Files
CoolProp/include/Helmholtz.h
luzpaz 93f4a986e2 Misc. typos (#1726)
Found via `codespell -i 3 -w -I ../coolprop-word-whitelist.txt` whereby whitelist consists of:
```
cas
formate
hel
nd
te
tim
ue
uint
```
2018-08-14 23:06:49 -06:00

1171 lines
51 KiB
C++

#ifndef HELMHOLTZ_H
#define HELMHOLTZ_H
#include <vector>
#include "rapidjson_include.h"
//#include "Eigen/Core"
#include "time.h"
#include "CachedElement.h"
#include "Backends/Cubics/GeneralizedCubic.h"
#include "crossplatform_shared_ptr.h"
namespace CoolProp{
// #############################################################################
// #############################################################################
// #############################################################################
// RESIDUAL TERMS
// #############################################################################
// #############################################################################
// #############################################################################
#define LIST_OF_DERIVATIVE_VARIABLES \
X(alphar) \
X(dalphar_ddelta) \
X(dalphar_dtau) \
X(d2alphar_ddelta2) \
X(d2alphar_dtau2) \
X(d2alphar_ddelta_dtau) \
X(d3alphar_ddelta3) \
X(d3alphar_ddelta_dtau2) \
X(d3alphar_ddelta2_dtau) \
X(d3alphar_dtau3) \
X(d4alphar_ddelta4) \
X(d4alphar_ddelta3_dtau) \
X(d4alphar_ddelta2_dtau2) \
X(d4alphar_ddelta_dtau3) \
X(d4alphar_dtau4) \
X(delta_x_dalphar_ddelta) \
X(tau_x_dalphar_dtau) \
X(delta2_x_d2alphar_ddelta2) \
X(deltatau_x_d2alphar_ddelta_dtau) \
X(tau2_x_d2alphar_dtau2) \
struct HelmholtzDerivatives
{
#define X(name) CoolPropDbl name;
LIST_OF_DERIVATIVE_VARIABLES
#undef X
void reset(CoolPropDbl v){
#define X(name) name = v;
LIST_OF_DERIVATIVE_VARIABLES
#undef X
}
HelmholtzDerivatives operator+(const HelmholtzDerivatives &other) const
{
HelmholtzDerivatives _new;
#define X(name) _new.name = name + other.name;
LIST_OF_DERIVATIVE_VARIABLES
#undef X
return _new;
}
HelmholtzDerivatives operator*(const CoolPropDbl &other) const
{
HelmholtzDerivatives _new;
#define X(name) _new.name = name*other;
LIST_OF_DERIVATIVE_VARIABLES
#undef X
return _new;
}
HelmholtzDerivatives(){reset(0.0);};
/// Retrieve a single value based on the number of derivatives with respect to tau and delta
double get(std::size_t itau, std::size_t idelta){
if (itau == 0){
if (idelta == 0){ return alphar; }
else if (idelta == 1){ return dalphar_ddelta; }
else if (idelta == 2){ return d2alphar_ddelta2; }
else if (idelta == 3){ return d3alphar_ddelta3; }
else if (idelta == 4){ return d4alphar_ddelta4; }
else { throw ValueError(); }
}
else if (itau == 1){
if (idelta == 0){ return dalphar_dtau; }
else if (idelta == 1){ return d2alphar_ddelta_dtau; }
else if (idelta == 2){ return d3alphar_ddelta2_dtau; }
else if (idelta == 3){ return d4alphar_ddelta3_dtau; }
else { throw ValueError(); }
}
else if (itau == 2){
if (idelta == 0){ return d2alphar_dtau2; }
else if (idelta == 1){ return d3alphar_ddelta_dtau2; }
else if (idelta == 2){ return d4alphar_ddelta2_dtau2; }
else { throw ValueError(); }
}
else if (itau == 3){
if (idelta == 0){ return d3alphar_dtau3; }
else if (idelta == 1){ return d4alphar_ddelta_dtau3; }
else { throw ValueError(); }
}
else if (itau == 4){
if (idelta == 0){ return d4alphar_dtau4; }
else { throw ValueError(); }
}
else { throw ValueError(); }
}
};
#undef LIST_OF_DERIVATIVE_VARIABLES
/// The base class class for the Helmholtz energy terms
/**
Residual Helmholtz Energy Terms:
Term | Helmholtz Energy Contribution
---------- | ------------------------------
ResidualHelmholtzPower | \f$ \alpha^r=\left\lbrace\begin{array}{cc}\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} & l_i=0\\ \displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\delta^{l_i}) & l_i\neq 0\end{array}\right.\f$
ResidualHelmholtzExponential | \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\gamma_i\delta^{l_i}) \f$
ResidualHelmholtzLemmon2005 | \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\delta^{l_i}-\tau^{m_i})\f$
ResidualHelmholtzGaussian | \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\eta_i(\delta-\epsilon_i)^2-\beta_i(\tau-\gamma_i)^2)\f$
ResidualHelmholtzGERG2008Gaussian | \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\eta_i(\delta-\epsilon_i)^2-\beta_i(\delta-\gamma_i))\f$
ResidualHelmholtzNonAnalytic | \f$ \begin{array}{c}\alpha^r&=&\displaystyle\sum_i n_i \Delta^{b_i}\delta\psi \\ \Delta & = & \theta^2+B_i[(\delta-1)^2]^{a_i}\\ \theta & = & (1-\tau)+A_i[(\delta-1)^2]^{1/(2\beta_i)}\\ \psi & = & \exp(-C_i(\delta-1)^2-D_i(\tau-1)^2) \end{array}\f$
ResidualHelmholtzSAFTAssociating | \f$ \alpha^r = am\left(\ln X-\frac{X}{2}+\frac{1}{2}\right); \f$
Ideal-Gas Helmholtz Energy Terms:
Term | Helmholtz Energy Contribution
---------- | ------------------------------
IdealHelmholtzLead | \f$ \alpha^0 = n_1 + n_2\tau + \ln\delta \f$
IdealHelmholtzEnthalpyEntropyOffset | \f$ \alpha^0 = \displaystyle\frac{\Delta s}{R_u/M}+\frac{\Delta h}{(R_u/M)T}\tau \f$
IdealHelmholtzLogTau | \f$ \alpha^0 = n_1\log\tau \f$
IdealHelmholtzPower | \f$ \alpha^0 = \displaystyle\sum_i n_i\tau^{t_i} \f$
IdealHelmholtzPlanckEinsteinGeneralized | \f$ \alpha^0 = \displaystyle\sum_i n_i\log[c_i+d_i\exp(\theta_i\tau)] \f$
*/
class BaseHelmholtzTerm{
public:
BaseHelmholtzTerm(){};
virtual ~BaseHelmholtzTerm(){};
/// Returns the base, non-dimensional, Helmholtz energy term (no derivatives) [-]
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
*/
virtual CoolPropDbl base(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.alphar;};
/// Returns the first partial derivative of Helmholtz energy term with respect to tau [-]
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
*/
virtual CoolPropDbl dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.dalphar_dtau;};
/// Returns the second partial derivative of Helmholtz energy term with respect to tau [-]
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
*/
virtual CoolPropDbl dTau2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d2alphar_dtau2;};
/// Returns the second mixed partial derivative (delta1,dtau1) of Helmholtz energy term with respect to delta and tau [-]
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
*/
virtual CoolPropDbl dDelta_dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d2alphar_ddelta_dtau;};
/// Returns the first partial derivative of Helmholtz energy term with respect to delta [-]
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
*/
virtual CoolPropDbl dDelta(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.dalphar_ddelta;};
/// Returns the second partial derivative of Helmholtz energy term with respect to delta [-]
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
*/
virtual CoolPropDbl dDelta2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d2alphar_ddelta2;};
/// Returns the third mixed partial derivative (delta2,dtau1) of Helmholtz energy term with respect to delta and tau [-]
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
*/
virtual CoolPropDbl dDelta2_dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d3alphar_ddelta2_dtau;};
/// Returns the third mixed partial derivative (delta1,dtau2) of Helmholtz energy term with respect to delta and tau [-]
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
*/
virtual CoolPropDbl dDelta_dTau2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d3alphar_ddelta_dtau2;};
/// Returns the third partial derivative of Helmholtz energy term with respect to tau [-]
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
*/
virtual CoolPropDbl dTau3(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d3alphar_dtau3;};
/// Returns the third partial derivative of Helmholtz energy term with respect to delta [-]
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
*/
virtual CoolPropDbl dDelta3(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d3alphar_ddelta3;};
/// Returns the fourth partial derivative of Helmholtz energy term with respect to tau [-]
/** @param tau Reciprocal reduced temperature where \f$\tau=T_c / T\f$
* @param delta Reduced density where \f$\delta = \rho / \rho_c \f$
*/
virtual CoolPropDbl dTau4(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d4alphar_dtau4;};
virtual CoolPropDbl dDelta_dTau3(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d4alphar_ddelta_dtau3;};
virtual CoolPropDbl dDelta2_dTau2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d4alphar_ddelta2_dtau2;};
virtual CoolPropDbl dDelta3_dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d4alphar_ddelta3_dtau;};
virtual CoolPropDbl dDelta4(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){HelmholtzDerivatives deriv; all(tau,delta,deriv); return deriv.d4alphar_ddelta4;};
virtual void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw() = 0;
};
struct ResidualHelmholtzGeneralizedExponentialElement
{
/// These variables are for the n*delta^d_i*tau^t_i part
CoolPropDbl n,d,t;
/// These variables are for the exp(u) part
/// u is given by -c*delta^l_i-omega*tau^m_i-eta1*(delta-epsilon1)-eta2*(delta-epsilon2)^2-beta1*(tau-gamma1)-beta2*(tau-gamma2)^2
CoolPropDbl c, l_double, omega, m_double, eta1, epsilon1, eta2, epsilon2, beta1, gamma1, beta2, gamma2;
/// If l_i or m_i are integers, we will store them as integers in order to call pow(double, int) rather than pow(double, double)
int l_int, m_int;
/// If l is an integer, store a boolean flag so we can evaluate the correct pow() function
bool l_is_int, m_is_int;
ResidualHelmholtzGeneralizedExponentialElement()
{
n = 0; d = 0; t = 0; c = 0;
l_double = 0; omega = 0; m_double = 0;
eta1 = 0; epsilon1 = 0; eta2 = 0; epsilon2 = 0;
beta1 = 0; gamma1 = 0; beta2 = 0; gamma2 = 0;
l_int = 0; m_int = 0; l_is_int = false; m_is_int = true;
};
};
/** \brief A generalized residual helmholtz energy container that can deal with a wide range of terms which can be converted to this general form
*
* \f$ \alpha^r=\sum_i n_i \delta^{d_i} \tau^{t_i}\exp(u_i) \f$
*
* where \f$ u_i \f$ is given by
*
* \f$ u_i = -c_i\delta^{l_i}-\omega_i\tau^{m_i}-\eta_{1,i}(\delta-\epsilon_{1,i})-\eta_{2,i}(\delta-\epsilon_{2,i})^2-\beta_{1,i}(\tau-\gamma_{1,i})-\beta_{2,i}(\tau-\gamma_{2,i})^2 \f$
*/
class ResidualHelmholtzGeneralizedExponential : public BaseHelmholtzTerm{
public:
bool delta_li_in_u, tau_mi_in_u, eta1_in_u, eta2_in_u, beta1_in_u, beta2_in_u, finished;
std::vector<CoolPropDbl> s;
std::size_t N;
// These variables are for the exp(u) part
// u is given by -c*delta^l_i-omega*tau^m_i-eta1*(delta-epsilon1)-eta2*(delta-epsilon2)^2-beta1*(tau-gamma1)-beta2*(tau-gamma2)^2
std::vector<double> n,d,t,c, l_double, omega, m_double, eta1, epsilon1, eta2, epsilon2, beta1, gamma1, beta2, gamma2;
// If l_i or m_i are integers, we will store them as integers in order to call pow(double, int) rather than pow(double, double)
std::vector<int> l_int, m_int;
//Eigen::ArrayXd uE, du_ddeltaE, du_dtauE, d2u_ddelta2E, d2u_dtau2E, d3u_ddelta3E, d3u_dtau3E;
std::vector<ResidualHelmholtzGeneralizedExponentialElement> elements;
// Default Constructor
ResidualHelmholtzGeneralizedExponential()
: delta_li_in_u(false),tau_mi_in_u(false),eta1_in_u(false),
eta2_in_u(false),beta1_in_u(false),beta2_in_u(false),finished(false), N(0) {};
/** \brief Add and convert an old-style power (polynomial) term to generalized form
*
* Term of the format
* \f$ \alpha^r=\left\lbrace\begin{array}{cc}\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} & l_i=0\\ \displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\delta^{l_i}) & l_i\neq 0\end{array}\right.\f$
*/
void add_Power(const std::vector<CoolPropDbl> &n, const std::vector<CoolPropDbl> &d,
const std::vector<CoolPropDbl> &t, const std::vector<CoolPropDbl> &l)
{
for (std::size_t i = 0; i < n.size(); ++i)
{
ResidualHelmholtzGeneralizedExponentialElement el;
el.n = n[i];
el.d = d[i];
el.t = t[i];
el.l_double = l[i];
el.l_int = (int)el.l_double;
if (el.l_double > 0)
el.c = 1.0;
else
el.c = 0.0;
elements.push_back(el);
}
delta_li_in_u = true;
};
/** \brief Add and convert an old-style exponential term to generalized form
*
* Term of the format
* \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-g_i\delta^{l_i}) \f$
*/
void add_Exponential(const std::vector<CoolPropDbl> &n, const std::vector<CoolPropDbl> &d,
const std::vector<CoolPropDbl> &t, const std::vector<CoolPropDbl> &g,
const std::vector<CoolPropDbl> &l)
{
for (std::size_t i = 0; i < n.size(); ++i)
{
ResidualHelmholtzGeneralizedExponentialElement el;
el.n = n[i];
el.d = d[i];
el.t = t[i];
el.c = g[i];
el.l_double = l[i];
el.l_int = (int)el.l_double;
elements.push_back(el);
}
delta_li_in_u = true;
}
/** \brief Add and convert an old-style Gaussian term to generalized form
*
* Term of the format
* \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\eta_i(\delta-\epsilon_i)^2-\beta_i(\tau-\gamma_i)^2)\f$
*/
void add_Gaussian(const std::vector<CoolPropDbl> &n,
const std::vector<CoolPropDbl> &d,
const std::vector<CoolPropDbl> &t,
const std::vector<CoolPropDbl> &eta,
const std::vector<CoolPropDbl> &epsilon,
const std::vector<CoolPropDbl> &beta,
const std::vector<CoolPropDbl> &gamma
)
{
for (std::size_t i = 0; i < n.size(); ++i)
{
ResidualHelmholtzGeneralizedExponentialElement el;
el.n = n[i];
el.d = d[i];
el.t = t[i];
el.eta2 = eta[i];
el.epsilon2 = epsilon[i];
el.beta2 = beta[i];
el.gamma2 = gamma[i];
elements.push_back(el);
}
eta2_in_u = true;
beta2_in_u = true;
};
/** \brief Add and convert an old-style Gaussian term from GERG 2008 natural gas model to generalized form
*
* Term of the format
* \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\eta_i(\delta-\epsilon_i)^2-\beta_i(\delta-\gamma_i))\f$
*/
void add_GERG2008Gaussian(const std::vector<CoolPropDbl> &n,
const std::vector<CoolPropDbl> &d,
const std::vector<CoolPropDbl> &t,
const std::vector<CoolPropDbl> &eta,
const std::vector<CoolPropDbl> &epsilon,
const std::vector<CoolPropDbl> &beta,
const std::vector<CoolPropDbl> &gamma)
{
for (std::size_t i = 0; i < n.size(); ++i)
{
ResidualHelmholtzGeneralizedExponentialElement el;
el.n = n[i];
el.d = d[i];
el.t = t[i];
el.eta2 = eta[i];
el.epsilon2 = epsilon[i];
el.eta1 = beta[i];
el.epsilon1 = gamma[i];
elements.push_back(el);
}
eta2_in_u = true;
eta1_in_u = true;
};
/** \brief Add and convert a term from Lemmon and Jacobsen (2005) used for R125
*
* Term of the format
* \f$ \alpha^r=\displaystyle\sum_i n_i \delta^{d_i} \tau^{t_i} \exp(-\delta^{l_i}-\tau^{m_i})\f$
*/
void add_Lemmon2005(const std::vector<CoolPropDbl> &n,
const std::vector<CoolPropDbl> &d,
const std::vector<CoolPropDbl> &t,
const std::vector<CoolPropDbl> &l,
const std::vector<CoolPropDbl> &m)
{
for (std::size_t i = 0; i < n.size(); ++i)
{
ResidualHelmholtzGeneralizedExponentialElement el;
el.n = n[i];
el.d = d[i];
el.t = t[i];
el.c = 1.0;
el.omega = 1.0;
el.l_double = l[i];
el.m_double = m[i];
el.l_int = (int)el.l_double;
el.m_int = (int)el.m_double;
elements.push_back(el);
}
delta_li_in_u = true;
tau_mi_in_u = true;
};
void finish(){
n.resize(elements.size()); d.resize(elements.size());
t.resize(elements.size()); c.resize(elements.size());
omega.resize(elements.size());
l_double.resize(elements.size()); l_int.resize(elements.size());
m_double.resize(elements.size()); m_int.resize(elements.size());
epsilon2.resize(elements.size()); eta2.resize(elements.size());
gamma2.resize(elements.size()); beta2.resize(elements.size());
for (std::size_t i = 0; i < elements.size(); ++i){
n[i] = elements[i].n;
d[i] = elements[i].d;
t[i] = elements[i].t;
c[i] = elements[i].c;
omega[i] = elements[i].omega;
l_double[i] = elements[i].l_double;
l_int[i] = elements[i].l_int;
m_double[i] = elements[i].m_double;
m_int[i] = elements[i].m_int;
epsilon2[i] = elements[i].epsilon2;
eta2[i] = elements[i].eta2;
gamma2[i] = elements[i].gamma2;
beta2[i] = elements[i].beta2;
// See if l is an integer, and store a flag if it is
elements[i].l_is_int = ( std::abs(static_cast<long>(elements[i].l_double) - elements[i].l_double) < 1e-14 );
}
// uE.resize(elements.size());
// du_ddeltaE.resize(elements.size());
// du_dtauE.resize(elements.size());
// d2u_ddelta2E.resize(elements.size());
// d2u_dtau2E.resize(elements.size());
// d3u_ddelta3E.resize(elements.size());
// d3u_dtau3E.resize(elements.size());
finished = true;
};
void to_json(rapidjson::Value &el, rapidjson::Document &doc);
void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw();
//void allEigen(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw();
};
struct ResidualHelmholtzNonAnalyticElement
{
CoolPropDbl n, a, b, beta, A, B, C, D;
};
class ResidualHelmholtzNonAnalytic : public BaseHelmholtzTerm{
public:
std::size_t N;
std::vector<CoolPropDbl> s;
std::vector<ResidualHelmholtzNonAnalyticElement> elements;
/// Default Constructor
ResidualHelmholtzNonAnalytic(){N = 0;};
/// Destructor. No implementation
~ResidualHelmholtzNonAnalytic(){};
/// Constructor
ResidualHelmholtzNonAnalytic(const std::vector<CoolPropDbl> &n,
const std::vector<CoolPropDbl> &a,
const std::vector<CoolPropDbl> &b,
const std::vector<CoolPropDbl> &beta,
const std::vector<CoolPropDbl> &A,
const std::vector<CoolPropDbl> &B,
const std::vector<CoolPropDbl> &C,
const std::vector<CoolPropDbl> &D
)
{
N = n.size();
s.resize(N);
for (std::size_t i = 0; i < n.size(); ++i)
{
ResidualHelmholtzNonAnalyticElement el;
el.n = n[i];
el.a = a[i];
el.b = b[i];
el.beta = beta[i];
el.A = A[i];
el.B = B[i];
el.C = C[i];
el.D = D[i];
elements.push_back(el);
}
};
void to_json(rapidjson::Value &el, rapidjson::Document &doc);
void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw();
};
class ResidualHelmholtzGeneralizedCubic : public BaseHelmholtzTerm{
protected:
shared_ptr<AbstractCubic> m_abstractcubic;
std::vector<double> z; /// Vector of mole fractions, will be initialized to [1.0] since this is a pure fluid
public:
bool enabled;
/// Default Constructor
ResidualHelmholtzGeneralizedCubic() { enabled = false; };
/// Constructor given an abstract cubic instance
ResidualHelmholtzGeneralizedCubic(shared_ptr<AbstractCubic> & ac) : m_abstractcubic(ac){
enabled = true;
z = std::vector<double>(1,1); // Init the vector to [1.0]
};
void to_json(rapidjson::Value &el, rapidjson::Document &doc);
void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw();
};
/// The generalized Lee-Kesler formulation of Xiang & Deiters: doi:10.1016/j.ces.2007.11.029
class ResidualHelmholtzXiangDeiters : public BaseHelmholtzTerm{
public:
bool enabled;
ResidualHelmholtzGeneralizedExponential phi0, phi1, phi2;
CoolPropDbl Tc, pc, rhomolarc, acentric, R, theta;
/// Default Constructor
ResidualHelmholtzXiangDeiters() : Tc(_HUGE), pc(_HUGE), rhomolarc(_HUGE), acentric(_HUGE), R(_HUGE), theta(_HUGE)
{
enabled = false;
};
/// Constructor
ResidualHelmholtzXiangDeiters(
const CoolPropDbl Tc,
const CoolPropDbl pc,
const CoolPropDbl rhomolarc,
const CoolPropDbl acentric,
const CoolPropDbl R
);
void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw();
};
class ResidualHelmholtzSAFTAssociating : public BaseHelmholtzTerm{
protected:
double a, m,epsilonbar, vbarn, kappabar;
CoolPropDbl Deltabar(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl dDeltabar_ddelta__consttau(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl d2Deltabar_ddelta2__consttau(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl dDeltabar_dtau__constdelta(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl d2Deltabar_dtau2__constdelta(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl d2Deltabar_ddelta_dtau(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl d3Deltabar_dtau3__constdelta(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl d3Deltabar_ddelta_dtau2(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl d3Deltabar_ddelta3__consttau(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl d3Deltabar_ddelta2_dtau(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl X(const CoolPropDbl &delta, const CoolPropDbl &Deltabar) const;
CoolPropDbl dX_dDeltabar__constdelta(const CoolPropDbl &delta, const CoolPropDbl &Deltabar) const;
CoolPropDbl dX_ddelta__constDeltabar(const CoolPropDbl &delta, const CoolPropDbl &Deltabar) const;
CoolPropDbl dX_dtau(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl dX_ddelta(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl d2X_dtau2(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl d2X_ddeltadtau(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl d2X_ddelta2(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl d3X_dtau3(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl d3X_ddelta3(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl d3X_ddeltadtau2(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl d3X_ddelta2dtau(const CoolPropDbl &tau, const CoolPropDbl &delta) const;
CoolPropDbl g(const CoolPropDbl &eta) const;
CoolPropDbl dg_deta(const CoolPropDbl &eta) const;
CoolPropDbl d2g_deta2(const CoolPropDbl &eta) const;
CoolPropDbl d3g_deta3(const CoolPropDbl &eta) const;
CoolPropDbl eta(const CoolPropDbl &delta) const;
public:
/// Default constructor
ResidualHelmholtzSAFTAssociating() : a(_HUGE), m(_HUGE), epsilonbar(_HUGE), vbarn(_HUGE), kappabar(_HUGE)
{ disabled = true; };
// Constructor
ResidualHelmholtzSAFTAssociating(double a, double m, double epsilonbar, double vbarn, double kappabar)
: a(a), m(m), epsilonbar(epsilonbar), vbarn(vbarn), kappabar(kappabar)
{
disabled = false;
};
bool disabled;
//Destructor. No Implementation
~ResidualHelmholtzSAFTAssociating(){};
void to_json(rapidjson::Value &el, rapidjson::Document &doc);
CoolPropDbl dTau4(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 1e99;};
CoolPropDbl dDelta_dTau3(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 1e99;};
CoolPropDbl dDelta2_dTau2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 1e99;};
CoolPropDbl dDelta3_dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 1e99;};
CoolPropDbl dDelta4(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 1e99;};
void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &deriv) throw();
};
class BaseHelmholtzContainer{
protected:
CachedElement _base, _dDelta, _dTau, _dDelta2, _dTau2, _dDelta_dTau, _dDelta3, _dDelta2_dTau, _dDelta_dTau2, _dTau3;
CachedElement _dDelta4, _dDelta3_dTau, _dDelta2_dTau2, _dDelta_dTau3, _dTau4;
public:
void clear(){
_base.clear();
_dDelta.clear(); _dTau.clear();
_dDelta2.clear(); _dTau2.clear(); _dDelta_dTau.clear();
_dDelta3.clear(); _dTau3.clear(); _dDelta2_dTau.clear(); _dDelta_dTau2.clear();
_dDelta4.clear(); _dDelta3_dTau.clear(); _dDelta2_dTau2.clear(); _dDelta_dTau3.clear(); _dTau4.clear();
};
virtual void empty_the_EOS() = 0;
virtual HelmholtzDerivatives all(const CoolPropDbl tau, const CoolPropDbl delta, bool cache_values) = 0;
CoolPropDbl base(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
if (!_base || dont_use_cache)
return all(tau, delta, false).alphar;
else
return _base;
};
CoolPropDbl dDelta(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
if (!_dDelta || dont_use_cache)
return all(tau, delta, false).dalphar_ddelta;
else
return _dDelta;
};
CoolPropDbl dTau(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
if (!_dTau || dont_use_cache)
return all(tau, delta, false).dalphar_dtau;
else
return _dTau;
};
CoolPropDbl dDelta2(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
if (!_dDelta2 || dont_use_cache)
return all(tau, delta, false).d2alphar_ddelta2;
else
return _dDelta2;
};
CoolPropDbl dDelta_dTau(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
if (!_dDelta_dTau || dont_use_cache)
return all(tau, delta, false).d2alphar_ddelta_dtau;
else
return _dDelta_dTau;
};
CoolPropDbl dTau2(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
if (!_dTau2 || dont_use_cache)
return all(tau, delta, false).d2alphar_dtau2;
else
return _dTau2;
};
CoolPropDbl dDelta3(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
if (!_dDelta3 || dont_use_cache)
return all(tau, delta, false).d3alphar_ddelta3;
else
return _dDelta3;
};
CoolPropDbl dDelta2_dTau(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
if (!_dDelta2_dTau || dont_use_cache)
return all(tau, delta, false).d3alphar_ddelta2_dtau;
else
return _dDelta2_dTau;
};
CoolPropDbl dDelta_dTau2(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
if (!_dDelta_dTau2 || dont_use_cache)
return all(tau, delta, false).d3alphar_ddelta_dtau2;
else
return _dDelta_dTau2;
};
CoolPropDbl dTau3(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) {
if (!_dTau3 || dont_use_cache)
return all(tau, delta, false).d3alphar_dtau3;
else
return _dTau3;
};
CoolPropDbl dDelta4(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { return all(tau, delta, false).d4alphar_ddelta4; };
CoolPropDbl dDelta3_dTau(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { return all(tau, delta, false).d4alphar_ddelta3_dtau; };
CoolPropDbl dDelta2_dTau2(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { return all(tau, delta, false).d4alphar_ddelta2_dtau2; };
CoolPropDbl dDelta_dTau3(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { return all(tau, delta, false).d4alphar_ddelta_dtau3; };
CoolPropDbl dTau4(CoolPropDbl tau, CoolPropDbl delta, const bool dont_use_cache = false) { return all(tau, delta, false).d4alphar_dtau4; };
};
class ResidualHelmholtzContainer : public BaseHelmholtzContainer
{
public:
ResidualHelmholtzNonAnalytic NonAnalytic;
ResidualHelmholtzSAFTAssociating SAFT;
ResidualHelmholtzGeneralizedExponential GenExp;
ResidualHelmholtzGeneralizedCubic cubic;
ResidualHelmholtzXiangDeiters XiangDeiters;
void empty_the_EOS(){
NonAnalytic = ResidualHelmholtzNonAnalytic();
SAFT = ResidualHelmholtzSAFTAssociating();
GenExp = ResidualHelmholtzGeneralizedExponential();
cubic = ResidualHelmholtzGeneralizedCubic();
XiangDeiters = ResidualHelmholtzXiangDeiters();
};
HelmholtzDerivatives all(const CoolPropDbl tau, const CoolPropDbl delta, bool cache_values = false)
{
HelmholtzDerivatives derivs; // zeros out the elements
GenExp.all(tau, delta, derivs);
NonAnalytic.all(tau, delta, derivs);
SAFT.all(tau, delta, derivs);
cubic.all(tau, delta, derivs);
XiangDeiters.all(tau, delta, derivs);
if (cache_values){
_base = derivs.alphar;
_dDelta = derivs.dalphar_ddelta;
_dTau = derivs.dalphar_dtau;
_dDelta2 = derivs.d2alphar_ddelta2;
_dTau2 = derivs.d2alphar_dtau2;
_dDelta_dTau = derivs.d2alphar_ddelta_dtau;
_dDelta3 = derivs.d3alphar_ddelta3;
_dTau3 = derivs.d3alphar_dtau3;
_dDelta2_dTau = derivs.d3alphar_ddelta2_dtau;
_dDelta_dTau2 = derivs.d3alphar_ddelta_dtau2;
}
return derivs;
};
};
// #############################################################################
// #############################################################################
// #############################################################################
// IDEAL GAS TERMS
// #############################################################################
// #############################################################################
// #############################################################################
/// The leading term in the EOS used to set the desired reference state
/**
\f[
\alpha^0 = \log(\delta)+a_1+a_2\tau
\f]
*/
class IdealHelmholtzLead : public BaseHelmholtzTerm{
private:
CoolPropDbl a1, a2;
bool enabled;
public:
// Default constructor
IdealHelmholtzLead() :a1(_HUGE), a2(_HUGE), enabled(false) {}
// Constructor
IdealHelmholtzLead(CoolPropDbl a1, CoolPropDbl a2)
:a1(a1), a2(a2), enabled(true) {}
bool is_enabled() const {return enabled;}
void to_json(rapidjson::Value &el, rapidjson::Document &doc){
el.AddMember("type","IdealHelmholtzLead",doc.GetAllocator());
el.AddMember("a1", static_cast<double>(a1), doc.GetAllocator());
el.AddMember("a2", static_cast<double>(a2), doc.GetAllocator());
};
void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw();
};
/// The term in the EOS used to shift the reference state of the fluid
/**
\f[
\alpha^0 = a_1+a_2\tau
\f]
*/
class IdealHelmholtzEnthalpyEntropyOffset : public BaseHelmholtzTerm{
private:
CoolPropDbl a1,a2; // Use these variables internally
std::string reference;
bool enabled;
public:
IdealHelmholtzEnthalpyEntropyOffset():a1(_HUGE),a2(_HUGE),enabled(false){}
// Constructor
IdealHelmholtzEnthalpyEntropyOffset(CoolPropDbl a1, CoolPropDbl a2, const std::string &ref):a1(a1),a2(a2),reference(ref),enabled(true) {}
// Set the values in the class
void set(CoolPropDbl a1, CoolPropDbl a2, const std::string &ref){
// If it doesn't already exist, just set the values
if (enabled == false){
this->a1 = a1; this->a2 = a2;
enabled = true;
}
else if(ref == "DEF"){
this->a1 = 0.0; this->a2 = 0.0; enabled = false;
}
else{
// Otherwise, increment the values
this->a1 += a1; this->a2 += a2;
enabled = true;
}
this->reference = ref;
}
bool is_enabled() const {return enabled;};
void to_json(rapidjson::Value &el, rapidjson::Document &doc){
el.AddMember("type","IdealHelmholtzEnthalpyEntropyOffset",doc.GetAllocator());
el.AddMember("a1", static_cast<double>(a1), doc.GetAllocator());
el.AddMember("a2", static_cast<double>(a2), doc.GetAllocator());
};
void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw();
};
/**
\f[
\alpha^0 = a_1\ln\tau
\f]
*/
class IdealHelmholtzLogTau : public BaseHelmholtzTerm
{
private:
CoolPropDbl a1;
bool enabled;
public:
/// Default constructor
IdealHelmholtzLogTau():a1(_HUGE),enabled(false){}
// Constructor
IdealHelmholtzLogTau(CoolPropDbl a1):a1(a1),enabled(true){}
bool is_enabled() const {return enabled;};
void to_json(rapidjson::Value &el, rapidjson::Document &doc){
el.AddMember("type", "IdealHelmholtzLogTau", doc.GetAllocator());
el.AddMember("a1", static_cast<double>(a1), doc.GetAllocator());
};
void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw();
};
/**
\f[
\alpha^0 = \displaystyle\sum_i n_i\tau^{t_i}
\f]
*/
class IdealHelmholtzPower : public BaseHelmholtzTerm{
private:
std::vector<CoolPropDbl> n, t; // Use these variables internally
std::size_t N;
bool enabled;
public:
IdealHelmholtzPower():N(0),enabled(false){};
// Constructor
IdealHelmholtzPower(const std::vector<CoolPropDbl> &n, const std::vector<CoolPropDbl> &t)
:n(n), t(t), N(n.size()), enabled(true) {};
bool is_enabled() const {return enabled;};
void to_json(rapidjson::Value &el, rapidjson::Document &doc)
{
el.AddMember("type","IdealHelmholtzPower",doc.GetAllocator());
cpjson::set_long_double_array("n",n,el,doc);
cpjson::set_long_double_array("t",t,el,doc);
};
void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw();
};
/**
\f[
\alpha^0 = \displaystyle\sum_i n_i\log[c_i+d_i\exp(\theta_i\tau)]
\f]
To convert conventional Plank-Einstein forms, given by
\f$
\frac{c_p^0}{R} = a_k\displaystyle\frac{\left( b_k/T \right)^2\exp \left( b_k/T \right)}{\left(\exp \left(b_k/T\right) - 1 \right)^2}
\f$
and
\f$
\alpha^0 = a_k\ln \left[1 - \exp \left( \frac{-b_k\tau}{T_c} \right) \right]
\f$
use \f$c = 1\f$, \f$d = -1\f$, \f$n = a\f$, \f$\theta = -\displaystyle\frac{b_k}{T_c}\f$
To convert the second form of Plank-Einstein terms, given by
\f$
\frac{c_p^0}{R} = a_k\displaystyle\frac{\left( -b_k/T \right)^2\exp \left( b_k/T \right)}{c\left(\exp \left(-b_k/T\right) + 1 \right)^2}
\f$
and
\f$
\alpha^0 = a_k\ln \left[c + \exp \left( \frac{b_k\tau}{T_c} \right) \right]
\f$
use \f$c = 1\f$, \f$d = 1\f$, \f$n = -a\f$, \f$\theta = \displaystyle\frac{b_k}{T_c}\f$
Converting Aly-Lee tems is a bit more complex
Aly-Lee starts as
\f[\frac{c_p^0}{R_u} = A + B\left(\frac{C/T}{\sinh(C/T)}\right)^2 + D\left(\frac{E/T}{\cosh(E/T)}\right)^2\f]
Constant is separated out, and handled separately. sinh part can be expanded as
\f[B\left(\frac{C/T}{\sinh(C/T)}\right)^2 = \frac{B(-2C/T)^2\exp(-2C/T)}{(1-\exp(-2C/T))^2}\f]
where
\f[n_k = B\f]
\f[\theta_k = -\frac{2C}{T_c}\f]
\f[c_k = 1\f]
\f[d_k = -1\f]
cosh part can be expanded as
\f[D\left(\frac{E/T}{\cosh(E/T)}\right)^2 = \frac{D(-2E/T)^2\exp(-2E/T)}{(1+\exp(-2E/T))^2}\f]
where
\f[n_k = -D\f]
\f[\theta_k = -\frac{2E}{T_c}\f]
\f[c_k = 1\f]
\f[d_k = 1\f]
*/
class IdealHelmholtzPlanckEinsteinGeneralized : public BaseHelmholtzTerm{
private:
std::vector<CoolPropDbl> n,theta,c,d; // Use these variables internally
std::size_t N;
bool enabled;
public:
IdealHelmholtzPlanckEinsteinGeneralized():N(0),enabled(false){}
// Constructor with std::vector instances
IdealHelmholtzPlanckEinsteinGeneralized(const std::vector<CoolPropDbl> &n, const std::vector<CoolPropDbl> &theta, const std::vector<CoolPropDbl> &c, const std::vector<CoolPropDbl> &d)
:n(n), theta(theta), c(c), d(d), N(n.size()), enabled(true) {}
// Extend the vectors to allow for multiple instances feeding values to this function
void extend(const std::vector<CoolPropDbl> &n, const std::vector<CoolPropDbl> &theta, const std::vector<CoolPropDbl> &c, const std::vector<CoolPropDbl> &d)
{
this->n.insert(this->n.end(), n.begin(), n.end());
this->theta.insert(this->theta.end(), theta.begin(), theta.end());
this->c.insert(this->c.end(), c.begin(), c.end());
this->d.insert(this->d.end(), d.begin(), d.end());
N += n.size();
}
bool is_enabled() const {return enabled;};
void to_json(rapidjson::Value &el, rapidjson::Document &doc)
{
el.AddMember("type","IdealHelmholtzPlanckEinsteinGeneralized",doc.GetAllocator());
cpjson::set_long_double_array("n",n,el,doc);
cpjson::set_long_double_array("theta",theta,el,doc);
};
void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw();
};
class IdealHelmholtzCP0Constant : public BaseHelmholtzTerm{
private:
double cp_over_R,Tc,T0,tau0; // Use these variables internally
bool enabled;
public:
/// Default constructor
IdealHelmholtzCP0Constant() : cp_over_R(_HUGE), Tc(_HUGE), T0(_HUGE), tau0(_HUGE)
{enabled = false;};
/// Constructor with just a single double value
IdealHelmholtzCP0Constant(CoolPropDbl cp_over_R, CoolPropDbl Tc, CoolPropDbl T0)
: cp_over_R(cp_over_R), Tc(Tc), T0(T0)
{
enabled = true; tau0 = Tc/T0;
};
/// Destructor
~IdealHelmholtzCP0Constant(){};
bool is_enabled() const {return enabled;};
void to_json(rapidjson::Value &el, rapidjson::Document &doc)
{
el.AddMember("type","IdealGasHelmholtzCP0Constant", doc.GetAllocator());
el.AddMember("cp_over_R", cp_over_R, doc.GetAllocator());
el.AddMember("Tc", Tc, doc.GetAllocator());
el.AddMember("T0", T0, doc.GetAllocator());
};
void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw();
};
class IdealHelmholtzCP0PolyT : public BaseHelmholtzTerm{
private:
std::vector<CoolPropDbl> c, t;
CoolPropDbl Tc, T0, tau0; // Use these variables internally
std::size_t N;
bool enabled;
public:
IdealHelmholtzCP0PolyT()
: Tc(_HUGE), T0(_HUGE), tau0(_HUGE), N(0), enabled(false) {}
/// Constructor with std::vectors
IdealHelmholtzCP0PolyT(const std::vector<CoolPropDbl> &c, const std::vector<CoolPropDbl> &t, double Tc, double T0)
: c(c), t(t), Tc(Tc), T0(T0), tau0(Tc/T0), N(c.size()), enabled(true)
{ assert(c.size() == t.size()); }
void extend(const std::vector<CoolPropDbl> &c, const std::vector<CoolPropDbl> &t)
{
this->c.insert(this->c.end(), c.begin(), c.end());
this->t.insert(this->t.end(), t.begin(), t.end());
N += c.size();
}
bool is_enabled() const {return enabled;};
void to_json(rapidjson::Value &el, rapidjson::Document &doc);
void all(const CoolPropDbl &tau, const CoolPropDbl &delta, HelmholtzDerivatives &derivs) throw();
};
///// Term in the ideal-gas specific heat equation that is based on Aly-Lee formulation
///** Specific heat is of the form:
//\f[
//\frac{c_p^0}{R_u} = A + B\left(\frac{C/T}{\sinh(C/T)}\right)^2 + D\left(\frac{E/T}{\cosh(E/T)}\right)^2
//\f]
//Second partial of ideal-gas Helmholtz energy given directly by specific heat (\f$\displaystyle\alpha_{\tau\tau}^0=-\frac{1}{\tau^2}\frac{c_p^0}{R_u} \f$) - this is obtained by real gas \f$c_p\f$ relationship, and killing off residual Helmholtz terms
//\f[
//\alpha^0_{\tau\tau} = -\frac{A}{\tau^2} - \frac{B}{\tau^2}\left(\frac{C/T}{\sinh(C/T)}\right)^2 - \frac{D}{\tau^2}\left(\frac{E/T}{\cosh(E/T)}\right)^2
//\f]
//or in terms of \f$ \tau \f$:
//\f[
//\alpha^0_{\tau\tau} = -\frac{A}{\tau^2} - \frac{BC^2}{T_c^2}\left(\frac{1}{\sinh(C\tau/T_c)}\right)^2 - \frac{DE^2}{T_c^2}\left(\frac{1}{\cosh(E\tau/T_c)}\right)^2
//\f]
//Third partial:
//\f[
//\alpha^0_{\tau\tau\tau} = 2\frac{A}{\tau^3} + 2\frac{BC^3}{T_c^3}\frac{\cosh(C\tau/T_c)}{\sinh^3(C\tau/T_c)} +2 \frac{DE^3}{T_c^3}\frac{\sinh(E\tau/T_c)}{\cosh^3(E\tau/T_c)}
//\f]
//Now coming back to the ideal gas Helmholtz energy definition:
//\f[
//\alpha^0 = -\tau\displaystyle\int_{\tau_0}^{\tau} \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau+\displaystyle\int_{\tau_0}^{\tau} \frac{1}{\tau}\frac{c_p^0}{R_u}d\tau
//\f]
//Applying derivative
//\f[
//\alpha^0_{\tau} = -\displaystyle\int_{\tau_0}^{\tau} \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau-\tau\frac{\partial}{\partial \tau}\left[\displaystyle\int_{\tau_0}^{\tau} \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau \right]+\frac{\partial}{\partial \tau}\left[\displaystyle\int_{\tau_0}^{\tau} \frac{1}{\tau}\frac{c_p^0}{R_u}d\tau \right]
//\f]
//Fundamental theorem of calculus
//\f[
//\alpha^0_{\tau} = -\int_{\tau_0}^{\tau} \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau-\tau \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau+\frac{1}{\tau}\frac{c_p^0}{R_u}
//\f]
//Last two terms cancel, leaving
//\f[
//\alpha^0_{\tau} = -\int_{\tau_0}^{\tau} \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau
//\f]
//Another derivative yields (from fundamental theorem of calculus)
//\f[
//\alpha^0_{\tau\tau} = - \frac{1}{\tau^2}\frac{c_p^0}{R_u}
//\f]
//
//see also Jaeschke and Schley, 1995, (http://link.springer.com/article/10.1007%2FBF02083547#page-1)
//*/
///*
//class IdealHelmholtzCP0AlyLee : public BaseHelmholtzTerm{
//private:
// std::vector<CoolPropDbl> c;
// CoolPropDbl Tc, tau0, T0; // Use these variables internally
// bool enabled;
//public:
// IdealHelmholtzCP0AlyLee(){enabled = false;};
//
// /// Constructor with std::vectors
// IdealHelmholtzCP0AlyLee(const std::vector<CoolPropDbl> &c, double Tc, double T0)
// :c(c), Tc(Tc), T0(T0)
// {
// tau0=Tc/T0;
// enabled = true;
// };
//
// /// Destructor
// ~IdealHelmholtzCP0AlyLee(){};
//
// bool is_enabled() const {return enabled;};
//
// void to_json(rapidjson::Value &el, rapidjson::Document &doc);
//
//
// /// The antiderivative given by \f$ \displaystyle\int \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau \f$
// /**
// sympy code for this derivative:
//
// from sympy import *
// a1,a2,a3,a4,a5,Tc,tau = symbols('a1,a2,a3,a4,a5,Tc,tau', real = True)
// integrand = a1 + a2*(a3/Tc/sinh(a3*tau/Tc))**2 + a4*(a5/Tc/cosh(a5*tau/Tc))**2
// integrand = integrand.rewrite(exp)
// antideriv = trigsimp(integrate(integrand,tau))
// display(antideriv)
// print latex(antideriv)
// print ccode(antideriv)
//
// \f[
// \displaystyle\int \frac{1}{\tau^2}\frac{c_p^0}{R_u}d\tau = -\frac{a_0}{\tau}+\frac{2a_1a_2}{T_c\left[\exp\left(-\frac{2a_2\tau}{T_c}\right)-1\right]}+\frac{2a_3a_4}{T_c\left[\exp\left(-\frac{2a_4\tau}{T_c}\right)+1\right]}
// \f]
// */
// CoolPropDbl anti_deriv_cp0_tau2(const CoolPropDbl &tau);
//
// /// The antiderivative given by \f$ \displaystyle\int \frac{1}{\tau}\frac{c_p^0}{R_u}d\tau \f$
// /**
// sympy code for this derivative:
//
// a_0,a_1,a_2,a_3,a_4,Tc,tau = symbols('a_0,a_1,a_2,a_3,a_4,Tc,tau', real = True)
// integrand = a_0/tau + a_1/tau*(a_2*tau/Tc/sinh(a_2*tau/Tc))**2 + a_3/tau*(a_4*tau/Tc/cosh(a_4*tau/Tc))**2
//
// term2 = a_1/tau*(a_2*tau/Tc/sinh(a_2*tau/Tc))**2
// term2 = term2.rewrite(exp) # Unpack the sinh to exp functions
// antideriv2 = trigsimp(integrate(term2,tau))
// display(antideriv2)
// print latex(antideriv2)
// print ccode(antideriv2)
//
// term3 = a_3/tau*(a_4*tau/Tc/cosh(a_4*tau/Tc))**2
// term3 = term3.rewrite(exp) # Unpack the cosh to exp functions
// antideriv3 = factor(trigsimp(integrate(term3,tau).rewrite(exp)))
// display(antideriv3)
// print latex(antideriv3)
// print ccode(antideriv3)
//
// Can be broken into three parts (trick is to express \f$sinh\f$ and \f$cosh\f$ in terms of \f$exp\f$ function)
//
// Term 2:
// \f[
// \displaystyle\int \frac{a_1a_2^2}{T_c^2}\frac{\tau}{\sinh\left(\displaystyle\frac{a_2\tau}{T_c}\right)^2} d\tau = \frac{2 a_{1} a_{2} \tau}{- Tc + Tc e^{- \frac{2 a_{2}}{Tc} \tau}} + a_{1} \log{\left (-1 + e^{- \frac{2 a_{2}}{Tc} \tau} \right )} + \frac{2 a_{1}}{Tc} a_{2} \tau
// \f]
//
// Term 3:
// \f[
// \displaystyle\int \frac{a_1a_2^2}{T_c^2}\frac{\tau}{\cosh\left(\displaystyle\frac{a_2\tau}{T_c}\right)^2} d\tau = - \frac{a_{3}}{Tc \left(e^{\frac{2 a_{4}}{Tc} \tau} + 1\right)} \left(Tc e^{\frac{2 a_{4}}{Tc} \tau} \log{\left (e^{\frac{2 a_{4}}{Tc} \tau} + 1 \right )} + Tc \log{\left (e^{\frac{2 a_{4}}{Tc} \tau} + 1 \right )} - 2 a_{4} \tau e^{\frac{2 a_{4}}{Tc} \tau}\right)
// \f]
// */
// CoolPropDbl anti_deriv_cp0_tau(const CoolPropDbl &tau);
//
// CoolPropDbl base(const CoolPropDbl &tau, const CoolPropDbl &delta) throw();
// CoolPropDbl dDelta(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;};
// CoolPropDbl dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw();
// CoolPropDbl dDelta2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;};
// CoolPropDbl dDelta_dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;};
// CoolPropDbl dTau2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw();
// CoolPropDbl dDelta3(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;};
// CoolPropDbl dDelta2_dTau(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;};
// CoolPropDbl dDelta_dTau2(const CoolPropDbl &tau, const CoolPropDbl &delta) throw(){return 0.0;};
// CoolPropDbl dTau3(const CoolPropDbl &tau, const CoolPropDbl &delta) throw();
// CoolPropDbl dTau4(const CoolPropDbl &tau, const CoolPropDbl &delta) throw();
//
//};
class IdealHelmholtzContainer : public BaseHelmholtzContainer
{
public:
IdealHelmholtzLead Lead;
IdealHelmholtzEnthalpyEntropyOffset EnthalpyEntropyOffsetCore, EnthalpyEntropyOffset;
IdealHelmholtzLogTau LogTau;
IdealHelmholtzPower Power;
IdealHelmholtzPlanckEinsteinGeneralized PlanckEinstein;
IdealHelmholtzCP0Constant CP0Constant;
IdealHelmholtzCP0PolyT CP0PolyT;
void empty_the_EOS(){
Lead = IdealHelmholtzLead();
EnthalpyEntropyOffsetCore = IdealHelmholtzEnthalpyEntropyOffset();
EnthalpyEntropyOffset = IdealHelmholtzEnthalpyEntropyOffset();
LogTau = IdealHelmholtzLogTau();
Power = IdealHelmholtzPower();
PlanckEinstein = IdealHelmholtzPlanckEinsteinGeneralized();
CP0Constant = IdealHelmholtzCP0Constant();
CP0PolyT = IdealHelmholtzCP0PolyT();
};
HelmholtzDerivatives all(const CoolPropDbl tau, const CoolPropDbl delta, bool cache_values = false)
{
HelmholtzDerivatives derivs; // zeros out the elements
Lead.all(tau, delta, derivs);
EnthalpyEntropyOffsetCore.all(tau, delta, derivs);
EnthalpyEntropyOffset.all(tau, delta, derivs);
LogTau.all(tau, delta, derivs);
Power.all(tau, delta, derivs);
PlanckEinstein.all(tau, delta, derivs);
CP0Constant.all(tau, delta, derivs);
CP0PolyT.all(tau, delta, derivs);
if (cache_values){
_base = derivs.alphar;
_dDelta = derivs.dalphar_ddelta;
_dTau = derivs.dalphar_dtau;
_dDelta2 = derivs.d2alphar_ddelta2;
_dTau2 = derivs.d2alphar_dtau2;
_dDelta_dTau = derivs.d2alphar_ddelta_dtau;
_dDelta3 = derivs.d3alphar_ddelta3;
_dTau3 = derivs.d3alphar_dtau3;
_dDelta2_dTau = derivs.d3alphar_ddelta2_dtau;
_dDelta_dTau2 = derivs.d3alphar_ddelta_dtau2;
}
return derivs;
};
};
}; /* namespace CoolProp */
#endif