, std::vector<T> const& B);
|
|
//template<class T> std::vector<T> multiply(std::vector<std::vector<T> > const& A, std::vector<T> const& B);
|
|
//template<class T> std::vector<std::vector<T> > multiply(std::vector<std::vector<T> > const& A, std::vector<std::vector<T> > const& B);
|
|
//
|
|
//template<class T> T dot_product(std::vector<T> const& a, std::vector<T> const& b);
|
|
//template<class T> std::vector<T> cross_product(std::vector<T> const& a, std::vector<T> const& b);
|
|
//
|
|
//template<class T> std::vector<std::vector<T> > transpose(std::vector<std::vector<T> > const& in);
|
|
//template<class T> std::vector<std::vector<T> > invert(std::vector<std::vector<T> > const& in);
|
|
//
|
|
//template<class T> std::string vec_to_string( T const& a);
|
|
//template<class T> std::string vec_to_string( std::vector<T> const& a);
|
|
//template<class T> std::string vec_to_string(std::vector<std::vector<T> > const& A);
|
|
//
|
|
//template<class T> std::string vec_to_string( std::vector<T> const& a, const char *fmt);
|
|
//template<class T> std::string vec_to_string(std::vector<std::vector<T> > const& A, const char *fmt);
|
|
|
|
/*
|
|
Owe a debt of gratitude to http://sole.ooz.ie/en - very clear treatment of GJ
|
|
*/
|
|
template <typename T>
|
|
void swap_rows(std::vector<std::vector<T>>* A, size_t row1, size_t row2) {
|
|
for (size_t col = 0; col < (*A)[0].size(); col++) {
|
|
std::swap((*A)[row1][col], (*A)[row2][col]);
|
|
}
|
|
};
|
|
template <typename T>
|
|
void subtract_row_multiple(std::vector<std::vector<T>>* A, size_t row, T multiple, size_t pivot_row) {
|
|
for (size_t col = 0; col < (*A)[0].size(); col++) {
|
|
(*A)[row][col] -= multiple * (*A)[pivot_row][col];
|
|
}
|
|
};
|
|
template <typename T>
|
|
void divide_row_by(std::vector<std::vector<T>>* A, size_t row, T value) {
|
|
for (size_t col = 0; col < (*A)[0].size(); col++) {
|
|
(*A)[row][col] /= value;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
size_t get_pivot_row(std::vector<std::vector<T>>* A, size_t col) {
|
|
std::size_t index = col;
|
|
T max = 0, val;
|
|
|
|
for (size_t row = col; row < (*A).size(); row++) {
|
|
val = (*A)[row][col];
|
|
if (std::abs(val) > max) {
|
|
max = std::abs(val);
|
|
index = row;
|
|
}
|
|
}
|
|
return index;
|
|
};
|
|
|
|
template <typename T>
|
|
std::vector<std::vector<T>> linsolve_Gauss_Jordan(std::vector<std::vector<T>> const& A, std::vector<std::vector<T>> const& B) {
|
|
std::vector<std::vector<T>> AB;
|
|
std::vector<std::vector<T>> X;
|
|
size_t pivot_row;
|
|
T pivot_element;
|
|
|
|
size_t NrowA = num_rows(A);
|
|
size_t NrowB = num_rows(B);
|
|
size_t NcolA = num_cols(A);
|
|
size_t NcolB = num_cols(B);
|
|
|
|
if (NrowA != NrowB) throw ValueError(format("You have to provide matrices with the same number of rows: %d is not %d. ", NrowA, NrowB));
|
|
|
|
AB.resize(NrowA, std::vector<T>(NcolA + NcolB, 0));
|
|
X.resize(NrowA, std::vector<T>(NcolB, 0));
|
|
|
|
// Build the augmented matrix
|
|
for (size_t row = 0; row < NrowA; row++) {
|
|
for (size_t col = 0; col < NcolA; col++) {
|
|
AB[row][col] = A[row][col];
|
|
}
|
|
for (size_t col = NcolA; col < NcolA + NcolB; col++) {
|
|
AB[row][col] = B[row][col - NcolA];
|
|
}
|
|
}
|
|
|
|
for (size_t col = 0; col < NcolA; col++) {
|
|
// Find the pivot value
|
|
pivot_row = get_pivot_row(&AB, col);
|
|
|
|
if (std::abs(AB[pivot_row][col]) < 10 * DBL_EPSILON) {
|
|
throw ValueError(format("Zero occurred in row %d, the matrix is singular. ", pivot_row));
|
|
}
|
|
|
|
if (pivot_row >= col) {
|
|
// Swap pivot row and current row
|
|
swap_rows(&AB, col, pivot_row);
|
|
}
|
|
// Get the pivot element
|
|
pivot_element = AB[col][col];
|
|
// Divide the pivot row by the pivot element
|
|
divide_row_by(&AB, col, pivot_element);
|
|
|
|
if (col < NrowA - 1) {
|
|
// All the rest of the rows, subtract the value of the [r][c] combination
|
|
for (size_t row = col + 1; row < NrowA; row++) {
|
|
subtract_row_multiple(&AB, row, AB[row][col], col);
|
|
}
|
|
}
|
|
}
|
|
for (std::size_t col = NcolA - 1; col > 0; col--) {
|
|
for (int row = static_cast<int>(col) - 1; row >= 0; row--) {
|
|
subtract_row_multiple(&AB, row, AB[row][col], col);
|
|
}
|
|
}
|
|
// Set the output value
|
|
for (size_t row = 0; row < NrowA; row++) {
|
|
for (size_t col = 0; col < NcolB; col++) {
|
|
X[row][col] = AB[row][NcolA + col];
|
|
}
|
|
}
|
|
return X;
|
|
};
|
|
|
|
//std::vector<std::vector<double> > linsolve_Gauss_Jordan_reimpl(std::vector<std::vector<double> > const& A, std::vector<std::vector<double> > const& B) {
|
|
// std::vector<std::vector<double> > AB;
|
|
// std::vector<std::vector<double> > X;
|
|
// size_t pivot_row;
|
|
// double pivot_element;
|
|
// double tmp_element;
|
|
//
|
|
// size_t NrowA = num_rows(A);
|
|
// size_t NrowB = num_rows(B);
|
|
// size_t NcolA = num_cols(A);
|
|
// size_t NcolB = num_cols(B);
|
|
//
|
|
// if (NrowA!=NrowB) throw ValueError(format("You have to provide matrices with the same number of rows: %d is not %d. ",NrowA,NrowB));
|
|
//
|
|
// AB.resize(NrowA, std::vector<double>(NcolA+NcolB, 0));
|
|
// X.resize(NrowA, std::vector<double>(NcolB, 0));
|
|
//
|
|
// // Build the augmented matrix
|
|
// for (size_t row = 0; row < NrowA; row++){
|
|
// for (size_t col = 0; col < NcolA; col++){
|
|
// AB[row][col] = A[row][col];
|
|
// }
|
|
// for (size_t col = NcolA; col < NcolA+NcolB; col++){
|
|
// AB[row][col] = B[row][col-NcolA];
|
|
// }
|
|
// }
|
|
//
|
|
// for (size_t col = 0; col < NcolA; col++){
|
|
// // Find the pivot row
|
|
// pivot_row = 0;
|
|
// pivot_element = 0.0;
|
|
// for (size_t row = col; row < NrowA; row++){
|
|
// tmp_element = std::abs(AB[row][col]);
|
|
// if (tmp_element>pivot_element) {
|
|
// pivot_element = tmp_element;
|
|
// pivot_row = row;
|
|
// }
|
|
// }
|
|
// // Check for errors
|
|
// if (AB[pivot_row][col]<1./_HUGE) throw ValueError(format("Zero occurred in row %d, the matrix is singular. ",pivot_row));
|
|
// // Swap the rows
|
|
// if (pivot_row>col) {
|
|
// for (size_t colInt = 0; colInt < NcolA; colInt++){
|
|
// std::swap(AB[pivot_row][colInt],AB[pivot_row][colInt]);
|
|
// }
|
|
// }
|
|
// // Process the entries below current element
|
|
// for (size_t row = col; row < NrowA; row++){
|
|
// // Entries to the right of current element (until end of A)
|
|
// for (size_t colInt = col+1; colInt < NcolA; colInt++){
|
|
// // All entries in augmented matrix
|
|
// for (size_t colFull = col; colFull < NcolA+NcolB; colFull++){
|
|
// AB[colInt][colFull] -= AB[col][colFull] * AB[colInt][col] / AB[col][col];
|
|
// }
|
|
// AB[colInt][col] = 0.0;
|
|
// }
|
|
// }
|
|
// }
|
|
// return AB;
|
|
//}
|
|
|
|
template <class T>
|
|
std::vector<std::vector<T>> linsolve(std::vector<std::vector<T>> const& A, std::vector<std::vector<T>> const& B) {
|
|
return linsolve_Gauss_Jordan(A, B);
|
|
};
|
|
|
|
template <class T>
|
|
std::vector<T> linsolve(std::vector<std::vector<T>> const& A, std::vector<T> const& b) {
|
|
std::vector<std::vector<T>> B;
|
|
for (size_t i = 0; i < b.size(); i++) {
|
|
B.push_back(std::vector<T>(1, b[i]));
|
|
}
|
|
B = linsolve(A, B);
|
|
B[0].resize(B.size(), 0.0);
|
|
for (size_t i = 1; i < B.size(); i++) {
|
|
B[0][i] = B[i][0];
|
|
}
|
|
return B[0];
|
|
};
|
|
|
|
template <class T>
|
|
std::vector<T> get_row(std::vector<std::vector<T>> const& in, size_t row) {
|
|
return in[row];
|
|
};
|
|
template <class T>
|
|
std::vector<T> get_col(std::vector<std::vector<T>> const& in, size_t col) {
|
|
std::size_t sizeX = in.size();
|
|
if (sizeX < 1) throw ValueError(format("You have to provide values, a vector length of %d is not valid. ", sizeX));
|
|
size_t sizeY = in[0].size();
|
|
if (sizeY < 1) throw ValueError(format("You have to provide values, a vector length of %d is not valid. ", sizeY));
|
|
std::vector<T> out;
|
|
for (std::size_t i = 0; i < sizeX; i++) {
|
|
sizeY = in[i].size();
|
|
if (sizeY - 1 < col)
|
|
throw ValueError(format("Your matrix does not have enough entries in row %d, last index %d is less than %d. ", i, sizeY - 1, col));
|
|
out.push_back(in[i][col]);
|
|
}
|
|
return out;
|
|
};
|
|
|
|
template <class T>
|
|
std::vector<std::vector<T>> make_squared(std::vector<std::vector<T>> const& in) {
|
|
std::size_t cols = max_cols(in);
|
|
std::size_t rows = num_rows(in);
|
|
std::size_t maxVal = 0;
|
|
std::vector<std::vector<T>> out;
|
|
std::vector<T> tmp;
|
|
|
|
if (cols > rows) {
|
|
maxVal = cols;
|
|
} else {
|
|
maxVal = rows;
|
|
}
|
|
out.clear();
|
|
for (std::size_t i = 0; i < in.size(); i++) {
|
|
tmp.clear();
|
|
for (std::size_t j = 0; j < in[i].size(); j++) {
|
|
tmp.push_back(in[i][j]);
|
|
}
|
|
while (maxVal > tmp.size()) {
|
|
tmp.push_back(0.0);
|
|
}
|
|
out.push_back(tmp);
|
|
}
|
|
// Check rows
|
|
tmp.clear();
|
|
tmp.resize(maxVal, 0.0);
|
|
while (maxVal > out.size()) {
|
|
out.push_back(tmp);
|
|
}
|
|
return out;
|
|
};
|
|
|
|
template <class T>
|
|
T multiply(std::vector<T> const& a, std::vector<T> const& b) {
|
|
return dot_product(a, b);
|
|
};
|
|
template <class T>
|
|
std::vector<T> multiply(std::vector<std::vector<T>> const& A, std::vector<T> const& b) {
|
|
std::vector<std::vector<T>> B;
|
|
for (size_t i = 0; i < b.size(); i++) {
|
|
B.push_back(std::vector<T>(1, b[i]));
|
|
}
|
|
B = multiply(A, B);
|
|
B[0].resize(B.size(), 0.0);
|
|
for (size_t i = 1; i < B.size(); i++) {
|
|
B[0][i] = B[i][0];
|
|
}
|
|
return B[0];
|
|
}
|
|
|
|
template <class T>
|
|
std::vector<std::vector<T>> multiply(std::vector<std::vector<T>> const& A, std::vector<std::vector<T>> const& B) {
|
|
if (num_cols(A) != num_rows(B)) {
|
|
throw ValueError(format("You have to provide matrices with the same columns and rows: %d is not equal to %d. ", num_cols(A), num_rows(B)));
|
|
}
|
|
size_t rows = num_rows(A);
|
|
size_t cols = num_cols(B);
|
|
T tmp;
|
|
std::vector<std::vector<T>> outVec;
|
|
std::vector<T> tmpVec;
|
|
outVec.clear();
|
|
for (size_t i = 0; i < rows; i++) {
|
|
tmpVec.clear();
|
|
for (size_t j = 0; j < cols; j++) {
|
|
tmp = 0.0;
|
|
for (size_t k = 0; k < num_cols(A); k++) {
|
|
tmp += A[i][k] * B[k][j];
|
|
}
|
|
tmpVec.push_back(tmp);
|
|
}
|
|
outVec.push_back(tmpVec);
|
|
}
|
|
return outVec;
|
|
};
|
|
|
|
template <class T>
|
|
T dot_product(std::vector<T> const& a, std::vector<T> const& b) {
|
|
if (a.size() == b.size()) {
|
|
return std::inner_product(a.begin(), a.end(), b.begin(), 0.0);
|
|
}
|
|
throw ValueError(format("You have to provide vectors with the same length: %d is not equal to %d. ", a.size(), b.size()));
|
|
};
|
|
|
|
template <class T>
|
|
std::vector<T> cross_product(std::vector<T> const& a, std::vector<T> const& b) {
|
|
throw NotImplementedError("The cross product function has not been implemented, yet");
|
|
};
|
|
|
|
template <class T>
|
|
std::vector<std::vector<T>> transpose(std::vector<std::vector<T>> const& in) {
|
|
size_t sizeX = in.size();
|
|
if (sizeX < 1) throw ValueError(format("You have to provide values, a vector length of %d is not a valid. ", sizeX));
|
|
size_t sizeY = in[0].size();
|
|
size_t sizeYOld = sizeY;
|
|
if (sizeY < 1) throw ValueError(format("You have to provide values, a vector length of %d is not a valid. ", sizeY));
|
|
std::vector<std::vector<T>> out(sizeY, std::vector<T>(sizeX));
|
|
for (size_t i = 0; i < sizeX; ++i) {
|
|
sizeY = in[i].size();
|
|
if (sizeY != sizeYOld) throw ValueError(format("You have to provide a rectangular matrix: %d is not equal to %d. ", sizeY, sizeYOld));
|
|
for (size_t j = 0; j < sizeY; ++j) {
|
|
out[j][i] = in[i][j];
|
|
}
|
|
}
|
|
return out;
|
|
};
|
|
|
|
template <class T>
|
|
std::vector<std::vector<T>> invert(std::vector<std::vector<T>> const& in) {
|
|
if (!is_squared(in)) throw ValueError(format("Only square matrices can be inverted: %d is not equal to %d. ", num_rows(in), num_cols(in)));
|
|
std::vector<std::vector<T>> identity;
|
|
// Build the identity matrix
|
|
size_t dim = num_rows(in);
|
|
identity.resize(dim, std::vector<T>(dim, 0));
|
|
for (size_t row = 0; row < dim; row++) {
|
|
identity[row][row] = 1.0;
|
|
}
|
|
return linsolve(in, identity);
|
|
};
|
|
|
|
inline void removeRow(Eigen::MatrixXd& matrix, unsigned int rowToRemove) {
|
|
unsigned int numRows = static_cast<unsigned int>(matrix.rows()) - 1;
|
|
unsigned int numCols = static_cast<unsigned int>(matrix.cols());
|
|
|
|
if (rowToRemove <= numRows)
|
|
matrix.block(rowToRemove, 0, numRows - rowToRemove, numCols) = matrix.block(rowToRemove + 1, 0, numRows - rowToRemove, numCols);
|
|
else {
|
|
throw ValueError(format("Trying to remove row index [%d] greater than max index [%d] ", rowToRemove, numRows));
|
|
}
|
|
matrix.conservativeResize(numRows, numCols);
|
|
};
|
|
|
|
inline void removeColumn(Eigen::MatrixXd& matrix, unsigned int colToRemove) {
|
|
unsigned int numRows = static_cast<unsigned int>(matrix.rows());
|
|
unsigned int numCols = static_cast<unsigned int>(matrix.cols()) - 1;
|
|
|
|
if (colToRemove <= numCols)
|
|
matrix.block(0, colToRemove, numRows, numCols - colToRemove) = matrix.block(0, colToRemove + 1, numRows, numCols - colToRemove);
|
|
else {
|
|
throw ValueError(format("Trying to remove column index [%d] greater than max index [%d] ", colToRemove, numCols));
|
|
}
|
|
matrix.conservativeResize(numRows, numCols);
|
|
};
|
|
template <typename Derived>
|
|
inline Eigen::MatrixXd minor_matrix(const Eigen::MatrixBase<Derived>& A, std::size_t i, std::size_t j) {
|
|
Eigen::MatrixXd Am = A;
|
|
removeRow(Am, static_cast<unsigned int>(i));
|
|
removeColumn(Am, static_cast<unsigned int>(j));
|
|
return Am;
|
|
};
|
|
|
|
template <typename Derived>
|
|
static Eigen::MatrixXd adjugate(const Eigen::MatrixBase<Derived>& A) {
|
|
std::size_t N = A.rows();
|
|
if (N == 1) {
|
|
Eigen::MatrixXd Aadj(1, 1);
|
|
Aadj << 1;
|
|
return Aadj;
|
|
}
|
|
Eigen::MatrixXd Aadj(N, N);
|
|
for (std::size_t i = 0; i < N; ++i) {
|
|
for (std::size_t j = 0; j < N; ++j) {
|
|
int negative_1_to_the_i_plus_j = ((i + j) % 2 == 0) ? 1 : -1;
|
|
Aadj(i, j) = negative_1_to_the_i_plus_j * minor_matrix(A, j, i).determinant();
|
|
}
|
|
}
|
|
return Aadj;
|
|
}
|
|
|
|
template <typename Derived>
|
|
static Eigen::MatrixXd adjugate_derivative(const Eigen::MatrixBase<Derived>& A, const Eigen::MatrixBase<Derived>& dAdt) {
|
|
std::size_t N = A.rows();
|
|
Eigen::MatrixXd Aadj(N, N);
|
|
for (std::size_t i = 0; i < N; ++i) {
|
|
for (std::size_t j = 0; j < N; ++j) {
|
|
int negative_1_to_the_i_plus_j = ((i + j) % 2 == 0) ? 1 : -1;
|
|
Eigen::MatrixXd mm = minor_matrix(A, j, i);
|
|
Aadj(i, j) = negative_1_to_the_i_plus_j * (adjugate(minor_matrix(A, j, i)) * minor_matrix(dAdt, j, i)).trace();
|
|
}
|
|
}
|
|
return Aadj;
|
|
}
|
|
|
|
}; /* namespace CoolProp */
|
|
#endif
|