Files
CoolProp/dev/incompressible_liquids/DEPRECATED_fit_incompressible.py
2019-01-12 20:45:25 -07:00

671 lines
26 KiB
Python

import numpy, matplotlib.pyplot
import CoolProp.CoolProp as CP
from scipy.optimize._minimize import minimize
from scipy.optimize.minpack import curve_fit
from matplotlib.ticker import MaxNLocator
import os
import numpy as np
class IncompLiquidFit(object):
"""
A class for fitting data sheet data to predefined functions.
Some functions are only used during the fitting procedure.
Note that the order in which you fit the different properties
might impact the coefficients. Usually, the fitting order should be:
1) Density
2) Heat capacity
3) Thermal conductivity
4) Viscosity
5) Vapour pressure
"""
def __init__(self):
self.DEBUG = False
# parameters for the different fits
self._cDensity = numpy.ones(4) # Typically 4 parameters
self._cHeatCapacity = numpy.ones(4) # Typically 4 parameters
self._cTConductivity = numpy.ones(3) # Typically 3 parameters
self._cViscosity = numpy.ones(3) # Typically 3 parameters
self._cPsat = numpy.ones(3) # Typically 3 parameters
# bounds for fit
self._Tmin = None
self._TminPsat = None
self._Tmax = None
self._Tref = 273.15 + 25.
self._Tbase = 0.0
# some flags to set
self._TinC = False # Temperature in Celsius
self._DynVisc = True # Data for dynamic viscosity
self._minPoints = 3
self._expPoly = False # Fit exponential as polynomial
def setParams(self, fluid):
if fluid == 'init':
# initial parameters for the different fits
# self._cDensity = [+9.2e+2, -0.5e+0, +2.8e-4, -1.1e-6]
# self._cHeatCapacity = [+1.0e+0, +3.6e-3, -2.9e-7, +1.7e-9]
# self._cTConductivity = [+1.1e-1, +7.8e-5, +3.5e-7]
# self._cViscosity = [+7.1e+2, +2.3e+2, +3.4e+1]
# self._cPsat = [-5.3e+3, +3.2e+1, -1.6e+1]
self._cDensity = [1, 1, 1, 1]
self._cHeatCapacity = [1, 1, 1, 1]
self._cTConductivity = [1, 1, 1]
#self._cViscosity = [+8e+2, -2e+2, +3e+1]
self._cViscosity = [+7e+2, -6e+1, +1e+1]
self._cPsat = [-5e+3, +3e+1, -1e+1]
return True
# elif fluid=='TherminolD12inCelsius':
# self._cDensity = [776.257 , -0.696982, -0.000131384, -0.00000209079]
# self._cHeatCapacity = [2.01422 , 0.00386884, 2.05029e-6, -1.12621e-8, 3.86282e-11]
# self._cTConductivity = [0.112994, 0.00014781, -1.61429e-7]
# self._cViscosity = [530.944, 146.4, -2.68168]
# self._cPsat = [-3562.69, 194, 13.8526]
# self._Tmin = -85.0 + 273.15
# self._TminPsat = 40.0 + 273.15
# self._Tmax = 260.0 + 273.15
# elif fluid=='TherminolD12':
# self._cDensity = [1.08315084e+04,-8.21176568e+01,2.23399244e-01, -2.03753274e-04]
# self._cHeatCapacity = [2.01422 , 0.00386884, 2.05029e-6, -1.12621e-8, 3.86282e-11]
# self._cTConductivity = [0.112994, 0.00014781, -1.61429e-7]
# self._cViscosity = [530.944, 146.4, -2.68168]
# self._cPsat = [-3562.69, 194, 13.8526]
# self._Tmin = -85.0 + 273.15
# self._TminPsat = 40.0 + 273.15
# self._Tmax = 260.0 + 273.15
else:
raise (ValueError("No coefficients available for " + str(fluid)))
def _checkT(self, T=0):
Tmin = self.Props('Tmin')
Tmax = self.Props('Tmax')
if Tmin is None:
raise (ValueError("Please specify the minimum temperature."))
if Tmax is None:
raise (ValueError("Please specify the maximum temperature."))
if not (Tmin <= T <= Tmax):
raise (ValueError("Temperature out of range: " + str(T) + " not in " + str(Tmin) + "-" + str(Tmax) + ". "))
def _checkP(self, T=0, P=0):
Psat = self.Props('Psat', T=T)
if P < Psat:
raise (ValueError("Equations are valid for liquid phase only: " + str(P) + " < " + str(Psat) + ". "))
def _checkTP(self, T=0, P=0):
self._checkT(T=T)
#self._checkP(T=T, P=P)
def _basePolynomial(self, coefficients, x):
""" Base function to produce polynomials of
order len(coefficients) with the coefficients
"""
result = 0.
for i in range(len(coefficients)):
result += coefficients[i] * x**i
return result
def _basePolynomialInt(self, coefficients, x1, x0=-1):
""" Base function to produce the integral of
order len(coefficients) with coefficients from
x0 to x1.
"""
if x0 == -1: x0 = self._Tref - self._Tbase
result = 0.
for i in range(len(coefficients)):
result += 1. / (i + 1.) * coefficients[i] * (x1**(i + 1.) - x0**(i + 1.))
return result
def _baseExponential(self, coefficients, x, num):
""" Base function to produce exponential
with defined coefficients
"""
# Determine limits:
maxVal = numpy.log(numpy.finfo(numpy.float64).max - 1)
minVal = -maxVal # numpy.log(numpy.finfo(numpy.float64).min+1)
# if len(coefficients)==num:
if num == 1: return numpy.exp(numpy.clip((coefficients[0] / (x + coefficients[1]) - coefficients[2]), minVal, maxVal))
if num == 2: return numpy.exp(numpy.clip(self._basePolynomial(coefficients, x), minVal, maxVal))
# else:
# print "Error!"
def Props(self, out, T=0, P=0):
if out == 'D':
self._checkTP(T=T, P=P)
return self._basePolynomial(self._cDensity, T - self._Tbase)
elif out == 'C':
self._checkTP(T=T, P=P)
return self._basePolynomial(self._cHeatCapacity, T - self._Tbase)
elif out == 'L':
self._checkTP(T=T, P=P)
return self._basePolynomial(self._cTConductivity, T - self._Tbase)
elif out == 'V':
self._checkTP(T=T, P=P)
if self._expPoly:
return numpy.exp(self._basePolynomial(self._cViscosity, T - self._Tbase))
else:
return self._baseExponential(self._cViscosity, T - self._Tbase, 1)
elif out == 'Psat':
self._checkT(T=T)
if T < self._TminPsat:
return 1e-14
if self._expPoly:
return numpy.exp(self._basePolynomial(self._cPsat, T - self._Tbase))
else:
return self._baseExponential(self._cPsat, T - self._Tbase, 1)
elif out == 'Tmin':
return self._Tmin
elif out == 'Tmax':
return self._Tmax
else:
raise (ValueError("Error: You used an unknown output qualifier."))
def _PropsFit(self, coefficients, inVal, T=0):
"""
Calculates a property from a given set of
coefficients for a certain temperature. Is used
to obtain data to feed to the optimisation
procedures.
"""
if inVal == 'D':
self._checkT(T=T)
return self._basePolynomial(coefficients, T - self._Tbase)
elif inVal == 'C':
self._checkT(T=T)
return self._basePolynomial(coefficients, T - self._Tbase)
elif inVal == 'L':
self._checkT(T=T)
return self._basePolynomial(coefficients, T - self._Tbase)
elif inVal == 'V':
self._checkT(T=T)
if self._expPoly:
return numpy.exp(self._basePolynomial(coefficients, T - self._Tbase))
else:
return self._baseExponential(coefficients, T - self._Tbase, 1)
elif inVal == 'Psat':
self._checkT(T=T)
if T < self._TminPsat:
return 1e-14
if self._expPoly:
return numpy.exp(self._basePolynomial(coefficients, T - self._Tbase))
else:
return self._baseExponential(coefficients, T - self._Tbase, 1)
else:
raise (ValueError("Error: You used an unknown property qualifier."))
def inCoolProp(self, name):
from CoolProp.CoolProp import FluidsList
# print FluidsList()
result = name in FluidsList()
if not result:
try:
CP.PropsU('Tmin', 'T', 0, 'P', 0, name, "SI")
return True
except ValueError as e:
print(e)
return False
def getCoefficients(self, inVal):
"""
Get the array with coefficients.
"""
if inVal == 'D':
return self._cDensity
elif inVal == 'C':
return self._cHeatCapacity
elif inVal == 'L':
return self._cTConductivity
elif inVal == 'V':
return self._cViscosity
elif inVal == 'Psat':
return self._cPsat
else:
raise (ValueError("Error: You used an unknown property qualifier."))
def setCoefficients(self, inVal, coeffs):
"""
Set the array of coefficients.
"""
if inVal == 'D':
self._cDensity = coeffs
elif inVal == 'C':
self._cHeatCapacity = coeffs
elif inVal == 'L':
self._cTConductivity = coeffs
elif inVal == 'V':
self._cViscosity = coeffs
elif inVal == 'Psat':
self._cPsat = coeffs
else:
raise (ValueError("Error: You used an unknown property qualifier."))
def setTmin(self, T):
self._Tmin = T
def setTmax(self, T):
self._Tmax = T
def setTminPsat(self, T):
self._TminPsat = T
def setTref(self, T):
self._Tref = T
def setTbase(self, T):
self._Tbase = T
def setExpPoly(self, bo):
self._expPoly = bo
def fitCoefficients(self, xName, T=[], xData=[]):
if (len(T) != len(xData)):
raise (ValueError("Error: There has to be the same number of temperature and data points."))
if len(T) < self._minPoints:
raise (ValueError("Error: You should use at least " + str(self._minPoints) + " points."))
def fun(coefficients, xName, T, xData):
# Values for conductivity are very small,
# algorithms prefer larger values
if xName == 'L':
calculated = numpy.array([self._PropsFit(coefficients, xName, T=Ti) for Ti in T])
data = numpy.array(xData)
# Fit logarithms for viscosity and saturation pressure
elif xName == 'V' or xName == 'Psat':
calculated = numpy.log(numpy.array([self._PropsFit(coefficients, xName, T=Ti) for Ti in T]))
data = numpy.log(numpy.array(xData))
else:
calculated = numpy.array([self._PropsFit(coefficients, xName, T=Ti) for Ti in T])
data = numpy.array(xData)
res = numpy.sum((calculated - data)**2.)
return res
initValues = self.getCoefficients(xName)[:]
# Fit logarithms for viscosity and saturation pressure
if xName == 'V' or xName == 'Psat':
# fit = "MIN" # use a home-made minimisation with Powell and Broyden-Fletcher-Goldfarb-Shanno
# fit = "LMA" # use the Levenberg-Marquardt algorithm from curve_fit
# fit = "POL" # use a polynomial in an exponential function
fit = ["LMA", "MIN"] # First try LMA, use MIN as a fall-back solver
if self._expPoly:
fit = ["POL"] # Overwrite preferences for polynomial
success = False
counter = -1
while (not success):
counter += 1
if fit[counter] == "LMA":
xData = numpy.array(xData)
fit_log = True
def func(T, *coefficients):
result = numpy.array([self._PropsFit(coefficients, xName, T=Ti) for Ti in T])
if fit_log:
return numpy.log(result)
else:
return result
if fit_log:
xData = numpy.log(xData)
try:
# Do the actual fitting
popt, pcov = curve_fit(func, T, xData, p0=initValues, maxfev=1000)
# print popt
# print pcov
success = True
return popt
except RuntimeError as e:
print("Exception: " + str(e))
print("Using: " + str(fit[counter + 1]) + " as a fall-back.")
success = False
elif fit[counter] == "MIN":
print("Fitting exponential with " + str(len(initValues)) + " coefficients.")
arguments = (xName, T, numpy.exp(xData))
#options = {'maxiter': 1e2, 'maxfev': 1e5}
if xName == 'V':
method = "Powell"
elif xName == 'Psat':
method = "BFGS"
tolStart = 1e-13
tol = tolStart
res = minimize(fun, initValues, method=method, args=arguments, tol=tol)
while ((not res.success) and tol < 1e-2):
tol *= 1e2
print("Fit did not succeed, reducing tolerance to " + str(tol))
res = minimize(fun, initValues, method=method, args=arguments, tol=tol)
# Include these lines for an additional fit with new guess values.
# if res.success and tol>tolStart:
# print "Refitting with new guesses and original tolerance of "+str(tolStart)
# res = minimize(fun, res.x, method=method, args=arguments, tol=tolStart)
if res.success:
success = True
return res.x
else:
print("Fit failed: ")
print(res)
success = False
elif fit[counter] == "POL":
print("Fitting exponential polynomial with " + str(len(initValues)) + " coefficients.")
z = numpy.polyfit(T - self._Tbase, numpy.log(xData)[:], len(initValues) - 1)
return z[::-1]
else:
raise (ValueError("Error: You used an unknown fit method."))
else: # just a polynomial
print("Fitting polynomial with " + str(len(initValues)) + " coefficients.")
z = numpy.polyfit(T - self._Tbase, xData, len(initValues) - 1)
return z[::-1]
# def fitCoefficientsCentered(self,xName,T=[],xData=[]):
# tBase = (self._Tmax-self._Tmin) / 2.0 + self._Tmin
# self.setTbase(tBase)
# return self.fitCoefficients(xName,T=T,xData=xData)
# Load the data
from data_incompressible import *
containerList = []
containerList += [TherminolD12()]
containerList += [TherminolVP1(), Therminol66(), Therminol72()]
containerList += [DowthermJ(), DowthermQ()]
containerList += [Texatherm22(), NitrateSalt(), SylthermXLT()]
containerList += [HC50(), HC40(), HC30(), HC20(), HC10()]
containerList += [AS10(), AS20(), AS30(), AS40(), AS55()]
containerList += [ZS10(), ZS25(), ZS40(), ZS45(), ZS55()]
def relError(A=[], B=[], PCT=False):
result = (numpy.array(A) - numpy.array(B)) / numpy.array(B);
if PCT:
return result * 100.
else:
return result
j = {}
for data in containerList:
# Some test case
liqObj = IncompLiquidFit()
liqObj.setParams("init")
liqObj.setTmin(data.Tmin)
liqObj.setTminPsat(data.TminPsat)
liqObj.setTmax(data.Tmax)
j['Tmin'] = data.Tmin
j['Tmax'] = data.Tmax
j['TminPsat'] = data.TminPsat
j['name'] = data.Name
j['description'] = data.Desc
j['reference'] = ''
#liqObj._cViscosity[0] = numpy.max(data.mu_dyn)
#liqObj._cPsat[0] = numpy.min(data.psat)
#numpy.set_printoptions(formatter={'float': lambda x: format(x, '+1.10E')})
print("")
print("------------------------------------------------------")
print("Fitting " + str(data.Name))
print("------------------------------------------------------")
print("")
print("minimum T: " + str(data.Tmin))
print("maximum T: " + str(data.Tmax))
print("min T pSat:" + str(data.TminPsat))
#liqObj.setTbase((data.Tmax-data.Tmin) / 2.0 + data.Tmin)
# liqObj.setExpPoly(True)
print("T base:" + str(liqObj._Tbase))
print("")
# row and column sharing for test plots
# matplotlib.pyplot.subplots_adjust(top=0.85)
f, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = matplotlib.pyplot.subplots(3, 2, sharex='col')
f.set_size_inches(matplotlib.pyplot.figaspect(1.2) * 1.5)
#f.suptitle("Fit for "+str(data.Desc), fontsize=14)
# This is the actual fitting
tData = data.T
tDat1 = numpy.linspace(numpy.min(tData) + 1, numpy.max(tData) - 1, 10)
Pin = 1e20 # Dummy pressure
inCP = liqObj.inCoolProp(data.Name)
print("Fluid in CoolProp: " + str(inCP))
print("")
inVal = 'D'
xData = data.rho
oldCoeffs = liqObj.getCoefficients(inVal)
newCoeffs = liqObj.fitCoefficients(inVal, T=tData, xData=xData)
# print "Density, old: "+str(oldCoeffs)
print("Density, new: " + str(newCoeffs))
# print
liqObj.setCoefficients(inVal, newCoeffs)
# fData = numpy.array([liqObj.Props(inVal, T=Tin, P=Pin) for Tin in tDat1])
# ax1.plot(tData-273.15, xData, 'o', label="Data Sheet")
# ax1.plot(tDat1-273.15, fData, 'o', label="Python")
# if inCP:
# Tmin = CP.PropsU('Tmin','T',0,'P',0,data.Name,"SI")
# Tmax = CP.PropsU('Tmax','T',0,'P',0,data.Name,"SI")
# tDat2 = numpy.linspace(Tmin+1, Tmax-1, 100)
# ax1.plot(tDat2-273.15, CP.PropsU(inVal, 'T', tDat2, 'P', Pin*1e3, data.Name, "SI"), label="CoolProp")
# ax12 = ax1.twinx()
# fData = numpy.array([liqObj.Props(inVal, T=Tin, P=Pin) for Tin in tData])
# ax12.plot(tData-273.15, relError(fData, xData, True), 'o', label="Error", alpha=0.25)
# ax12.set_ylabel(r'$\mathregular{rel.\/Error\/(\%)}$')
# ax1.set_ylabel(r'$\mathregular{Density\/(kg\/m^{-3})}$')
j['density'] = {}
j['density']['coeffs'] = liqObj.getCoefficients('D').tolist()
j['density']['type'] = 'polynomial'
inVal = 'C'
xData = data.c_p
oldCoeffs = liqObj.getCoefficients(inVal)
newCoeffs = liqObj.fitCoefficients(inVal, T=tData, xData=xData)
# print "Heat c., old: "+str(oldCoeffs)
# print "Heat c., new: "+str(newCoeffs)
# print
liqObj.setCoefficients(inVal, newCoeffs)
# fData = numpy.array([liqObj.Props(inVal, T=Tin, P=Pin) for Tin in tDat1])
# ax2.plot(tData-273.15, xData/1e3, 'o', label="Data Sheet")
# ax2.plot(tDat1-273.15, fData/1e3, 'o', label="Python")
# if inCP:
# ax2.plot(tDat2-273.15, CP.PropsU(inVal, 'T', tDat2, 'P', Pin*1e3, data.Name, "SI")/1e3, label="CoolProp")
# ax22 = ax2.twinx()
# fData = numpy.array([liqObj.Props(inVal, T=Tin, P=Pin) for Tin in tData])
# ax22.plot(tData-273.15, relError(fData, xData, True), 'o', label="Error", alpha=0.25)
# ax22.set_ylabel(r'$\mathregular{rel.\/Error\/(\%)}$')
# ax2.set_ylabel(r'$\mathregular{Heat\/Cap.\/(kJ\/kg^{-1}\/K^{-1})}$')
j['specific_heat'] = {}
j['specific_heat']['coeffs'] = liqObj.getCoefficients('C').tolist()
j['specific_heat']['type'] = 'polynomial'
inVal = 'L'
xData = data.lam
oldCoeffs = liqObj.getCoefficients(inVal)
newCoeffs = liqObj.fitCoefficients(inVal, T=tData, xData=xData)
# print "Th. Co., old: "+str(oldCoeffs)
# print "Th. Co., new: "+str(newCoeffs)
# print
liqObj.setCoefficients(inVal, newCoeffs)
# fData = numpy.array([liqObj.Props(inVal, T=Tin, P=Pin) for Tin in tDat1])
# ax3.plot(tData-273.15, xData*1e3, 'o', label="Data Sheet")
# ax3.plot(tDat1-273.15, fData*1e3, 'o', label="Python")
# if inCP:
# ax3.plot(tDat2-273.15, CP.PropsU(inVal, 'T', tDat2, 'P', Pin*1e3, data.Name, "SI")*1e3, label="CoolProp")
# ax32 = ax3.twinx()
# fData = numpy.array([liqObj.Props(inVal, T=Tin, P=Pin) for Tin in tData])
# ax32.plot(tData-273.15, relError(fData, xData, True), 'o', label="Error", alpha=0.25)
# ax32.set_ylabel(r'$\mathregular{rel.\/Error\/(\%)}$')
# ax3.set_ylabel(r'$\mathregular{Th.\/Cond.\/(mW\/m^{-1}\/K^{-1})}$')
j['conductivity'] = {}
j['conductivity']['coeffs'] = liqObj.getCoefficients('L').tolist()
j['conductivity']['type'] = 'polynomial'
inVal = 'V'
tData = data.T[data.mu_dyn > 0]
if len(tData) > liqObj._minPoints:
tDat1 = numpy.linspace(numpy.min(tData) + 1, numpy.max(tData) - 1, 10)
xData = data.mu_dyn[data.mu_dyn > 0]
oldCoeffs = liqObj.getCoefficients(inVal)
newCoeffs = liqObj.fitCoefficients(inVal, T=tData, xData=xData)
# print "Viscos., old: "+str(oldCoeffs)
# print "Viscos., new: "+str(newCoeffs)
# print
liqObj.setCoefficients(inVal, newCoeffs)
# fData = numpy.array([liqObj.Props(inVal, T=Tin, P=Pin) for Tin in tDat1])
# ax4.plot(tData-273.15, xData*1e3, 'o', label="Data Sheet")
# ax4.plot(tDat1-273.15, fData*1e3, 'o', label="Python")
# if inCP:
# ax4.plot(tDat2-273.15, CP.PropsU(inVal, 'T', tDat2, 'P', Pin*1e3, data.Name, "SI")*1e3, label="CoolProp")
# ax42 = ax4.twinx()
# fData = numpy.array([liqObj.Props(inVal, T=Tin, P=Pin) for Tin in tData])
# ax42.plot(tData-273.15, relError(fData, xData, True), 'o', label="Error", alpha=0.25)
# ax42.set_ylabel(r'$\mathregular{rel.\/Error\/(\%)}$')
# ax4.set_ylabel(r'$\mathregular{Dyn.\/Viscosity\/(mPa\/s)}$')
# ax4.set_yscale('log')
j['viscosity'] = {}
j['viscosity']['coeffs'] = liqObj.getCoefficients('V').tolist()
j['viscosity']['type'] = 'polynomial'
inVal = 'Psat'
mask = numpy.logical_and(numpy.greater_equal(data.T, data.TminPsat), numpy.greater(data.psat, 0))
tData = data.T[mask]
if len(tData) > liqObj._minPoints:
tDat1 = numpy.linspace(numpy.min(tData) + 1, numpy.max(tData) - 1, 10)
xData = data.psat[mask]
oldCoeffs = liqObj.getCoefficients(inVal)
newCoeffs = liqObj.fitCoefficients(inVal, T=tData, xData=xData)
# print "P sat. , old: "+str(oldCoeffs)
# print "P sat. , new: "+str(newCoeffs)
# print
liqObj.setCoefficients(inVal, newCoeffs)
# fData = numpy.array([liqObj.Props(inVal, T=Tin, P=Pin) for Tin in tDat1])
# ax5.plot(tData-273.15, xData/1e3, 'o', label="Data Sheet")
# ax5.plot(tDat1-273.15, fData/1e3, 'o', label="Python")
# if inCP:
# ax5.plot(tDat2-273.15, CP.PropsU(inVal, 'T', tDat2, 'P', Pin*1e3, data.Name, "SI")/1e3, label="CoolProp")
# ax52 = ax5.twinx()
# fData = numpy.array([liqObj.Props(inVal, T=Tin, P=Pin) for Tin in tData])
# ax52.plot(tData-273.15, relError(fData, xData, True), 'o', label="Error", alpha=0.25)
# ax52.set_ylabel(r'$\mathregular{rel.\/Error\/(\%)}$')
#
# ax5.set_ylabel(r'$\mathregular{Vap.\/Pressure\/(kPa)}$')
# ax5.set_yscale('log')
#
# ax5.set_xlabel(ur'$\mathregular{Temperature\/(\u00B0C)}$')
# ax6.set_xlabel(ur'$\mathregular{Temperature\/(\u00B0C)}$')
j['saturation_pressure'] = {}
j['saturation_pressure']['coeffs'] = np.array(liqObj.getCoefficients('Psat')).tolist()
j['saturation_pressure']['type'] = 'polynomial'
#x5min,x5max = ax5.get_xlim()
#x6min,x6max = ax6.get_xlim()
#xmin, xmax = (numpy.min([x5min,x6min]),numpy.max([x5max,x6max]))
#x3min,x3max = ax3.get_xlim()
#x4min,x4max = ax4.get_xlim()
#xmin, xmax = (numpy.min([x3min,x4min]),numpy.max([x3max,x4max]))
#x1min,x1max = ax1.get_xlim()
#x2min,x2max = ax2.get_xlim()
#xmin, xmax = (numpy.min([x1min,x2min]),numpy.max([x1max,x2max]))
#xmin, xmax = (-10,30)
#
# xmin = numpy.round(numpy.min(data.T)-273.15-5, -1)
# xmax = numpy.round(numpy.max(data.T)-273.15+5, -1)
#
# ax5.set_xlim([xmin,xmax])
# ax6.set_xlim(ax5.get_xlim())
#
# ax5.xaxis.set_major_locator(MaxNLocator(5))
# ax6.xaxis.set_major_locator(ax5.xaxis.get_major_locator())
#
# tData = numpy.array(data.Tmin + (data.Tmax-data.Tmin)/2.)
# xData = numpy.array(1)
# ax6.plot(tData-273.15, xData, 'o', label="Data Sheet")
# ax6.plot(tData-273.15, xData, 'o', label="Python")
# if inCP:
# ax6.plot(tData-273.15, xData, label="CoolProp")
# ax6.legend(loc=1)
# ax6.text(tData-273.15, xData*1.005, 'Fits for '+str(data.Name),
# verticalalignment='top', horizontalalignment='center',
# backgroundcolor='white', fontsize=18)
# matplotlib.pyplot.tight_layout()
# matplotlib.pyplot.savefig("fit_current_std.pdf")
# #TODO Remove for normal fitting
# matplotlib.pyplot.savefig("fit_"+data.Name+"_std.pdf")
# ### Print the output for the C++ file
# print "name = std::string(\""+data.Name+"\");"
# print "description = std::string(\""+data.Desc+"\");"
# print "reference = std::string(\"\");"
# print ""
# print "Tmin = "+str(data.Tmin)+";"
# print "Tmax = "+str(data.Tmax)+";"
# print "TminPsat = "+str(data.TminPsat)+";"
# print ""
# print "cRho.clear();"
# C = liqObj.getCoefficients('D')
# for Ci in C:
# print "cRho.push_back(%+1.10E);" %(Ci)
#
# print ""
# print "cHeat.clear();"
# C = liqObj.getCoefficients('C')
# for Ci in C:
# print "cHeat.push_back(%+1.10E);" %(Ci)
#
# print ""
# print "cCond.clear();"
# C = liqObj.getCoefficients('L')
# for Ci in C:
# print "cCond.push_back(%+1.10E);" %(Ci)
#
# print ""
# print "cVisc.clear();"
# C = liqObj.getCoefficients('V')
# for Ci in C:
# print "cVisc.push_back(%+1.10E);" %(Ci)
#
# print ""
# print "cPsat.clear();"
# C = liqObj.getCoefficients('Psat')
# for Ci in C:
# print "cPsat.push_back(%+1.10E);" %(Ci)
#
# raw_input("Finished with "+data.Name+", press Enter to continue...")
import json
print(json.dumps(j, indent=2))
fp = open(j['name'] + '.json', 'w')
fp.write(json.dumps(j, indent=2, sort_keys=True))
fp.close()