mirror of
https://github.com/CoolProp/CoolProp.git
synced 2026-01-10 22:48:05 -05:00
* Run clang-format with claude code and fix VS warnings * More clang-format * And the tests too * Cleanup from clang-tidy * More constness and modernization * Cleanup and modernization
1463 lines
58 KiB
C++
1463 lines
58 KiB
C++
|
|
#ifndef HELMHOLTZ_H
|
|
#define HELMHOLTZ_H
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <vector>
|
|
#include "rapidjson_include.h"
|
|
//#include "Eigen/Core"
|
|
#include "time.h"
|
|
#include "CachedElement.h"
|
|
#include "Backends/Cubics/GeneralizedCubic.h"
|
|
#include "crossplatform_shared_ptr.h"
|
|
#include "CPnumerics.h"
|
|
|
|
#if ENABLE_CATCH
|
|
# include "MultiComplex/MultiComplex.hpp"
|
|
#endif
|
|
|
|
namespace CoolProp {
|
|
|
|
// #############################################################################
|
|
// #############################################################################
|
|
// #############################################################################
|
|
// RESIDUAL TERMS
|
|
// #############################################################################
|
|
// #############################################################################
|
|
// #############################################################################
|
|
|
|
#define LIST_OF_DERIVATIVE_VARIABLES \
|
|
X(alphar) \
|
|
X(dalphar_ddelta) \
|
|
X(dalphar_dtau) \
|
|
X(d2alphar_ddelta2) \
|
|
X(d2alphar_dtau2) \
|
|
X(d2alphar_ddelta_dtau) \
|
|
X(d3alphar_ddelta3) \
|
|
X(d3alphar_ddelta_dtau2) \
|
|
X(d3alphar_ddelta2_dtau) \
|
|
X(d3alphar_dtau3) \
|
|
X(d4alphar_ddelta4) \
|
|
X(d4alphar_ddelta3_dtau) \
|
|
X(d4alphar_ddelta2_dtau2) \
|
|
X(d4alphar_ddelta_dtau3) \
|
|
X(d4alphar_dtau4) \
|
|
X(delta_x_dalphar_ddelta) \
|
|
X(tau_x_dalphar_dtau) \
|
|
X(delta2_x_d2alphar_ddelta2) \
|
|
X(deltatau_x_d2alphar_ddelta_dtau) \
|
|
X(tau2_x_d2alphar_dtau2)
|
|
|
|
struct HelmholtzDerivatives
|
|
{
|
|
#define X(name) CoolPropDbl name;
|
|
LIST_OF_DERIVATIVE_VARIABLES
|
|
#undef X
|
|
CoolPropDbl tau, delta, T_red, rhomolar_red;
|
|
|
|
void reset(CoolPropDbl v){
|
|
#define X(name) name = v;
|
|
LIST_OF_DERIVATIVE_VARIABLES
|
|
#undef X
|
|
} HelmholtzDerivatives operator+(const HelmholtzDerivatives& other) const {
|
|
HelmholtzDerivatives _new;
|
|
#define X(name) _new.name = name + other.name;
|
|
LIST_OF_DERIVATIVE_VARIABLES
|
|
#undef X
|
|
return _new;
|
|
}
|
|
HelmholtzDerivatives operator*(const CoolPropDbl& other) const {
|
|
HelmholtzDerivatives _new;
|
|
#define X(name) _new.name = name * other;
|
|
LIST_OF_DERIVATIVE_VARIABLES
|
|
#undef X
|
|
return _new;
|
|
}
|
|
HelmholtzDerivatives() : tau(0.0), delta(0.0), T_red(_HUGE), rhomolar_red(_HUGE) {
|
|
reset(0.0);
|
|
};
|
|
/// Retrieve a single value based on the number of derivatives with respect to tau and delta
|
|
double get(std::size_t itau, std::size_t idelta) {
|
|
if (itau == 0) {
|
|
if (idelta == 0) {
|
|
return alphar;
|
|
} else if (idelta == 1) {
|
|
return dalphar_ddelta;
|
|
} else if (idelta == 2) {
|
|
return d2alphar_ddelta2;
|
|
} else if (idelta == 3) {
|
|
return d3alphar_ddelta3;
|
|
} else if (idelta == 4) {
|
|
return d4alphar_ddelta4;
|
|
} else {
|
|
throw ValueError();
|
|
}
|
|
} else if (itau == 1) {
|
|
if (idelta == 0) {
|
|
return dalphar_dtau;
|
|
} else if (idelta == 1) {
|
|
return d2alphar_ddelta_dtau;
|
|
} else if (idelta == 2) {
|
|
return d3alphar_ddelta2_dtau;
|
|
} else if (idelta == 3) {
|
|
return d4alphar_ddelta3_dtau;
|
|
} else {
|
|
throw ValueError();
|
|
}
|
|
} else if (itau == 2) {
|
|
if (idelta == 0) {
|
|
return d2alphar_dtau2;
|
|
} else if (idelta == 1) {
|
|
return d3alphar_ddelta_dtau2;
|
|
} else if (idelta == 2) {
|
|
return d4alphar_ddelta2_dtau2;
|
|
} else {
|
|
throw ValueError();
|
|
}
|
|
} else if (itau == 3) {
|
|
if (idelta == 0) {
|
|
return d3alphar_dtau3;
|
|
} else if (idelta == 1) {
|
|
return d4alphar_ddelta_dtau3;
|
|
} else {
|
|
throw ValueError();
|
|
}
|
|
} else if (itau == 4) {
|
|
if (idelta == 0) {
|
|
return d4alphar_dtau4;
|
|
} else {
|
|
throw ValueError();
|
|
}
|
|
} else {
|
|
throw ValueError();
|
|
}
|
|
}
|
|
};
|
|
#undef LIST_OF_DERIVATIVE_VARIABLES
|
|
|
|
/// The base class class for the Helmholtz energy terms
|
|
/**
|
|
|
|
Residual Helmholtz Energy Terms:
|
|
|
|
Term | Helmholtz Energy Contribution
|
|
---------- | ------------------------------
|
|
ResidualHelmholtzPower | \f$ \alpha^r=\left\lbrace\begin{array}{cc}\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} & l_i=0\\ \displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\delta^{l_i}) & l_i\neq 0\end{array}\right.\f$
|
|
ResidualHelmholtzExponential | \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\gamma_i\delta^{l_i}) \f$
|
|
ResidualHelmholtzLemmon2005 | \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\delta^{l_i}-\tau^{m_i})\f$
|
|
ResidualHelmholtzGaussian | \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\eta_i(\delta-\epsilon_i)^2-\beta_i(\tau-\gamma_i)^2)\f$
|
|
ResidualHelmholtzGERG2008Gaussian | \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\eta_i(\delta-\epsilon_i)^2-\beta_i(\delta-\gamma_i))\f$
|
|
ResidualHelmholtzNonAnalytic | \f$ \begin{array}{c}\alpha^r&=&\displaystyle\sum_i n_i \Delta^{b_i}\delta\psi \\ \Delta & = & \theta^2+B_i[(\delta-1)^2]^{a_i}\\ \theta & = & (1-\tau)+A_i[(\delta-1)^2]^{1/(2\beta_i)}\\ \psi & = & \exp(-C_i(\delta-1)^2-D_i(\tau-1)^2) \end{array}\f$
|
|
ResidualHelmholtzSAFTAssociating | \f$ \alpha^r = am\left(\ln X-\frac{X}{2}+\frac{1}{2}\right); \f$
|
|
|
|
|
|
Ideal-Gas Helmholtz Energy Terms:
|
|
|
|
Term | Helmholtz Energy Contribution
|
|
---------- | ------------------------------
|
|
IdealHelmholtzLead | \f$ \alpha^0 = n_1 + n_2\tau + \ln\delta \f$
|
|
IdealHelmholtzEnthalpyEntropyOffset | \f$ \alpha^0 = \displaystyle\frac{\Delta s}{R_u/M}+\frac{\Delta h}{(R_u/M)T}\tau \f$
|
|
IdealHelmholtzLogTau | \f$ \alpha^0 = n_1\log\tau \f$
|
|
IdealHelmholtzPower | \f$ \alpha^0 = \displaystyle\sum_i n_i\tau^{t_i} \f$
|
|
IdealHelmholtzPlanckEinsteinGeneralized | \f$ \alpha^0 = \displaystyle\sum_i n_i\log[c_i+d_i\exp(\theta_i\tau)] \f$
|
|
*/
|
|
class BaseHelmholtzTerm
|
|
{
|
|
public:
|
|
BaseHelmholtzTerm() {};
|
|
virtual ~BaseHelmholtzTerm() {};
|
|
|
|
/// Returns the base, non-dimensional, Helmholtz energy term (no derivatives) [-]
|
|
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
|
|
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
|
|
*/
|
|
virtual CoolPropDbl base(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
HelmholtzDerivatives deriv;
|
|
all(tau, delta, deriv);
|
|
return deriv.alphar;
|
|
};
|
|
/// Returns the first partial derivative of Helmholtz energy term with respect to tau [-]
|
|
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
|
|
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
|
|
*/
|
|
virtual CoolPropDbl dTau(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
HelmholtzDerivatives deriv;
|
|
all(tau, delta, deriv);
|
|
return deriv.dalphar_dtau;
|
|
};
|
|
/// Returns the second partial derivative of Helmholtz energy term with respect to tau [-]
|
|
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
|
|
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
|
|
*/
|
|
virtual CoolPropDbl dTau2(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
HelmholtzDerivatives deriv;
|
|
all(tau, delta, deriv);
|
|
return deriv.d2alphar_dtau2;
|
|
};
|
|
/// Returns the second mixed partial derivative (delta1,dtau1) of Helmholtz energy term with respect to delta and tau [-]
|
|
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
|
|
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
|
|
*/
|
|
virtual CoolPropDbl dDelta_dTau(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
HelmholtzDerivatives deriv;
|
|
all(tau, delta, deriv);
|
|
return deriv.d2alphar_ddelta_dtau;
|
|
};
|
|
/// Returns the first partial derivative of Helmholtz energy term with respect to delta [-]
|
|
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
|
|
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
|
|
*/
|
|
virtual CoolPropDbl dDelta(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
HelmholtzDerivatives deriv;
|
|
all(tau, delta, deriv);
|
|
return deriv.dalphar_ddelta;
|
|
};
|
|
/// Returns the second partial derivative of Helmholtz energy term with respect to delta [-]
|
|
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
|
|
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
|
|
*/
|
|
virtual CoolPropDbl dDelta2(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
HelmholtzDerivatives deriv;
|
|
all(tau, delta, deriv);
|
|
return deriv.d2alphar_ddelta2;
|
|
};
|
|
/// Returns the third mixed partial derivative (delta2,dtau1) of Helmholtz energy term with respect to delta and tau [-]
|
|
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
|
|
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
|
|
*/
|
|
virtual CoolPropDbl dDelta2_dTau(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
HelmholtzDerivatives deriv;
|
|
all(tau, delta, deriv);
|
|
return deriv.d3alphar_ddelta2_dtau;
|
|
};
|
|
/// Returns the third mixed partial derivative (delta1,dtau2) of Helmholtz energy term with respect to delta and tau [-]
|
|
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
|
|
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
|
|
*/
|
|
virtual CoolPropDbl dDelta_dTau2(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
HelmholtzDerivatives deriv;
|
|
all(tau, delta, deriv);
|
|
return deriv.d3alphar_ddelta_dtau2;
|
|
};
|
|
/// Returns the third partial derivative of Helmholtz energy term with respect to tau [-]
|
|
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
|
|
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
|
|
*/
|
|
virtual CoolPropDbl dTau3(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
HelmholtzDerivatives deriv;
|
|
all(tau, delta, deriv);
|
|
return deriv.d3alphar_dtau3;
|
|
};
|
|
/// Returns the third partial derivative of Helmholtz energy term with respect to delta [-]
|
|
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
|
|
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
|
|
*/
|
|
virtual CoolPropDbl dDelta3(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
HelmholtzDerivatives deriv;
|
|
all(tau, delta, deriv);
|
|
return deriv.d3alphar_ddelta3;
|
|
};
|
|
/// Returns the fourth partial derivative of Helmholtz energy term with respect to tau [-]
|
|
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
|
|
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
|
|
*/
|
|
virtual CoolPropDbl dTau4(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
HelmholtzDerivatives deriv;
|
|
all(tau, delta, deriv);
|
|
return deriv.d4alphar_dtau4;
|
|
};
|
|
virtual CoolPropDbl dDelta_dTau3(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
HelmholtzDerivatives deriv;
|
|
all(tau, delta, deriv);
|
|
return deriv.d4alphar_ddelta_dtau3;
|
|
};
|
|
virtual CoolPropDbl dDelta2_dTau2(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
HelmholtzDerivatives deriv;
|
|
all(tau, delta, deriv);
|
|
return deriv.d4alphar_ddelta2_dtau2;
|
|
};
|
|
virtual CoolPropDbl dDelta3_dTau(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
HelmholtzDerivatives deriv;
|
|
all(tau, delta, deriv);
|
|
return deriv.d4alphar_ddelta3_dtau;
|
|
};
|
|
virtual CoolPropDbl dDelta4(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
HelmholtzDerivatives deriv;
|
|
all(tau, delta, deriv);
|
|
return deriv.d4alphar_ddelta4;
|
|
};
|
|
|
|
virtual void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& derivs) = 0;
|
|
#if ENABLE_CATCH
|
|
virtual mcx::MultiComplex<double> one_mcx(const mcx::MultiComplex<double>& tau, const mcx::MultiComplex<double>& delta) const {
|
|
throw CoolProp::NotImplementedError("The mcx derivative function was not implemented");
|
|
}
|
|
#endif
|
|
};
|
|
|
|
struct ResidualHelmholtzGeneralizedExponentialElement
|
|
{
|
|
/// These variables are for the n*delta^d_i*tau^t_i part
|
|
CoolPropDbl n, d, t;
|
|
/// These variables are for the exp(u) part
|
|
/// u is given by -c*delta^l_i-omega*tau^m_i-eta1*(delta-epsilon1)-eta2*(delta-epsilon2)^2-beta1*(tau-gamma1)-beta2*(tau-gamma2)^2
|
|
CoolPropDbl c, l_double, omega, m_double, eta1, epsilon1, eta2, epsilon2, beta1, gamma1, beta2, gamma2;
|
|
/// If l_i or m_i are integers, we will store them as integers in order to call pow(double, int) rather than pow(double, double)
|
|
int l_int, m_int;
|
|
/// If l is an integer, store a boolean flag so we can evaluate the correct pow() function
|
|
bool l_is_int, m_is_int;
|
|
|
|
ResidualHelmholtzGeneralizedExponentialElement() {
|
|
n = 0;
|
|
d = 0;
|
|
t = 0;
|
|
c = 0;
|
|
l_double = 0;
|
|
omega = 0;
|
|
m_double = 0;
|
|
eta1 = 0;
|
|
epsilon1 = 0;
|
|
eta2 = 0;
|
|
epsilon2 = 0;
|
|
beta1 = 0;
|
|
gamma1 = 0;
|
|
beta2 = 0;
|
|
gamma2 = 0;
|
|
l_int = 0;
|
|
m_int = 0;
|
|
l_is_int = false;
|
|
m_is_int = true;
|
|
};
|
|
};
|
|
/** \brief A generalized residual helmholtz energy container that can deal with a wide range of terms which can be converted to this general form
|
|
*
|
|
* \f$ \alpha^r=\sum_i n_i \delta^{d_i} \tau^{t_i}\exp(u_i) \f$
|
|
*
|
|
* where \f$ u_i \f$ is given by
|
|
*
|
|
* \f$ u_i = -c_i\delta^{l_i}-\omega_i\tau^{m_i}-\eta_{1,i}(\delta-\epsilon_{1,i})-\eta_{2,i}(\delta-\epsilon_{2,i})^2-\beta_{1,i}(\tau-\gamma_{1,i})-\beta_{2,i}(\tau-\gamma_{2,i})^2 \f$
|
|
*/
|
|
class ResidualHelmholtzGeneralizedExponential : public BaseHelmholtzTerm
|
|
{
|
|
|
|
public:
|
|
bool delta_li_in_u, tau_mi_in_u, eta1_in_u, eta2_in_u, beta1_in_u, beta2_in_u, finished;
|
|
std::vector<CoolPropDbl> s;
|
|
std::size_t N;
|
|
|
|
// These variables are for the exp(u) part
|
|
// u is given by -c*delta^l_i-omega*tau^m_i-eta1*(delta-epsilon1)-eta2*(delta-epsilon2)^2-beta1*(tau-gamma1)-beta2*(tau-gamma2)^2
|
|
std::vector<double> n, d, t, c, l_double, omega, m_double, eta1, epsilon1, eta2, epsilon2, beta1, gamma1, beta2, gamma2;
|
|
// If l_i or m_i are integers, we will store them as integers in order to call pow(double, int) rather than pow(double, double)
|
|
std::vector<int> l_int, m_int;
|
|
|
|
//Eigen::ArrayXd uE, du_ddeltaE, du_dtauE, d2u_ddelta2E, d2u_dtau2E, d3u_ddelta3E, d3u_dtau3E;
|
|
|
|
std::vector<ResidualHelmholtzGeneralizedExponentialElement> elements;
|
|
// Default Constructor
|
|
ResidualHelmholtzGeneralizedExponential()
|
|
: delta_li_in_u(false), tau_mi_in_u(false), eta1_in_u(false), eta2_in_u(false), beta1_in_u(false), beta2_in_u(false), finished(false), N(0) {};
|
|
/** \brief Add and convert an old-style power (polynomial) term to generalized form
|
|
*
|
|
* Term of the format
|
|
* \f$ \alpha^r=\left\lbrace\begin{array}{cc}\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} & l_i=0\\ \displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\delta^{l_i}) & l_i\neq 0\end{array}\right.\f$
|
|
*/
|
|
void add_Power(const std::vector<CoolPropDbl>& n, const std::vector<CoolPropDbl>& d, const std::vector<CoolPropDbl>& t,
|
|
const std::vector<CoolPropDbl>& l) {
|
|
for (std::size_t i = 0; i < n.size(); ++i) {
|
|
ResidualHelmholtzGeneralizedExponentialElement el;
|
|
el.n = n[i];
|
|
el.d = d[i];
|
|
el.t = t[i];
|
|
el.l_double = l[i];
|
|
el.l_int = (int)el.l_double;
|
|
if (el.l_double > 0)
|
|
el.c = 1.0;
|
|
else
|
|
el.c = 0.0;
|
|
elements.push_back(el);
|
|
}
|
|
delta_li_in_u = true;
|
|
};
|
|
/** \brief Add and convert an old-style exponential term to generalized form
|
|
*
|
|
* Term of the format
|
|
* \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-g_i\delta^{l_i}) \f$
|
|
*/
|
|
void add_Exponential(const std::vector<CoolPropDbl>& n, const std::vector<CoolPropDbl>& d, const std::vector<CoolPropDbl>& t,
|
|
const std::vector<CoolPropDbl>& g, const std::vector<CoolPropDbl>& l) {
|
|
for (std::size_t i = 0; i < n.size(); ++i) {
|
|
ResidualHelmholtzGeneralizedExponentialElement el;
|
|
el.n = n[i];
|
|
el.d = d[i];
|
|
el.t = t[i];
|
|
el.c = g[i];
|
|
el.l_double = l[i];
|
|
el.l_int = (int)el.l_double;
|
|
elements.push_back(el);
|
|
}
|
|
delta_li_in_u = true;
|
|
}
|
|
/** \brief Add and convert an old-style Gaussian term to generalized form
|
|
*
|
|
* Term of the format
|
|
* \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\eta_i(\delta-\epsilon_i)^2-\beta_i(\tau-\gamma_i)^2)\f$
|
|
*/
|
|
void add_Gaussian(const std::vector<CoolPropDbl>& n, const std::vector<CoolPropDbl>& d, const std::vector<CoolPropDbl>& t,
|
|
const std::vector<CoolPropDbl>& eta, const std::vector<CoolPropDbl>& epsilon, const std::vector<CoolPropDbl>& beta,
|
|
const std::vector<CoolPropDbl>& gamma) {
|
|
for (std::size_t i = 0; i < n.size(); ++i) {
|
|
ResidualHelmholtzGeneralizedExponentialElement el;
|
|
el.n = n[i];
|
|
el.d = d[i];
|
|
el.t = t[i];
|
|
el.eta2 = eta[i];
|
|
el.epsilon2 = epsilon[i];
|
|
el.beta2 = beta[i];
|
|
el.gamma2 = gamma[i];
|
|
elements.push_back(el);
|
|
}
|
|
eta2_in_u = true;
|
|
beta2_in_u = true;
|
|
};
|
|
/** \brief Add and convert an old-style Gaussian term from GERG 2008 natural gas model to generalized form
|
|
*
|
|
* Term of the format
|
|
* \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\eta_i(\delta-\epsilon_i)^2-\beta_i(\delta-\gamma_i))\f$
|
|
*/
|
|
void add_GERG2008Gaussian(const std::vector<CoolPropDbl>& n, const std::vector<CoolPropDbl>& d, const std::vector<CoolPropDbl>& t,
|
|
const std::vector<CoolPropDbl>& eta, const std::vector<CoolPropDbl>& epsilon, const std::vector<CoolPropDbl>& beta,
|
|
const std::vector<CoolPropDbl>& gamma) {
|
|
for (std::size_t i = 0; i < n.size(); ++i) {
|
|
ResidualHelmholtzGeneralizedExponentialElement el;
|
|
el.n = n[i];
|
|
el.d = d[i];
|
|
el.t = t[i];
|
|
el.eta2 = eta[i];
|
|
el.epsilon2 = epsilon[i];
|
|
el.eta1 = beta[i];
|
|
el.epsilon1 = gamma[i];
|
|
elements.push_back(el);
|
|
}
|
|
eta2_in_u = true;
|
|
eta1_in_u = true;
|
|
};
|
|
/** \brief Add and convert a term from Lemmon and Jacobsen (2005) used for R125
|
|
*
|
|
* Term of the format
|
|
* \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\delta^{l_i}-\tau^{m_i})\f$
|
|
*/
|
|
void add_Lemmon2005(const std::vector<CoolPropDbl>& n, const std::vector<CoolPropDbl>& d, const std::vector<CoolPropDbl>& t,
|
|
const std::vector<CoolPropDbl>& l, const std::vector<CoolPropDbl>& m) {
|
|
for (std::size_t i = 0; i < n.size(); ++i) {
|
|
ResidualHelmholtzGeneralizedExponentialElement el;
|
|
el.n = n[i];
|
|
el.d = d[i];
|
|
el.t = t[i];
|
|
el.c = 1.0;
|
|
el.omega = 1.0;
|
|
el.l_double = l[i];
|
|
el.m_double = m[i];
|
|
el.l_int = (int)el.l_double;
|
|
el.m_int = (int)el.m_double;
|
|
elements.push_back(el);
|
|
}
|
|
delta_li_in_u = true;
|
|
tau_mi_in_u = true;
|
|
};
|
|
/** \brief Add and convert a double-exponential term
|
|
*
|
|
* Term of the format
|
|
* \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-gd_j\delta^{ld_j}-gt_j\tau^{lt_i})\f$
|
|
*/
|
|
void add_DoubleExponential(const std::vector<CoolPropDbl>& n, const std::vector<CoolPropDbl>& d, const std::vector<CoolPropDbl>& t,
|
|
const std::vector<CoolPropDbl>& gd, const std::vector<CoolPropDbl>& ld, const std::vector<CoolPropDbl>& gt,
|
|
const std::vector<CoolPropDbl>& lt) {
|
|
for (std::size_t i = 0; i < n.size(); ++i) {
|
|
ResidualHelmholtzGeneralizedExponentialElement el;
|
|
el.n = n[i];
|
|
el.d = d[i];
|
|
el.t = t[i];
|
|
el.c = gd[i];
|
|
el.l_double = ld[i];
|
|
el.l_int = (int)el.l_double;
|
|
el.omega = gt[i];
|
|
el.m_double = lt[i];
|
|
elements.push_back(el);
|
|
}
|
|
delta_li_in_u = true;
|
|
tau_mi_in_u = true;
|
|
};
|
|
|
|
void finish() {
|
|
n.resize(elements.size());
|
|
d.resize(elements.size());
|
|
t.resize(elements.size());
|
|
c.resize(elements.size());
|
|
omega.resize(elements.size());
|
|
l_double.resize(elements.size());
|
|
l_int.resize(elements.size());
|
|
m_double.resize(elements.size());
|
|
m_int.resize(elements.size());
|
|
epsilon2.resize(elements.size());
|
|
eta2.resize(elements.size());
|
|
gamma2.resize(elements.size());
|
|
beta2.resize(elements.size());
|
|
|
|
for (std::size_t i = 0; i < elements.size(); ++i) {
|
|
n[i] = elements[i].n;
|
|
d[i] = elements[i].d;
|
|
t[i] = elements[i].t;
|
|
c[i] = elements[i].c;
|
|
omega[i] = elements[i].omega;
|
|
l_double[i] = elements[i].l_double;
|
|
l_int[i] = elements[i].l_int;
|
|
m_double[i] = elements[i].m_double;
|
|
m_int[i] = elements[i].m_int;
|
|
epsilon2[i] = elements[i].epsilon2;
|
|
eta2[i] = elements[i].eta2;
|
|
gamma2[i] = elements[i].gamma2;
|
|
beta2[i] = elements[i].beta2;
|
|
|
|
// See if l is an integer, and store a flag if it is
|
|
elements[i].l_is_int = (std::abs(static_cast<long>(elements[i].l_double) - elements[i].l_double) < 1e-14);
|
|
}
|
|
// uE.resize(elements.size());
|
|
// du_ddeltaE.resize(elements.size());
|
|
// du_dtauE.resize(elements.size());
|
|
// d2u_ddelta2E.resize(elements.size());
|
|
// d2u_dtau2E.resize(elements.size());
|
|
// d3u_ddelta3E.resize(elements.size());
|
|
// d3u_dtau3E.resize(elements.size());
|
|
|
|
finished = true;
|
|
};
|
|
|
|
void to_json(rapidjson::Value& el, rapidjson::Document& doc);
|
|
|
|
void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& derivs) override;
|
|
//void allEigen(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw();
|
|
|
|
#if ENABLE_CATCH
|
|
virtual mcx::MultiComplex<double> one_mcx(const mcx::MultiComplex<double>& tau, const mcx::MultiComplex<double>& delta) const override;
|
|
#endif
|
|
};
|
|
|
|
struct ResidualHelmholtzNonAnalyticElement
|
|
{
|
|
CoolPropDbl n, a, b, beta, A, B, C, D;
|
|
};
|
|
class ResidualHelmholtzNonAnalytic : public BaseHelmholtzTerm
|
|
{
|
|
|
|
public:
|
|
std::size_t N;
|
|
std::vector<CoolPropDbl> s;
|
|
std::vector<ResidualHelmholtzNonAnalyticElement> elements;
|
|
/// Default Constructor
|
|
ResidualHelmholtzNonAnalytic() {
|
|
N = 0;
|
|
};
|
|
/// Destructor. No implementation
|
|
~ResidualHelmholtzNonAnalytic() {};
|
|
/// Constructor
|
|
ResidualHelmholtzNonAnalytic(const std::vector<CoolPropDbl>& n, const std::vector<CoolPropDbl>& a, const std::vector<CoolPropDbl>& b,
|
|
const std::vector<CoolPropDbl>& beta, const std::vector<CoolPropDbl>& A, const std::vector<CoolPropDbl>& B,
|
|
const std::vector<CoolPropDbl>& C, const std::vector<CoolPropDbl>& D) {
|
|
N = n.size();
|
|
s.resize(N);
|
|
for (std::size_t i = 0; i < n.size(); ++i) {
|
|
ResidualHelmholtzNonAnalyticElement el;
|
|
el.n = n[i];
|
|
el.a = a[i];
|
|
el.b = b[i];
|
|
el.beta = beta[i];
|
|
el.A = A[i];
|
|
el.B = B[i];
|
|
el.C = C[i];
|
|
el.D = D[i];
|
|
elements.push_back(el);
|
|
}
|
|
};
|
|
void to_json(rapidjson::Value& el, rapidjson::Document& doc);
|
|
void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& derivs) override;
|
|
#if ENABLE_CATCH
|
|
virtual mcx::MultiComplex<double> one_mcx(const mcx::MultiComplex<double>& tau, const mcx::MultiComplex<double>& delta) const override;
|
|
#endif
|
|
};
|
|
|
|
class ResidualHelmholtzGeneralizedCubic : public BaseHelmholtzTerm
|
|
{
|
|
protected:
|
|
shared_ptr<AbstractCubic> m_abstractcubic;
|
|
std::vector<double> z; /// Vector of mole fractions, will be initialized to [1.0] since this is a pure fluid
|
|
public:
|
|
bool enabled;
|
|
|
|
/// Default Constructor
|
|
ResidualHelmholtzGeneralizedCubic() {
|
|
enabled = false;
|
|
};
|
|
/// Constructor given an abstract cubic instance
|
|
ResidualHelmholtzGeneralizedCubic(shared_ptr<AbstractCubic>& ac) : m_abstractcubic(ac) {
|
|
enabled = true;
|
|
z = std::vector<double>(1, 1); // Init the vector to [1.0]
|
|
};
|
|
|
|
void to_json(rapidjson::Value& el, rapidjson::Document& doc);
|
|
void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& derivs) throw();
|
|
};
|
|
|
|
class ResidualHelmholtzGaoB : public BaseHelmholtzTerm
|
|
{
|
|
protected:
|
|
std::vector<double> n, t, d, eta, beta, gamma, epsilon, b;
|
|
|
|
public:
|
|
bool enabled;
|
|
|
|
/// Default Constructor
|
|
ResidualHelmholtzGaoB() {
|
|
enabled = false;
|
|
};
|
|
|
|
/// Constructor given coefficients
|
|
ResidualHelmholtzGaoB(const std::vector<CoolPropDbl>& n, const std::vector<CoolPropDbl>& t, const std::vector<CoolPropDbl>& d,
|
|
const std::vector<CoolPropDbl>& eta, const std::vector<CoolPropDbl>& beta, const std::vector<CoolPropDbl>& gamma,
|
|
const std::vector<CoolPropDbl>& epsilon, const std::vector<CoolPropDbl>& b)
|
|
: n(n), t(t), d(d), eta(eta), beta(beta), gamma(gamma), epsilon(epsilon), b(b) {
|
|
enabled = true;
|
|
};
|
|
|
|
void to_json(rapidjson::Value& el, rapidjson::Document& doc);
|
|
void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& derivs) override;
|
|
|
|
#if ENABLE_CATCH
|
|
virtual mcx::MultiComplex<double> one_mcx(const mcx::MultiComplex<double>& tau, const mcx::MultiComplex<double>& delta) const override;
|
|
#endif
|
|
};
|
|
|
|
/// The generalized Lee-Kesler formulation of Xiang & Deiters: doi:10.1016/j.ces.2007.11.029
|
|
class ResidualHelmholtzXiangDeiters : public BaseHelmholtzTerm
|
|
{
|
|
|
|
public:
|
|
bool enabled;
|
|
ResidualHelmholtzGeneralizedExponential phi0, phi1, phi2;
|
|
CoolPropDbl Tc, pc, rhomolarc, acentric, R, theta;
|
|
/// Default Constructor
|
|
ResidualHelmholtzXiangDeiters() : Tc(_HUGE), pc(_HUGE), rhomolarc(_HUGE), acentric(_HUGE), R(_HUGE), theta(_HUGE) {
|
|
enabled = false;
|
|
};
|
|
/// Constructor
|
|
ResidualHelmholtzXiangDeiters(const CoolPropDbl Tc, const CoolPropDbl pc, const CoolPropDbl rhomolarc, const CoolPropDbl acentric,
|
|
const CoolPropDbl R);
|
|
void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& derivs) override;
|
|
#if ENABLE_CATCH
|
|
virtual mcx::MultiComplex<double> one_mcx(const mcx::MultiComplex<double>& tau, const mcx::MultiComplex<double>& delta) const override;
|
|
#endif
|
|
};
|
|
|
|
class ResidualHelmholtzSAFTAssociating : public BaseHelmholtzTerm
|
|
{
|
|
|
|
protected:
|
|
double a, m, epsilonbar, vbarn, kappabar;
|
|
|
|
CoolPropDbl Deltabar(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl dDeltabar_ddelta__consttau(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl d2Deltabar_ddelta2__consttau(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl dDeltabar_dtau__constdelta(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl d2Deltabar_dtau2__constdelta(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl d2Deltabar_ddelta_dtau(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl d3Deltabar_dtau3__constdelta(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl d3Deltabar_ddelta_dtau2(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl d3Deltabar_ddelta3__consttau(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl d3Deltabar_ddelta2_dtau(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
|
|
CoolPropDbl X(const CoolPropDbl& delta, const CoolPropDbl& Deltabar) const;
|
|
CoolPropDbl dX_dDeltabar__constdelta(const CoolPropDbl& delta, const CoolPropDbl& Deltabar) const;
|
|
CoolPropDbl dX_ddelta__constDeltabar(const CoolPropDbl& delta, const CoolPropDbl& Deltabar) const;
|
|
CoolPropDbl dX_dtau(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl dX_ddelta(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl d2X_dtau2(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl d2X_ddeltadtau(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl d2X_ddelta2(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
|
|
CoolPropDbl d3X_dtau3(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl d3X_ddelta3(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl d3X_ddeltadtau2(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
CoolPropDbl d3X_ddelta2dtau(const CoolPropDbl& tau, const CoolPropDbl& delta) const;
|
|
|
|
CoolPropDbl g(const CoolPropDbl& eta) const;
|
|
CoolPropDbl dg_deta(const CoolPropDbl& eta) const;
|
|
CoolPropDbl d2g_deta2(const CoolPropDbl& eta) const;
|
|
CoolPropDbl d3g_deta3(const CoolPropDbl& eta) const;
|
|
CoolPropDbl eta(const CoolPropDbl& delta) const;
|
|
|
|
public:
|
|
/// Default constructor
|
|
ResidualHelmholtzSAFTAssociating() : a(_HUGE), m(_HUGE), epsilonbar(_HUGE), vbarn(_HUGE), kappabar(_HUGE) {
|
|
disabled = true;
|
|
};
|
|
|
|
// Constructor
|
|
ResidualHelmholtzSAFTAssociating(double a, double m, double epsilonbar, double vbarn, double kappabar)
|
|
: a(a), m(m), epsilonbar(epsilonbar), vbarn(vbarn), kappabar(kappabar) {
|
|
disabled = false;
|
|
};
|
|
|
|
bool disabled;
|
|
|
|
//Destructor. No Implementation
|
|
~ResidualHelmholtzSAFTAssociating() {};
|
|
|
|
void to_json(rapidjson::Value& el, rapidjson::Document& doc);
|
|
|
|
CoolPropDbl dTau4(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
return 1e99;
|
|
};
|
|
CoolPropDbl dDelta_dTau3(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
return 1e99;
|
|
};
|
|
CoolPropDbl dDelta2_dTau2(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
return 1e99;
|
|
};
|
|
CoolPropDbl dDelta3_dTau(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
return 1e99;
|
|
};
|
|
CoolPropDbl dDelta4(const CoolPropDbl& tau, const CoolPropDbl& delta) throw() {
|
|
return 1e99;
|
|
};
|
|
|
|
void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& deriv) throw();
|
|
};
|
|
|
|
class BaseHelmholtzContainer
|
|
{
|
|
protected:
|
|
std::array<double, 16> cache = create_filled_array<double, 16>(_HUGE);
|
|
std::array<bool, 16> is_cached = create_filled_array<bool, 16>(false);
|
|
constexpr static std::size_t i00 = 0, i01 = 1, i02 = 2, i03 = 3, i04 = 4, i10 = 5, i11 = 6, i12 = 7, i13 = 8, i20 = 9, i21 = 10, i22 = 11,
|
|
i30 = 12, i31 = 13, i40 = 14;
|
|
|
|
bool cache_valid(std::size_t i) const {
|
|
return is_cached[i];
|
|
}
|
|
|
|
public:
|
|
void clear() {
|
|
memset(cache.data(), 0, sizeof(cache));
|
|
memset(is_cached.data(), false, sizeof(is_cached));
|
|
};
|
|
|
|
virtual void empty_the_EOS() = 0;
|
|
virtual HelmholtzDerivatives all(const CoolPropDbl tau, const CoolPropDbl delta, bool cache_values) = 0;
|
|
|
|
CoolPropDbl base(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
|
|
if (!cache_valid(i00) || dont_use_cache)
|
|
return all(tau, delta, false).alphar;
|
|
else
|
|
return cache[i00];
|
|
};
|
|
CoolPropDbl dDelta(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
|
|
if (!cache_valid(i10) || dont_use_cache)
|
|
return all(tau, delta, false).dalphar_ddelta;
|
|
else
|
|
return cache[i10];
|
|
};
|
|
CoolPropDbl dTau(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
|
|
if (!cache_valid(i01) || dont_use_cache)
|
|
return all(tau, delta, false).dalphar_dtau;
|
|
else
|
|
return cache[i01];
|
|
};
|
|
CoolPropDbl dDelta2(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
|
|
if (!cache_valid(i20) || dont_use_cache)
|
|
return all(tau, delta, false).d2alphar_ddelta2;
|
|
else
|
|
return cache[i20];
|
|
};
|
|
CoolPropDbl dDelta_dTau(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
|
|
if (!cache_valid(i11) || dont_use_cache)
|
|
return all(tau, delta, false).d2alphar_ddelta_dtau;
|
|
else
|
|
return cache[i11];
|
|
};
|
|
CoolPropDbl dTau2(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
|
|
if (!cache_valid(i02) || dont_use_cache)
|
|
return all(tau, delta, false).d2alphar_dtau2;
|
|
else
|
|
return cache[i02];
|
|
};
|
|
CoolPropDbl dDelta3(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
|
|
if (!cache_valid(i30) || dont_use_cache)
|
|
return all(tau, delta, false).d3alphar_ddelta3;
|
|
else
|
|
return cache[i30];
|
|
};
|
|
CoolPropDbl dDelta2_dTau(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
|
|
if (!cache_valid(i21) || dont_use_cache)
|
|
return all(tau, delta, false).d3alphar_ddelta2_dtau;
|
|
else
|
|
return cache[i21];
|
|
};
|
|
CoolPropDbl dDelta_dTau2(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
|
|
if (!cache_valid(i12) || dont_use_cache)
|
|
return all(tau, delta, false).d3alphar_ddelta_dtau2;
|
|
else
|
|
return cache[i12];
|
|
};
|
|
CoolPropDbl dTau3(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
|
|
if (!cache_valid(i03) || dont_use_cache)
|
|
return all(tau, delta, false).d3alphar_dtau3;
|
|
else
|
|
return cache[i03];
|
|
};
|
|
CoolPropDbl dDelta4(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
|
|
return all(tau, delta, false).d4alphar_ddelta4;
|
|
};
|
|
CoolPropDbl dDelta3_dTau(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
|
|
return all(tau, delta, false).d4alphar_ddelta3_dtau;
|
|
};
|
|
CoolPropDbl dDelta2_dTau2(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
|
|
return all(tau, delta, false).d4alphar_ddelta2_dtau2;
|
|
};
|
|
CoolPropDbl dDelta_dTau3(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
|
|
return all(tau, delta, false).d4alphar_ddelta_dtau3;
|
|
};
|
|
CoolPropDbl dTau4(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
|
|
return all(tau, delta, false).d4alphar_dtau4;
|
|
};
|
|
};
|
|
|
|
class ResidualHelmholtzContainer : public BaseHelmholtzContainer
|
|
{
|
|
public:
|
|
ResidualHelmholtzNonAnalytic NonAnalytic;
|
|
ResidualHelmholtzSAFTAssociating SAFT;
|
|
ResidualHelmholtzGeneralizedExponential GenExp;
|
|
ResidualHelmholtzGeneralizedCubic cubic;
|
|
ResidualHelmholtzXiangDeiters XiangDeiters;
|
|
ResidualHelmholtzGaoB GaoB;
|
|
|
|
void empty_the_EOS() {
|
|
NonAnalytic = ResidualHelmholtzNonAnalytic();
|
|
SAFT = ResidualHelmholtzSAFTAssociating();
|
|
GenExp = ResidualHelmholtzGeneralizedExponential();
|
|
cubic = ResidualHelmholtzGeneralizedCubic();
|
|
XiangDeiters = ResidualHelmholtzXiangDeiters();
|
|
GaoB = ResidualHelmholtzGaoB();
|
|
};
|
|
|
|
HelmholtzDerivatives all(const CoolPropDbl tau, const CoolPropDbl delta, bool cache_values = false) {
|
|
HelmholtzDerivatives derivs; // zeros out the elements
|
|
GenExp.all(tau, delta, derivs);
|
|
NonAnalytic.all(tau, delta, derivs);
|
|
SAFT.all(tau, delta, derivs);
|
|
cubic.all(tau, delta, derivs);
|
|
XiangDeiters.all(tau, delta, derivs);
|
|
GaoB.all(tau, delta, derivs);
|
|
if (cache_values) {
|
|
cache[i00] = derivs.alphar;
|
|
cache[i10] = derivs.dalphar_ddelta;
|
|
cache[i01] = derivs.dalphar_dtau;
|
|
cache[i20] = derivs.d2alphar_ddelta2;
|
|
cache[i02] = derivs.d2alphar_dtau2;
|
|
cache[i11] = derivs.d2alphar_ddelta_dtau;
|
|
cache[i30] = derivs.d3alphar_ddelta3;
|
|
cache[i03] = derivs.d3alphar_dtau3;
|
|
cache[i21] = derivs.d3alphar_ddelta2_dtau;
|
|
cache[i12] = derivs.d3alphar_ddelta_dtau2;
|
|
memset(is_cached.data(), true, sizeof(is_cached));
|
|
}
|
|
return derivs;
|
|
};
|
|
};
|
|
|
|
// #############################################################################
|
|
// #############################################################################
|
|
// #############################################################################
|
|
// IDEAL GAS TERMS
|
|
// #############################################################################
|
|
// #############################################################################
|
|
// #############################################################################
|
|
|
|
/// The leading term in the EOS used to set the desired reference state
|
|
/**
|
|
\f[
|
|
\alpha^0 = \log(\delta)+a_1+a_2\tau
|
|
\f]
|
|
*/
|
|
class IdealHelmholtzLead : public BaseHelmholtzTerm
|
|
{
|
|
|
|
private:
|
|
CoolPropDbl a1, a2;
|
|
bool enabled;
|
|
|
|
public:
|
|
// Default constructor
|
|
IdealHelmholtzLead() : a1(_HUGE), a2(_HUGE), enabled(false) {}
|
|
|
|
// Constructor
|
|
IdealHelmholtzLead(CoolPropDbl a1, CoolPropDbl a2) : a1(a1), a2(a2), enabled(true) {}
|
|
|
|
bool is_enabled() const {
|
|
return enabled;
|
|
}
|
|
|
|
void to_json(rapidjson::Value& el, rapidjson::Document& doc) {
|
|
el.AddMember("type", "IdealHelmholtzLead", doc.GetAllocator());
|
|
el.AddMember("a1", static_cast<double>(a1), doc.GetAllocator());
|
|
el.AddMember("a2", static_cast<double>(a2), doc.GetAllocator());
|
|
};
|
|
|
|
void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& derivs) throw();
|
|
};
|
|
|
|
/// The term in the EOS used to shift the reference state of the fluid
|
|
/**
|
|
\f[
|
|
\alpha^0 = a_1+a_2\tau
|
|
\f]
|
|
*/
|
|
class IdealHelmholtzEnthalpyEntropyOffset : public BaseHelmholtzTerm
|
|
{
|
|
private:
|
|
CoolPropDbl a1, a2; // Use these variables internally
|
|
std::string reference;
|
|
bool enabled;
|
|
|
|
public:
|
|
IdealHelmholtzEnthalpyEntropyOffset() : a1(_HUGE), a2(_HUGE), enabled(false) {}
|
|
|
|
// Constructor
|
|
IdealHelmholtzEnthalpyEntropyOffset(CoolPropDbl a1, CoolPropDbl a2, const std::string& ref) : a1(a1), a2(a2), reference(ref), enabled(true) {}
|
|
|
|
// Set the values in the class
|
|
void set(CoolPropDbl a1, CoolPropDbl a2, const std::string& ref) {
|
|
// If it doesn't already exist, just set the values
|
|
if (enabled == false) {
|
|
this->a1 = a1;
|
|
this->a2 = a2;
|
|
enabled = true;
|
|
} else if (ref == "DEF") {
|
|
this->a1 = 0.0;
|
|
this->a2 = 0.0;
|
|
enabled = false;
|
|
} else {
|
|
// Otherwise, increment the values
|
|
this->a1 += a1;
|
|
this->a2 += a2;
|
|
enabled = true;
|
|
}
|
|
this->reference = ref;
|
|
}
|
|
|
|
bool is_enabled() const {
|
|
return enabled;
|
|
};
|
|
|
|
void to_json(rapidjson::Value& el, rapidjson::Document& doc) {
|
|
el.AddMember("type", "IdealHelmholtzEnthalpyEntropyOffset", doc.GetAllocator());
|
|
el.AddMember("a1", static_cast<double>(a1), doc.GetAllocator());
|
|
el.AddMember("a2", static_cast<double>(a2), doc.GetAllocator());
|
|
};
|
|
void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& derivs) throw();
|
|
};
|
|
|
|
/**
|
|
\f[
|
|
\alpha^0 = a_1\ln\tau
|
|
\f]
|
|
*/
|
|
class IdealHelmholtzLogTau : public BaseHelmholtzTerm
|
|
{
|
|
private:
|
|
CoolPropDbl a1;
|
|
bool enabled;
|
|
|
|
public:
|
|
/// Default constructor
|
|
IdealHelmholtzLogTau() : a1(_HUGE), enabled(false) {}
|
|
|
|
// Constructor
|
|
IdealHelmholtzLogTau(CoolPropDbl a1) : a1(a1), enabled(true) {}
|
|
|
|
bool is_enabled() const {
|
|
return enabled;
|
|
};
|
|
|
|
void to_json(rapidjson::Value& el, rapidjson::Document& doc) {
|
|
el.AddMember("type", "IdealHelmholtzLogTau", doc.GetAllocator());
|
|
el.AddMember("a1", static_cast<double>(a1), doc.GetAllocator());
|
|
};
|
|
void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& derivs) throw();
|
|
};
|
|
|
|
/**
|
|
\f[
|
|
\alpha^0 = \displaystyle\sum_i n_i\tau^{t_i}
|
|
\f]
|
|
*/
|
|
class IdealHelmholtzPower : public BaseHelmholtzTerm
|
|
{
|
|
|
|
private:
|
|
std::vector<CoolPropDbl> n, t; // Use these variables internally
|
|
std::size_t N;
|
|
bool enabled;
|
|
|
|
public:
|
|
IdealHelmholtzPower() : N(0), enabled(false) {};
|
|
// Constructor
|
|
IdealHelmholtzPower(const std::vector<CoolPropDbl>& n, const std::vector<CoolPropDbl>& t) : n(n), t(t), N(n.size()), enabled(true) {};
|
|
|
|
bool is_enabled() const {
|
|
return enabled;
|
|
};
|
|
|
|
void to_json(rapidjson::Value& el, rapidjson::Document& doc) {
|
|
el.AddMember("type", "IdealHelmholtzPower", doc.GetAllocator());
|
|
cpjson::set_long_double_array("n", n, el, doc);
|
|
cpjson::set_long_double_array("t", t, el, doc);
|
|
};
|
|
void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& derivs) throw();
|
|
};
|
|
|
|
/**
|
|
\f[
|
|
\alpha^0 = \displaystyle\sum_i n_i\log[c_i+d_i\exp(\theta_i\tau)]
|
|
\f]
|
|
|
|
To convert conventional Plank-Einstein forms, given by
|
|
\f$
|
|
\frac{c_p^0}{R} = a_k\displaystyle\frac{\left( b_k/T \right)^2\exp \left( b_k/T \right)}{\left(\exp \left(b_k/T\right) - 1 \right)^2}
|
|
\f$
|
|
and
|
|
\f$
|
|
\alpha^0 = a_k\ln \left[1 - \exp \left( \frac{-b_k\tau}{T_c} \right) \right]
|
|
\f$
|
|
use \f$c = 1\f$, \f$d = -1\f$, \f$n = a\f$, \f$\theta = -\displaystyle\frac{b_k}{T_c}\f$
|
|
|
|
To convert the second form of Plank-Einstein terms, given by
|
|
\f$
|
|
\frac{c_p^0}{R} = a_k\displaystyle\frac{\left( -b_k/T \right)^2\exp \left( b_k/T \right)}{c\left(\exp \left(-b_k/T\right) + 1 \right)^2}
|
|
\f$
|
|
and
|
|
\f$
|
|
\alpha^0 = a_k\ln \left[c + \exp \left( \frac{b_k\tau}{T_c} \right) \right]
|
|
\f$
|
|
use \f$c = 1\f$, \f$d = 1\f$, \f$n = -a\f$, \f$\theta = \displaystyle\frac{b_k}{T_c}\f$
|
|
|
|
Converting Aly-Lee tems is a bit more complex
|
|
|
|
Aly-Lee starts as
|
|
\f[\frac{c_p^0}{R_u} = A + B\left(\frac{C/T}{\sinh(C/T)}\right)^2 + D\left(\frac{E/T}{\cosh(E/T)}\right)^2\f]
|
|
|
|
Constant is separated out, and handled separately. sinh part can be expanded as
|
|
\f[B\left(\frac{C/T}{\sinh(C/T)}\right)^2 = \frac{B(-2C/T)^2\exp(-2C/T)}{(1-\exp(-2C/T))^2}\f]
|
|
where
|
|
\f[n_k = B\f]
|
|
\f[\theta_k = -\frac{2C}{T_c}\f]
|
|
\f[c_k = 1\f]
|
|
\f[d_k = -1\f]
|
|
|
|
cosh part can be expanded as
|
|
\f[D\left(\frac{E/T}{\cosh(E/T)}\right)^2 = \frac{D(-2E/T)^2\exp(-2E/T)}{(1+\exp(-2E/T))^2}\f]
|
|
where
|
|
\f[n_k = -D\f]
|
|
\f[\theta_k = -\frac{2E}{T_c}\f]
|
|
\f[c_k = 1\f]
|
|
\f[d_k = 1\f]
|
|
*/
|
|
class IdealHelmholtzPlanckEinsteinGeneralized : public BaseHelmholtzTerm
|
|
{
|
|
|
|
private:
|
|
std::vector<CoolPropDbl> n, theta, c, d; // Use these variables internally
|
|
std::size_t N;
|
|
bool enabled;
|
|
|
|
public:
|
|
IdealHelmholtzPlanckEinsteinGeneralized() : N(0), enabled(false) {}
|
|
// Constructor with std::vector instances
|
|
IdealHelmholtzPlanckEinsteinGeneralized(const std::vector<CoolPropDbl>& n, const std::vector<CoolPropDbl>& theta,
|
|
const std::vector<CoolPropDbl>& c, const std::vector<CoolPropDbl>& d)
|
|
: n(n), theta(theta), c(c), d(d), N(n.size()), enabled(true) {}
|
|
|
|
// Extend the vectors to allow for multiple instances feeding values to this function
|
|
void extend(const std::vector<CoolPropDbl>& n, const std::vector<CoolPropDbl>& theta, const std::vector<CoolPropDbl>& c,
|
|
const std::vector<CoolPropDbl>& d) {
|
|
this->n.insert(this->n.end(), n.begin(), n.end());
|
|
this->theta.insert(this->theta.end(), theta.begin(), theta.end());
|
|
this->c.insert(this->c.end(), c.begin(), c.end());
|
|
this->d.insert(this->d.end(), d.begin(), d.end());
|
|
N += n.size();
|
|
}
|
|
|
|
bool is_enabled() const {
|
|
return enabled;
|
|
};
|
|
|
|
void to_json(rapidjson::Value& el, rapidjson::Document& doc) {
|
|
el.AddMember("type", "IdealHelmholtzPlanckEinsteinGeneralized", doc.GetAllocator());
|
|
cpjson::set_long_double_array("n", n, el, doc);
|
|
cpjson::set_long_double_array("theta", theta, el, doc);
|
|
};
|
|
void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& derivs) throw();
|
|
};
|
|
|
|
class IdealHelmholtzCP0Constant : public BaseHelmholtzTerm
|
|
{
|
|
|
|
private:
|
|
double cp_over_R, Tc, T0, tau0; // Use these variables internally
|
|
bool enabled;
|
|
|
|
public:
|
|
/// Default constructor
|
|
IdealHelmholtzCP0Constant() : cp_over_R(_HUGE), Tc(_HUGE), T0(_HUGE), tau0(_HUGE) {
|
|
enabled = false;
|
|
};
|
|
|
|
/// Constructor with just a single double value
|
|
IdealHelmholtzCP0Constant(CoolPropDbl cp_over_R, CoolPropDbl Tc, CoolPropDbl T0) : cp_over_R(cp_over_R), Tc(Tc), T0(T0) {
|
|
enabled = true;
|
|
tau0 = Tc / T0;
|
|
};
|
|
|
|
/// Destructor
|
|
~IdealHelmholtzCP0Constant() {};
|
|
|
|
bool is_enabled() const {
|
|
return enabled;
|
|
};
|
|
|
|
void to_json(rapidjson::Value& el, rapidjson::Document& doc) {
|
|
el.AddMember("type", "IdealGasHelmholtzCP0Constant", doc.GetAllocator());
|
|
el.AddMember("cp_over_R", cp_over_R, doc.GetAllocator());
|
|
el.AddMember("Tc", Tc, doc.GetAllocator());
|
|
el.AddMember("T0", T0, doc.GetAllocator());
|
|
};
|
|
|
|
void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& derivs) throw();
|
|
};
|
|
|
|
class IdealHelmholtzCP0PolyT : public BaseHelmholtzTerm
|
|
{
|
|
private:
|
|
std::vector<CoolPropDbl> c, t;
|
|
CoolPropDbl Tc, T0, tau0; // Use these variables internally
|
|
std::size_t N;
|
|
bool enabled;
|
|
|
|
public:
|
|
IdealHelmholtzCP0PolyT() : Tc(_HUGE), T0(_HUGE), tau0(_HUGE), N(0), enabled(false) {}
|
|
|
|
/// Constructor with std::vectors
|
|
IdealHelmholtzCP0PolyT(const std::vector<CoolPropDbl>& c, const std::vector<CoolPropDbl>& t, double Tc, double T0)
|
|
: c(c), t(t), Tc(Tc), T0(T0), tau0(Tc / T0), N(c.size()), enabled(true) {
|
|
assert(c.size() == t.size());
|
|
}
|
|
|
|
void extend(const std::vector<CoolPropDbl>& c, const std::vector<CoolPropDbl>& t) {
|
|
this->c.insert(this->c.end(), c.begin(), c.end());
|
|
this->t.insert(this->t.end(), t.begin(), t.end());
|
|
N += c.size();
|
|
}
|
|
|
|
bool is_enabled() const {
|
|
return enabled;
|
|
};
|
|
|
|
void to_json(rapidjson::Value& el, rapidjson::Document& doc);
|
|
void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& derivs) override;
|
|
#if ENABLE_CATCH
|
|
virtual mcx::MultiComplex<double> one_mcx(const mcx::MultiComplex<double>& tau, const mcx::MultiComplex<double>& delta) const override;
|
|
#endif
|
|
};
|
|
/**
|
|
|
|
*/
|
|
class IdealHelmholtzGERG2004Sinh : public BaseHelmholtzTerm
|
|
{
|
|
private:
|
|
std::vector<CoolPropDbl> n, theta;
|
|
CoolPropDbl Tc, _Tr;
|
|
std::size_t N;
|
|
bool enabled;
|
|
|
|
public:
|
|
IdealHelmholtzGERG2004Sinh() : Tc(_HUGE), _Tr(_HUGE), N(0), enabled(false) {}
|
|
|
|
/// Constructor with std::vectors
|
|
IdealHelmholtzGERG2004Sinh(const std::vector<CoolPropDbl>& n, const std::vector<CoolPropDbl>& theta, double Tc)
|
|
: n(n), theta(theta), Tc(Tc), _Tr(_HUGE), N(n.size()), enabled(true) {
|
|
assert(n.size() == theta.size());
|
|
}
|
|
|
|
void extend(const std::vector<CoolPropDbl>& c, const std::vector<CoolPropDbl>& t) {
|
|
this->n.insert(this->n.end(), n.begin(), n.end());
|
|
this->theta.insert(this->theta.end(), theta.begin(), theta.end());
|
|
N += c.size();
|
|
}
|
|
void set_Tred(CoolPropDbl Tr) {
|
|
this->_Tr = Tr;
|
|
}
|
|
|
|
bool is_enabled() const {
|
|
return enabled;
|
|
};
|
|
void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& derivs) override;
|
|
|
|
#if ENABLE_CATCH
|
|
virtual mcx::MultiComplex<double> one_mcx(const mcx::MultiComplex<double>& tau, const mcx::MultiComplex<double>& delta) const override;
|
|
#endif
|
|
};
|
|
|
|
class IdealHelmholtzGERG2004Cosh : public BaseHelmholtzTerm
|
|
{
|
|
private:
|
|
std::vector<CoolPropDbl> n, theta;
|
|
CoolPropDbl Tc, _Tr;
|
|
std::size_t N;
|
|
bool enabled;
|
|
|
|
public:
|
|
IdealHelmholtzGERG2004Cosh() : Tc(_HUGE), _Tr(_HUGE), N(0), enabled(false) {}
|
|
|
|
/// Constructor with std::vectors
|
|
IdealHelmholtzGERG2004Cosh(const std::vector<CoolPropDbl>& n, const std::vector<CoolPropDbl>& theta, double Tc)
|
|
: n(n), theta(theta), Tc(Tc), _Tr(_HUGE), N(n.size()), enabled(true) {
|
|
assert(n.size() == theta.size());
|
|
}
|
|
|
|
void extend(const std::vector<CoolPropDbl>& n, const std::vector<CoolPropDbl>& theta) {
|
|
this->n.insert(this->n.end(), n.begin(), n.end());
|
|
this->theta.insert(this->theta.end(), theta.begin(), theta.end());
|
|
N += n.size();
|
|
}
|
|
void set_Tred(CoolPropDbl Tr) {
|
|
this->_Tr = Tr;
|
|
}
|
|
|
|
bool is_enabled() const {
|
|
return enabled;
|
|
};
|
|
void all(const CoolPropDbl& tau, const CoolPropDbl& delta, HelmholtzDerivatives& derivs) override;
|
|
|
|
#if ENABLE_CATCH
|
|
virtual mcx::MultiComplex<double> one_mcx(const mcx::MultiComplex<double>& tau, const mcx::MultiComplex<double>& delta) const override;
|
|
#endif
|
|
};
|
|
|
|
///// Term in the ideal-gas specific heat equation that is based on Aly-Lee formulation
|
|
///** Specific heat is of the form:
|
|
//\f[
|
|
//\frac{c_p^0}{R_u} = A + B\left(\frac{C/T}{\sinh(C/T)}\right)^2 + D\left(\frac{E/T}{\cosh(E/T)}\right)^2
|
|
//\f]
|
|
//Second partial of ideal-gas Helmholtz energy given directly by specific heat (\f$\displaystyle\alpha_{\tau\tau}^0=-\frac{1}{\tau^2}\frac{c_p^0}{R_u} \f$) - this is obtained by real gas \f$c_p\f$ relationship, and killing off residual Helmholtz terms
|
|
//\f[
|
|
//\alpha^0_{\tau\tau} = -\frac{A}{\tau^2} - \frac{B}{\tau^2}\left(\frac{C/T}{\sinh(C/T)}\right)^2 - \frac{D}{\tau^2}\left(\frac{E/T}{\cosh(E/T)}\right)^2
|
|
//\f]
|
|
//or in terms of \f$ \tau \f$:
|
|
//\f[
|
|
//\alpha^0_{\tau\tau} = -\frac{A}{\tau^2} - \frac{BC^2}{T_c^2}\left(\frac{1}{\sinh(C\tau/T_c)}\right)^2 - \frac{DE^2}{T_c^2}\left(\frac{1}{\cosh(E\tau/T_c)}\right)^2
|
|
//\f]
|
|
//Third partial:
|
|
//\f[
|
|
//\alpha^0_{\tau\tau\tau} = 2\frac{A}{\tau^3} + 2\frac{BC^3}{T_c^3}\frac{\cosh(C\tau/T_c)}{\sinh^3(C\tau/T_c)} +2 \frac{DE^3}{T_c^3}\frac{\sinh(E\tau/T_c)}{\cosh^3(E\tau/T_c)}
|
|
//\f]
|
|
//Now coming back to the ideal gas Helmholtz energy definition:
|
|
//\f[
|
|
//\alpha^0 = -\tau\displaystyle\int_{\tau_0}^{\tau} \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau+\displaystyle\int_{\tau_0}^{\tau} \frac{1}{\tau}\frac{c_p^0}{R_u}d\tau
|
|
//\f]
|
|
//Applying derivative
|
|
//\f[
|
|
//\alpha^0_{\tau} = -\displaystyle\int_{\tau_0}^{\tau} \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau-\tau\frac{\partial}{\partial \tau}\left[\displaystyle\int_{\tau_0}^{\tau} \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau \right]+\frac{\partial}{\partial \tau}\left[\displaystyle\int_{\tau_0}^{\tau} \frac{1}{\tau}\frac{c_p^0}{R_u}d\tau \right]
|
|
//\f]
|
|
//Fundamental theorem of calculus
|
|
//\f[
|
|
//\alpha^0_{\tau} = -\int_{\tau_0}^{\tau} \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau-\tau \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau+\frac{1}{\tau}\frac{c_p^0}{R_u}
|
|
//\f]
|
|
//Last two terms cancel, leaving
|
|
//\f[
|
|
//\alpha^0_{\tau} = -\int_{\tau_0}^{\tau} \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau
|
|
//\f]
|
|
//Another derivative yields (from fundamental theorem of calculus)
|
|
//\f[
|
|
//\alpha^0_{\tau\tau} = - \frac{1}{\tau^2}\frac{c_p^0}{R_u}
|
|
//\f]
|
|
//
|
|
//see also Jaeschke and Schley, 1995, (http://link.springer.com/article/10.1007%2FBF02083547#page-1)
|
|
//*/
|
|
///*
|
|
//class IdealHelmholtzCP0AlyLee : public BaseHelmholtzTerm{
|
|
//private:
|
|
// std::vector<CoolPropDbl> c;
|
|
// CoolPropDbl Tc, tau0, T0; // Use these variables internally
|
|
// bool enabled;
|
|
//public:
|
|
// IdealHelmholtzCP0AlyLee(){enabled = false;};
|
|
//
|
|
// /// Constructor with std::vectors
|
|
// IdealHelmholtzCP0AlyLee(const std::vector<CoolPropDbl> &c, double Tc, double T0)
|
|
// :c(c), Tc(Tc), T0(T0)
|
|
// {
|
|
// tau0=Tc/T0;
|
|
// enabled = true;
|
|
// };
|
|
//
|
|
// /// Destructor
|
|
// ~IdealHelmholtzCP0AlyLee(){};
|
|
//
|
|
// bool is_enabled() const {return enabled;};
|
|
//
|
|
// void to_json(rapidjson::Value &el, rapidjson::Document &doc);
|
|
//
|
|
//
|
|
// /// The antiderivative given by \f$ \displaystyle\int \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau \f$
|
|
// /**
|
|
// sympy code for this derivative:
|
|
//
|
|
// from sympy import *
|
|
// a1,a2,a3,a4,a5,Tc,tau = symbols('a1,a2,a3,a4,a5,Tc,tau', real = True)
|
|
// integrand = a1 + a2*(a3/Tc/sinh(a3*tau/Tc))**2 + a4*(a5/Tc/cosh(a5*tau/Tc))**2
|
|
// integrand = integrand.rewrite(exp)
|
|
// antideriv = trigsimp(integrate(integrand,tau))
|
|
// display(antideriv)
|
|
// print latex(antideriv)
|
|
// print ccode(antideriv)
|
|
//
|
|
// \f[
|
|
// \displaystyle\int \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau = -\frac{a_0}{\tau}+\frac{2a_1a_2}{T_c\left[\exp\left(-\frac{2a_2\tau}{T_c}\right)-1\right]}+\frac{2a_3a_4}{T_c\left[\exp\left(-\frac{2a_4\tau}{T_c}\right)+1\right]}
|
|
// \f]
|
|
// */
|
|
// CoolPropDbl anti_deriv_cp0_tau2(const CoolPropDbl &tau);
|
|
//
|
|
// /// The antiderivative given by \f$ \displaystyle\int \frac{1}{\tau}\frac{c_p^0}{R_u}d\tau \f$
|
|
// /**
|
|
// sympy code for this derivative:
|
|
//
|
|
// a_0,a_1,a_2,a_3,a_4,Tc,tau = symbols('a_0,a_1,a_2,a_3,a_4,Tc,tau', real = True)
|
|
// integrand = a_0/tau + a_1/tau*(a_2*tau/Tc/sinh(a_2*tau/Tc))**2 + a_3/tau*(a_4*tau/Tc/cosh(a_4*tau/Tc))**2
|
|
//
|
|
// term2 = a_1/tau*(a_2*tau/Tc/sinh(a_2*tau/Tc))**2
|
|
// term2 = term2.rewrite(exp) # Unpack the sinh to exp functions
|
|
// antideriv2 = trigsimp(integrate(term2,tau))
|
|
// display(antideriv2)
|
|
// print latex(antideriv2)
|
|
// print ccode(antideriv2)
|
|
//
|
|
// term3 = a_3/tau*(a_4*tau/Tc/cosh(a_4*tau/Tc))**2
|
|
// term3 = term3.rewrite(exp) # Unpack the cosh to exp functions
|
|
// antideriv3 = factor(trigsimp(integrate(term3,tau).rewrite(exp)))
|
|
// display(antideriv3)
|
|
// print latex(antideriv3)
|
|
// print ccode(antideriv3)
|
|
//
|
|
// Can be broken into three parts (trick is to express \f$sinh\f$ and \f$cosh\f$ in terms of \f$exp\f$ function)
|
|
//
|
|
// Term 2:
|
|
// \f[
|
|
// \displaystyle\int \frac{a_1a_2^2}{T_c^2}\frac{\tau}{\sinh\left(\displaystyle\frac{a_2\tau}{T_c}\right)^2} d\tau = \frac{2 a_{1} a_{2} \tau}{- Tc + Tc e^{- \frac{2 a_{2}}{Tc} \tau}} + a_{1} \log{\left (-1 + e^{- \frac{2 a_{2}}{Tc} \tau} \right )} + \frac{2 a_{1}}{Tc} a_{2} \tau
|
|
// \f]
|
|
//
|
|
// Term 3:
|
|
// \f[
|
|
// \displaystyle\int \frac{a_1a_2^2}{T_c^2}\frac{\tau}{\cosh\left(\displaystyle\frac{a_2\tau}{T_c}\right)^2} d\tau = - \frac{a_{3}}{Tc \left(e^{\frac{2 a_{4}}{Tc} \tau} + 1\right)} \left(Tc e^{\frac{2 a_{4}}{Tc} \tau} \log{\left (e^{\frac{2 a_{4}}{Tc} \tau} + 1 \right )} + Tc \log{\left (e^{\frac{2 a_{4}}{Tc} \tau} + 1 \right )} - 2 a_{4} \tau e^{\frac{2 a_{4}}{Tc} \tau}\right)
|
|
// \f]
|
|
// */
|
|
// CoolPropDbl anti_deriv_cp0_tau(const CoolPropDbl &tau);
|
|
//
|
|
// CoolPropDbl base(const CoolPropDbl &tau, const CoolPropDbl &delta) throw();
|
|
// CoolPropDbl dDelta(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;};
|
|
// CoolPropDbl dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw();
|
|
// CoolPropDbl dDelta2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;};
|
|
// CoolPropDbl dDelta_dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;};
|
|
// CoolPropDbl dTau2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw();
|
|
// CoolPropDbl dDelta3(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;};
|
|
// CoolPropDbl dDelta2_dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;};
|
|
// CoolPropDbl dDelta_dTau2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;};
|
|
// CoolPropDbl dTau3(const CoolPropDbl &tau, const CoolPropDbl &delta) throw();
|
|
// CoolPropDbl dTau4(const CoolPropDbl &tau, const CoolPropDbl &delta) throw();
|
|
//
|
|
//};
|
|
|
|
class IdealHelmholtzContainer : public BaseHelmholtzContainer
|
|
{
|
|
private:
|
|
double _prefactor;
|
|
|
|
public:
|
|
IdealHelmholtzLead Lead;
|
|
IdealHelmholtzEnthalpyEntropyOffset EnthalpyEntropyOffsetCore, EnthalpyEntropyOffset;
|
|
IdealHelmholtzLogTau LogTau;
|
|
IdealHelmholtzPower Power;
|
|
IdealHelmholtzPlanckEinsteinGeneralized PlanckEinstein;
|
|
|
|
IdealHelmholtzCP0Constant CP0Constant;
|
|
IdealHelmholtzCP0PolyT CP0PolyT;
|
|
IdealHelmholtzGERG2004Cosh GERG2004Cosh;
|
|
IdealHelmholtzGERG2004Sinh GERG2004Sinh;
|
|
|
|
IdealHelmholtzContainer() : _prefactor(1.0) {};
|
|
|
|
void set_prefactor(double prefactor) {
|
|
_prefactor = prefactor;
|
|
}
|
|
|
|
void set_Tred(double T_red) {
|
|
GERG2004Cosh.set_Tred(T_red);
|
|
GERG2004Sinh.set_Tred(T_red);
|
|
}
|
|
|
|
void empty_the_EOS() {
|
|
Lead = IdealHelmholtzLead();
|
|
EnthalpyEntropyOffsetCore = IdealHelmholtzEnthalpyEntropyOffset();
|
|
EnthalpyEntropyOffset = IdealHelmholtzEnthalpyEntropyOffset();
|
|
LogTau = IdealHelmholtzLogTau();
|
|
Power = IdealHelmholtzPower();
|
|
PlanckEinstein = IdealHelmholtzPlanckEinsteinGeneralized();
|
|
CP0Constant = IdealHelmholtzCP0Constant();
|
|
CP0PolyT = IdealHelmholtzCP0PolyT();
|
|
GERG2004Cosh = IdealHelmholtzGERG2004Cosh();
|
|
GERG2004Sinh = IdealHelmholtzGERG2004Sinh();
|
|
};
|
|
|
|
HelmholtzDerivatives all(const CoolPropDbl tau, const CoolPropDbl delta, bool cache_values = false) {
|
|
HelmholtzDerivatives derivs; // zeros out the elements
|
|
Lead.all(tau, delta, derivs);
|
|
EnthalpyEntropyOffsetCore.all(tau, delta, derivs);
|
|
EnthalpyEntropyOffset.all(tau, delta, derivs);
|
|
LogTau.all(tau, delta, derivs);
|
|
Power.all(tau, delta, derivs);
|
|
PlanckEinstein.all(tau, delta, derivs);
|
|
CP0Constant.all(tau, delta, derivs);
|
|
CP0PolyT.all(tau, delta, derivs);
|
|
GERG2004Cosh.all(tau, delta, derivs);
|
|
GERG2004Sinh.all(tau, delta, derivs);
|
|
|
|
if (cache_values) {
|
|
cache[i00] = derivs.alphar * _prefactor;
|
|
cache[i10] = derivs.dalphar_ddelta * _prefactor;
|
|
cache[i01] = derivs.dalphar_dtau * _prefactor;
|
|
cache[i20] = derivs.d2alphar_ddelta2 * _prefactor;
|
|
cache[i02] = derivs.d2alphar_dtau2 * _prefactor;
|
|
cache[i11] = derivs.d2alphar_ddelta_dtau * _prefactor;
|
|
cache[i30] = derivs.d3alphar_ddelta3 * _prefactor;
|
|
cache[i03] = derivs.d3alphar_dtau3 * _prefactor;
|
|
cache[i21] = derivs.d3alphar_ddelta2_dtau * _prefactor;
|
|
cache[i12] = derivs.d3alphar_ddelta_dtau2 * _prefactor;
|
|
memset(is_cached.data(), true, sizeof(is_cached));
|
|
}
|
|
return derivs * _prefactor;
|
|
};
|
|
};
|
|
}; /* namespace CoolProp */
|
|
|
|
#endif
|